import torch import torch.nn as nn class TransformerBlock(nn.Module): def __init__(self, embed_size, heads, ff_hidden_dim, dropout): super().__init__() self.attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=heads, batch_first=True) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.ff = nn.Sequential( nn.Linear(embed_size, ff_hidden_dim), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ff_hidden_dim, embed_size) ) self.dropout = nn.Dropout(dropout) def forward(self, x): attn_output, _ = self.attention(x, x, x) x = self.norm1(x + self.dropout(attn_output)) ff_output = self.ff(x) x = self.norm2(x + self.dropout(ff_output)) return x class TransformerModel(nn.Module): def __init__(self, vocab_size, embed_size=512, num_heads=8, hidden_dim=2048, num_layers=6, max_len=512, dropout=0.1): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_size) self.pos_embedding = nn.Parameter(torch.zeros(1, max_len, embed_size)) self.transformer_blocks = nn.Sequential( *[TransformerBlock(embed_size, num_heads, hidden_dim, dropout) for _ in range(num_layers)] ) self.norm = nn.LayerNorm(embed_size) self.output = nn.Linear(embed_size, vocab_size) def forward(self, x): seq_len = x.size(1) positions = self.pos_embedding[:, :seq_len, :] x = self.embedding(x) + positions x = self.transformer_blocks(x) x = self.norm(x) return self.output(x)