BioHackathon_Lipids-tapt_grouped_llrd-LR_2e-05
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9814
- Accuracy: 0.7729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.1166 | 1.0 | 29 | 1.0691 | 0.7638 |
| 1.1241 | 2.0 | 58 | 1.0680 | 0.7633 |
| 1.1143 | 3.0 | 87 | 1.0080 | 0.7744 |
| 1.1051 | 4.0 | 116 | 1.0305 | 0.7686 |
| 1.0955 | 5.0 | 145 | 1.0445 | 0.7660 |
| 1.0724 | 6.0 | 174 | 1.0239 | 0.7744 |
| 1.0624 | 7.0 | 203 | 1.0370 | 0.7692 |
| 1.0677 | 8.0 | 232 | 0.9991 | 0.7723 |
| 1.0773 | 9.0 | 261 | 1.0491 | 0.7634 |
| 1.0402 | 10.0 | 290 | 0.9966 | 0.7767 |
| 1.0531 | 11.0 | 319 | 1.0393 | 0.7629 |
| 1.057 | 12.0 | 348 | 0.9912 | 0.7764 |
| 1.0384 | 13.0 | 377 | 1.0113 | 0.7719 |
| 1.0446 | 14.0 | 406 | 0.9877 | 0.7779 |
| 1.0166 | 15.0 | 435 | 1.0201 | 0.7726 |
| 1.0443 | 16.0 | 464 | 1.0053 | 0.7710 |
| 1.0316 | 17.0 | 493 | 0.9932 | 0.7750 |
| 1.0414 | 18.0 | 522 | 1.0127 | 0.7756 |
| 1.0125 | 19.0 | 551 | 0.9969 | 0.7753 |
| 1.0228 | 20.0 | 580 | 0.9773 | 0.7771 |
| 1.0185 | 21.0 | 609 | 0.9927 | 0.7705 |
| 1.0141 | 22.0 | 638 | 0.9924 | 0.7717 |
| 0.9937 | 23.0 | 667 | 1.0443 | 0.7690 |
| 0.9783 | 24.0 | 696 | 1.0183 | 0.7721 |
| 0.9984 | 25.0 | 725 | 0.9907 | 0.7765 |
| 0.9976 | 26.0 | 754 | 0.9765 | 0.7751 |
| 0.9883 | 27.0 | 783 | 1.0047 | 0.7697 |
| 0.9853 | 28.0 | 812 | 1.0013 | 0.7693 |
| 0.9915 | 29.0 | 841 | 0.9874 | 0.7762 |
| 0.9716 | 30.0 | 870 | 0.9950 | 0.7758 |
| 0.9682 | 31.0 | 899 | 0.9853 | 0.7744 |
| 0.9426 | 32.0 | 928 | 0.9986 | 0.7688 |
| 0.9499 | 33.0 | 957 | 1.0205 | 0.7718 |
| 0.9462 | 34.0 | 986 | 1.0001 | 0.7735 |
| 0.943 | 35.0 | 1015 | 0.9643 | 0.7783 |
| 0.9302 | 36.0 | 1044 | 0.9802 | 0.7765 |
| 0.9462 | 37.0 | 1073 | 0.9950 | 0.7748 |
| 0.9501 | 38.0 | 1102 | 0.9890 | 0.7727 |
| 0.9463 | 39.0 | 1131 | 1.0448 | 0.7618 |
| 0.9475 | 40.0 | 1160 | 1.0014 | 0.7775 |
| 0.9476 | 41.0 | 1189 | 0.9993 | 0.7746 |
| 0.924 | 42.0 | 1218 | 1.0299 | 0.7667 |
| 0.9262 | 43.0 | 1247 | 1.0259 | 0.7698 |
| 0.9337 | 44.0 | 1276 | 1.0585 | 0.7629 |
| 0.9121 | 45.0 | 1305 | 1.0140 | 0.7732 |
| 0.9068 | 46.0 | 1334 | 1.0237 | 0.7739 |
| 0.903 | 47.0 | 1363 | 1.0173 | 0.7706 |
| 0.93 | 48.0 | 1392 | 1.0091 | 0.7681 |
