File size: 52,961 Bytes
1b2dd8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 |
from typing import Callable, Optional, Tuple, Union
from dataclasses import dataclass
import functools
import torch
from torch import nn
import torch.nn.init as init
from torch.nn import functional as F
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
# from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
# from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging
from transformers.utils import auto_docstring, can_return_tuple, logging
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
try:
from transformers.modeling_flash_attention_utils import _flash_attention_forward
except ImportError:
print("Flash Attention is not installed. Please install it to use xQwenForCausalLM with Flash Attention.")
# from transformers.masking_utils import causal_mask_mapping
try:
from fla.layers.gated_deltaproduct import GatedDeltaProduct
fla_available = True
except:
fla_available = False
from fla.modules import ShortConvolution
from fla.modules.feature_map import HedgehogFeatureMap
from .configuration_xqwen import xQwenConfig
logger = logging.get_logger(__name__)
from xlstm.xlstm_large.model import (
mLSTMStateType,
soft_cap,
# mLSTMLayer,
mLSTMLayerConfig,
mLSTMBackendConfig,
mLSTMLayerStateType,
mLSTMBackend,
MultiHeadLayerNorm
)
class xLSTMCache:
"""
Cache / RNN State handler for xLSTM.
Args:
config: xLSTMConfig
batch_size: int
dtype: torch.dtype
device: torch.device
Attributes:
seqlen_offset: int
dtype: torch.dtype
"""
def __init__(
self, config, batch_size: int, dtype: torch.dtype = torch.bfloat16, device: Optional[str] = None
):
self.seqlen_offset = torch.tensor(0, dtype=torch.int64, device=device)
self.dtype = dtype
self.config = config
self.qk_head_dim = self.config.head_dim
self.v_head_dim = self.config.head_dim
self.rnn_state: mLSTMStateType = {
layer: (
torch.zeros(
[batch_size, config.num_heads, self.qk_head_dim, self.v_head_dim], dtype=dtype, device=device
),
torch.zeros([batch_size, config.num_heads, self.qk_head_dim], dtype=dtype, device=device),
torch.zeros([batch_size, config.num_heads, 1], dtype=dtype, device=device),
)
for layer in range(config.num_hidden_layers)
}
self.rnn_state_initial = True
def reset(self):
self.rnn_state = {
layer: (
torch.zeros_like(self.rnn_state[layer][0]),
torch.zeros_like(self.rnn_state[layer][1]),
torch.zeros_like(self.rnn_state[layer][2]),
)
for layer in self.rnn_state
}
self.rnn_state_initial = True
@dataclass
class xQwenModelOutputWithPast(BaseModelOutputWithPast):
cache_params: Optional[xLSTMCache] = None
@dataclass
class xQwenCausalLMOutput(CausalLMOutputWithPast):
cache_params: Optional[xLSTMCache] = None
@use_kernel_forward_from_hub("RMSNorm")
class xQwenRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
xQwenRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class xQwenMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
if self.config.mlp_dropout > 0.0:
self.dropout = nn.Dropout(config.mlp_dropout)
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
if self.config.mlp_dropout > 0.0:
down_proj = self.dropout(down_proj)
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class xQwenAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: xQwenConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.q_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
self.k_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class mLSTMLayer(nn.Module):
def __init__(self, config: mLSTMLayerConfig):
super().__init__()
self.config = config
# self.head_dim = config.embedding_dim // config.num_heads
self.head_dim = self.config.head_dim
self.num_key_value_groups = config.num_heads // config.num_key_value_heads
self.v_dim = int(config.embedding_dim * config.v_dim_factor)
self.qk_dim = int(config.embedding_dim * config.qk_dim_factor)
if self.config.weight_mode == "single":
self.q = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.num_heads * self.head_dim,
