Add new SentenceTransformer model with an onnx backend
Browse files- 1_Pooling/config.json +9 -9
- README.md +77 -77
- config.json +27 -28
- config_sentence_transformers.json +13 -13
- modules.json +13 -13
- onnx/model.onnx +2 -2
- sentence_bert_config.json +3 -3
- special_tokens_map.json +51 -51
- tokenizer_config.json +64 -64
1_Pooling/config.json
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
-
{
|
| 2 |
-
"word_embedding_dimension": 768,
|
| 3 |
-
"pooling_mode_cls_token": false,
|
| 4 |
-
"pooling_mode_mean_tokens": true,
|
| 5 |
-
"pooling_mode_max_tokens": false,
|
| 6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
-
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken": false,
|
| 9 |
-
"include_prompt": true
|
| 10 |
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
}
|
README.md
CHANGED
|
@@ -1,78 +1,78 @@
|
|
| 1 |
-
---
|
| 2 |
-
pipeline_tag: sentence-similarity
|
| 3 |
-
tags:
|
| 4 |
-
- sentence-transformers
|
| 5 |
-
- feature-extraction
|
| 6 |
-
- sentence-similarity
|
| 7 |
-
- transformers
|
| 8 |
-
language:
|
| 9 |
-
- ro
|
| 10 |
-
language_creators:
|
| 11 |
-
- machine-generated
|
| 12 |
-
dataset:
|
| 13 |
-
- ro_sts
|
| 14 |
-
license: apache-2.0
|
| 15 |
-
datasets:
|
| 16 |
-
- BlackKakapo/RoSTSC
|
| 17 |
-
base_model:
|
| 18 |
-
- BlackKakapo/stsb-xlm-r-multilingual-ro
|
| 19 |
-
---
|
| 20 |
-
|
| 21 |
-
# 🔥 cupidon-base-ro
|
| 22 |
-
|
| 23 |
-
Don’t be shy — cupidon-base-ro is here to charm your embeddings into alignment 💘. Based on the solid foundations of `BlackKakapo/stsb-xlm-r-multilingual-ro` and lovingly fine-tuned on Romanian STS data, this model brings more than just good looks to the table.
|
| 24 |
-
Because in the end, true meaning isn’t just in the words... it's in how you embed them. 🧠💕
|
| 25 |
-
## Usage (Sentence-Transformers)
|
| 26 |
-
|
| 27 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 28 |
-
|
| 29 |
-
```bash
|
| 30 |
-
pip install -U sentence-transformers
|
| 31 |
-
```
|
| 32 |
-
|
| 33 |
-
Then you can use the model like this:
|
| 34 |
-
|
| 35 |
-
```python
|
| 36 |
-
from sentence_transformers import SentenceTransformer
|
| 37 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 38 |
-
|
| 39 |
-
model = SentenceTransformer('BlackKakapo/cupidon-base-ro')
|
| 40 |
-
embeddings = model.encode(sentences)
|
| 41 |
-
print(embeddings)
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
## Usage (HuggingFace Transformers)
|
| 45 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 46 |
-
|
| 47 |
-
```python
|
| 48 |
-
from transformers import AutoTokenizer, AutoModel
|
| 49 |
-
import torch
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
| 53 |
-
def mean_pooling(model_output, attention_mask):
|
| 54 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 55 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 56 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# Sentences we want sentence embeddings for
|
| 60 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 61 |
-
|
| 62 |
-
# Load model from HuggingFace Hub
|
| 63 |
-
tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/cupidon-base-ro')
|
| 64 |
-
model = AutoModel.from_pretrained('BlackKakapo/cupidon-base-ro')
|
| 65 |
-
```
|
| 66 |
-
|
| 67 |
-
## License
|
| 68 |
-
This dataset is licensed under **Apache 2.0**.
