File size: 9,303 Bytes
5e682d9 0d05e22 5e682d9 0d05e22 5b16c4f f5981a1 ae509db 363f7c8 f5981a1 c7021e9 f5981a1 c7021e9 9042fb2 f5981a1 0aede5a 8c86a7e 739c8f2 5b16c4f 21dd196 5b16c4f 21dd196 5b16c4f 21dd196 5b16c4f 21dd196 5b16c4f 21dd196 5b16c4f 0685b31 5b16c4f 0685b31 5b16c4f 0685b31 5b16c4f 0685b31 5b16c4f 0685b31 5b16c4f 7bc35c2 114f53a 5b16c4f 63f0ad1 5b16c4f 0aede5a 5b16c4f bfdc13b 5b16c4f 15f800f bfdc13b ae0ae78 15f800f bfdc13b 15f800f ae0ae78 bfdc13b ae0ae78 15f800f 194ae74 5b16c4f 0aede5a 5b16c4f 5498c36 98def68 5498c36 5b16c4f 0d05e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
---
pipeline_tag: image-text-to-text
library_name: transformers
license: mit
---
# Skywork-R1V
<div align="center">
<img src="skywork-logo.png" alt="Introduction Image" width="500" height="400">
</div>
## 📖 [Technical Report](https://arxiv.org/abs/2504.05599) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V-38B)
<div align="center">
[](https://github.com/SkyworkAI/Skywork-R1V/stargazers) [](https://github.com/SkyworkAI/Skywork-R1V/fork)
</div>
## 1. Model Introduction
| Model Name | Vision Encoder | Language Model | HF Link |
| ---------------------- | -------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------- | ------------ |
| Skywork-R1V-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | [🤗 Link](https://huggingface.co/Skywork/Skywork-R1V-38B) |
| Skywork-R1V2-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | [🤗 Link](https://huggingface.co/Skywork/Skywork-R1V2-38B) |
## 2. Feature
- **Visual Chain-of-Thought**: Enables multi-step logical reasoning on visual inputs, breaking down complex image-based problems into manageable steps.
- **Mathematical & Scientific Analysis**: Capable of solving visual math problems and interpreting scientific/medical imagery with high precision.
- **Cross-Modal Understanding**: Seamlessly integrates text and images for richer, context-aware comprehension.
## 3. Evaluation
<br>
<br>
<div align="center">
<b>Comparison with Larger-Scale Open-Source and Closed-Source Models</b>
</div>
<table align="center">
<thead>
<tr>
<th></th>
<th align="center"><strong>Benchmark</strong></th>
<th align="center"><strong>LLM</strong></th>
<th align="center" colspan="4"><strong>VLM</strong></th>
</tr>
<tr>
<th></th>
<th></th>
<th align="center"><strong>QwQ-32B-Preview</strong></th>
<th align="center"><strong>InternVL-2.5-38B</strong></th>
<th align="center"><strong>VILA 1.5-40B</strong></th>
<th align="center"><strong>InternVL2-40B</strong></th>
<th align="center"><strong>Skywork-R1V-38B</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">Reasoning</td>
<td>MATH-500</td>
<td align="center">90.6</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center"><strong>94.0</strong></td>
</tr>
<tr>
<td>AIME 2024</td>
<td align="center">50.0</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center"><strong>72.0</strong></td>
</tr>
<tr>
<td>GPQA</td>
<td align="center">54.5</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center"><strong>61.6</strong></td>
</tr>
<tr>
<td rowspan="3">Vision</td>
<td>MathVista(mini)</td>
<td align="center">-</td>
<td align="center">71.9</td>
<td align="center">49.5</td>
<td align="center">63.7</td>
<td align="center">67.5</td>
</tr>
<tr>
<td>MMMU(Val)</td>
<td align="center">-</td>
<td align="center">63.9</td>
<td align="center">55.1</td>
<td align="center">55.2</td>
<td align="center"><strong>69.0</strong></td>
</tr>
</tbody>
</table>
<br>
<br>
<div align="center">
<b>Evaluation results of state-of-the-art LLMs and VLMs</b>
</div>
<table>
<thead>
<tr>
<th></th>
<th align="center"><strong>Vision</strong></th>
