Apertus-70B-Instruct-2509-2048-Calibration-FP8
This is a premium FP8 quantized version of swiss-ai/Apertus-70B-Instruct-2509 featuring rigorous multi-dataset calibration for production-grade reliability.
Model Description
| Property | Value |
|---|---|
| Base Model | Apertus-70B-Instruct-2509 |
| Architecture | Dense (70B parameters) |
| Quantization | FP8 (E4M3 format) via llm-compressor |
| Target Hardware | NVIDIA Ada Lovelace & Hopper GPUs |
| Quantization Time | 468.9 minutes (~7.8 hours) |
| Calibration Samples | 2,048 (premium multi-dataset) |
Usage
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8",
torch_dtype=torch.float8_e4m3fn,
device_map="auto",
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8")
# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
With vLLM (Recommended for production)
from vllm import LLM, SamplingParams
llm = LLM(model="TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8")
sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)
Premium Calibration
This model was quantized using TevunahAi's premium multi-dataset calibration process:
Calibration Details
- Total Samples: 2,048 (4-8x industry standard)
- Datasets Used: 4 complementary sources
- Coverage: Comprehensive across all use cases
| Dataset | Samples | Purpose |
|---|---|---|
| Open-Platypus | 512 | STEM reasoning and logic |
| UltraChat-200k | 512 | Natural conversations |
| OpenHermes-2.5 | 512 | Instruction following |
| SlimOrca | 512 | Diverse general tasks |
Why Premium Calibration?
Most FP8 quantizations use 128-512 samples from a single dataset. TevunahAi uses 2,048 samples across 4 diverse datasets, ensuring:
- ✅ Superior robustness across task types
- ✅ Better statistical coverage for quantization scales
- ✅ Minimal quality loss compared to FP16
- ✅ Production-grade reliability
- ✅ Consistent performance on edge cases
When quality matters, choose TevunahAi 2048-Calibration FP8 quantizations.
Quantization Details
- Target Layers: All Linear layers except lm_head
- Precision: FP8 (E4M3 format)
- Hardware Requirements: NVIDIA Ada Lovelace or Hopper (native FP8) or Ampere with emulation
- VRAM Usage: ~70GB (fits on 2x RTX 4090 or 1x A100 80GB)
Quantization Infrastructure
Quantized on professional hardware optimized for high-quality model compression:
- CPUs: Dual Intel Xeon Max 9480 (224 threads, 128GB HBM2e @ 2000 GB/s)
- Memory: 256GB DDR5-4800 (16 DIMMs, 8-channel per socket, ~614 GB/s)
- Total Memory Bandwidth: ~2,614 GB/s aggregate
- GPU: NVIDIA RTX 5000 Ada Generation (32GB VRAM) with native FP8 support
- Software: Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13 | llm-compressor
This infrastructure enables rigorous multi-dataset calibration that would be impractical on standard hardware.
Performance Notes
- Quantization time: 468.9 minutes (~7.8 hours) with premium 2048-sample calibration
- Memory during quantization: ~115GB (leveraging HBM2e + DDR5)
- Memory reduction:
140GB FP16 → ~70GB FP8 (50% reduction) - Inference speed: 2-3x faster on Ada Lovelace GPUs vs FP16
About Apertus
Apertus-70B is a high-quality 70B parameter instruction-tuned model by Swiss AI, known for:
- State-of-the-art reasoning capabilities
- Strong multilingual support
- Excellent instruction following
- Apache 2.0 license
License
Apache 2.0 (same as original model)
Credits
- Original model by Swiss AI
- Quantized by TevunahAi
- Quantization powered by llm-compressor
Why TevunahAi 2048-Calibration FP8?
The Difference is in the Details
| Aspect | Standard FP8 | TevunahAi 2048-Calibration FP8 |
|---|---|---|
| Calibration Samples | 128-512 | 2,048 |
| Datasets | Single | 4 diverse |
| Edge Case Handling | Adequate | Superior |
| Output Consistency | Good | Excellent |
| Production Ready | Maybe | Absolutely |
Professional Infrastructure
- 2.6 TB/s aggregate memory bandwidth
- 2,048 samples across 4 complementary datasets
- Quality-first approach over speed
- Enterprise-ready results
- Downloads last month
- 23
Model tree for TevunahAi/Apertus-70B-Instruct-2509-2048-Calibration-FP8
Base model
swiss-ai/Apertus-70B-2509