Apertus-70B-Instruct-2509-2048-Calibration-FP8

This is a premium FP8 quantized version of swiss-ai/Apertus-70B-Instruct-2509 featuring rigorous multi-dataset calibration for production-grade reliability.

Model Description

Property Value
Base Model Apertus-70B-Instruct-2509
Architecture Dense (70B parameters)
Quantization FP8 (E4M3 format) via llm-compressor
Target Hardware NVIDIA Ada Lovelace & Hopper GPUs
Quantization Time 468.9 minutes (~7.8 hours)
Calibration Samples 2,048 (premium multi-dataset)

Usage

With Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
    "TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8",
    torch_dtype=torch.float8_e4m3fn,
    device_map="auto",
    low_cpu_mem_usage=True,
)

tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8")

# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

With vLLM (Recommended for production)

from vllm import LLM, SamplingParams

llm = LLM(model="TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8")
sampling_params = SamplingParams(temperature=0.7, max_tokens=512)

prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)

Premium Calibration

This model was quantized using TevunahAi's premium multi-dataset calibration process:

Calibration Details

  • Total Samples: 2,048 (4-8x industry standard)
  • Datasets Used: 4 complementary sources
  • Coverage: Comprehensive across all use cases
Dataset Samples Purpose
Open-Platypus 512 STEM reasoning and logic
UltraChat-200k 512 Natural conversations
OpenHermes-2.5 512 Instruction following
SlimOrca 512 Diverse general tasks

Why Premium Calibration?

Most FP8 quantizations use 128-512 samples from a single dataset. TevunahAi uses 2,048 samples across 4 diverse datasets, ensuring:

  • ✅ Superior robustness across task types
  • ✅ Better statistical coverage for quantization scales
  • ✅ Minimal quality loss compared to FP16
  • ✅ Production-grade reliability
  • ✅ Consistent performance on edge cases

When quality matters, choose TevunahAi 2048-Calibration FP8 quantizations.

Quantization Details

  • Target Layers: All Linear layers except lm_head
  • Precision: FP8 (E4M3 format)
  • Hardware Requirements: NVIDIA Ada Lovelace or Hopper (native FP8) or Ampere with emulation
  • VRAM Usage: ~70GB (fits on 2x RTX 4090 or 1x A100 80GB)

Quantization Infrastructure

Quantized on professional hardware optimized for high-quality model compression:

  • CPUs: Dual Intel Xeon Max 9480 (224 threads, 128GB HBM2e @ 2000 GB/s)
  • Memory: 256GB DDR5-4800 (16 DIMMs, 8-channel per socket, ~614 GB/s)
  • Total Memory Bandwidth: ~2,614 GB/s aggregate
  • GPU: NVIDIA RTX 5000 Ada Generation (32GB VRAM) with native FP8 support
  • Software: Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13 | llm-compressor

This infrastructure enables rigorous multi-dataset calibration that would be impractical on standard hardware.

Performance Notes

  • Quantization time: 468.9 minutes (~7.8 hours) with premium 2048-sample calibration
  • Memory during quantization: ~115GB (leveraging HBM2e + DDR5)
  • Memory reduction: 140GB FP16 → ~70GB FP8 (50% reduction)
  • Inference speed: 2-3x faster on Ada Lovelace GPUs vs FP16

About Apertus

Apertus-70B is a high-quality 70B parameter instruction-tuned model by Swiss AI, known for:

  • State-of-the-art reasoning capabilities
  • Strong multilingual support
  • Excellent instruction following
  • Apache 2.0 license

License

Apache 2.0 (same as original model)

Credits


Why TevunahAi 2048-Calibration FP8?

The Difference is in the Details

Aspect Standard FP8 TevunahAi 2048-Calibration FP8
Calibration Samples 128-512 2,048
Datasets Single 4 diverse
Edge Case Handling Adequate Superior
Output Consistency Good Excellent
Production Ready Maybe Absolutely

Professional Infrastructure

  • 2.6 TB/s aggregate memory bandwidth
  • 2,048 samples across 4 complementary datasets
  • Quality-first approach over speed
  • Enterprise-ready results
Downloads last month
23
Safetensors
Model size
71B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8

Quantized
(12)
this model

Collection including TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8