File size: 9,303 Bytes
5e682d9
 
0d05e22
 
5e682d9
0d05e22
5b16c4f
 
f5981a1
 
ae509db
 
363f7c8
f5981a1
c7021e9
 
f5981a1
 
c7021e9
9042fb2
f5981a1
0aede5a
 
 
8c86a7e
739c8f2
5b16c4f
 
21dd196
 
 
 
5b16c4f
 
 
21dd196
 
5b16c4f
21dd196
5b16c4f
 
21dd196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b16c4f
21dd196
5b16c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0685b31
5b16c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0685b31
 
5b16c4f
 
 
 
0685b31
5b16c4f
0685b31
5b16c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0685b31
5b16c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc35c2
114f53a
5b16c4f
 
 
 
 
63f0ad1
5b16c4f
 
 
 
 
0aede5a
5b16c4f
bfdc13b
5b16c4f
15f800f
 
 
 
bfdc13b
ae0ae78
15f800f
bfdc13b
 
 
15f800f
ae0ae78
bfdc13b
ae0ae78
15f800f
194ae74
 
 
 
5b16c4f
 
 
 
0aede5a
5b16c4f
 
 
5498c36
 
98def68
5498c36
 
 
 
 
5b16c4f
 
 
0d05e22
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
pipeline_tag: image-text-to-text
library_name: transformers
license: mit
---

# Skywork-R1V

<div align="center">   
  <img src="skywork-logo.png" alt="Introduction Image" width="500" height="400"> 
</div>

## 📖 [Technical Report](https://arxiv.org/abs/2504.05599) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V-38B)

<div align="center">

[![GitHub Stars](https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/stargazers) [![GitHub Forks](https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/fork)

</div>


## 1. Model Introduction
| Model Name             | Vision Encoder                                                                                     | Language Model                                                                  | HF Link      |
| ---------------------- | -------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------- | ------------ |
| Skywork-R1V-38B        | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)                | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)                   | [🤗 Link](https://huggingface.co/Skywork/Skywork-R1V-38B) |
| Skywork-R1V2-38B  | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)                | [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)                             | [🤗 Link](https://huggingface.co/Skywork/Skywork-R1V2-38B)        |


## 2. Feature
- **Visual Chain-of-Thought**: Enables multi-step logical reasoning on visual inputs, breaking down complex image-based problems into manageable steps.
- **Mathematical & Scientific Analysis**: Capable of solving visual math problems and interpreting scientific/medical imagery with high precision.
- **Cross-Modal Understanding**: Seamlessly integrates text and images for richer, context-aware comprehension.


## 3. Evaluation
<br>
<br>
<div align="center">
  <b>Comparison with Larger-Scale Open-Source and Closed-Source Models</b>
</div>

<table align="center">
  <thead>
    <tr>
      <th></th>
      <th align="center"><strong>Benchmark</strong></th>
      <th align="center"><strong>LLM</strong></th>
      <th align="center" colspan="4"><strong>VLM</strong></th>
    </tr>
    <tr>
      <th></th>
      <th></th>
      <th align="center"><strong>QwQ-32B-Preview</strong></th>
      <th align="center"><strong>InternVL-2.5-38B</strong></th>
      <th align="center"><strong>VILA 1.5-40B</strong></th>
      <th align="center"><strong>InternVL2-40B</strong></th>
      <th align="center"><strong>Skywork-R1V-38B</strong></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="3">Reasoning</td>
      <td>MATH-500</td>
      <td align="center">90.6</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center"><strong>94.0</strong></td>
    </tr>
    <tr>
      <td>AIME 2024</td>
      <td align="center">50.0</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center"><strong>72.0</strong></td>
    </tr>
    <tr>
      <td>GPQA</td>
      <td align="center">54.5</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center"><strong>61.6</strong></td>
    </tr>
    <tr>
      <td rowspan="3">Vision</td>
      <td>MathVista(mini)</td>
      <td align="center">-</td>
      <td align="center">71.9</td>
      <td align="center">49.5</td>
      <td align="center">63.7</td>
      <td align="center">67.5</td>
    </tr>
    <tr>
      <td>MMMU(Val)</td>
      <td align="center">-</td>
      <td align="center">63.9</td>
      <td align="center">55.1</td>
      <td align="center">55.2</td>
      <td align="center"><strong>69.0</strong></td>
    </tr>
  </tbody>
</table>


