File size: 14,595 Bytes
710296c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
---
license: mit
pipeline_tag: any-to-any
library_name: transformers
---

<div align="center">
<h1>UniTok: A Unified Tokenizer <br> for Visual Generation and Understanding</h1>

[**Chuofan Ma**](https://machuofan.github.io/)<sup>1,2</sup> · [**Yi Jiang**](https://enjoyyi.github.io/)<sup>2&dagger;</sup> · [**Junfeng Wu**](https://wjf5203.github.io/)<sup>2,3</sup> · [**Jihan Yang**](https://jihanyang.github.io/)<sup>1</sup>
<br>
[**Xin Yu**](https://xinyu-andy.github.io/)<sup>1</sup> · [**Zehuan Yuan**](https://shallowyuan.github.io/)<sup>2*</sup> · [**Bingyue Peng**](https://openreview.net/profile?id=~BINGYUE_PENG1)<sup>2</sup> · [**Xiaojuan Qi**](https://xjqi.github.io/)<sup>1&dagger;*</sup>

<sup>1</sup>HKU&emsp;&emsp;&emsp;<sup>2</sup>ByteDance&emsp;&emsp;&emsp;<sup>3</sup>HUST
<br>
&dagger;project lead&emsp;&emsp;&emsp;*corresponding author

<a href="https://huggingface.co/papers/2502.20321"><img src='https://img.shields.io/badge/Paper-UniTok-red' alt='Paper PDF'></a>
<a href="https://foundationvision.github.io/UniTok/"><img src='https://img.shields.io/badge/Project_Page-UniTok-green' alt='Project Page'></a>
<a href="https://github.com/foundationvision/unitok"><img src='https://img.shields.io/badge/GitHub-Code-blue'></a>
<a href="https://huggingface.co/FoundationVision/unitok_tokenizer"><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
<a href="https://huggingface.co/spaces/FoundationVision/UniTok"><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-yellow'></a>
</div>

This repository implements UniTok, a unified visual tokenizer well-suited for both generation and understanding tasks.
It is compatible with autoregressive generative models (e.g. LlamaGen),
multimodal understanding models (e.g. LLaVA), and unified MLLMs (e.g. Chameleon and Liquid).

![teaser](https://github.com/FoundationVision/UniTok/raw/main/assets/teaser.png)

Built upon UniTok, we construct an MLLM capable of both multimodal generation and understanding
with the [Liquid](https://github.com/FoundationVision/Liquid/) framework,
which sets a new state-of-the-art among unified autoregressive MLLMs.

![teaser](https://github.com/FoundationVision/UniTok/raw/main/assets/samples.png)

## Abstract
Visual generative and understanding models typically rely on distinct tokenizers to process images, presenting a key challenge for unifying them within a single framework. Recent studies attempt to address this by connecting the training of VQVAE (for autoregressive generation) and CLIP (for understanding) to build a unified tokenizer. However, directly combining these training objectives has been observed to cause severe loss conflicts. In this paper, we show that reconstruction and semantic supervision do not inherently conflict. Instead, the underlying bottleneck stems from limited representational capacity of discrete token space. Building on these insights, we introduce UniTok, a unified tokenizer featuring a novel multi-codebook quantization mechanism that effectively scales up the vocabulary size and bottleneck dimension. In terms of final performance, UniTok sets a new record of 0.38 rFID and 78.6% zero-shot accuracy on ImageNet. Besides, UniTok can be seamlessly integrated into MLLMs to unlock native visual generation capability, without compromising the understanding performance. Additionally, we show that UniTok favors cfg-free generation, reducing gFID from 14.6 to 2.5 on ImageNet 256$\times$256 benchmark. GitHub: this https URL .