bias=self.config.use_bias,
)
self.k = nn.Linear(
in_features=self.config.hidden_size,
out_features=config.num_key_value_heads * self.head_dim,
bias=self.config.use_bias,
)
self.v = nn.Linear(
in_features=self.config.hidden_size,
out_features=config.num_key_value_heads * self.head_dim,
bias=self.config.use_bias,
)
self.ogate_preact = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.head_dim * self.config.num_heads,
# out_features=self.config.hidden_size,
bias=self.config.use_bias,
)
self.igate_preact = nn.Linear(
# in_features=self.head_dim * self.config.num_heads,
in_features=self.config.hidden_size,
out_features=self.config.num_heads,
bias=True,
)
self.fgate_preact = nn.Linear(
# in_features=self.head_dim * self.config.num_heads,
in_features=self.config.hidden_size,
out_features=self.config.num_heads,
bias=True,
)
elif self.config.weight_mode == "fused":
self.qkv_opreact = nn.Linear(
in_features=self.config.hidden_size,
out_features=2 * self.qk_dim + 2 * self.v_dim,
bias=self.config.use_bias,
)
self.ifgate_preact = nn.Linear(
in_features=self.config.hidden_size,
out_features=2 * self.config.num_heads,
bias=True,
)
self.ogate_act_fn = nn.Sigmoid()
self.mlstm_backend = mLSTMBackend(config=self.config.mlstm_backend_config())
self.multihead_norm = MultiHeadLayerNorm(
num_heads=self.config.num_heads,
head_dim=self.head_dim,
eps=self.config.norm_eps,
use_weight=True,
use_bias=self.config.use_bias,
force_float32_reductions=self.config.norm_reduction_force_float32,
)
self.out_proj = nn.Linear(
in_features=self.head_dim * self.config.num_heads,
out_features=self.config.hidden_size,
bias=self.config.use_bias,
)
if self.config.use_sliding_window:
self.block_mask = None
self.swa_attention = None
if self.config.swa_modulation == "dynamic":
self.swa_alpha = nn.Parameter(
torch.tensor(
0.5, dtype=torch.float32, requires_grad=True
)
)
if self.config.use_short_conv:
self.q_conv1d = ShortConvolution(
hidden_size=self.config.hidden_size,
kernel_size=self.config.conv_size,
bias=False,
activation='silu'
)
self.k_conv1d = ShortConvolution(
hidden_size=self.config.hidden_size,
kernel_size=self.config.conv_size,
bias=False,
activation='silu'
)
self.v_conv1d = ShortConvolution(
hidden_size=self.config.hidden_size,
kernel_size=self.config.conv_size,
bias=False,
activation='silu'
)
if self.config.use_hedgehog:
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_dim)
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_dim)
def set_swa_block_mask(self, q_len, mem_window=4):
block_mask = self.get_swa_block(with_memory=self.config.swa_with_memory, mem_window=mem_window)
self.block_mask = create_block_mask(block_mask, B=None, H=None, Q_LEN=q_len, KV_LEN=q_len)
self.swa_attention = functools.partial(
flex_attention, block_mask=self.block_mask
)
self.q_len = q_len
def get_swa_block(self, with_memory=False, mem_window=None):
if with_memory:
assert mem_window is not None, "mem_window must be specified for sliding window with memory"
def swa_with_memory(b, h, q_idx, kv_idx):
""" Sliding window causal attention with memory.
Add mask so model always attents to first m tokens in the sequence.
"""
causal_mask = q_idx >= kv_idx
window_mask = (q_idx - kv_idx) <= self.config.sliding_window
memory_mask = kv_idx < mem_window
return (causal_mask & window_mask) | memory_mask
return swa_with_memory
def sliding_window_causal(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
window_mask = (q_idx - kv_idx) <= self.config.sliding_window
return causal_mask & window_mask
return sliding_window_causal
def forward(
self, x: torch.Tensor,
state: mLSTMLayerStateType | None = None,
output_attentions: bool = False,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> tuple[torch.Tensor, mLSTMLayerStateType | None]:
assert x.ndim == 3, f"Input must have shape [B, S, D], got {x.shape}"
B, S, _ = x.shape
if self.config.weight_mode == "single":
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.config.use_short_conv:
q, _ = self.q_conv1d(q)
