TianyuLin commited on
Commit
6c31ba1
·
verified ·
1 Parent(s): 79940b6

Delete segmentator

Browse files
segmentator/.DS_Store DELETED
Binary file (6.15 kB)
 
segmentator/segmentator2D/.DS_Store DELETED
Binary file (6.15 kB)
 
segmentator/segmentator2D/dataset.json DELETED
@@ -1,42 +0,0 @@
1
- {
2
- "name": "JHH-Train-test",
3
- "description": "3151 cases for training; 1958 cases for testing",
4
- "reference": "ScaleMAI",
5
- "licence": "CC-BY-SA 4.0",
6
- "relase": "1.0 10/28/2024",
7
- "tensorImageSize": "3D",
8
- "labels": {
9
- "background": 0,
10
- "aorta": 1,
11
- "adrenal_gland_left": 2,
12
- "adrenal_gland_right": 3,
13
- "common_bile_duct": 4,
14
- "celiac_aa": 5,
15
- "colon": 6,
16
- "duodenum": 7,
17
- "gall_bladder": 8,
18
- "postcava": 9,
19
- "kidney_left": 10,
20
- "kidney_right": 11,
21
- "liver": 12,
22
- "pancreas": 13,
23
- "pancreatic_duct": 14,
24
- "superior_mesenteric_artery": 15,
25
- "intestine": 16,
26
- "spleen": 17,
27
- "stomach": 18,
28
- "veins": 19,
29
- "renal_vein_left": 20,
30
- "renal_vein_right": 21,
31
- "cbd_stent": 22,
32
- "pancreatic_pdac": 23,
33
- "pancreatic_cyst": 24,
34
- "pancreatic_pnet": 25
35
- },
36
- "numTraining": 3151,
37
- "numTest": 1958,
38
- "file_ending": ".nii.gz",
39
- "channel_names": {
40
- "0": "CT"
41
- }
42
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segmentator/segmentator2D/dataset_fingerprint.json DELETED
The diff for this file is too large to render. See raw diff
 
segmentator/segmentator2D/fold_all/.DS_Store DELETED
Binary file (6.15 kB)
 
segmentator/segmentator2D/fold_all/checkpoint_final.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ada16f647599214c2cf1fb3bd6eed4aaae655e67a0d6a7c92b1805f27a0a89e6
3
- size 1122763814
 
 
 
 
segmentator/segmentator2D/fold_all/debug.json DELETED
@@ -1,53 +0,0 @@
1
- {
2
- "_best_ema": "0.7794641",
3
- "batch_size": "43",
4
- "configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
5
- "configuration_name": "2d",
6
- "cudnn_version": 90100,
7
- "current_epoch": "650",
8
- "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7123f53afe50>",
9
- "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7123f40ede10>",
10
- "dataloader_train.num_processes": "32",
11
- "dataloader_train.transform": "None",
12
- "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7123f4150350>",
13
- "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7123f417b050>",
14
- "dataloader_val.num_processes": "16",
15
- "dataloader_val.transform": "None",
16
- "dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
17
- "device": "cuda:0",
18
- "disable_checkpointing": "False",
19
- "enable_deep_supervision": "True",
20
- "fold": "all",
21
- "folder_with_segs_from_previous_stage": "None",
22
- "gpu_name": "NVIDIA RTX 6000 Ada Generation",
23
- "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7123f69a1ed0>",
24
- "hostname": "ccvl42",
25
- "inference_allowed_mirroring_axes": "(0, 1)",
26
- "initial_lr": "0.01",
27
- "is_cascaded": "False",
28
- "is_ddp": "False",
29
- "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7123f61d3ed0>",
30
- "local_rank": "0",
31
- "log_file": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_5_3_12_54_52.txt",
32
- "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7123f6981f10>",
33
- "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
- "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7123f72c8590>",
35
- "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset808_AbdomenAtlasF', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [349, 417, 349], 'spacing': [1.044035686906972, 0.7342668567257824, 1.044035686906972], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 21.503620147705078, 'median': 63.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 361.0, 'std': 215.7941131591797}}}, 'configuration': '2d', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
