File size: 52,961 Bytes
1b2dd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
from typing import Callable, Optional, Tuple, Union
from dataclasses import dataclass
import functools

import torch
from torch import nn
import torch.nn.init as init
from torch.nn import functional as F

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
# from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
    GradientCheckpointingLayer,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
# from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging
from transformers.utils import auto_docstring, can_return_tuple, logging
from torch.nn.attention.flex_attention import create_block_mask, flex_attention

try:
    from transformers.modeling_flash_attention_utils import _flash_attention_forward
except ImportError:
    print("Flash Attention is not installed. Please install it to use xQwenForCausalLM with Flash Attention.")

# from transformers.masking_utils import causal_mask_mapping

try:
    from fla.layers.gated_deltaproduct import GatedDeltaProduct
    fla_available = True
except:
    fla_available = False

from fla.modules import ShortConvolution
from fla.modules.feature_map import HedgehogFeatureMap

from .configuration_xqwen import xQwenConfig

logger = logging.get_logger(__name__)

from xlstm.xlstm_large.model import (
    mLSTMStateType,
    soft_cap,
    # mLSTMLayer,
    mLSTMLayerConfig,
    mLSTMBackendConfig,
    mLSTMLayerStateType,
    mLSTMBackend,
    MultiHeadLayerNorm
)

class xLSTMCache:
    """
    Cache / RNN State handler for xLSTM.

    Args:
        config: xLSTMConfig
        batch_size: int
        dtype: torch.dtype
        device: torch.device

    Attributes:
        seqlen_offset: int
        dtype: torch.dtype
    """

    def __init__(
        self, config, batch_size: int, dtype: torch.dtype = torch.bfloat16, device: Optional[str] = None
    ):
        self.seqlen_offset = torch.tensor(0, dtype=torch.int64, device=device)
        self.dtype = dtype
        self.config = config
        self.qk_head_dim = self.config.head_dim
        self.v_head_dim = self.config.head_dim

        self.rnn_state: mLSTMStateType = {
            layer: (
                torch.zeros(
                    [batch_size, config.num_heads, self.qk_head_dim, self.v_head_dim], dtype=dtype, device=device
                ),
                torch.zeros([batch_size, config.num_heads, self.qk_head_dim], dtype=dtype, device=device),
                torch.zeros([batch_size, config.num_heads, 1], dtype=dtype, device=device),
            )
            for layer in range(config.num_hidden_layers)
        }
        self.rnn_state_initial = True

    def reset(self):
        self.rnn_state = {
            layer: (
                torch.zeros_like(self.rnn_state[layer][0]),
                torch.zeros_like(self.rnn_state[layer][1]),
                torch.zeros_like(self.rnn_state[layer][2]),
            )
            for layer in self.rnn_state
        }
        self.rnn_state_initial = True

@dataclass
class xQwenModelOutputWithPast(BaseModelOutputWithPast):
    cache_params: Optional[xLSTMCache] = None

@dataclass
class xQwenCausalLMOutput(CausalLMOutputWithPast):
    cache_params: Optional[xLSTMCache] = None

@use_kernel_forward_from_hub("RMSNorm")
class xQwenRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        xQwenRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class xQwenMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]
        if self.config.mlp_dropout > 0.0:
            self.dropout = nn.Dropout(config.mlp_dropout)

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        if self.config.mlp_dropout > 0.0:
            down_proj = self.dropout(down_proj)
        return down_proj


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class xQwenAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: xQwenConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )
        self.q_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps)  # unlike olmo, only on the head dim!
        self.k_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps)  # thus post q_norm does not need reshape
        self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=self.sliding_window,  # diff with Llama
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights

class mLSTMLayer(nn.Module):
    def __init__(self, config: mLSTMLayerConfig):
        super().__init__()
        self.config = config

