BlackKakapo commited on
Commit
95af541
·
verified ·
1 Parent(s): 74e4097

Add new SentenceTransformer model with an onnx backend

Browse files
1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,78 +1,78 @@
1
- ---
2
- pipeline_tag: sentence-similarity
3
- tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
- language:
9
- - ro
10
- language_creators:
11
- - machine-generated
12
- dataset:
13
- - ro_sts
14
- license: apache-2.0
15
- datasets:
16
- - BlackKakapo/RoSTSC
17
- base_model:
18
- - BlackKakapo/stsb-xlm-r-multilingual-ro
19
- ---
20
-
21
- # 🔥 cupidon-base-ro
22
-
23
- Don’t be shy — cupidon-base-ro is here to charm your embeddings into alignment 💘. Based on the solid foundations of `BlackKakapo/stsb-xlm-r-multilingual-ro` and lovingly fine-tuned on Romanian STS data, this model brings more than just good looks to the table.
24
- Because in the end, true meaning isn’t just in the words... it's in how you embed them. 🧠💕
25
- ## Usage (Sentence-Transformers)
26
-
27
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
28
-
29
- ```bash
30
- pip install -U sentence-transformers
31
- ```
32
-
33
- Then you can use the model like this:
34
-
35
- ```python
36
- from sentence_transformers import SentenceTransformer
37
- sentences = ["This is an example sentence", "Each sentence is converted"]
38
-
39
- model = SentenceTransformer('BlackKakapo/cupidon-base-ro')
40
- embeddings = model.encode(sentences)
41
- print(embeddings)
42
- ```
43
-
44
- ## Usage (HuggingFace Transformers)
45
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
46
-
47
- ```python
48
- from transformers import AutoTokenizer, AutoModel
49
- import torch
50
-
51
-
52
- #Mean Pooling - Take attention mask into account for correct averaging
53
- def mean_pooling(model_output, attention_mask):
54
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
55
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
56
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
57
-
58
-
59
- # Sentences we want sentence embeddings for
60
- sentences = ['This is an example sentence', 'Each sentence is converted']
61
-
62
- # Load model from HuggingFace Hub
63
- tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/cupidon-base-ro')
64
- model = AutoModel.from_pretrained('BlackKakapo/cupidon-base-ro')
65
- ```
66
-
67
- ## License
68
- This dataset is licensed under **Apache 2.0**.
69
-
70
- ## Citation
71
- If you use BlackKakapo/cupidon-tiny-ro in your research, please cite this model as follows:
72
- ```
73
- @misc{cupidon-base-ro,
74
- title={BlackKakapo/cupidon-base-ro},
75
- author={BlackKakapo},
76
- year={2025},
77
- }
78
  ```
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ language:
9
+ - ro
10
+ language_creators:
11
+ - machine-generated
12
+ dataset:
13
+ - ro_sts
14
+ license: apache-2.0
15
+ datasets:
16
+ - BlackKakapo/RoSTSC
17
+ base_model:
18
+ - BlackKakapo/stsb-xlm-r-multilingual-ro
19
+ ---
20
+
21
+ # 🔥 cupidon-base-ro
22
+
23
+ Don’t be shy — cupidon-base-ro is here to charm your embeddings into alignment 💘. Based on the solid foundations of `BlackKakapo/stsb-xlm-r-multilingual-ro` and lovingly fine-tuned on Romanian STS data, this model brings more than just good looks to the table.
24
+ Because in the end, true meaning isn’t just in the words... it's in how you embed them. 🧠💕
25
+ ## Usage (Sentence-Transformers)
26
+
27
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
28
+
29
+ ```bash
30
+ pip install -U sentence-transformers
31
+ ```
32
+
33
+ Then you can use the model like this:
34
+
35
+ ```python
36
+ from sentence_transformers import SentenceTransformer
37
+ sentences = ["This is an example sentence", "Each sentence is converted"]
38
+
39
+ model = SentenceTransformer('BlackKakapo/cupidon-base-ro')
40
+ embeddings = model.encode(sentences)
41
+ print(embeddings)
42
+ ```
43
+
44
+ ## Usage (HuggingFace Transformers)
45
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
46
+
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModel
49
+ import torch
50
+
51
+
52
+ #Mean Pooling - Take attention mask into account for correct averaging
53
+ def mean_pooling(model_output, attention_mask):
54
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
55
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
56
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
57
+
58
+
59
+ # Sentences we want sentence embeddings for
60
+ sentences = ['This is an example sentence', 'Each sentence is converted']
61
+
62
+ # Load model from HuggingFace Hub
63
+ tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/cupidon-base-ro')
64
+ model = AutoModel.from_pretrained('BlackKakapo/cupidon-base-ro')
65
+ ```
66
+
67
+ ## License
68
+ This dataset is licensed under **Apache 2.0**.