36
- "network": "OptimizedModule",
37
- "num_epochs": "1000",
38
- "num_input_channels": "1",
39
- "num_iterations_per_epoch": "250",
40
- "num_val_iterations_per_epoch": "50",
41
- "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.003897412779133726\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
- "output_folder": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all",
43
- "output_folder_base": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d",
44
- "oversample_foreground_percent": "0.33",
45
- "plans_manager": "{'dataset_name': 'Dataset808_AbdomenAtlasF', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [349, 417, 349], 'spacing': [1.044035686906972, 0.7342668567257824, 1.044035686906972], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 21.503620147705078, 'median': 63.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 361.0, 'std': 215.7941131591797}}}",
46
- "preprocessed_dataset_folder": "/mnt/T9/temp_data_to_delete_very_soon/tlin67/Dataset808_AbdomenAtlasF/nnUNetPlans_2d",
47
- "preprocessed_dataset_folder_base": "/mnt/T9/temp_data_to_delete_very_soon/tlin67/Dataset808_AbdomenAtlasF",
48
- "save_every": "50",
49
- "torch_version": "2.5.0+cu124",
50
- "unpack_dataset": "True",
51
- "was_initialized": "True",
52
- "weight_decay": "3e-05"
53
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segmentator/segmentator2D/plans.json DELETED
@@ -1,532 +0,0 @@
1
- {
2
- "dataset_name": "Dataset808_AbdomenAtlasF",
3
- "plans_name": "nnUNetResEncUNetLPlans",
4
- "original_median_spacing_after_transp": [
5
- 0.7109375,
6
- 0.5,
7
- 0.7109375
8
- ],
9
- "original_median_shape_after_transp": [
10
- 512,
11
- 608,
12
- 512
13
- ],
14
- "image_reader_writer": "SimpleITKIO",
15
- "transpose_forward": [
16
- 1,
17
- 0,
18
- 2
19
- ],
20
- "transpose_backward": [
21
- 1,
22
- 0,
23
- 2
24
- ],
25
- "configurations": {
26
- "2d": {
27
- "data_identifier": "nnUNetPlans_2d",
28
- "preprocessor_name": "DefaultPreprocessor",
29
- "batch_size": 43,
30
- "patch_size": [
31
- 640,
32
- 640
33
- ],
34
- "median_image_size_in_voxels": [
35
- 613.0,
36
- 513.0
37
- ],
38
- "spacing": [
39
- 0.5,
40
- 0.7109375
41
- ],
42
- "normalization_schemes": [
43
- "CTNormalization"
44
- ],
45
- "use_mask_for_norm": [
46
- false
47
- ],
48
- "resampling_fn_data": "resample_data_or_seg_to_shape",
49
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
- "resampling_fn_data_kwargs": {
51
- "is_seg": false,
52
- "order": 3,
53
- "order_z": 0,
54
- "force_separate_z": null
55
- },
56
- "resampling_fn_seg_kwargs": {
57
- "is_seg": true,
58
- "order": 1,
59
- "order_z": 0,
60
- "force_separate_z": null
61
- },
62
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
- "resampling_fn_probabilities_kwargs": {
64
- "is_seg": false,
65
- "order": 1,
66
- "order_z": 0,
67
- "force_separate_z": null
68
- },
69
- "architecture": {
70
- "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
71
- "arch_kwargs": {
72
- "n_stages": 8,
73
- "features_per_stage": [
74
- 32,
75
- 64,
76
- 128,
77
- 256,
78
- 512,
79
- 512,
80
- 512,
81
- 512
82
- ],
83
- "conv_op": "torch.nn.modules.conv.Conv2d",
84
- "kernel_sizes": [
85
- [
86
- 3,
87
- 3
88
- ],
89
- [
90
- 3,
91
- 3
92
- ],
93
- [
94
- 3,
95
- 3
96
- ],
97
- [
98
- 3,
99
- 3
100
- ],
101
- [
102
- 3,
103
- 3
104
- ],
105
- [
106
- 3,
107
- 3
108
- ],
109
- [
110
- 3,
111
- 3
112
- ],
113
- [
114
- 3,
115
- 3
116
- ]
117
- ],
118