        # self.head_dim = config.embedding_dim // config.num_heads
        self.head_dim = self.config.head_dim
        self.num_key_value_groups = config.num_heads // config.num_key_value_heads

        self.v_dim = int(config.embedding_dim * config.v_dim_factor)
        self.qk_dim = int(config.embedding_dim * config.qk_dim_factor)
        if self.config.weight_mode == "single":
            self.q = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=self.config.num_heads * self.head_dim,
                bias=self.config.use_bias,
            )
            self.k = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=config.num_key_value_heads * self.head_dim,
                bias=self.config.use_bias,
            )
            self.v = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=config.num_key_value_heads * self.head_dim,
                bias=self.config.use_bias,
            )

            self.ogate_preact = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=self.head_dim * self.config.num_heads,
                # out_features=self.config.hidden_size,
                bias=self.config.use_bias,
            )
            self.igate_preact = nn.Linear(
                # in_features=self.head_dim * self.config.num_heads,
                in_features=self.config.hidden_size,
                out_features=self.config.num_heads,
                bias=True,
            )
            self.fgate_preact = nn.Linear(
                # in_features=self.head_dim * self.config.num_heads,
                in_features=self.config.hidden_size,
                out_features=self.config.num_heads,
                bias=True,
            )
        elif self.config.weight_mode == "fused":
            self.qkv_opreact = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=2 * self.qk_dim + 2 * self.v_dim,
                bias=self.config.use_bias,
            )
            self.ifgate_preact = nn.Linear(
                in_features=self.config.hidden_size,
                out_features=2 * self.config.num_heads,
                bias=True,
            )

        self.ogate_act_fn = nn.Sigmoid()
        self.mlstm_backend = mLSTMBackend(config=self.config.mlstm_backend_config())

        self.multihead_norm = MultiHeadLayerNorm(
            num_heads=self.config.num_heads,
            head_dim=self.head_dim,
            eps=self.config.norm_eps,
            use_weight=True,
            use_bias=self.config.use_bias,
            force_float32_reductions=self.config.norm_reduction_force_float32,
        )
        self.out_proj = nn.Linear(
            in_features=self.head_dim * self.config.num_heads,
            out_features=self.config.hidden_size,
            bias=self.config.use_bias,
        )
        
        if self.config.use_sliding_window:
            self.block_mask = None
            self.swa_attention = None
            if self.config.swa_modulation == "dynamic":
                self.swa_alpha = nn.Parameter(
                    torch.tensor(
                        0.5, dtype=torch.float32, requires_grad=True
                    )
                )

        if self.config.use_short_conv:

            self.q_conv1d = ShortConvolution(
                hidden_size=self.config.hidden_size,
                kernel_size=self.config.conv_size,
                bias=False,
                activation='silu'
            )
            self.k_conv1d = ShortConvolution(
                hidden_size=self.config.hidden_size,
                kernel_size=self.config.conv_size,
                bias=False,
                activation='silu'
            )
            self.v_conv1d = ShortConvolution(
                hidden_size=self.config.hidden_size,
                kernel_size=self.config.conv_size,
                bias=False,
                activation='silu'
            )

        if self.config.use_hedgehog:
            self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_dim)
            self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_dim)


    def set_swa_block_mask(self, q_len, mem_window=4):
        block_mask = self.get_swa_block(with_memory=self.config.swa_with_memory, mem_window=mem_window)
        self.block_mask = create_block_mask(block_mask, B=None, H=None, Q_LEN=q_len, KV_LEN=q_len)
        self.swa_attention = functools.partial(
            flex_attention, block_mask=self.block_mask
        )
        self.q_len = q_len

    def get_swa_block(self, with_memory=False, mem_window=None):
        if with_memory:
            assert mem_window is not None, "mem_window must be specified for sliding window with memory"
            def swa_with_memory(b, h, q_idx, kv_idx):
                """ Sliding window causal attention with memory.

                Add mask so model always attents to first m tokens in the sequence.