## News
**2025-09-18:** UniTok is accepted at NeurIPS 2025 as a spotlight.

**2025-05-19:** We find UniTok favors generation **without classifier-free-guidance** --
it reduces gFID (without cfg) from 14.6 to 2.51 on ImageNet 256x256 using LlamaGen-XXL as the generator.
Please refer to the updated [EVAL.md](https://github.com/FoundationVision/UniTok/blob/main/eval/EVAL.md) for more details.

**2025-04-15:** The [gradio demo](https://huggingface.co/spaces/FoundationVision/UniTok) of UniTok MLLM is available on Huggingface now!

**2025-04-02:** A new [checkpoint](https://huggingface.co/FoundationVision/unitok_tokenizer/tree/main)
of UniTok is released, which has better downstream task performance
by replacing the causal attention projection layer with full attention.
The [model weights](https://huggingface.co/FoundationVision/unitok_mllm)
of our unified MLLM are also available on Huggingface now!

**2025-02-28:** Paper, code, model, and [project page](https://foundationvision.github.io/UniTok/) for UniTok are all released.

## Performance

<table>
    <thead>
        <tr>
            <th>Method</th>
            <th>#Tokens</th>
            <th>rFID &darr;</th>
            <th>Accuracy</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td colspan="4"><i>VQVAE Model</i></td>
        </tr>
        <tr align="center">
            <td>VQ-GAN</td>
            <td>256</td>
            <td>4.98</td>
            <td>--</td>
        </tr>
        <tr align="center">
            <td>RQ-VAE</td>
            <td>256</td>
            <td>1.30</td>
            <td>--</td>
        </tr>
        <tr align="center">
            <td>VAR</td>
            <td>680</td>
            <td>0.90</td>
            <td>--</td>
        </tr>
        <tr>
            <td colspan="4"><i>CLIP Model</i></td>
        </tr>
        <tr align="center">
            <td>CLIP</td>
            <td>256</td>
            <td>--</td>
            <td>76.2</td>
        </tr>
        <tr align="center">
            <td>SigLIP</td>
            <td>256</td>
            <td>--</td>
            <td>80.5</td>
        </tr>
        <tr align="center">
            <td>ViTamin</td>
            <td>256</td>
            <td>--</td>
            <td>81.2</td>
        </tr>
        <tr>
            <td colspan="4"><i>Unified Model</i></td>
        </tr>
        <tr align="center">
            <td>TokenFlow &dagger;</td>
            <td>680</td>
            <td>1.37</td>
            <td>--</td>
        </tr>
        <tr align="center">
            <td>VILA-U &dagger;</td>
            <td>256</td>
            <td>1.80</td>
            <td>73.3</td>
        </tr>
        <tr align="center">
            <td>UniTok</td>
            <td>256</td>
            <td>0.41</td>
            <td>70.8</td>
        </tr>
        <tr align="center">
            <td>UniTok &dagger;</td>
            <td>256</td>
            <td>0.38</td>
            <td>78.6</td>
        </tr>
    </tbody>
</table>


&dagger; indicates the model uses pretrained CLIP weights for initialization. Although CLIP weight initialization boosts ImageNet zero-shot accuracy,
we notice that random initialization leads to better downstream understanding performance.
We thus release the model checkpoint of UniTok that is trained from scratch.

## Model Weights

|    Model     | Res. | #Token |        Code Shape         | rFID |  Checkpoint  |
|:------------:|:----:|:------:|:-------------------------:|:----:|:------------:|
| UniTok-Large | 256  |  256   | 16 $\times$ 16 $\times$ 8 | 0.41 | [Download](https://huggingface.co/FoundationVision/unitok_tokenizer/blob/main/unitok_tokenizer.pth) |

## Usage

### Requirements
- Python ≥ 3.10
- PyTorch ≥ 2.3.1

### Installation

```bash
git clone https://github.com/FoundationVision/UniTok.git
cd UniTok
pip install -r requirements.txt
```

### Inference

Please download the [checkpoint](https://huggingface.co/FoundationVision/unitok_tokenizer) and fill in the `ckpt_path`.
```bash
python inference.py \
    --ckpt_path /path/to/unitok_tokenizer.pth \
    --src_img /path/to/test_img --rec_img /path/to/rec_img
```