- "strides": [
119
- [
120
- 1,
121
- 1
122
- ],
123
- [
124
- 2,
125
- 2
126
- ],
127
- [
128
- 2,
129
- 2
130
- ],
131
- [
132
- 2,
133
- 2
134
- ],
135
- [
136
- 2,
137
- 2
138
- ],
139
- [
140
- 2,
141
- 2
142
- ],
143
- [
144
- 2,
145
- 2
146
- ],
147
- [
148
- 2,
149
- 2
150
- ]
151
- ],
152
- "n_blocks_per_stage": [
153
- 1,
154
- 3,
155
- 4,
156
- 6,
157
- 6,
158
- 6,
159
- 6,
160
- 6
161
- ],
162
- "n_conv_per_stage_decoder": [
163
- 1,
164
- 1,
165
- 1,
166
- 1,
167
- 1,
168
- 1,
169
- 1
170
- ],
171
- "conv_bias": true,
172
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
173
- "norm_op_kwargs": {
174
- "eps": 1e-05,
175
- "affine": true
176
- },
177
- "dropout_op": null,
178
- "dropout_op_kwargs": null,
179
- "nonlin": "torch.nn.LeakyReLU",
180
- "nonlin_kwargs": {
181
- "inplace": true
182
- }
183
- },
184
- "_kw_requires_import": [
185
- "conv_op",
186
- "norm_op",
187
- "dropout_op",
188
- "nonlin"
189
- ]
190
- },
191
- "batch_dice": true
192
- },
193
- "3d_lowres": {
194
- "data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
195
- "preprocessor_name": "DefaultPreprocessor",
196
- "batch_size": 2,
197
- "patch_size": [
198
- 224,
199
- 256,
200
- 224
201
- ],
202
- "median_image_size_in_voxels": [
203
- 349,
204
- 417,
205
- 349
206
- ],
207
- "spacing": [
208
- 1.044035686906972,
209
- 0.7342668567257824,
210
- 1.044035686906972
211
- ],
212
- "normalization_schemes": [
213
- "CTNormalization"
214
- ],
215
- "use_mask_for_norm": [
216
- false
217
- ],
218
- "resampling_fn_data": "resample_data_or_seg_to_shape",
219
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
220
- "resampling_fn_data_kwargs": {
221
- "is_seg": false,
222
- "order": 3,
223
- "order_z": 0,
224
- "force_separate_z": null
225
- },
226
- "resampling_fn_seg_kwargs": {
227
- "is_seg": true,
228
- "order": 1,
229
- "order_z": 0,
230
- "force_separate_z": null
231
- },
232
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
233
- "resampling_fn_probabilities_kwargs": {
234
- "is_seg": false,
235
- "order": 1,
236
- "order_z": 0,
237
- "force_separate_z": null
238
- },
239
- "architecture": {
240
- "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
241
- "arch_kwargs": {
242
- "n_stages": 6,
243
- "features_per_stage": [
244
- 32,
245
- 64,
246
- 128,
247
- 256,
248
- 320,
249
- 320
250
- ],
251
- "conv_op": "torch.nn.modules.conv.Conv3d",
252
- "kernel_sizes": [
253
- [
254
- 3,
255
- 3,
256
- 3
257
- ],
258
- [
259
- 3,
260
- 3,
261
- 3
262
- ],
263
- [
264
- 3,
265
- 3,
266
- 3
267
- ],
268
- [
269
- 3,
270
- 3,
271
- 3
272
- ],
273
- [
274
- 3,
275
- 3,
276
- 3
277
- ],
278
- [
279
- 3,
280
- 3,
281
- 3
282
- ]
283
- ],
284
- "strides": [
285
- [
286
- 1,
287
- 1,
288
- 1
289
- ],
290
- [
291
- 2,
292
- 2,
293
- 2
294
- ],
295
- [
296
- 2,
297
- 2,
298
- 2
299
- ],
300
- [
301
- 2,
302
- 2,
303
- 2
304
- ],
305
- [
306
- 2,
307
- 2,
308
- 2
309
- ],
310
- [
311
- 2,
312
- 2,
313
- 2
314
- ]
315
- ],
316
- "n_blocks_per_stage": [
317
- 1,
318
- 3,
319
- 4,
320
- 6,
321
- 6,
322
- 6
323
- ],
324
- "n_conv_per_stage_decoder": [
325
- 1,
326
- 1,
327
- 1,
328
- 1,
329
- 1
330
- ],
331
- "conv_bias": true,
332
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
333
- "norm_op_kwargs": {
334
- "eps": 1e-05,
335
- "affine": true
336
- },
337
- "dropout_op": null,
338
- "dropout_op_kwargs": null,
339
- "nonlin": "torch.nn.LeakyReLU",
340
- "nonlin_kwargs": {
341
- "inplace": true
342
- }
343
- },
344
- "_kw_requires_import": [
345
- "conv_op",
346
- "norm_op",
347
- "dropout_op",
348
- "nonlin"
349
- ]
350
- },
351
- "batch_dice": false,
352
- "next_stage": "3d_cascade_fullres"
353
- },