| 0.9286 | 49.0 | 1421 | 0.9986 | 0.7685 |
| 0.9034 | 50.0 | 1450 | 1.0186 | 0.7724 |
| 0.8983 | 51.0 | 1479 | 0.9912 | 0.7748 |
| 0.8936 | 52.0 | 1508 | 1.0157 | 0.7693 |
| 0.9052 | 53.0 | 1537 | 0.9931 | 0.7754 |
| 0.8906 | 54.0 | 1566 | 1.0099 | 0.7707 |
| 0.8781 | 55.0 | 1595 | 0.9913 | 0.7722 |
| 0.8954 | 56.0 | 1624 | 1.0015 | 0.7755 |
| 0.8734 | 57.0 | 1653 | 0.9900 | 0.7755 |
| 0.8701 | 58.0 | 1682 | 1.0097 | 0.7706 |
| 0.8732 | 59.0 | 1711 | 0.9912 | 0.7749 |
| 0.8618 | 60.0 | 1740 | 0.9636 | 0.7798 |
| 0.872 | 61.0 | 1769 | 0.9952 | 0.7694 |
| 0.8635 | 62.0 | 1798 | 1.0329 | 0.7668 |
| 0.8654 | 63.0 | 1827 | 1.0099 | 0.7689 |
| 0.8739 | 64.0 | 1856 | 0.9887 | 0.7753 |
| 0.8657 | 65.0 | 1885 | 1.0044 | 0.7741 |
| 0.8629 | 66.0 | 1914 | 0.9935 | 0.7722 |
| 0.8645 | 67.0 | 1943 | 0.9585 | 0.7788 |
| 0.8646 | 68.0 | 1972 | 0.9810 | 0.7743 |
| 0.8605 | 69.0 | 2001 | 1.0097 | 0.7668 |
| 0.8569 | 70.0 | 2030 | 0.9732 | 0.7735 |
| 0.8636 | 71.0 | 2059 | 1.0018 | 0.7715 |
| 0.8683 | 72.0 | 2088 | 0.9725 | 0.7765 |
| 0.8818 | 73.0 | 2117 | 0.9742 | 0.7776 |
| 0.8476 | 74.0 | 2146 | 1.0173 | 0.7740 |
| 0.8457 | 75.0 | 2175 | 0.9999 | 0.7736 |
| 0.8591 | 76.0 | 2204 | 1.0032 | 0.7736 |
| 0.8641 | 77.0 | 2233 | 0.9888 | 0.7788 |
| 0.8441 | 78.0 | 2262 | 0.9899 | 0.7732 |
| 0.8493 | 79.0 | 2291 | 0.9808 | 0.7793 |
| 0.8735 | 80.0 | 2320 | 0.9472 | 0.7807 |
| 0.8508 | 81.0 | 2349 | 1.0416 | 0.7729 |
| 0.8582 | 82.0 | 2378 | 0.9904 | 0.7741 |
| 0.8453 | 83.0 | 2407 | 0.9928 | 0.7730 |
| 0.8426 | 84.0 | 2436 | 0.9761 | 0.7735 |
| 0.8628 | 85.0 | 2465 | 1.0195 | 0.7714 |
| 0.8529 | 86.0 | 2494 | 0.9920 | 0.7749 |
| 0.8533 | 87.0 | 2523 | 1.0019 | 0.7701 |
| 0.8477 | 88.0 | 2552 | 1.0178 | 0.7682 |
| 0.8328 | 89.0 | 2581 | 1.0003 | 0.7744 |
| 0.8427 | 90.0 | 2610 | 0.9917 | 0.7755 |
| 0.8473 | 91.0 | 2639 | 0.9900 | 0.7743 |
| 0.8518 | 92.0 | 2668 | 0.9994 | 0.7677 |
| 0.8307 | 93.0 | 2697 | 0.9798 | 0.7764 |
| 0.857 | 94.0 | 2726 | 0.9803 | 0.7759 |
| 0.8394 | 95.0 | 2755 | 1.0033 | 0.7707 |
| 0.845 | 96.0 | 2784 | 1.0312 | 0.7672 |
| 0.8586 | 96.5614 | 2800 | 0.9814 | 0.7729 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 5