import torch import torch.nn as nn import math class MultiHeadAttention(nn.Module): def __init__(self, d_model, n_heads): super(MultiHeadAttention, self).__init__() self.d_model = d_model self.n_heads = n_heads assert d_model % self.n_heads == 0 self.head_dim = d_model // n_heads self.query = nn.Linear(d_model, d_model) self.key = nn.Linear(d_model, d_model) self.value = nn.Linear(d_model, d_model) self.fc_out = nn.Linear(d_model, d_model) def forward(self, query, key, value, mask=None): N = query.shape[0] Q = self.query(query) K = self.key(key) V = self.value(value) Q = Q.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2) K = K.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2) V = V.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2) energy = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim) if mask is not None: energy = energy.masked_fill(mask == 0, float('-1e20')) attention = torch.softmax(energy, dim=-1) out = torch.matmul(attention, V) out = out.transpose(1, 2).contiguous().view(N, -1, self.n_heads * self.head_dim) out = self.fc_out(out) return out