<br>
<br>
<div align="center">
  <b>Evaluation results of state-of-the-art LLMs and VLMs</b>
</div>
<table>
  <thead>
    <tr>
      <th></th>
      <th align="center"><strong>Vision</strong></th>
      <th align="center" colspan="3"><strong>Reasoning</strong></th>
      <th align="center" colspan="3"><strong>Vision</strong></th>
    </tr>
    <tr>
      <th></th>
      <th></th>
      <th align="center"><strong>MATH-500</strong></th>
      <th align="center"><strong>AIME 2024</strong></th>
      <th align="center"><strong>GPQA</strong></th>
      <th align="center"><strong>MathVista(mini)</strong></th>
      <th align="center"><strong>MMMU(Val)</strong></th>
    </tr>
    <tr>
      <th></th>
      <th></th>
      <th align="center">pass@1</th>
      <th align="center">pass@1</th>
      <th align="center">pass@1</th>
      <th align="center">pass@1</th>
      <th align="center">pass@1</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Qwen2.5-72B-Instruct</td>
      <td align="center">❌</td>
      <td align="center">80.0</td>
      <td align="center">23.3</td>
      <td align="center">49.0</td>
      <td align="center">-</td>
      <td align="center">-</td>
    </tr>
    <tr>
      <td>Deepseek V3</td>
      <td align="center">❌</td>
      <td align="center">90.2</td>
      <td align="center">39.2</td>
      <td align="center">59.1</td>
      <td align="center">-</td>
      <td align="center">-</td>
    </tr>
    <tr>
      <td>Deepseek R1</td>
      <td align="center">❌</td>
      <td align="center">97.3</td>
      <td align="center">79.8</td>
      <td align="center">71.5</td>
      <td align="center">-</td>
      <td align="center">-</td>
    </tr>
    <tr>
      <td>Claude 3.5 Sonnet</td>
      <td align="center">✅</td>
      <td align="center">78.3</td>
      <td align="center">16.0</td>
      <td align="center">65.0</td>
      <td align="center">65.3</td>
      <td align="center">66.4</td>
    </tr>
    <tr>
      <td>GPT-4o</td>
      <td align="center">✅</td>
      <td align="center">74.6</td>
      <td align="center">9.3</td>
      <td align="center">49.9</td>
      <td align="center">63.8</td>
      <td align="center">69.1</td>
    </tr>
    <tr>
      <td>Kimi k1.5</td>
      <td align="center">✅</td>
      <td align="center">96.2</td>
      <td align="center">77.5</td>
      <td align="center">-</td>
      <td align="center">74.9</td>
      <td align="center">70.0</td>
    </tr>
    <tr>
      <td>Qwen2.5-VL-72B-Instruct</td>
      <td align="center">✅</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">74.8</td>
      <td align="center">70.2</td>
    </tr>
    <tr>
      <td>LLaVA-Onevision-72B</td>
      <td align="center">✅</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">67.5</td>
      <td align="center">56.8</td>
    </tr>
    <tr>
      <td>InternVL2-Llama3-76B</td>
      <td align="center">✅</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">65.5</td>
      <td align="center">62.7</td>
    </tr>
    <tr>
      <td>InternVL2.5-78B</td>
      <td align="center">✅</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">-</td>
      <td align="center">72.3</td>
      <td align="center">70.1</td>
    </tr>
    <tr>
      <td>Skywork-R1V-38B</td>
      <td align="center">✅</td>
      <td align="center">94.0</td>
      <td align="center">72.0</td>
      <td align="center">61.6</td>
      <td align="center">67.5</td>
      <td align="center">69.0</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <img src="eval.jpeg" width="90%" height="90%" alt="skywork_r1v_eval" />
</div>

---


## 4. Usage

### 1. Clone the Repository

```shell
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd skywork-r1v/inference
```
### 2. Set Up the Environment

```shell
conda create -n r1-v python=3.10
conda activate r1-v
bash setup.sh
```

### 3. Run the Inference Script

```shell
CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \
    --model_path path \
    --image_paths image1_path \
    --question "your question"
```

---

## 5. Citation
If you use Skywork-R1V in your research, please cite:

```
@misc{peng2025skyworkr1vpioneeringmultimodal,
      title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, 
      author={Yi Peng and Peiyu Wang and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
      year={2025},
      eprint={2504.05599},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.05599}, 
}
```

*This project is released under an open-source license.*

## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=SkyworkAI/Skywork-R1V&type=Date)](https://www.star-history.com/#SkyworkAI/Skywork-R1V&Date)
```