File size: 15,152 Bytes
f4780aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""xQwen model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging

from xlstm.xlstm_large.model import mLSTMBackendConfig


logger = logging.get_logger(__name__)


class xQwenConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`xQwenModel`]. It is used to instantiate a
    xQwen model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    xQwen-8B [Qwen/xQwen-8B](https://huggingface.co/Qwen/xQwen-8B).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 151936):
            Vocabulary size of the xQwen model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`xQwenModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention (SWA) window size. If not specified, will default to `4096`.
        max_window_layers (`int`, *optional*, defaults to 28):
            The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import xQwenModel, xQwenConfig

    >>> # Initializing a xQwen style configuration
    >>> configuration = xQwenConfig()

    >>> # Initializing a model from the xQwen-8B style configuration
    >>> model = xQwenModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "xqwen"
    keys_to_ignore_at_inference = ["past_key_values"]

    # Default tensor parallel plan for base model `xQwen`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=151936,
        hidden_size=4096,
        intermediate_size=22016,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=32,
        head_dim=128,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        # SWA
        use_sliding_window=False,
        sliding_window=64,
        max_window_layers=28,
        swa_with_memory=False,
        sliding_window_memory=4,
        swa_modulation="static",
        swa_modulation_bounded=False,

        # Hybdrid
        nth_layer_sa=0,
        layer_types=None,

        # Conv
        use_short_conv=False,
        conv_size=4,

        # Hedgehog
        use_hedgehog=False,

        attention_dropout=0.0,
        residual_dropout=0.0,
        mlp_dropout=0.0,
        # xLSTM specific
        qk_dim_factor=1,
        v_dim_factor=1,
        use_bias=False,
        norm_reduction_force_float32=True,
        gate_soft_cap=15.0,
        weight_mode="single",
        base_attention="xlstm_attention",
        # mLSTM specific
        max_inference_chunksize=16384,
        chunkwise_kernel="chunkwise--triton_xl_chunk",
        sequence_kernel="native_sequence__triton",
        step_kernel="triton",
        mode="train",
        chunk_size=64,
        return_last_states=True,
        autocast_kernel_dtype="bfloat16",
        eps=1e-6,
        inference_state_dtype="float32",
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.embedding_dim = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window if self.use_sliding_window else None
        self.max_window_layers = max_window_layers
        self.swa_with_memory = swa_with_memory
        self.sliding_window_memory = sliding_window_memory
        self.swa_modulation = swa_modulation
        self.swa_modulation_bounded = swa_modulation_bounded

        self.use_short_conv = use_short_conv
        self.conv_size = conv_size
        self.use_hedgehog = use_hedgehog



        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.residual_dropout = residual_dropout
        self.mlp_dropout = mlp_dropout
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)
        
        self.base_attention = base_attention
        self.layer_types = layer_types
        # if self.layer_types is None:
        #     self.layer_types = [
        #         "sliding_attention"
        #         if self.sliding_window is not None and i >= self.max_window_layers
        #         else "full_attention"
        #         for i in range(self.num_hidden_layers)
        #     ]
        self.nth_layer_sa = nth_layer_sa
        if self.layer_types is None:
            self.layer_types = []
            assert nth_layer_sa >= 0, "nth_layer_sa must be non-negative"

            for i in range(self.num_hidden_layers):
                if nth_layer_sa == 0:
                    self.layer_types.append(base_attention)
                    continue

                if i % nth_layer_sa == 0:
                    self.layer_types.append("qwen_attention")
                else:
                    self.layer_types.append(base_attention)

        # layer_type_validation(self.layer_types)
        self.num_heads = self.num_attention_heads
        self.qk_dim_factor = qk_dim_factor
        self.v_dim_factor = v_dim_factor
        self.use_bias = use_bias
        self.norm_reduction_force_float32 = norm_reduction_force_float32
        self.gate_soft_cap = gate_soft_cap
        self.weight_mode = weight_mode
        self.chunkwise_kernel = chunkwise_kernel
        self.sequence_kernel = sequence_kernel
        self.step_kernel = step_kernel
        self.mode = mode
        self.chunk_size = chunk_size
        self.return_last_states = return_last_states
        self.autocast_kernel_dtype = autocast_kernel_dtype
        self.eps = eps
        self.inference_state_dtype = inference_state_dtype
        self.max_inference_chunksize = max_inference_chunksize


        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def mlstm_backend_config(self):
        return mLSTMBackendConfig(
            chunkwise_kernel=self.chunkwise_kernel,
            sequence_kernel=self.sequence_kernel,
            step_kernel=self.step_kernel,
            mode=self.mode,
            chunk_size=self.chunk_size,
            return_last_states=self.return_last_states,
            autocast_kernel_dtype=self.autocast_kernel_dtype,
            eps=self.eps,
            inference_state_dtype=self.inference_state_dtype,
        )


__all__ = ["xQwenConfig"]