k, _ = self.k_conv1d(k)
v, _ = self.v_conv1d(v)
o_preact = self.ogate_preact(x)
i_preact = soft_cap(
self.igate_preact(x), cap_value=self.config.gate_soft_cap
)
f_preact = soft_cap(
self.fgate_preact(x), cap_value=self.config.gate_soft_cap
)
elif self.config.weight_mode == "fused":
qkv_opreact = self.qkv_opreact(x)
q, k, v, o_preact = torch.tensor_split(
qkv_opreact,
(
self.qk_dim,
2 * self.qk_dim,
2 * self.qk_dim + self.v_dim,
),
dim=-1,
)
if_preact = soft_cap(
self.ifgate_preact(x), cap_value=self.config.gate_soft_cap
)
i_preact, f_preact = torch.tensor_split(
if_preact, (self.config.num_heads,), dim=-1
)
q = q.reshape(B, S, self.config.num_heads, -1).transpose(1, 2)
k = k.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2)
v = v.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2)
k = repeat_kv(k, self.num_key_value_groups)
v = repeat_kv(v, self.num_key_value_groups)
if self.config.use_hedgehog:
q = self.feature_map_q(q)
k = self.feature_map_k(k)
if self.config.use_sliding_window:
sq, sk, sv = q, k, v
# assert position_ids is not None, "position_ids must be provided for sliding window attention"
if position_ids is None:
position_ids = torch.arange(S, device=x.device).unsqueeze(0)
cos, sin = position_embeddings
sq, sk, = apply_rotary_pos_emb(sq, sk, cos, sin)
i_preact = i_preact.transpose(1, 2)
f_preact = f_preact.transpose(1, 2)
if state is None:
c_initial, n_initial, m_initial = None, None, None
else:
c_initial, n_initial, m_initial = state
h, state = self.mlstm_backend(
q=q,
k=k,
v=v,
i=i_preact,
f=f_preact,
c_initial=c_initial,
n_initial=n_initial,
m_initial=m_initial,
)
h = h.transpose(1, 2)
h_norm = self.multihead_norm(h)
if self.config.use_sliding_window:
if sq.dtype == torch.float32:
sq, sk, sv = sq.to(torch.float16), sk.to(torch.float16), sv.to(torch.float16)
q_len = sq.size(-2)
if self.block_mask is None or self.swa_attention is None:
self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory)
elif self.q_len != q_len:
self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory)
y = self.swa_attention(sq, sk, sv).transpose(1, 2)
# y = _flash_attention_forward( # Reashape to the expected shape for Flash Attention
# sq.transpose(1, 2),
# sk.transpose(1, 2),
# sv.transpose(1, 2),
# attention_mask,
# q_len,
# position_ids=position_ids,
# dropout=0.0,
# sliding_window=self.config.sliding_window,
# use_top_left_mask=False,
# is_causal=True,
# target_dtype=torch.float32,
# )
# TODO: Indepent normalization for sliding window?
y = self.multihead_norm(y)
if self.config.swa_modulation == "static":
out = 0.5 * y + 0.5 * h_norm
elif self.config.swa_modulation == "dynamic":
if self.config.swa_modulation_bounded:
out = y + torch.tanh(self.swa_alpha) * h_norm
else:
out = y + self.swa_alpha * h_norm
else:
out = y
# raise ValueError("Unknown sliding window modulation type: {}".format(self.config.swa_modulation))
else:
out = h_norm
out = out.reshape(B, S, -1)
out = self.ogate_act_fn(o_preact) * out
y = self.out_proj(out)
return y, state
token_mixer_type = {
"qwen_attention": xQwenAttention,
"xlstm_attention": mLSTMLayer,
}
def build_mlstm_config(config):
return config
return mLSTMLayerConfig(
embedding_dim=config.embedding_dim,
num_heads=config.num_heads,
use_bias=config.use_bias,
norm_eps=config.rms_norm_eps,
norm_reduction_force_float32=config.norm_reduction_force_float32,
qk_dim_factor=1,
v_dim_factor=1,
num_key_value_heads=config.num_key_value_heads,
gate_soft_cap=config.gate_soft_cap,
weight_mode="single",
mlstm_backend=mLSTMBackendConfig(
chunkwise_kernel=config.chunkwise_kernel,
sequence_kernel=config.sequence_kernel,
step_kernel=config.step_kernel,
mode=config.mode,
chunk_size=config.chunk_size,
return_last_states=config.return_last_states,
autocast_kernel_dtype=config.autocast_kernel_dtype,
eps=config.eps,
inference_state_dtype=config.inference_state_dtype,
),
)
def build_gdp(config):
assert fla_available, "GatedDeltaProduct requires fla package to be installed."