69
+
70
+ ## Citation
71
+ If you use BlackKakapo/cupidon-tiny-ro in your research, please cite this model as follows:
72
+ ```
73
+ @misc{cupidon-base-ro,
74
+ title={BlackKakapo/cupidon-base-ro},
75
+ author={BlackKakapo},
76
+ year={2025},
77
+ }
78
  ```
config.json CHANGED
@@ -1,28 +1,27 @@
1
- {
2
- "_name_or_path": "C:\\Users\\apetrachi\\Downloads\\cupidon-cache",
3
- "architectures": [
4
- "XLMRobertaModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "classifier_dropout": null,
9
- "eos_token_id": 2,
10
- "gradient_checkpointing": false,
11
- "hidden_act": "gelu",
12
- "hidden_dropout_prob": 0.1,
13
- "hidden_size": 768,
14
- "initializer_range": 0.02,
15
- "intermediate_size": 3072,
16
- "layer_norm_eps": 1e-05,
17
- "max_position_embeddings": 514,
18
- "model_type": "xlm-roberta",
19
- "num_attention_heads": 12,
20
- "num_hidden_layers": 12,
21
- "output_past": true,
22
- "pad_token_id": 1,
23
- "position_embedding_type": "absolute",
24
- "transformers_version": "4.41.0",
25
- "type_vocab_size": 1,
26
- "use_cache": true,
27
- "vocab_size": 250002
28
- }
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.53.3",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
 
config_sentence_transformers.json CHANGED
@@ -1,14 +1,14 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "5.1.0",
4
- "transformers": "4.41.0",
5
- "pytorch": "2.6.0+cpu"
6
- },
7
- "prompts": {
8
- "query": "",
9
- "document": ""
10
- },
11
- "default_prompt_name": null,
12
- "similarity_fn_name": "cosine",
13
- "model_type": "SentenceTransformer"
14
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.0",
4
+ "transformers": "4.53.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "",
9
+ "document": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine",
13
+ "model_type": "SentenceTransformer"
14
  }
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
onnx/model.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a6afe20ab512334adb4628223ba9e0f3521f3fa051d1d5dde3fb6dbac8b2e2b
3
- size 1110068629
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ab90c2b4047f47210244d1bbefff3bd085aac625fbb2bf87df70e8ef1e41f8
3
+ size 1110092472
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,51 +1,51 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json CHANGED
@@ -1,64 +1,64 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<s>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<pad>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "</s>",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "250001": {
36
- "content": "<mask>",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "bos_token": "<s>",
45
- "clean_up_tokenization_spaces": false,
46
- "cls_token": "<s>",
47
- "eos_token": "</s>",
48
- "extra_special_tokens": {},
49
- "full_tokenizer_file": null,
50
- "mask_token": "<mask>",
51
- "max_length": 128,
52
- "model_max_length": 128,
53
- "pad_to_multiple_of": null,
54
- "pad_token": "<pad>",
55
- "pad_token_type_id": 0,
56
- "padding_side": "right",
57
- "sep_token": "</s>",
58
- "sp_model_kwargs": {},
59
- "stride": 0,
60
- "tokenizer_class": "XLMRobertaTokenizer",
61
- "truncation_side": "right",
62
- "truncation_strategy": "longest_first",
63
- "unk_token": "<unk>"
64
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "sp_model_kwargs": {},
59
+ "stride": 0,
60
+ "tokenizer_class": "XLMRobertaTokenizerFast",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }