Commit
·
72d16bb
1
Parent(s):
35d8ff9
Create new file
Browse files
README.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- causal-lm
|
| 6 |
+
license:
|
| 7 |
+
- cc-by-sa-4.0
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# TODO: Name of Model
|
| 11 |
+
|
| 12 |
+
TODO: Description
|
| 13 |
+
|
| 14 |
+
## Model Description
|
| 15 |
+
TODO: Add relevant content
|
| 16 |
+
|
| 17 |
+
(0) Base Transformer Type: RobertaModel
|
| 18 |
+
|
| 19 |
+
(1) Pooling mean
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
## Usage (Sentence-Transformers)
|
| 23 |
+
|
| 24 |
+
Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
|
| 25 |
+
|
| 26 |
+
```
|
| 27 |
+
pip install -U sentence-transformers
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
Then you can use the model like this:
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from sentence_transformers import SentenceTransformer
|
| 34 |
+
sentences = ["This is an example sentence"]
|
| 35 |
+
|
| 36 |
+
model = SentenceTransformer(TODO)
|
| 37 |
+
embeddings = model.encode(sentences)
|
| 38 |
+
print(embeddings)
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
## Usage (HuggingFace Transformers)
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
from transformers import AutoTokenizer, AutoModel
|
| 46 |
+
import torch
|
| 47 |
+
|
| 48 |
+
# The next step is optional if you want your own pooling function.
|
| 49 |
+
# Max Pooling - Take the max value over time for every dimension.
|
| 50 |
+
def max_pooling(model_output, attention_mask):
|
| 51 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 52 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 53 |
+
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
|
| 54 |
+
max_over_time = torch.max(token_embeddings, 1)[0]
|
| 55 |
+
return max_over_time
|
| 56 |
+
|
| 57 |
+
# Sentences we want sentence embeddings for
|
| 58 |
+
sentences = ['This is an example sentence']
|
| 59 |
+
|
| 60 |
+
# Load model from HuggingFace Hub
|
| 61 |
+
tokenizer = AutoTokenizer.from_pretrained(TODO)
|
| 62 |
+
model = AutoModel.from_pretrained(TODO)
|
| 63 |
+
|
| 64 |
+
# Tokenize sentences
|
| 65 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt'))
|
| 66 |
+
|
| 67 |
+
# Compute token embeddings
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
model_output = model(**encoded_input)
|
| 70 |
+
|
| 71 |
+
# Perform pooling. In this case, max pooling.
|
| 72 |
+
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
|
| 73 |
+
|
| 74 |
+
print("Sentence embeddings:")
|
| 75 |
+
print(sentence_embeddings)
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
## TODO: Training Procedure
|
| 81 |
+
|
| 82 |
+
## TODO: Evaluation Results
|
| 83 |
+
|
| 84 |
+
## TODO: Citing & Authors
|