                """
                causal_mask = q_idx >= kv_idx
                window_mask = (q_idx - kv_idx) <= self.config.sliding_window
                memory_mask = kv_idx < mem_window
                return (causal_mask & window_mask) | memory_mask

            return swa_with_memory

        def sliding_window_causal(b, h, q_idx, kv_idx):
            causal_mask = q_idx >= kv_idx
            window_mask = (q_idx - kv_idx) <= self.config.sliding_window
            return causal_mask & window_mask

        return sliding_window_causal

    def forward(
        self, x: torch.Tensor,
        state: mLSTMLayerStateType | None = None,
        output_attentions: bool = False,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> tuple[torch.Tensor, mLSTMLayerStateType | None]:
        assert x.ndim == 3, f"Input must have shape [B, S, D], got {x.shape}"
        B, S, _ = x.shape
        if self.config.weight_mode == "single":
            q = self.q(x)
            k = self.k(x)
            v = self.v(x)

            if self.config.use_short_conv:
                q, _ = self.q_conv1d(q)
                k, _ = self.k_conv1d(k)
                v, _ = self.v_conv1d(v)

            o_preact = self.ogate_preact(x)
            i_preact = soft_cap(
                self.igate_preact(x), cap_value=self.config.gate_soft_cap
            )
            f_preact = soft_cap(
                self.fgate_preact(x), cap_value=self.config.gate_soft_cap
            )

        elif self.config.weight_mode == "fused":
            qkv_opreact = self.qkv_opreact(x)
            q, k, v, o_preact = torch.tensor_split(
                qkv_opreact,
                (
                    self.qk_dim,
                    2 * self.qk_dim,
                    2 * self.qk_dim + self.v_dim,
                ),
                dim=-1,
            )

            if_preact = soft_cap(
                self.ifgate_preact(x), cap_value=self.config.gate_soft_cap
            )
            i_preact, f_preact = torch.tensor_split(
                if_preact, (self.config.num_heads,), dim=-1
            )

        q = q.reshape(B, S, self.config.num_heads, -1).transpose(1, 2)
        k = k.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2)
        v = v.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2)

        k = repeat_kv(k, self.num_key_value_groups)
        v = repeat_kv(v, self.num_key_value_groups)

        if self.config.use_hedgehog:
            q = self.feature_map_q(q)
            k = self.feature_map_k(k)

        if self.config.use_sliding_window:
            sq, sk, sv = q, k, v
            # assert position_ids is not None, "position_ids must be provided for sliding window attention"
            if position_ids is None:
                position_ids = torch.arange(S, device=x.device).unsqueeze(0)

            cos, sin = position_embeddings
            sq, sk, = apply_rotary_pos_emb(sq, sk, cos, sin)
        
        i_preact = i_preact.transpose(1, 2)
        f_preact = f_preact.transpose(1, 2)
        if state is None:
            c_initial, n_initial, m_initial = None, None, None
        else:
            c_initial, n_initial, m_initial = state


        h, state = self.mlstm_backend(
            q=q,
            k=k,
            v=v,
            i=i_preact,
            f=f_preact,
            c_initial=c_initial,
            n_initial=n_initial,
            m_initial=m_initial,
        )

        h = h.transpose(1, 2)
        h_norm = self.multihead_norm(h)

        if self.config.use_sliding_window:

            if sq.dtype == torch.float32:
                sq, sk, sv = sq.to(torch.float16), sk.to(torch.float16), sv.to(torch.float16)

            q_len = sq.size(-2)

            if self.block_mask is None or self.swa_attention is None:
                self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory)
            elif self.q_len != q_len:
                self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory)

            y = self.swa_attention(sq, sk, sv).transpose(1, 2)

            # y = _flash_attention_forward( # Reashape to the expected shape for Flash Attention
            #     sq.transpose(1, 2),
            #     sk.transpose(1, 2),
            #     sv.transpose(1, 2),
            #     attention_mask,
            #     q_len,
            #     position_ids=position_ids,
            #     dropout=0.0,
            #     sliding_window=self.config.sliding_window,
            #     use_top_left_mask=False,
            #     is_causal=True,
            #     target_dtype=torch.float32,
            # )
            