|
| 69 |
-
|
| 70 |
-
## Citation
|
| 71 |
-
If you use BlackKakapo/cupidon-tiny-ro in your research, please cite this model as follows:
|
| 72 |
-
```
|
| 73 |
-
@misc{cupidon-base-ro,
|
| 74 |
-
title={BlackKakapo/cupidon-base-ro},
|
| 75 |
-
author={BlackKakapo},
|
| 76 |
-
year={2025},
|
| 77 |
-
}
|
| 78 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- transformers
|
| 8 |
+
language:
|
| 9 |
+
- ro
|
| 10 |
+
language_creators:
|
| 11 |
+
- machine-generated
|
| 12 |
+
dataset:
|
| 13 |
+
- ro_sts
|
| 14 |
+
license: apache-2.0
|
| 15 |
+
datasets:
|
| 16 |
+
- BlackKakapo/RoSTSC
|
| 17 |
+
base_model:
|
| 18 |
+
- BlackKakapo/stsb-xlm-r-multilingual-ro
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# 🔥 cupidon-base-ro
|
| 22 |
+
|
| 23 |
+
Don’t be shy — cupidon-base-ro is here to charm your embeddings into alignment 💘. Based on the solid foundations of `BlackKakapo/stsb-xlm-r-multilingual-ro` and lovingly fine-tuned on Romanian STS data, this model brings more than just good looks to the table.
|
| 24 |
+
Because in the end, true meaning isn’t just in the words... it's in how you embed them. 🧠💕
|
| 25 |
+
## Usage (Sentence-Transformers)
|
| 26 |
+
|
| 27 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 28 |
+
|
| 29 |
+
```bash
|
| 30 |
+
pip install -U sentence-transformers
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
Then you can use the model like this:
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from sentence_transformers import SentenceTransformer
|
| 37 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 38 |
+
|
| 39 |
+
model = SentenceTransformer('BlackKakapo/cupidon-base-ro')
|
| 40 |
+
embeddings = model.encode(sentences)
|
| 41 |
+
print(embeddings)
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
## Usage (HuggingFace Transformers)
|
| 45 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
from transformers import AutoTokenizer, AutoModel
|
| 49 |
+
import torch
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
| 53 |
+
def mean_pooling(model_output, attention_mask):
|
| 54 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 55 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 56 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Sentences we want sentence embeddings for
|
| 60 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 61 |
+
|
| 62 |
+
# Load model from HuggingFace Hub
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/cupidon-base-ro')
|
| 64 |
+
model = AutoModel.from_pretrained('BlackKakapo/cupidon-base-ro')
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## License
|
| 68 |
+
This dataset is licensed under **Apache 2.0**.
|
| 69 |
+
|
| 70 |
+
## Citation
|
| 71 |
+
If you use BlackKakapo/cupidon-tiny-ro in your research, please cite this model as follows:
|
| 72 |
+
```
|
| 73 |
+
@misc{cupidon-base-ro,
|
| 74 |
+
title={BlackKakapo/cupidon-base-ro},
|
| 75 |
+
author={BlackKakapo},
|
| 76 |
+
year={2025},
|
| 77 |
+
}
|
| 78 |
```
|
config.json
CHANGED
|
@@ -1,28 +1,27 @@
|
|
| 1 |
-
{
|
| 2 |
-
"
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
|
| 28 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"transformers_version": "4.53.3",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
|
|
config_sentence_transformers.json
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
{
|
| 2 |
-
"__version__": {
|
| 3 |
-
"sentence_transformers": "5.1.0",
|
| 4 |
-
"transformers": "4.
|
| 5 |
-
"pytorch": "2.
