--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_RolesMulti_v1_0_0_PubMedBERT_large results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data config: ROLES_MULTI split: validation args: ROLES_MULTI metrics: - name: Precision type: precision value: 0.9612769172648281 - name: Recall type: recall value: 0.9695180034292246 - name: F1 type: f1 value: 0.9653798729014512 --- # SourceData_RolesMulti_v1_0_0_PubMedBERT_large This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Accuracy Score: 0.9981 - Precision: 0.9613 - Recall: 0.9695 - F1: 0.9654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adafactor and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0046 | 0.9994 | 863 | 0.0068 | 0.9981 | 0.9613 | 0.9695 | 0.9654 | ### Framework versions - Transformers 4.46.3 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3