|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from safetensors.torch import load_file |
|
|
from PIL import Image |
|
|
from torchvision import transforms |
|
|
import string |
|
|
torch.set_num_threads(20) |
|
|
|
|
|
class CNN(nn.Module): |
|
|
def __init__(self): |
|
|
super(CNN, self).__init__() |
|
|
self.conv1 = nn.Conv2d(1,64,kernel_size=3,padding=1) |
|
|
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1) |
|
|
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1) |
|
|
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1) |
|
|
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, padding=1) |
|
|
self.fc1 = nn.Linear(1024*8*8, 512) |
|
|
self.fc2 = nn.Linear(512, 256) |
|
|
self.fc3 = nn.Linear(256, 128) |
|
|
self.fc4 = nn.Linear(128, 26) |
|
|
|
|
|
def forward(self, x): |
|
|
x = F.relu(self.conv1(x)) |
|
|
x = F.max_pool2d(x,2) |
|
|
x = F.relu(self.conv2(x)) |
|
|
x = F.max_pool2d(x, 2) |
|
|
x = F.relu(self.conv3(x)) |
|
|
x = F.max_pool2d(x, 2) |
|
|
x = F.relu(self.conv4(x)) |
|
|
x = F.relu(self.conv5(x)) |
|
|
x = x.view(x.size(0), -1) |
|
|
x = F.relu(self.fc1(x)) |
|
|
x = F.relu(self.fc2(x)) |
|
|
x = F.relu(self.fc3(x)) |
|
|
x = self.fc4(x) |
|
|
return x |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model = CNN().to(device) |
|
|
weights_dict = load_file("cnn_letters.safetensors") |
|
|
model.load_state_dict(weights_dict) |
|
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
from PIL import Image |
|
|
from torchvision import transforms |
|
|
|
|
|
img = Image.open("my_letter.png").convert("L") |
|
|
|
|
|
transform = transforms.Compose([ |
|
|
transforms.Resize((64,64)), |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize((0.5,), (0.5,)) |
|
|
]) |
|
|
|
|
|
x = transform(img).unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
output = model(x) |
|
|
pred_idx = output.argmax(dim=1).item() |
|
|
|
|
|
letters = list(string.ascii_uppercase) |
|
|
pred_letter = letters[pred_idx] |
|
|
print(f"Predicted class: {pred_idx + 1}, Letter: {pred_letter}") |