|
| 6 |
-
},
|
| 7 |
-
"prompts": {
|
| 8 |
-
"query": "",
|
| 9 |
-
"document": ""
|
| 10 |
-
},
|
| 11 |
-
"default_prompt_name": null,
|
| 12 |
-
"similarity_fn_name": "cosine",
|
| 13 |
-
"model_type": "SentenceTransformer"
|
| 14 |
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.1.0",
|
| 4 |
+
"transformers": "4.53.3",
|
| 5 |
+
"pytorch": "2.5.1+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"query": "",
|
| 9 |
+
"document": ""
|
| 10 |
+
},
|
| 11 |
+
"default_prompt_name": null,
|
| 12 |
+
"similarity_fn_name": "cosine",
|
| 13 |
+
"model_type": "SentenceTransformer"
|
| 14 |
}
|
modules.json
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"idx": 0,
|
| 4 |
-
"name": "0",
|
| 5 |
-
"path": "",
|
| 6 |
-
"type": "sentence_transformers.models.Transformer"
|
| 7 |
-
},
|
| 8 |
-
{
|
| 9 |
-
"idx": 1,
|
| 10 |
-
"name": "1",
|
| 11 |
-
"path": "1_Pooling",
|
| 12 |
-
"type": "sentence_transformers.models.Pooling"
|
| 13 |
-
}
|
| 14 |
]
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
]
|
onnx/model.onnx
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d5ab90c2b4047f47210244d1bbefff3bd085aac625fbb2bf87df70e8ef1e41f8
|
| 3 |
+
size 1110092472
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
{
|
| 2 |
-
"max_seq_length": 128,
|
| 3 |
-
"do_lower_case": false
|
| 4 |
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
}
|
special_tokens_map.json
CHANGED
|
@@ -1,51 +1,51 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token": {
|
| 3 |
-
"content": "<s>",
|
| 4 |
-
"lstrip": false,
|
| 5 |
-
"normalized": false,
|
| 6 |
-
"rstrip": false,
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
-
"cls_token": {
|
| 10 |
-
"content": "<s>",
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": false,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"eos_token": {
|
| 17 |
-
"content": "</s>",
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
-
"mask_token": {
|
| 24 |
-
"content": "<mask>",
|
| 25 |
-
"lstrip": false,
|
| 26 |
-
"normalized": false,
|
| 27 |
-
"rstrip": false,
|
| 28 |
-
"single_word": false
|
| 29 |
-
},
|
| 30 |
-
"pad_token": {
|
| 31 |
-
"content": "<pad>",
|
| 32 |
-
"lstrip": false,
|
| 33 |
-
"normalized": false,
|
| 34 |
-
"rstrip": false,
|
| 35 |
-
"single_word": false
|
| 36 |
-
},
|
| 37 |
-
"sep_token": {
|
| 38 |
-
"content": "</s>",
|
| 39 |
-
"lstrip": false,
|
| 40 |
-
"normalized": false,
|
| 41 |
-
"rstrip": false,
|
| 42 |
-
"single_word": false
|
| 43 |
-
},
|
| 44 |
-
"unk_token": {
|
| 45 |
-
"content": "<unk>",
|
| 46 |
-
"lstrip": false,
|
| 47 |
-
"normalized": false,
|
| 48 |
-
"rstrip": false,
|
| 49 |
-
"single_word": false
|
| 50 |
-
}
|
| 51 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer_config.json
CHANGED
|
@@ -1,64 +1,64 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "<s>",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": false,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": true
|
| 10 |
-
},
|
| 11 |
-
"1": {
|
| 12 |
-
"content": "<pad>",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"2": {
|
| 20 |
-
"content": "</s>",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"3": {
|
| 28 |
-
"content": "<unk>",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"250001": {
|
| 36 |
-
"content": "<mask>",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
}
|
| 43 |
-
},
|
| 44 |
-
"bos_token": "<s>",
|
| 45 |
-
"clean_up_tokenization_spaces": false,
|
| 46 |
-
"cls_token": "<s>",
|
| 47 |
-
"eos_token": "</s>",
|
| 48 |
-
"extra_special_tokens": {},
|
| 49 |
-
"full_tokenizer_file": null,
|
| 50 |
-
"mask_token": "<mask>",
|
| 51 |
-
"max_length": 128,
|
| 52 |
-
"model_max_length": 128,
|
| 53 |
-
"pad_to_multiple_of": null,
|
| 54 |
-
"pad_token": "<pad>",
|
| 55 |
-
"pad_token_type_id": 0,
|
| 56 |
-
"padding_side": "right",
|
| 57 |
-
"sep_token": "</s>",
|
| 58 |
-
"sp_model_kwargs": {},
|
| 59 |
-
"stride": 0,
|
| 60 |
-
"tokenizer_class": "
|
| 61 |
-
"truncation_side": "right",
|
| 62 |
-
"truncation_strategy": "longest_first",
|
| 63 |
-
"unk_token": "<unk>"
|
| 64 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"full_tokenizer_file": null,
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 128,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"sp_model_kwargs": {},
|
| 59 |
+
"stride": 0,
|
| 60 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "<unk>"
|
| 64 |
+
}
|