### Unified MLLM Inference

The simplest code for Lumina-mGPT inference:

```python
from inference_solver import FlexARInferenceSolver
from PIL import Image

# ******************** Image Generation ********************
inference_solver = FlexARInferenceSolver(
    model_path="Alpha-VLLM/Lumina-mGPT-7B-768",
    precision="bf16",
    target_size=768,
)

q1 = f"Generate an image of 768x768 according to the following prompt:
" \
     f"Image of a dog playing water, and a waterfall is in the background."

# generated: tuple of (generated response, list of generated images)
generated = inference_solver.generate(
    images=[],
    qas=[[q1, None]],
    max_gen_len=8192,
    temperature=1.0,
    logits_processor=inference_solver.create_logits_processor(cfg=4.0, image_top_k=2000),
)

a1, new_image = generated[0], generated[1][0]


# ******************* Image Understanding ******************
inference_solver = FlexARInferenceSolver(
    model_path="Alpha-VLLM/Lumina-mGPT-7B-512",
    precision="bf16",
    target_size=512,
)

# "<|image|>" symbol will be replaced with sequence of image tokens before fed to LLM
q1 = "Describe the image in detail. <|image|>"

images = [Image.open("image.png")]
qas = [[q1, None]]

# `len(images)` should be equal to the number of appearance of "<|image|>" in qas
generated = inference_solver.generate(
    images=images,
    qas=qas,
    max_gen_len=8192,
    temperature=1.0,
    logits_processor=inference_solver.create_logits_processor(cfg=4.0, image_top_k=2000),
)

a1 = generated[0]
# generated[1], namely the list of newly generated images, should typically be empty in this case.


# ********************* Omni-Potent *********************
inference_solver = FlexARInferenceSolver(
    model_path="Alpha-VLLM/Lumina-mGPT-7B-768-Omni",
    precision="bf16",
    target_size=768,
)

# Example: Depth Estimation
# For more instructions, see demos/demo_image2image.py
q1 = "Depth estimation. <|image|>"
images = [Image.open("image.png")]
qas = [[q1, None]]

generated = inference_solver.generate(
    images=images,
    qas=qas,
    max_gen_len=8192,
    temperature=1.0,
    logits_processor=inference_solver.create_logits_processor(cfg=1.0, image_top_k=200),
)

a1 = generated[0]
new_image = generated[1][0]
```

### Training

- We train UniTok on [DataComp-1B](https://github.com/mlfoundations/datacomp).
Please follow the [instructions](https://github.com/mlfoundations/datacomp?tab=readme-ov-file#downloading-datacomp-1b) to download and prepare the data.

- Download the [models](https://huggingface.co/FoundationVision/unitok_external) used for loss calculation and put them under `./external`.

- Download the [ImageNet validation set](https://www.image-net.org/) for zero-shot accuracy evaluation.

- Download the ImageNet 256$\times$256 [reference batch](https://huggingface.co/datasets/FoundationVision/imagenet_reference_batch) for FID evaluation.

Configure `nnodes, nproc_per_node, node_rank, master_addr, master_port` in `launch.sh` and run:

```bash
bash launch.sh \
    --output_dir '/path/to/save/checkpoints/' \
    --train_data '/path/to/datacomp/shards/{00000000..00140146}.tar' \
    --imagenet_val '/path/to/imagenet_val/' \
    --fid_eval_src '/path/to/imagenet_reference_batch' \
    --fid_eval_dst '/path/to/save/imagenet_reconstructed_batch'
```
**Note:** For more hyper-parameter configurations, please check `utils/config.py`.

