--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: XLM_Language_classifier results: [] --- # XLM_Language_classifier This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0007 | 1.0 | 1700 | 0.0009 | 0.9999 | | 0.0021 | 2.0 | 3400 | 0.0000 | 1.0 | | 0.0007 | 3.0 | 5100 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.0