# config.hidden_size = 512
return GatedDeltaProduct(
hidden_size=config.hidden_size,
expand_v=1,
head_dim=config.hidden_size // config.num_attention_heads,
num_heads=config.num_attention_heads,
use_output_gate=False,
use_short_conv=True,
use_forget_gate=True,
num_householder=2
)
class xQwenDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: xQwenConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attention_type = config.layer_types[layer_idx]
if self.attention_type == "qwen_attention":
self.self_attn = xQwenAttention(config=config, layer_idx=layer_idx)
elif self.attention_type == "xlstm_attention":
self.self_attn = mLSTMLayer(build_mlstm_config(config))
elif self.attention_type == "gdp_attention":
self.self_attn = build_gdp(config)
else:
raise ValueError("Unsupported attention type: {}".format(self.attention_type))
self.mlp = xQwenMLP(config)
self.input_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
state: mLSTMStateType | None = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if output_attentions:
return None, self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
position_ids=position_ids,
position_embeddings=position_embeddings,
)
# Self Attention
hidden_states, *state = self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
position_ids=position_ids,
position_embeddings=position_embeddings,
state=state,
)
if len(state) == 1:
state = state[0] # unpack the single state tuple
else:
state = None
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs, state
@auto_docstring
class xQwenPreTrainedModel(PreTrainedModel):
config_class = xQwenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["xQwenDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, xQwenRMSNorm):
module.weight.data.fill_(1.0)
class xQwenRotaryEmbedding(nn.Module):
def __init__(self, config: xQwenConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings\
self.config = config
# Hedgehog feature map doubles the hidden size for q and k
if self.config.use_sliding_window and self.config.use_hedgehog:
# self.config.hidden_size *= 2
self.config.head_dim *= 2
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class xQwenModel(xQwenPreTrainedModel):
config_class = xQwenConfig
def __init__(self, config: xQwenConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[xQwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = xQwenRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
cache_params: Optional[xLSTMCache] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
# if not isinstance(causal_mask_mapping := attention_mask, dict):
# # Prepare mask arguments
# mask_kwargs = {
# "config": self.config,
# "input_embeds": inputs_embeds,
# "attention_mask": attention_mask,
# "cache_position": cache_position,
# "past_key_values": past_key_values,
# }
# # Create the masks
# causal_mask_mapping = {
# "full_attention": create_causal_mask(**mask_kwargs),
# }
# # The sliding window alternating layers are not always activated depending on the config
# if self.has_sliding_layers:
# causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
use_cache = False
if use_cache:
if cache_params is None:
cache_params = xLSTMCache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
else:
cache_params = None
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
inference_with_cache = (
not self.training
and self.config.max_inference_chunksize < hidden_states.shape[1]
and not output_hidden_states
)
if inference_with_cache:
all_hidden_states = None
offset = 0
with torch.no_grad():
if cache_params is None:
cache_params = xLSTMCache(config=self.config, batch_size=hidden_states.shape[0])
final_state = torch.zeros_like(hidden_states)
while offset < hidden_states.shape[1]:
hidden_states_chunk = hidden_states[
:, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1])
]
for i, layer in self.layers[: self.config.num_hidden_layers]:
hidden_state_chunk, rnn_state = layer(
hidden_state_chunk,
state=cache_params.rnn_state[i],
)
for state_idx in range(len(cache_params.rnn_state[1])):
local_rnn_state = rnn_state[state_idx]
cache_params.rnn_state[i][state_idx].copy_(local_rnn_state)
cache_params.rnn_state_initial = False
final_state[
:, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1])
] = hidden_state_chunk
offset += self.config.max_inference_chunksize
hidden_states = final_state
else:
for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs, rnn_state = decoder_layer(
hidden_states,
# attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
state=cache_params.rnn_state[i] if cache_params is not None else None,
**flash_attn_kwargs,
)
if cache_params:
for state_idx in range(len(cache_params.rnn_state[i])):
local_rnn_state = rnn_state[state_idx]
cache_params.rnn_state[i][state_idx].copy_(local_rnn_state)
cache_params.rnn_state_initial = False