### Unified MLLM
We show that UniTok significantly boosts the performance of unified MLLMs.

Visual Understanding Performance on VQA Benchmarks.

|   Method   |      LLM       |  Res.   |  VQAv2   |   GQA    | TextVQA  |   POPE   |   MME    |  MM-Vet  |
|:----------:|:--------------:|:-------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|   Show-o   |  Phi-1.5-1.3B  |   256   |   59.3   |   48.7   |    -     |   73.8   |   948    |    -     |
|   Liquid   |    Gemma-7B    |   512   |   71.3   |   58.4   |   42.4   |   81.1   |   1119   |    -     |
|   VILA-U   |   Llama-2-7B   |   256   |   75.3   |   58.3   |   48.3   |   83.9   |   1336   |   27.7   |
| **UniTok** | **Llama-2-7B** | **256** | **76.8** | **61.1** | **51.6** | **83.2** | **1448** | **33.9** |

Visual Generation Performance on GenAI-Bench.

<table>
    <thead>
    <tr>
        <th rowspan="2">Method</th>
        <th rowspan="2">Type</th>
        <th rowspan="2">Count</th>
        <th rowspan="2">Differ</th>
        <th rowspan="2">Compare</th>
        <th colspan="2">Logical</th>
        <th rowspan="2">Overall</th>
    </tr>
    <tr>
        <th>Negate</th>
        <th>Universal</th>
    </tr>
    </thead>
    <tbody>
    <tr align="center">
        <td>Show-o</td>
        <td>Discrete Diff.</td>
        <td>0.70</td>
        <td>0.62</td>
        <td>0.71</td>
        <td>0.51</td>
        <td>0.65</td>
        <td>0.60</td>
    </tr>
    <tr align="center">
        <td>VILA-U</td>
        <td>Autoregressive</td>
        <td>0.70</td>
        <td>0.71</td>
        <td>0.74</td>
        <td>0.53</td>
        <td>0.66</td>
        <td>0.64</td>
    </tr>
    <tr align="center">
        <td>Liquid</td>
        <td>Autoregressive</td>
        <td>0.76</td>
        <td>0.73</td>
        <td>0.74</td>
        <td>0.46</td>
        <td>0.74</td>
        <td>0.65</td>
    </tr>
    <tr align="center">
        <th>UniTok</th>
        <th>Autoregressive</th>
        <th>0.76</th>
        <th>0.79</th>
        <th>0.74</th>
        <th>0.46</th>
        <th>0.73</th>
        <th>0.67</th>
    </tr>
    </tbody>
</table>

Please refer to [EVAL.md](https://github.com/FoundationVision/UniTok/blob/main/eval/EVAL.md) for more details.

### Evaluation

We also benchmark UniTok in terms of both understanding performance using the [LLaVA](https://github.com/haotian-liu/LLaVA) framework
and generation performance using the [LLamaGen](https://github.com/FoundationVision/LlamaGen) framework.
Please refer to [EVAL.md](https://github.com/FoundationVision/UniTok/blob/main/eval/EVAL.md) for more details.

## Acknowledgement
UniTok is built upon the awesome works
[VAR](https://github.com/FoundationVision/VAR),
[DataComp](https://github.com/mlfoundations/datacomp),
[Liquid](https://github.com/FoundationVision/Liquid/),
[LLaVA](https://github.com/haotian-liu/LLaVA/),
[LlamaGen](https://github.com/FoundationVision/LlamaGen/),
and [ViTamin](https://github.com/Beckschen/ViTamin).

## License

This project is licensed under the MIT License. See the [LICENSE](https://github.com/FoundationVision/UniTok/blob/main/LICENSE) file for details.

## Citation

If you find this project useful, please consider citing:

```bibtex
@article{unitok,
  title={UniTok: A Unified Tokenizer for Visual Generation and Understanding},
  author={Ma, Chuofan and Jiang, Yi and Wu, Junfeng and Yang, Jihan and Yu, Xin and Yuan, Zehuan and Peng, Bingyue and Qi, Xiaojuan},
  journal={arXiv preprint arXiv:2502.20321},
  year={2025}
}
```