354
- "3d_fullres": {
355
- "data_identifier": "nnUNetPlans_3d_fullres",
356
- "preprocessor_name": "DefaultPreprocessor",
357
- "batch_size": 2,
358
- "patch_size": [
359
- 224,
360
- 256,
361
- 224
362
- ],
363
- "median_image_size_in_voxels": [
364
- 512.0,
365
- 613.0,
366
- 513.0
367
- ],
368
- "spacing": [
369
- 0.7109375,
370
- 0.5,
371
- 0.7109375
372
- ],
373
- "normalization_schemes": [
374
- "CTNormalization"
375
- ],
376
- "use_mask_for_norm": [
377
- false
378
- ],
379
- "resampling_fn_data": "resample_data_or_seg_to_shape",
380
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
381
- "resampling_fn_data_kwargs": {
382
- "is_seg": false,
383
- "order": 3,
384
- "order_z": 0,
385
- "force_separate_z": null
386
- },
387
- "resampling_fn_seg_kwargs": {
388
- "is_seg": true,
389
- "order": 1,
390
- "order_z": 0,
391
- "force_separate_z": null
392
- },
393
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
394
- "resampling_fn_probabilities_kwargs": {
395
- "is_seg": false,
396
- "order": 1,
397
- "order_z": 0,
398
- "force_separate_z": null
399
- },
400
- "architecture": {
401
- "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
402
- "arch_kwargs": {
403
- "n_stages": 6,
404
- "features_per_stage": [
405
- 32,
406
- 64,
407
- 128,
408
- 256,
409
- 320,
410
- 320
411
- ],
412
- "conv_op": "torch.nn.modules.conv.Conv3d",
413
- "kernel_sizes": [
414
- [
415
- 3,
416
- 3,
417
- 3
418
- ],
419
- [
420
- 3,
421
- 3,
422
- 3
423
- ],
424
- [
425
- 3,
426
- 3,
427
- 3
428
- ],
429
- [
430
- 3,
431
- 3,
432
- 3
433
- ],
434
- [
435
- 3,
436
- 3,
437
- 3
438
- ],
439
- [
440
- 3,
441
- 3,
442
- 3
443
- ]
444
- ],
445
- "strides": [
446
- [
447
- 1,
448
- 1,
449
- 1
450
- ],
451
- [
452
- 2,
453
- 2,
454
- 2
455
- ],
456
- [
457
- 2,
458
- 2,
459
- 2
460
- ],
461
- [
462
- 2,
463
- 2,
464
- 2
465
- ],
466
- [
467
- 2,
468
- 2,
469
- 2
470
- ],
471
- [
472
- 2,
473
- 2,
474
- 2
475
- ]
476
- ],
477
- "n_blocks_per_stage": [
478
- 1,
479
- 3,
480
- 4,
481
- 6,
482
- 6,
483
- 6
484
- ],
485
- "n_conv_per_stage_decoder": [
486
- 1,
487
- 1,
488
- 1,
489
- 1,
490
- 1
491
- ],
492
- "conv_bias": true,
493
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
494
- "norm_op_kwargs": {
495
- "eps": 1e-05,
496
- "affine": true
497
- },
498
- "dropout_op": null,
499
- "dropout_op_kwargs": null,
500
- "nonlin": "torch.nn.LeakyReLU",
501
- "nonlin_kwargs": {
502
- "inplace": true
503
- }
504
- },
505
- "_kw_requires_import": [
506
- "conv_op",
507
- "norm_op",
508
- "dropout_op",
509
- "nonlin"
510
- ]
511
- },
512
- "batch_dice": true
513
- },
514
- "3d_cascade_fullres": {
515
- "inherits_from": "3d_fullres",
516
- "previous_stage": "3d_lowres"
517
- }
518
- },
519
- "experiment_planner_used": "nnUNetPlannerResEncL",
520
- "label_manager": "LabelManager",
521
- "foreground_intensity_properties_per_channel": {
522
- "0": {
523
- "max": 1000.0,
524
- "mean": 21.503620147705078,
525
- "median": 63.0,
526
- "min": -1000.0,
527
- "percentile_00_5": -1000.0,
528
- "percentile_99_5": 361.0,
529
- "std": 215.7941131591797
530
- }
531
- }
532
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segmentator/segmentator3D/dataset.json DELETED
@@ -1,39 +0,0 @@
1
- {
2
- "channel_names": {
3
- "0": "CT"
4
- },
5
- "labels": {
6
- "background": 0,
7
- "aorta": 1,
8
- "adrenal_gland_left": 2,
9
- "adrenal_gland_right": 3,
10
- "common_bile_duct": 4,
11
- "celiac_aa": 5,
12
- "colon": 6,
13
- "duodenum": 7,
14
- "gall_bladder": 8,
15
- "postcava": 9,
16
- "kidney_left": 10,
17
- "kidney_right": 11,
18
- "liver": 12,
19
- "pancreas": 13,
20
- "pancreatic_duct": 14,
21
- "superior_mesenteric_artery": 15,
22
