# IQuest-Loop-Instruct GGUF Conversion Summary **Date**: 2026-01-07 **Model**: IQuestLab/IQuest-Coder-V1-40B-Loop-Instruct **Achievement**: World's first IQuest-Loop-Instruct GGUF conversion ## Files Created | File | Size | Format | SHA256 | Completion Time | |------|------|--------|--------|----------------| | IQuest-Coder-V1-40B-Loop-Instruct-f16.gguf | 75GB | F16 | `b70d3bb48753e786c8afca7556b818341fc9258e29083be4b0375c5a8b788289` | 2m 6s | | IQuest-Coder-V1-40B-Loop-Instruct-q4_k_m.gguf | 23GB | Q4_K_M | `b665999c8d6660ba0ea29cbbb072056052ef965a233ef65661ec16a16b39a9e3` | 2m 23s | | IQuest-Coder-V1-40B-Loop-Instruct-q5_k_m.gguf | 27GB | Q5_K_M | `a15814998038c8c6334f69bc11b776bce785350c933ce95fe9c41c4c7ec708ba` | 1m 41s | | IQuest-Coder-V1-40B-Loop-Instruct-q8_0.gguf | 40GB | Q8_0 | `a9323b7ca583a842737dd4ec1f7422101c68ededf2a86c75a8d5e9da70eaae06` | 53s | ## Technical Implementation ### Architecture Support Created `IQuestLoopCoderModel` class in llama.cpp's `convert_hf_to_gguf.py`: - Inherits from `LlamaModel` (compatible architecture base) - Maps 160 loop-specific `gate_projections` tensors to GGUF format - Preserves loop parameters in metadata: - `llama.loop.num`: 2 - `llama.loop.window_size`: 64 ### Tensor Mapping **Gate Projections** (160 tensors total): - Source: `model.gate_projections.{0-79}.{weight|bias}` - Shape: `[128, 40]` weight + `[40]` bias per layer - Target: `blk.{layer}.loop_gate.{weight|bias}` - Quantization: Uses fallback q5_0/q5_1 for Q4_K_M/Q5_K_M (tensors too small for standard quantization) **Standard Tensors** (721 tensors): - Uses LlamaModel's standard tensor mapping - Attention: Q, K, V, Output projections - FFN: Gate, Up, Down projections - Normalization: Attention & FFN RMS norms ## Conversion Statistics - **Total Tensors**: 883 - Standard Llama: 721 - Loop Gates: 160 (80 layers × 2 per layer) - Embeddings: 2 - **Vocabulary Size**: 76,800 tokens - **Context Length**: 131,072 tokens - **Hidden Layers**: 80 - **Attention Heads**: 40 (8 KV heads) - **Hidden Size**: 5,120 - **FFN Size**: 27,648 ## Current Status ### What Works ✅ 1. **Conversion**: Successfully converts HuggingFace → GGUF F16 2. **Quantization**: All standard quantization levels work (Q4_K_M, Q5_K_M, Q8_0, etc.) 3. **Metadata**: Loop parameters correctly stored in GGUF metadata 4. **Tensor Preservation**: All 883 tensors including loop gates successfully converted 5. **Ollama Import**: Ollama accepts and imports the GGUF file ### What Needs Work 🔧 1. **Runtime Support**: llama.cpp runtime needs loop attention mechanism implementation 2. **Inference**: Model loads but cannot run inference yet (loop gates not used) 3. **Testing**: Need to validate loop attention behavior matches original PyTorch ## Implementation Details ### Modified Files **`/tmp/convert_hf_to_gguf.py`** (lines 2695-2733): ```python @ModelBase.register("IQuestLoopCoderForCausalLM") class IQuestLoopCoderModel(LlamaModel): """IQuest Loop Coder model with recurrent loop attention mechanism.""" model_arch = gguf.MODEL_ARCH.LLAMA def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loop_num = self.hparams.get('loop_num', 2) self.loop_window_size = self.hparams.get('loop_window_size', 64) def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_uint32("llama.loop.num", self.loop_num) self.gguf_writer.add_uint32("llama.loop.window_size", self.loop_window_size) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None): if "gate_projections" in name: parts = name.split('.') if len(parts) >= 4 and parts[1] == "gate_projections": layer_num = parts[2] param_type = parts[3] new_name = f"blk.{layer_num}.loop_gate.{param_type}" return [(new_name, data_torch)] return super().modify_tensors(data_torch, name, bid) ``` ## Next Steps for Community ### For llama.cpp Maintainers 1. **Implement Loop Attention Runtime**: - Read `llama.loop.num` and `llama.loop.window_size` from GGUF metadata - Load `blk.{layer}.loop_gate.{weight|bias}` tensors - Implement recurrent loop attention mechanism in CUDA/CPU kernels - Reference: Original implementation at IQuestLab/IQuest-Coder-V1-40B-Loop-Instruct 2. **Add Unit Tests**: - Verify tensor loading - Validate loop parameter reading - Test against PyTorch reference implementation 3. **Documentation**: - Add Loop architecture to supported models list - Document loop parameter usage - Provide conversion examples ### For Model Users 1. **Wait for Runtime Support**: These GGUFs will work once llama.cpp implements loop attention 2. **Use Regular Variant**: For immediate use, IQuest-Coder (non-Loop) is fully supported 3. **Contribute**: Help implement loop attention in llama.cpp runtime ## Performance Expectations (Once Runtime Supports Loop) Based on quantization levels: - **Q4_K_M (23GB)**: Recommended for most deployments, 30% of original size - **Q5_K_M (27GB)**: Better quality, 35% of original size - **Q8_0 (40GB)**: Excellent quality, 53% of original size, minimal loss - **F16 (75GB)**: Full precision reference ## Docker Build System **Image**: `avarok/dgx-spark-complete:latest` **Base**: `dgx-vllm:cutlass-nvfp4-v15` **Includes**: - vLLM v15 with IQuest Loop Coder support - llama.cpp with CUDA support - Conversion scripts (convert_to_gguf.sh, quantize.sh) - Optimized for NVIDIA GB10 (SM 12.1) ## References - **Original Model**: https://huggingface.co/IQuestLab/IQuest-Coder-V1-40B-Loop-Instruct - **llama.cpp Issue**: #18517 - Request for Loop-Instruct support - **PR Inspiration**: #18524 - Regular IQuestCoder support - **Debugging Journey**: /workspace/builds/DEBUGGING_JOURNEY.md ## Credits - **Hardware**: Dual NVIDIA DGX Spark with GB10 GPUs - **Model**: IQuestLab team for Loop architecture innovation - **Tools**: llama.cpp (ggerganov), vLLM team - **First GGUF**: This conversion is the first Loop-Instruct variant in GGUF format ## Verification SHA256 checksums provided for all files. Verify before use: ```bash sha256sum IQuest-Coder-V1-40B-Loop-Instruct-*.gguf ``` --- **Status**: Conversion successful, runtime support pending **Date**: 2026-01-07 **Next**: Submit PR to llama.cpp with implementation + publish to HuggingFace