            # TODO: Indepent normalization for sliding window?
            y = self.multihead_norm(y)
            if self.config.swa_modulation == "static":
                out = 0.5 * y + 0.5 * h_norm
            elif self.config.swa_modulation == "dynamic":
                if self.config.swa_modulation_bounded:
                    out = y + torch.tanh(self.swa_alpha) * h_norm
                else:
                    out = y + self.swa_alpha * h_norm
            else:
                out = y
                # raise ValueError("Unknown sliding window modulation type: {}".format(self.config.swa_modulation))
        else:
            out = h_norm
                

        out = out.reshape(B, S, -1)
        out = self.ogate_act_fn(o_preact) * out
        y = self.out_proj(out)
        return y, state

token_mixer_type = {
    "qwen_attention": xQwenAttention,
    "xlstm_attention": mLSTMLayer,
}
def build_mlstm_config(config):
    return config
    return mLSTMLayerConfig(
        embedding_dim=config.embedding_dim,
        num_heads=config.num_heads,
        use_bias=config.use_bias,
        norm_eps=config.rms_norm_eps,
        norm_reduction_force_float32=config.norm_reduction_force_float32,
        qk_dim_factor=1,
        v_dim_factor=1,
        num_key_value_heads=config.num_key_value_heads,
        gate_soft_cap=config.gate_soft_cap,
        weight_mode="single",
        mlstm_backend=mLSTMBackendConfig(
            chunkwise_kernel=config.chunkwise_kernel,
            sequence_kernel=config.sequence_kernel,
            step_kernel=config.step_kernel,
            mode=config.mode,
            chunk_size=config.chunk_size,
            return_last_states=config.return_last_states,
            autocast_kernel_dtype=config.autocast_kernel_dtype,
            eps=config.eps,
            inference_state_dtype=config.inference_state_dtype,
        ),
    )

def build_gdp(config):
    assert fla_available, "GatedDeltaProduct requires fla package to be installed."
    # config.hidden_size = 512
    return GatedDeltaProduct(
        hidden_size=config.hidden_size,
        expand_v=1,
        head_dim=config.hidden_size // config.num_attention_heads,
        num_heads=config.num_attention_heads,
        use_output_gate=False,
        use_short_conv=True,
        use_forget_gate=True,
        num_householder=2
    )


class xQwenDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: xQwenConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        
        self.attention_type = config.layer_types[layer_idx]
        if self.attention_type == "qwen_attention":
            self.self_attn = xQwenAttention(config=config, layer_idx=layer_idx)
        elif self.attention_type == "xlstm_attention":
            self.self_attn = mLSTMLayer(build_mlstm_config(config))
        elif self.attention_type == "gdp_attention":
            self.self_attn = build_gdp(config)
        else:
            raise ValueError("Unsupported attention type: {}".format(self.attention_type))

        self.mlp = xQwenMLP(config)
        self.input_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        state: mLSTMStateType | None = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        if output_attentions:
            return None, self.self_attn(
                hidden_states,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                position_ids=position_ids,
                position_embeddings=position_embeddings,
            )

        # Self Attention
        hidden_states, *state = self.self_attn(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            position_ids=position_ids,
            position_embeddings=position_embeddings,
            state=state,
        )

        if len(state) == 1:
            state = state[0]  # unpack the single state tuple
        else:
            state = None


        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs, state


@auto_docstring
class xQwenPreTrainedModel(PreTrainedModel):
    config_class = xQwenConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["xQwenDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_attention_backend = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, xQwenRMSNorm):
            module.weight.data.fill_(1.0)


class xQwenRotaryEmbedding(nn.Module):
    def __init__(self, config: xQwenConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings\

        self.config = config
    
        # Hedgehog feature map doubles the hidden size for q and k
        if self.config.use_sliding_window and self.config.use_hedgehog:
            # self.config.hidden_size *= 2
            self.config.head_dim *= 2

        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


@auto_docstring
class xQwenModel(xQwenPreTrainedModel):
    config_class = xQwenConfig
    def __init__(self, config: xQwenConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [xQwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = xQwenRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.has_sliding_layers = "sliding_attention" in self.config.layer_types

