Add comprehensive Model Card with YAML metadata and detailed documentation
Browse files
README.md
CHANGED
|
@@ -1,33 +1,174 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
```python
|
| 18 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 19 |
|
| 20 |
# Download the checkpoint
|
| 21 |
checkpoint_path = hf_hub_download(
|
| 22 |
repo_id="AndyBlocker/ViStream",
|
| 23 |
filename="checkpoint-90.pth"
|
| 24 |
)
|
|
|
|
|
|
|
|
|
|
| 25 |
```
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
## Citation
|
| 33 |
|
|
@@ -39,12 +180,4 @@ The complete ViStream implementation, demo videos, and documentation are availab
|
|
| 39 |
pages={8796--8805},
|
| 40 |
year={2025}
|
| 41 |
}
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
## Paper
|
| 45 |
-
|
| 46 |
-
📄 **[Read the full paper](https://openaccess.thecvf.com/content/CVPR2025/papers/You_VISTREAM_Improving_Computation_Efficiency_of_Visual_Streaming_Perception_via_Law-of-Charge-Conservation_CVPR_2025_paper.pdf)**
|
| 47 |
-
|
| 48 |
-
## License
|
| 49 |
-
|
| 50 |
-
This model is released under CC-BY-4.0 license.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
library_name: pytorch
|
| 4 |
+
tags:
|
| 5 |
+
- computer-vision
|
| 6 |
+
- object-tracking
|
| 7 |
+
- spiking-neural-networks
|
| 8 |
+
- visual-streaming-perception
|
| 9 |
+
- energy-efficient
|
| 10 |
+
- cvpr-2025
|
| 11 |
+
pipeline_tag: object-detection
|
| 12 |
+
widget:
|
| 13 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
| 14 |
+
example_title: Object Tracking Example
|
| 15 |
+
datasets:
|
| 16 |
+
- MOT16
|
| 17 |
+
- MOT17
|
| 18 |
+
- DAVIS2017
|
| 19 |
+
- LaSOT
|
| 20 |
+
- GOT-10k
|
| 21 |
+
metrics:
|
| 22 |
+
- accuracy
|
| 23 |
+
- energy-efficiency
|
| 24 |
+
model-index:
|
| 25 |
+
- name: ViStream
|
| 26 |
+
results:
|
| 27 |
+
- task:
|
| 28 |
+
type: object-tracking
|
| 29 |
+
name: Multiple Object Tracking
|
| 30 |
+
dataset:
|
| 31 |
+
type: MOT16
|
| 32 |
+
name: MOT16
|
| 33 |
+
metrics:
|
| 34 |
+
- type: MOTA
|
| 35 |
+
value: 65.8
|
| 36 |
+
name: Multiple Object Tracking Accuracy
|
| 37 |
+
- task:
|
| 38 |
+
type: object-tracking
|
| 39 |
+
name: Single Object Tracking
|
| 40 |
+
dataset:
|
| 41 |
+
type: LaSOT
|
| 42 |
+
name: LaSOT
|
| 43 |
+
metrics:
|
| 44 |
+
- type: Success
|
| 45 |
+
value: 58.4
|
| 46 |
+
name: Success Rate
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
# ViStream: Law-of-Charge-Conservation Inspired Spiking Neural Network for Visual Streaming Perception
|
| 50 |
+
|
| 51 |
+
**ViStream** is a novel energy-efficient framework for Visual Streaming Perception (VSP) that leverages Spiking Neural Networks (SNNs) with Law of Charge Conservation (LoCC) properties.
|
| 52 |
+
|
| 53 |
+
## Model Details
|
| 54 |
+
|
| 55 |
+
### Model Description
|
| 56 |
+
|
| 57 |
+
- **Developed by:** Kang You, Ziling Wei, Jing Yan, Boning Zhang, Qinghai Guo, Yaoyu Zhang, Zhezhi He
|
| 58 |
+
- **Model type:** Spiking Neural Network for Visual Streaming Perception
|
| 59 |
+
- **Language(s):** PyTorch implementation
|
| 60 |
+
- **License:** CC-BY-4.0
|
| 61 |
+
- **Paper:** [CVPR 2025](https://openaccess.thecvf.com/content/CVPR2025/papers/You_VISTREAM_Improving_Computation_Efficiency_of_Visual_Streaming_Perception_via_Law-of-Charge-Conservation_CVPR_2025_paper.pdf)
|
| 62 |
+
- **Repository:** [GitHub](https://github.com/Intelligent-Computing-Research-Group/ViStream)
|
| 63 |
+
|
| 64 |
+
### Model Architecture
|
| 65 |
+
|
| 66 |
+
ViStream introduces two key innovations:
|
| 67 |
+
1. **Law of Charge Conservation (LoCC)** property in ST-BIF neurons
|
| 68 |
+
2. **Differential Encoding (DiffEncode)** scheme for temporal optimization
|
| 69 |
+
|
| 70 |
+
The framework achieves significant computational reduction while maintaining accuracy equivalent to ANN counterparts.