- "intestine": 16,
23
- "spleen": 17,
24
- "stomach": 18,
25
- "veins": 19,
26
- "renal_vein_left": 20,
27
- "renal_vein_right": 21,
28
- "cbd_stent": 22,
29
- "pancreatic_pdac": 23,
30
- "pancreatic_cyst": 24,
31
- "pancreatic_pnet": 25
32
- },
33
- "numTraining": 3145,
34
- "file_ending": ".nii.gz",
35
- "licence": "Whoever converted this dataset was lazy and didn't look it up!",
36
- "converted_by": "Please enter your name, especially when sharing datasets with others in a common infrastructure!",
37
- "overwrite_image_reader_writer": "NibabelIOWithReorient",
38
- "name": "Dataset1013_ePAI_3MM"
39
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segmentator/segmentator3D/dataset_fingerprint.json DELETED
The diff for this file is too large to render. See raw diff
 
segmentator/segmentator3D/fold_all/checkpoint_final.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:727a9b4b809c8748ab3311ec83db341021d6fd87a116018917f606d5b962975b
3
- size 248017790
 
 
 
 
segmentator/segmentator3D/fold_all/debug.json DELETED
@@ -1,53 +0,0 @@
1
- {
2
- "_best_ema": "None",
3
- "batch_size": "2",
4
- "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
5
- "configuration_name": "3d_fullres",
6
- "cudnn_version": 90100,
7
- "current_epoch": "0",
8
- "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x757bae1e30a0>",
9
- "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0x757bae1e2fe0>",
10
- "dataloader_train.num_processes": "12",
11
- "dataloader_train.transform": "None",
12
- "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x757bae1e3280>",
13
- "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0x757bae1e3040>",
14
- "dataloader_val.num_processes": "6",
15
- "dataloader_val.transform": "None",
16
- "dataset_json": "{'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3145, 'file_ending': '.nii.gz', 'licence': \"Whoever converted this dataset was lazy and didn't look it up!\", 'converted_by': 'Please enter your name, especially when sharing datasets with others in a common infrastructure!', 'overwrite_image_reader_writer': 'NibabelIOWithReorient', 'name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm'}",
17
- "device": "cuda:0",
18
- "disable_checkpointing": "False",
19
- "enable_deep_supervision": "True",
20
- "fold": "all",
21
- "folder_with_segs_from_previous_stage": "None",
22
- "gpu_name": "Quadro RTX 8000",
23
- "grad_scaler": "<torch.amp.grad_scaler.GradScaler object at 0x757bb972ad70>",
24
- "hostname": "ccvl26",
25
- "inference_allowed_mirroring_axes": "(0, 1, 2)",
26
- "initial_lr": "0.01",
27
- "is_cascaded": "False",
28
- "is_ddp": "False",
29
- "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x757d3ddc0940>",
30
- "local_rank": "0",
31
- "log_file": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/training_log_2025_3_18_10_53_12.txt",
32
- "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x757bb972ac50>",
33
- "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
- "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x757bb9777af0>",
35
- "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.7109375, 0.7109375], 'original_median_shape_after_transp': [102, 512, 512], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 9, 'patch_size': [512, 640], 'median_image_size_in_voxels': [512.0, 513.0], 'spacing': [0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 160, 160], 'median_image_size_in_voxels': [102, 252, 252], 'spacing': [3.0, 1.4451895600616937, 1.4451895600616937], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 29.496681213378906, 'median': 66.66667175292969, 'min': -1024.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 356.86273193359375, 'std': 210.9158172607422}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3145, 'file_ending': '.nii.gz', 'licence': \"Whoever converted this dataset was lazy and didn't look it up!\", 'converted_by': 'Please enter your name, especially when sharing datasets with others in a common infrastructure!', 'overwrite_image_reader_writer': 'NibabelIOWithReorient', 'name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm'}, 'device': device(type='cuda')}",
