PepTune / scoring /functions /permeability_xg.py
Sophia Tang
model upload
e54915d
import pandas as pd
import numpy as np
import optuna
from optuna.trial import TrialState
from rdkit import Chem
from rdkit.Chem import AllChem
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import xgboost as xgb
import os
from datasets import load_from_disk
from scipy.stats import spearmanr
import matplotlib.pyplot as plt
def save_and_plot_predictions(y_true_train, y_pred_train, y_true_val, y_pred_val, output_path):
os.makedirs(output_path, exist_ok=True)
# Save training predictions
train_df = pd.DataFrame({'True Permeability': y_true_train, 'Predicted Permeability': y_pred_train})
train_df.to_csv(os.path.join(output_path, 'train_predictions.csv'), index=False)
# Save validation predictions
val_df = pd.DataFrame({'True Permeability': y_true_val, 'Predicted Permeability': y_pred_val})
val_df.to_csv(os.path.join(output_path, 'val_predictions.csv'), index=False)
# Plot training predictions
plot_correlation(
y_true_train,
y_pred_train,
title="Training Set Correlation Plot",
output_file=os.path.join(output_path, 'train_correlation.png'),
)
# Plot validation predictions
plot_correlation(
y_true_val,
y_pred_val,
title="Validation Set Correlation Plot",
output_file=os.path.join(output_path, 'val_correlation.png'),
)
def plot_correlation(y_true, y_pred, title, output_file):
spearman_corr, _ = spearmanr(y_true, y_pred)
# Scatter plot
plt.figure(figsize=(10, 8))
plt.scatter(y_true, y_pred, alpha=0.5, label='Data points', color='#BC80FF')
plt.plot([min(y_true), max(y_true)], [min(y_true), max(y_true)], color='teal', linestyle='--', label='Ideal fit')
# Add annotations
plt.title(f"{title}\nSpearman Correlation: {spearman_corr:.3f}")
plt.xlabel("True Permeability (logP)")
plt.ylabel("Predicted Affinity (logP)")
plt.legend()
# Save and show the plot
plt.tight_layout()
plt.savefig(output_file)
plt.show()
# Load dataset
dataset = load_from_disk('/home/st512/peptune/scripts/peptide-mdlm-mcts/scoring/functions/permeability/30K-data/')
# Extract sequences, labels, and embeddings
sequences = np.stack(dataset['sequence'])
labels = np.stack(dataset['labels']) # Regression labels
embeddings = np.stack(dataset['embedding']) # Pre-trained embeddings
# Function to compute Morgan fingerprints
def compute_morgan_fingerprints(smiles_list, radius=2, n_bits=2048):
fps = []
for smiles in smiles_list:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
fps.append(np.array(fp))
else:
# If the SMILES string is invalid, use a zero vector
fps.append(np.zeros(n_bits))
print(f"Invalid SMILES: {smiles}")
return np.array(fps)
# Compute Morgan fingerprints for the sequences
#morgan_fingerprints = compute_morgan_fingerprints(sequences)
# Concatenate embeddings with Morgan fingerprints
#input_features = np.concatenate([embeddings, morgan_fingerprints], axis=1)
input_features = embeddings
# Initialize global variables
best_model_path = "/home/st512/peptune/scripts/peptide-mdlm-mcts/scoring/functions/permeability/30K-train"
os.makedirs(best_model_path, exist_ok=True)
def trial_info_callback(study, trial):
if study.best_trial == trial:
print(f"Trial {trial.number}:")
print(f" MSE: {trial.value}")
def objective(trial):
# Define hyperparameters
params = {
'objective': 'reg:squarederror',
'lambda': trial.suggest_float('lambda', 0.1, 10.0, log=True),
'alpha': trial.suggest_float('alpha', 0.1, 10.0, log=True),
'gamma': trial.suggest_float('gamma', 0, 5),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
'subsample': trial.suggest_float('subsample', 0.6, 0.9),
'learning_rate': trial.suggest_float('learning_rate', 1e-5, 0.1),
'max_depth': trial.suggest_int('max_depth', 2, 30),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'tree_method': 'hist',
'scale_pos_weight': trial.suggest_float('scale_pos_weight', 0.5, 10.0, log=True),
'device': 'cuda:6',
}
"""params = {
'objective': 'reg:squarederror',
'lambda': trial.suggest_float('lambda', 0.1, 10.0, log=True),
'alpha': trial.suggest_float('alpha', 0.1, 10.0, log=True),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
'subsample': trial.suggest_float('subsample', 0.6, 0.9),
'learning_rate': trial.suggest_float('learning_rate', 1e-5, 1e-2),
'max_depth': trial.suggest_int('max_depth', 4, 20),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'tree_method': 'hist',
'device': 'cuda:6',
}"""
num_boost_round = trial.suggest_int('num_boost_round', 10, 1000)
# Train-validation split
X_train, X_val, y_train, y_val = train_test_split(input_features, labels, test_size=0.2, random_state=42)
# Convert data to DMatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dvalid = xgb.DMatrix(X_val, label=y_val)
# Train XGBoost
model = xgb.train(
params=params,
dtrain=dtrain,
num_boost_round=num_boost_round,
evals=[(dvalid, "validation")],
early_stopping_rounds=50,
verbose_eval=False,
)
# Predict and evaluate
preds_train = model.predict(dtrain)
preds_val = model.predict(dvalid)
mse = mean_squared_error(y_val, preds_val)
# Calculate Spearman Rank Correlation
spearman_corr, _ = spearmanr(y_val, preds_val)
print(f"Spearman Rank Correlation: {spearman_corr}")
# Save the best model
if trial.study.user_attrs.get("best_mse", np.inf) > mse:
trial.study.set_user_attr("best_mse", mse)
trial.study.set_user_attr("best_spearman", spearman_corr) # Save the Spearman correlation
model.save_model(os.path.join(best_model_path, "best_model.json"))
save_and_plot_predictions(y_train, preds_train, y_val, preds_val, best_model_path)
return mse
if __name__ == "__main__":
study = optuna.create_study(direction="minimize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=200, callbacks=[trial_info_callback])
# Print study statistics
print("Study statistics: ")
print(f" Number of finished trials: {len(study.trials)}")
print(f" Best trial value (MSE): {study.best_trial.value}")
print(f" Best Spearman Correlation: {study.user_attrs.get('best_spearman', None)}") # Print the best Spearman correlation
for key, value in study.best_trial.params.items():
print(f" {key}: {value}")