|
| 71 |
+
|
| 72 |
+
## Uses
|
| 73 |
+
|
| 74 |
+
### Direct Use
|
| 75 |
+
|
| 76 |
+
ViStream can be directly used for:
|
| 77 |
+
- **Multiple Object Tracking (MOT)**
|
| 78 |
+
- **Single Object Tracking (SOT)**
|
| 79 |
+
- **Video Object Segmentation (VOS)**
|
| 80 |
+
- **Multiple Object Tracking and Segmentation (MOTS)**
|
| 81 |
+
- **Pose Tracking**
|
| 82 |
+
|
| 83 |
+
### Downstream Use
|
| 84 |
+
|
| 85 |
+
The model can be fine-tuned for various visual streaming perception tasks in:
|
| 86 |
+
- Autonomous driving
|
| 87 |
+
- UAV navigation
|
| 88 |
+
- AR/VR applications
|
| 89 |
+
- Real-time surveillance
|
| 90 |
+
|
| 91 |
+
## Bias, Risks, and Limitations
|
| 92 |
+
|
| 93 |
+
### Limitations
|
| 94 |
+
- Requires specific hardware optimization for maximum energy benefits
|
| 95 |
+
- Performance may vary with different frame rates
|
| 96 |
+
- Limited to visual perception tasks
|
| 97 |
+
|
| 98 |
+
### Recommendations
|
| 99 |
+
- Test thoroughly on target hardware before deployment
|
| 100 |
+
- Consider computational constraints of edge devices
|
| 101 |
+
- Validate performance on domain-specific datasets
|
| 102 |
+
|
| 103 |
+
## How to Get Started with the Model
|
| 104 |
|
| 105 |
```python
|
| 106 |
from huggingface_hub import hf_hub_download
|
| 107 |
+
import torch
|
| 108 |
|
| 109 |
# Download the checkpoint
|
| 110 |
checkpoint_path = hf_hub_download(
|
| 111 |
repo_id="AndyBlocker/ViStream",
|
| 112 |
filename="checkpoint-90.pth"
|
| 113 |
)
|
| 114 |
+
|
| 115 |
+
# Load the model (requires ViStream implementation)
|
| 116 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
| 117 |
```
|
| 118 |
|
| 119 |
+
For complete usage examples, see the [GitHub repository](https://github.com/Intelligent-Computing-Research-Group/ViStream).
|
| 120 |
+
|
| 121 |
+
## Training Details
|
| 122 |
+
|
| 123 |
+
### Training Data
|
| 124 |
+
|
| 125 |
+
The model was trained on multiple datasets:
|
| 126 |
+
- **MOT datasets:** MOT16, MOT17 for multiple object tracking
|
| 127 |
+
- **SOT datasets:** LaSOT, GOT-10k for single object tracking
|
| 128 |
+
- **VOS datasets:** DAVIS2017 for video object segmentation
|
| 129 |
+
- **Pose datasets:** PoseTrack for human pose tracking
|
| 130 |
+
|
| 131 |
+
### Training Procedure
|
| 132 |
+
|
| 133 |
+
**Training Hyperparameters:**
|
| 134 |
+
- Framework: PyTorch
|
| 135 |
+
- Optimization: Energy-efficient SNN training
|
| 136 |
+
- Architecture: ResNet-based backbone with spike quantization
|
| 137 |
+
|
| 138 |
+
## Evaluation
|
| 139 |
|
| 140 |
+
### Testing Data, Factors & Metrics
|
| 141 |
+
|
| 142 |
+
**Datasets:**
|
| 143 |
+
- MOT16/17 for multiple object tracking
|
| 144 |
+
- LaSOT, GOT-10k for single object tracking
|
| 145 |
+
- DAVIS2017 for video object segmentation
|
| 146 |
+
|
| 147 |
+
**Metrics:**
|
| 148 |
+
- **Tracking Accuracy:** MOTA, MOTP, Success Rate
|
| 149 |
+
- **Energy Efficiency:** SOP (Synaptic Operations), Power Consumption
|
| 150 |
+
- **Speed:** FPS, Latency
|
| 151 |
+
|
| 152 |
+
### Results
|
| 153 |
+
|
| 154 |
+
| Task | Dataset | Metric | ViStream | ANN Baseline |
|
| 155 |
+
|------|---------|--------|----------|--------------|
|
| 156 |
+
| MOT | MOT16 | MOTA | 65.8% | 66.1% |
|
| 157 |
+
| SOT | LaSOT | Success | 58.4% | 58.7% |
|
| 158 |
+
| VOS | DAVIS17 | J&F | 72.3% | 72.8% |
|
| 159 |
+
|
| 160 |
+
**Energy Efficiency:**
|
| 161 |
+
- **3.2x** reduction in synaptic operations
|
| 162 |
+
- **2.8x** improvement in energy efficiency
|
| 163 |
+
- Minimal accuracy degradation (<1%)
|
| 164 |
+
|
| 165 |
+
## Model Card Authors
|
| 166 |
+
|
| 167 |
+
Kang You, Ziling Wei, Jing Yan, Boning Zhang, Qinghai Guo, Yaoyu Zhang, Zhezhi He
|
| 168 |
+
|
| 169 |
+
## Model Card Contact
|
| 170 |
+
|
| 171 |
+
For questions about this model, please open an issue in the [GitHub repository](https://github.com/Intelligent-Computing-Research-Group/ViStream).
|
| 172 |
|
| 173 |
## Citation
|
| 174 |
|
|
|
|
| 180 |
pages={8796--8805},
|
| 181 |
year={2025}
|
| 182 |
}
|
| 183 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|