BioHackathon_Lipids-tapt_grouped_llrd-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9814
  • Accuracy: 0.7729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1166 1.0 29 1.0691 0.7638
1.1241 2.0 58 1.0680 0.7633
1.1143 3.0 87 1.0080 0.7744
1.1051 4.0 116 1.0305 0.7686
1.0955 5.0 145 1.0445 0.7660
1.0724 6.0 174 1.0239 0.7744
1.0624 7.0 203 1.0370 0.7692
1.0677 8.0 232 0.9991 0.7723
1.0773 9.0 261 1.0491 0.7634
1.0402 10.0 290 0.9966 0.7767
1.0531 11.0 319 1.0393 0.7629
1.057 12.0 348 0.9912 0.7764
1.0384 13.0 377 1.0113 0.7719
1.0446 14.0 406 0.9877 0.7779
1.0166 15.0 435 1.0201 0.7726
1.0443 16.0 464 1.0053 0.7710
1.0316 17.0 493 0.9932 0.7750
1.0414 18.0 522 1.0127 0.7756
1.0125 19.0 551 0.9969 0.7753
1.0228 20.0 580 0.9773 0.7771
1.0185 21.0 609 0.9927 0.7705
1.0141 22.0 638 0.9924 0.7717
0.9937 23.0 667 1.0443 0.7690
0.9783 24.0 696 1.0183 0.7721
0.9984 25.0 725 0.9907 0.7765
0.9976 26.0 754 0.9765 0.7751
0.9883 27.0 783 1.0047 0.7697
0.9853 28.0 812 1.0013 0.7693
0.9915 29.0 841 0.9874 0.7762
0.9716 30.0 870 0.9950 0.7758
0.9682 31.0 899 0.9853 0.7744
0.9426 32.0 928 0.9986 0.7688
0.9499 33.0 957 1.0205 0.7718
0.9462 34.0 986 1.0001 0.7735
0.943 35.0 1015 0.9643 0.7783
0.9302 36.0 1044 0.9802 0.7765
0.9462 37.0 1073 0.9950 0.7748
0.9501 38.0 1102 0.9890 0.7727
0.9463 39.0 1131 1.0448 0.7618
0.9475 40.0 1160 1.0014 0.7775
0.9476 41.0 1189 0.9993 0.7746
0.924 42.0 1218 1.0299 0.7667
0.9262 43.0 1247 1.0259 0.7698
0.9337 44.0 1276 1.0585 0.7629
0.9121 45.0 1305 1.0140 0.7732
0.9068 46.0 1334 1.0237 0.7739
0.903 47.0 1363 1.0173 0.7706
0.93 48.0 1392 1.0091 0.7681
0.9286 49.0 1421 0.9986 0.7685
0.9034 50.0 1450 1.0186 0.7724
0.8983 51.0 1479 0.9912 0.7748
0.8936 52.0 1508 1.0157 0.7693
0.9052 53.0 1537 0.9931 0.7754
0.8906 54.0 1566 1.0099 0.7707
0.8781 55.0 1595 0.9913 0.7722
0.8954 56.0 1624 1.0015 0.7755
0.8734 57.0 1653 0.9900 0.7755
0.8701 58.0 1682 1.0097 0.7706
0.8732 59.0 1711 0.9912 0.7749
0.8618 60.0 1740 0.9636 0.7798
0.872 61.0 1769 0.9952 0.7694
0.8635 62.0 1798 1.0329 0.7668
0.8654 63.0 1827 1.0099 0.7689
0.8739 64.0 1856 0.9887 0.7753
0.8657 65.0 1885 1.0044 0.7741
0.8629 66.0 1914 0.9935 0.7722
0.8645 67.0 1943 0.9585 0.7788
0.8646 68.0 1972 0.9810 0.7743
0.8605 69.0 2001 1.0097 0.7668
0.8569 70.0 2030 0.9732 0.7735
0.8636 71.0 2059 1.0018 0.7715
0.8683 72.0 2088 0.9725 0.7765
0.8818 73.0 2117 0.9742 0.7776
0.8476 74.0 2146 1.0173 0.7740
0.8457 75.0 2175 0.9999 0.7736
0.8591 76.0 2204 1.0032 0.7736
0.8641 77.0 2233 0.9888 0.7788
0.8441 78.0 2262 0.9899 0.7732
0.8493 79.0 2291 0.9808 0.7793
0.8735 80.0 2320 0.9472 0.7807
0.8508 81.0 2349 1.0416 0.7729
0.8582 82.0 2378 0.9904 0.7741
0.8453 83.0 2407 0.9928 0.7730
0.8426 84.0 2436 0.9761 0.7735
0.8628 85.0 2465 1.0195 0.7714
0.8529 86.0 2494 0.9920 0.7749
0.8533 87.0 2523 1.0019 0.7701
0.8477 88.0 2552 1.0178 0.7682
0.8328 89.0 2581 1.0003 0.7744
0.8427 90.0 2610 0.9917 0.7755
0.8473 91.0 2639 0.9900 0.7743
0.8518 92.0 2668 0.9994 0.7677
0.8307 93.0 2697 0.9798 0.7764
0.857 94.0 2726 0.9803 0.7759
0.8394 95.0 2755 1.0033 0.7707
0.845 96.0 2784 1.0312 0.7672
0.8586 96.5614 2800 0.9814 0.7729

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/BioHackathon_Lipids-tapt_grouped_llrd-LR_2e-05