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        cache_params: Optional[xLSTMCache] = None,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
        if not isinstance(past_key_values, (type(None), Cache)):
            raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # It may already have been prepared by e.g. `generate`
        # if not isinstance(causal_mask_mapping := attention_mask, dict):
        #     # Prepare mask arguments
        #     mask_kwargs = {
        #         "config": self.config,
        #         "input_embeds": inputs_embeds,
        #         "attention_mask": attention_mask,
        #         "cache_position": cache_position,
        #         "past_key_values": past_key_values,
        #     }
        #     # Create the masks
        #     causal_mask_mapping = {
        #         "full_attention": create_causal_mask(**mask_kwargs),
        #     }
        #     # The sliding window alternating layers are not always activated depending on the config
        #     if self.has_sliding_layers:
        #         causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
        use_cache = False
        if use_cache:
            if cache_params is None:
                cache_params = xLSTMCache(
                    self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
                )
        else:
            cache_params = None

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        inference_with_cache = (
            not self.training
            and self.config.max_inference_chunksize < hidden_states.shape[1]
            and not output_hidden_states
        )
        if inference_with_cache:
            all_hidden_states = None
            offset = 0
            with torch.no_grad():
                if cache_params is None:
                    cache_params = xLSTMCache(config=self.config, batch_size=hidden_states.shape[0])
                final_state = torch.zeros_like(hidden_states)
                while offset < hidden_states.shape[1]:
                    hidden_states_chunk = hidden_states[
                        :, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1])
                    ]

                for i, layer in self.layers[: self.config.num_hidden_layers]:
                    hidden_state_chunk, rnn_state = layer(
                        hidden_state_chunk,
                        state=cache_params.rnn_state[i],
                    )
                    for state_idx in range(len(cache_params.rnn_state[1])):
                        local_rnn_state = rnn_state[state_idx]
                        cache_params.rnn_state[i][state_idx].copy_(local_rnn_state)
                    cache_params.rnn_state_initial = False
                final_state[
                    :, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1])
                ] = hidden_state_chunk
                offset += self.config.max_inference_chunksize
            hidden_states = final_state
        else:
            for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
                if output_hidden_states:
                    all_hidden_states += (hidden_states,)

                layer_outputs, rnn_state = decoder_layer(
                    hidden_states,
                    # attention_mask=causal_mask_mapping[decoder_layer.attention_type],
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                    state=cache_params.rnn_state[i] if cache_params is not None else None,
                    **flash_attn_kwargs,
                )

                if cache_params:
                    for state_idx in range(len(cache_params.rnn_state[i])):
                        local_rnn_state = rnn_state[state_idx]
                        cache_params.rnn_state[i][state_idx].copy_(local_rnn_state)
                    cache_params.rnn_state_initial = False

                hidden_states = layer_outputs[0]

                if output_attentions:
                    all_self_attns += (layer_outputs[1],)

        if use_cache:
            cache_params.seqlen_offset += inputs_embeds.shape[1]

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return xQwenModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cache_params= cache_params if use_cache else None
        )


# class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...


@auto_docstring
class xQwenForCausalLM(xQwenPreTrainedModel, GenerationMixin):
    config_class = xQwenConfig
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config):
        super().__init__(config)
        self.model = xQwenModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, xQwenForCausalLM

        >>> model = xQwenForCausalLM.from_pretrained("Qwen/xQwen-8B")
        >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/xQwen-8B")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: BaseModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        # return CausalLMOutputWithPast(
        return xQwenCausalLMOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def copy_from_teacher(self, teacher, copy_qkv: bool = True):
        assert len(self.model.layers) == len(teacher.model.layers)

        self.model.embed_tokens.weight.data.copy_(teacher.get_input_embeddings().weight.data)
        self.model.norm.weight.data.copy_(teacher.model.norm.weight.data)
        self.lm_head.weight.data.copy_(teacher.get_output_embeddings().weight.data)

        for self_layer, teacher_layer in zip(self.model.layers, teacher.model.layers):
            # self_layer.token_mixer.load_state_dict(teacher_layer.token_mixer.state_dict())
            self_layer.mlp.load_state_dict(teacher_layer.mlp.state_dict())
            self_layer.input_layernorm.load_state_dict(teacher_layer.input_layernorm.state_dict())
            self_layer.post_attention_layernorm.load_state_dict(teacher_layer.post_attention_layernorm.state_dict())