36
- "network": "OptimizedModule",
37
- "num_epochs": "1000",
38
- "num_input_channels": "1",
39
- "num_iterations_per_epoch": "250",
40
- "num_val_iterations_per_epoch": "50",
41
- "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
- "output_folder": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all",
43
- "output_folder_base": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres",
44
- "oversample_foreground_percent": "0.33",
45
- "plans_manager": "{'dataset_name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.7109375, 0.7109375], 'original_median_shape_after_transp': [102, 512, 512], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 9, 'patch_size': [512, 640], 'median_image_size_in_voxels': [512.0, 513.0], 'spacing': [0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 160, 160], 'median_image_size_in_voxels': [102, 252, 252], 'spacing': [3.0, 1.4451895600616937, 1.4451895600616937], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 29.496681213378906, 'median': 66.66667175292969, 'min': -1024.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 356.86273193359375, 'std': 210.9158172607422}}}",
46
- "preprocessed_dataset_folder": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_preprocessed/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetPlans_3d_fullres",
47
- "preprocessed_dataset_folder_base": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_preprocessed/Dataset1013-WX_FELIX_TumorOrgan_3mm",
48
- "probabilistic_oversampling": "False",
49
- "save_every": "50",
50
- "torch_version": "2.5.1",
51
- "was_initialized": "True",
52
- "weight_decay": "3e-05"
53
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segmentator/segmentator3D/plans.json DELETED
@@ -1,532 +0,0 @@
1
- {
2
- "dataset_name": "Dataset1013_ePAI_3MM",
3
- "plans_name": "nnUNetPlans",
4
- "original_median_spacing_after_transp": [
5
- 3.0,
6
- 0.7109375,
7
- 0.7109375
8
- ],
9
- "original_median_shape_after_transp": [
10
- 102,
11
- 512,
12
- 512
13
- ],
14
- "image_reader_writer": "NibabelIOWithReorient",
15
- "transpose_forward": [
16
- 0,
17
- 1,
18
- 2
19
- ],
20
- "transpose_backward": [
21
- 0,
22
- 1,
23
- 2
24
- ],
25
- "configurations": {
26
- "2d": {
27
- "data_identifier": "nnUNetPlans_2d",
28
- "preprocessor_name": "DefaultPreprocessor",
29
- "batch_size": 9,
30
- "patch_size": [
31
- 512,
32
- 640
33
- ],
34
- "median_image_size_in_voxels": [
35
- 512.0,
36
- 513.0
37
- ],
38
- "spacing": [
39
- 0.7109375,
40
- 0.7109375
41
- ],
42
- "normalization_schemes": [
43
- "CTNormalization"
44
- ],
45
- "use_mask_for_norm": [
46
- false
47
- ],
48
- "resampling_fn_data": "resample_data_or_seg_to_shape",
49
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
- "resampling_fn_data_kwargs": {
51
- "is_seg": false,
52
- "order": 3,
53
- "order_z": 0,
54
- "force_separate_z": null
55
- },
56
- "resampling_fn_seg_kwargs": {
57
- "is_seg": true,
58
- "order": 1,
59
- "order_z": 0,
60
- "force_separate_z": null
61
- },
62
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
- "resampling_fn_probabilities_kwargs": {
64
- "is_seg": false,
65
- "order": 1,
66
- "order_z": 0,
67
- "force_separate_z": null
68
- },
69