<th align="center" colspan="3"><strong>Reasoning</strong></th>
<th align="center" colspan="3"><strong>Vision</strong></th>
</tr>
<tr>
<th></th>
<th></th>
<th align="center"><strong>MATH-500</strong></th>
<th align="center"><strong>AIME 2024</strong></th>
<th align="center"><strong>GPQA</strong></th>
<th align="center"><strong>MathVista(mini)</strong></th>
<th align="center"><strong>MMMU(Val)</strong></th>
</tr>
<tr>
<th></th>
<th></th>
<th align="center">pass@1</th>
<th align="center">pass@1</th>
<th align="center">pass@1</th>
<th align="center">pass@1</th>
<th align="center">pass@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qwen2.5-72B-Instruct</td>
<td align="center">❌</td>
<td align="center">80.0</td>
<td align="center">23.3</td>
<td align="center">49.0</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Deepseek V3</td>
<td align="center">❌</td>
<td align="center">90.2</td>
<td align="center">39.2</td>
<td align="center">59.1</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Deepseek R1</td>
<td align="center">❌</td>
<td align="center">97.3</td>
<td align="center">79.8</td>
<td align="center">71.5</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Claude 3.5 Sonnet</td>
<td align="center">✅</td>
<td align="center">78.3</td>
<td align="center">16.0</td>
<td align="center">65.0</td>
<td align="center">65.3</td>
<td align="center">66.4</td>
</tr>
<tr>
<td>GPT-4o</td>
<td align="center">✅</td>
<td align="center">74.6</td>
<td align="center">9.3</td>
<td align="center">49.9</td>
<td align="center">63.8</td>
<td align="center">69.1</td>
</tr>
<tr>
<td>Kimi k1.5</td>
<td align="center">✅</td>
<td align="center">96.2</td>
<td align="center">77.5</td>
<td align="center">-</td>
<td align="center">74.9</td>
<td align="center">70.0</td>
</tr>
<tr>
<td>Qwen2.5-VL-72B-Instruct</td>
<td align="center">✅</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">74.8</td>
<td align="center">70.2</td>
</tr>
<tr>
<td>LLaVA-Onevision-72B</td>
<td align="center">✅</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">67.5</td>
<td align="center">56.8</td>
</tr>
<tr>
<td>InternVL2-Llama3-76B</td>
<td align="center">✅</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">65.5</td>
<td align="center">62.7</td>
</tr>
<tr>
<td>InternVL2.5-78B</td>
<td align="center">✅</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">72.3</td>
<td align="center">70.1</td>
</tr>
<tr>
<td>Skywork-R1V-38B</td>
<td align="center">✅</td>
<td align="center">94.0</td>
<td align="center">72.0</td>
<td align="center">61.6</td>
<td align="center">67.5</td>
<td align="center">69.0</td>
</tr>
</tbody>
</table>
<div align="center">
<img src="eval.jpeg" width="90%" height="90%" alt="skywork_r1v_eval" />
</div>
---
## 4. Usage
### 1. Clone the Repository
```shell
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd skywork-r1v/inference
```
### 2. Set Up the Environment
```shell
conda create -n r1-v python=3.10
conda activate r1-v
bash setup.sh
```
### 3. Run the Inference Script
```shell
CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \
--model_path path \
--image_paths image1_path \
--question "your question"
```
---
## 5. Citation
If you use Skywork-R1V in your research, please cite:
```
@misc{peng2025skyworkr1vpioneeringmultimodal,
title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
author={Yi Peng and Peiyu Wang and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.05599},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.05599},
}
```
*This project is released under an open-source license.*
## Star History
[](https://www.star-history.com/#SkyworkAI/Skywork-R1V&Date)
``` |