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return xQwenModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cache_params= cache_params if use_cache else None
)
# class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
@auto_docstring
class xQwenForCausalLM(xQwenPreTrainedModel, GenerationMixin):
config_class = xQwenConfig
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = xQwenModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, xQwenForCausalLM
>>> model = xQwenForCausalLM.from_pretrained("Qwen/xQwen-8B")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/xQwen-8B")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
# return CausalLMOutputWithPast(
return xQwenCausalLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def copy_from_teacher(self, teacher, copy_qkv: bool = True):
assert len(self.model.layers) == len(teacher.model.layers)
self.model.embed_tokens.weight.data.copy_(teacher.get_input_embeddings().weight.data)
self.model.norm.weight.data.copy_(teacher.model.norm.weight.data)
self.lm_head.weight.data.copy_(teacher.get_output_embeddings().weight.data)
for self_layer, teacher_layer in zip(self.model.layers, teacher.model.layers):
# self_layer.token_mixer.load_state_dict(teacher_layer.token_mixer.state_dict())
self_layer.mlp.load_state_dict(teacher_layer.mlp.state_dict())
self_layer.input_layernorm.load_state_dict(teacher_layer.input_layernorm.state_dict())
self_layer.post_attention_layernorm.load_state_dict(teacher_layer.post_attention_layernorm.state_dict())
if copy_qkv:
self_layer.self_attn.q.load_state_dict(teacher_layer.self_attn.q_proj.state_dict())
self_layer.self_attn.out_proj.load_state_dict(teacher_layer.self_attn.o_proj.state_dict())
v_proj_unrolled = teacher_layer.self_attn.v_proj
k_proj_unrolled = teacher_layer.self_attn.k_proj
self_layer.self_attn.v.load_state_dict(v_proj_unrolled.state_dict())
self_layer.self_attn.k.load_state_dict(k_proj_unrolled.state_dict())
self_layer.self_attn.igate_preact.bias.data.fill_(torch.log(torch.tensor(2.0)))
self_layer.self_attn.igate_preact.bias.data.fill_(-torch.log(torch.tensor(2.0)))
# Init weight with small values
init.xavier_uniform_(self_layer.self_attn.igate_preact.weight.data)
self_layer.self_attn.igate_preact.weight.data *= 0.1
init.xavier_uniform_(self_layer.self_attn.fgate_preact.weight.data)
self_layer.self_attn.fgate_preact.weight.data *= 0.1
def prepare_inputs_for_generation(
self,
input_ids,
inputs_embeds=None,
use_cache=None,
cache_params = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
):
# Overwritten -- uses `cache_params` as opposed to `past_key_values`
# Does not support using additional convolution states via inputs_embeds
# as opposed to Mamba, currently.
if use_cache:
# `cache_position` should have been initialized in `generate`
if cache_position is None:
raise ValueError(
"`cache_position` should not be None as it should have been initialized in "
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
)
# If the first cache position is non-zero, we assume we are in generation mode.
# Thus, the cache_params state is assumed to be the state before the last token
# (lastly generated token), and all previous tokens are already ingested.
# This should as well support generation from scratch with the [BOS] token inserted first.
# if is_torchdynamo_compiling() or cache_position[0] > 0:
if cache_params is not None:
input_ids = input_ids[:, -1:]
if inputs_embeds is not None:
inputs_embeds = inputs_embeds[:, -1:]
attention_mask = None
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"cache_params": cache_params,
"use_cache": use_cache,
"cache_position": cache_position,
}
)
return model_inputs
class xQwenForSequenceClassification(xQwenPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
# Similar to `self.model = AutoModel.from_config(config)` but allows to change the base model name if needed in the child class
self.model = xQwenModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs
):
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
**kwargs,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
class xQwenForTokenClassification(xQwenPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
# Similar to `self.model = AutoModel.from_config(config)` but allows to change the base model name if needed in the child class
self.model = xQwenModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs,
) -> TokenClassifierOutput:
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
**kwargs,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
AutoConfig.register(xQwenConfig.model_type, xQwenConfig)
AutoModel.register(xQwenConfig, xQwenModel)
AutoModelForCausalLM.register(xQwenConfig, xQwenForCausalLM)
__all__ = [
"xQwenForCausalLM",
"xQwenModel",
"xQwenPreTrainedModel",
"xQwenForSequenceClassification",
"xQwenForTokenClassification",
]
|