            if copy_qkv:
                self_layer.self_attn.q.load_state_dict(teacher_layer.self_attn.q_proj.state_dict())
                self_layer.self_attn.out_proj.load_state_dict(teacher_layer.self_attn.o_proj.state_dict())

                v_proj_unrolled = teacher_layer.self_attn.v_proj
                k_proj_unrolled = teacher_layer.self_attn.k_proj

                self_layer.self_attn.v.load_state_dict(v_proj_unrolled.state_dict())
                self_layer.self_attn.k.load_state_dict(k_proj_unrolled.state_dict())

                self_layer.self_attn.igate_preact.bias.data.fill_(torch.log(torch.tensor(2.0)))
                self_layer.self_attn.igate_preact.bias.data.fill_(-torch.log(torch.tensor(2.0)))

                # Init weight with small values
                init.xavier_uniform_(self_layer.self_attn.igate_preact.weight.data)
                self_layer.self_attn.igate_preact.weight.data *= 0.1
                init.xavier_uniform_(self_layer.self_attn.fgate_preact.weight.data)
                self_layer.self_attn.fgate_preact.weight.data *= 0.1

    def prepare_inputs_for_generation(
        self,
        input_ids,
        inputs_embeds=None,
        use_cache=None,
        cache_params = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        # Overwritten -- uses `cache_params` as opposed to `past_key_values`
        # Does not support using additional convolution states via inputs_embeds
        # as opposed to Mamba, currently.
        if use_cache:
            # `cache_position` should have been initialized in `generate`
            if cache_position is None:
                raise ValueError(
                    "`cache_position` should not be None as it should have been initialized in "
                    "`model.generate`, you are responsible for passing in a valid `cache_position` if "
                    "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
                )
            # If the first cache position is non-zero, we assume we are in generation mode.
            # Thus, the cache_params state is assumed to be the state before the last token
            # (lastly generated token), and all previous tokens are already ingested.
            # This should as well support generation from scratch with the [BOS] token inserted first.

            # if is_torchdynamo_compiling() or cache_position[0] > 0:
            if cache_params is not None:
                input_ids = input_ids[:, -1:]
                if inputs_embeds is not None:
                    inputs_embeds = inputs_embeds[:, -1:]

        attention_mask = None

        if inputs_embeds is not None and cache_params is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "cache_params": cache_params,
                "use_cache": use_cache,
                "cache_position": cache_position,
            }
        )
        return model_inputs

class xQwenForSequenceClassification(xQwenPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        # Similar to `self.model = AutoModel.from_config(config)` but allows to change the base model name if needed in the child class
        self.model = xQwenModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        **kwargs
    ):
        transformer_outputs: BaseModelOutputWithPast = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            **kwargs,
        )
        hidden_states = transformer_outputs.last_hidden_state
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            last_non_pad_token = -1
        elif input_ids is not None:
            # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
            non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
            token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
            last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
        else:
            last_non_pad_token = -1
            logger.warning_once(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


class xQwenForTokenClassification(xQwenPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        # Similar to `self.model = AutoModel.from_config(config)` but allows to change the base model name if needed in the child class
        self.model = xQwenModel(config)
        if getattr(config, "classifier_dropout", None) is not None:
            classifier_dropout = config.classifier_dropout
        elif getattr(config, "hidden_dropout", None) is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.score = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        **kwargs,
    ) -> TokenClassifierOutput:
        outputs: BaseModelOutputWithPast = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            **kwargs,
        )
        sequence_output = outputs.last_hidden_state
        sequence_output = self.dropout(sequence_output)
        logits = self.score(sequence_output)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, self.config)

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

from transformers import AutoConfig, AutoModel, AutoModelForCausalLM

AutoConfig.register(xQwenConfig.model_type, xQwenConfig)
AutoModel.register(xQwenConfig, xQwenModel)
AutoModelForCausalLM.register(xQwenConfig, xQwenForCausalLM)


__all__ = [
    "xQwenForCausalLM",
    "xQwenModel",
    "xQwenPreTrainedModel",
    "xQwenForSequenceClassification",
    "xQwenForTokenClassification",
]