- "architecture": {
70
- "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
71
- "arch_kwargs": {
72
- "n_stages": 8,
73
- "features_per_stage": [
74
- 32,
75
- 64,
76
- 128,
77
- 256,
78
- 512,
79
- 512,
80
- 512,
81
- 512
82
- ],
83
- "conv_op": "torch.nn.modules.conv.Conv2d",
84
- "kernel_sizes": [
85
- [
86
- 3,
87
- 3
88
- ],
89
- [
90
- 3,
91
- 3
92
- ],
93
- [
94
- 3,
95
- 3
96
- ],
97
- [
98
- 3,
99
- 3
100
- ],
101
- [
102
- 3,
103
- 3
104
- ],
105
- [
106
- 3,
107
- 3
108
- ],
109
- [
110
- 3,
111
- 3
112
- ],
113
- [
114
- 3,
115
- 3
116
- ]
117
- ],
118
- "strides": [
119
- [
120
- 1,
121
- 1
122
- ],
123
- [
124
- 2,
125
- 2
126
- ],
127
- [
128
- 2,
129
- 2
130
- ],
131
- [
132
- 2,
133
- 2
134
- ],
135
- [
136
- 2,
137
- 2
138
- ],
139
- [
140
- 2,
141
- 2
142
- ],
143
- [
144
- 2,
145
- 2
146
- ],
147
- [
148
- 2,
149
- 2
150
- ]
151
- ],
152
- "n_conv_per_stage": [
153
- 2,
154
- 2,
155
- 2,
156
- 2,
157
- 2,
158
- 2,
159
- 2,
160
- 2
161
- ],
162
- "n_conv_per_stage_decoder": [
163
- 2,
164
- 2,
165
- 2,
166
- 2,
167
- 2,
168
- 2,
169
- 2
170
- ],
171
- "conv_bias": true,
172
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
173
- "norm_op_kwargs": {
174
- "eps": 1e-05,
175
- "affine": true
176
- },
177
- "dropout_op": null,
178
- "dropout_op_kwargs": null,
179
- "nonlin": "torch.nn.LeakyReLU",
180
- "nonlin_kwargs": {
181
- "inplace": true
182
- }
183
- },
184
- "_kw_requires_import": [
185
- "conv_op",
186
- "norm_op",
187
- "dropout_op",
188
- "nonlin"
189
- ]
190
- },
191
- "batch_dice": true
192
- },
193
- "3d_lowres": {
194
- "data_identifier": "nnUNetPlans_3d_lowres",
195
- "preprocessor_name": "DefaultPreprocessor",
196
- "batch_size": 2,
197
- "patch_size": [
198
- 64,
199
- 160,
200
- 160
201
- ],
202
- "median_image_size_in_voxels": [
203
- 102,
204
- 252,
205
- 252
206
- ],
207
- "spacing": [
208
- 3.0,
209
- 1.4451895600616937,
210
- 1.4451895600616937
211
- ],
212
- "normalization_schemes": [
213
- "CTNormalization"
214
- ],
215
- "use_mask_for_norm": [
216
- false
217
- ],
218
- "resampling_fn_data": "resample_data_or_seg_to_shape",
219
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
220
- "resampling_fn_data_kwargs": {
221
- "is_seg": false,
222
- "order": 3,
223
- "order_z": 0,
224
- "force_separate_z": null
225
- },
226
- "resampling_fn_seg_kwargs": {
227
- "is_seg": true,
228
- "order": 1,
229
- "order_z": 0,
230
- "force_separate_z": null
231
- },
232
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
233
- "resampling_fn_probabilities_kwargs": {
234
- "is_seg": false,
235
- "order": 1,
236
- "order_z": 0,
237
- "force_separate_z": null
238
- },
239
- "architecture": {
240
- "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
241
- "arch_kwargs": {
242
- "n_stages": 6,
243
- "features_per_stage": [
244
- 32,
245
- 64,
246
- 128,
247
- 256,
248
- 320,
249
- 320
250
- ],
251
- "conv_op": "torch.nn.modules.conv.Conv3d",
252
- "kernel_sizes": [
253
- [
254
- 1,
255
- 3,
256
- 3
257
- ],
258
- [
259
- 3,
260
- 3,
261
- 3
262
- ],
263
- [
264
- 3,
265
- 3,
266
- 3
267
- ],
268
- [
269
- 3,
270
- 3,
271
- 3
272
- ],
273
- [
274
- 3,
275
- 3,
276
- 3
277
- ],
278
- [
279
- 3,
280
- 3,
281
- 3
282
- ]
283
- ],
284
- "strides": [
285
- [
286
- 1,
287
- 1,
288
- 1
289
- ],
290
- [
291
- 1,
292
- 2,
293
- 2
294
- ],
295
- [
296
- 2,
297
- 2,
298
- 2
299
- ],
300
- [
301
- 2,
302
- 2,
303
- 2
304
- ],
305
- [
306
- 2,
307
- 2,
308
- 2
309
- ],
310
- [
311
- 2,
312
- 2,
313
- 2
314
- ]
315
- ],
316
- "n_conv_per_stage": [
317
- 2,
318
- 2,
319
- 2,
320
- 2,
321
- 2,
322
- 2
323
- ],
324
- "n_conv_per_stage_decoder": [
325
- 2,
326
- 2,
327
- 2,
328
- 2,
329
- 2
330
- ],
331
- "conv_bias": true,
332
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
333
- "norm_op_kwargs": {
334
- "eps": 1e-05,
335
- "affine": true
336
- },
337
- "dropout_op": null,
338
- "dropout_op_kwargs": null,
339
- "nonlin": "torch.nn.LeakyReLU",
340
- "nonlin_kwargs": {
341
- "inplace": true
342
- }
343
- },
344
- "_kw_requires_import": [
345
- "conv_op",
346
- "norm_op",
347
- "dropout_op",
348
- "nonlin"
349
- ]
350
- },
351
- "batch_dice": false,
352
- "next_stage": "3d_cascade_fullres"
353
- },
354
- "3d_fullres": {
355
- "data_identifier": "nnUNetPlans_3d_fullres",
356
- "preprocessor_name": "DefaultPreprocessor",
357
- "batch_size": 2,
358
- "patch_size": [
359
- 40,
360
- 192,
361
- 224
362
- ],
363
- "median_image_size_in_voxels": [
364
- 102.0,
365
- 512.0,
366
- 513.0
367
- ],
368
- "spacing": [
369
- 3.0,
370
- 0.7109375,
371
- 0.7109375
372
- ],
373
- "normalization_schemes": [
374
- "CTNormalization"
375
- ],
376
- "use_mask_for_norm": [
377
- false
378
- ],
379
- "resampling_fn_data": "resample_data_or_seg_to_shape",
380
- "resampling_fn_seg": "resample_data_or_seg_to_shape",
381
- "resampling_fn_data_kwargs": {
382
- "is_seg": false,
383
- "order": 3,
384
- "order_z": 0,
385
- "force_separate_z": null
386
- },
387
- "resampling_fn_seg_kwargs": {
388
- "is_seg": true,
389
- "order": 1,
390
- "order_z": 0,
391
- "force_separate_z": null
392
- },
393
- "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
394
- "resampling_fn_probabilities_kwargs": {
395
- "is_seg": false,
396
- "order": 1,
397
- "order_z": 0,
398
- "force_separate_z": null
399
- },
400
- "architecture": {
401
- "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
402
- "arch_kwargs": {
403
- "n_stages": 6,
404
- "features_per_stage": [
405
- 32,
406
- 64,
407
- 128,
408
- 256,
409
- 320,
410
- 320
411
- ],
412
- "conv_op": "torch.nn.modules.conv.Conv3d",
413
- "kernel_sizes": [
414
- [
415
- 1,
416
- 3,
417
- 3
418
- ],
419
- [
420
- 1,
421
- 3,
422
- 3
423
- ],
424
- [
425
- 3,
426
- 3,
427
- 3
428
- ],
429
- [
430
- 3,
431
- 3,
432
- 3
433
- ],
434
- [
435
- 3,
436
- 3,
437
- 3
438
- ],
439
- [
440
- 3,
441
- 3,
442
- 3
443
- ]
444
- ],
445
- "strides": [
446
- [
447
- 1,
448
- 1,
449
- 1
450
- ],
451
- [
452
- 1,
453
- 2,
454
- 2
455
- ],
456
- [
457
- 1,
458
- 2,
459
- 2
460
- ],
461
- [
462
- 2,
463
- 2,
464
- 2
465
- ],
466
- [
467
- 2,
468
- 2,
469
- 2
470
- ],
471
- [
472
- 2,
473
- 2,
474
- 2
475
- ]
476
- ],
477
- "n_conv_per_stage": [
478
- 2,
479
- 2,
480
- 2,
481
- 2,
482
- 2,
483
- 2
484
- ],
485
- "n_conv_per_stage_decoder": [
486
- 2,
487
- 2,
488
- 2,
489
- 2,
490
- 2
491
- ],
492
- "conv_bias": true,
493
- "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
494
- "norm_op_kwargs": {
495
- "eps": 1e-05,
496
- "affine": true
497
- },
498
- "dropout_op": null,
499
- "dropout_op_kwargs": null,
500
- "nonlin": "torch.nn.LeakyReLU",
501
- "nonlin_kwargs": {
502
- "inplace": true
503
- }
504
- },
505
- "_kw_requires_import": [
506
- "conv_op",
507
- "norm_op",
508
- "dropout_op",
509
- "nonlin"
510
- ]
511
- },
512
- "batch_dice": true
513
- },
514
- "3d_cascade_fullres": {
515
- "inherits_from": "3d_fullres",
516
- "previous_stage": "3d_lowres"
517
- }
518
- },
519
- "experiment_planner_used": "ExperimentPlanner",
520
- "label_manager": "LabelManager",
521
- "foreground_intensity_properties_per_channel": {
522
- "0": {
523
- "max": 1000.0,
524
- "mean": 29.496681213378906,
525
- "median": 66.66667175292969,
526
- "min": -1024.0,
527
- "percentile_00_5": -1000.0,
528
- "percentile_99_5": 356.86273193359375,
529
- "std": 210.9158172607422
530
- }
531
- }
532
- }