Delete segmentator
Browse files- segmentator/.DS_Store +0 -0
- segmentator/segmentator2D/.DS_Store +0 -0
- segmentator/segmentator2D/dataset.json +0 -42
- segmentator/segmentator2D/dataset_fingerprint.json +0 -0
- segmentator/segmentator2D/fold_all/.DS_Store +0 -0
- segmentator/segmentator2D/fold_all/checkpoint_final.pth +0 -3
- segmentator/segmentator2D/fold_all/debug.json +0 -53
- segmentator/segmentator2D/plans.json +0 -532
- segmentator/segmentator3D/dataset.json +0 -39
- segmentator/segmentator3D/dataset_fingerprint.json +0 -0
- segmentator/segmentator3D/fold_all/checkpoint_final.pth +0 -3
- segmentator/segmentator3D/fold_all/debug.json +0 -53
- segmentator/segmentator3D/plans.json +0 -532
segmentator/.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
segmentator/segmentator2D/.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
segmentator/segmentator2D/dataset.json
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "JHH-Train-test",
|
| 3 |
-
"description": "3151 cases for training; 1958 cases for testing",
|
| 4 |
-
"reference": "ScaleMAI",
|
| 5 |
-
"licence": "CC-BY-SA 4.0",
|
| 6 |
-
"relase": "1.0 10/28/2024",
|
| 7 |
-
"tensorImageSize": "3D",
|
| 8 |
-
"labels": {
|
| 9 |
-
"background": 0,
|
| 10 |
-
"aorta": 1,
|
| 11 |
-
"adrenal_gland_left": 2,
|
| 12 |
-
"adrenal_gland_right": 3,
|
| 13 |
-
"common_bile_duct": 4,
|
| 14 |
-
"celiac_aa": 5,
|
| 15 |
-
"colon": 6,
|
| 16 |
-
"duodenum": 7,
|
| 17 |
-
"gall_bladder": 8,
|
| 18 |
-
"postcava": 9,
|
| 19 |
-
"kidney_left": 10,
|
| 20 |
-
"kidney_right": 11,
|
| 21 |
-
"liver": 12,
|
| 22 |
-
"pancreas": 13,
|
| 23 |
-
"pancreatic_duct": 14,
|
| 24 |
-
"superior_mesenteric_artery": 15,
|
| 25 |
-
"intestine": 16,
|
| 26 |
-
"spleen": 17,
|
| 27 |
-
"stomach": 18,
|
| 28 |
-
"veins": 19,
|
| 29 |
-
"renal_vein_left": 20,
|
| 30 |
-
"renal_vein_right": 21,
|
| 31 |
-
"cbd_stent": 22,
|
| 32 |
-
"pancreatic_pdac": 23,
|
| 33 |
-
"pancreatic_cyst": 24,
|
| 34 |
-
"pancreatic_pnet": 25
|
| 35 |
-
},
|
| 36 |
-
"numTraining": 3151,
|
| 37 |
-
"numTest": 1958,
|
| 38 |
-
"file_ending": ".nii.gz",
|
| 39 |
-
"channel_names": {
|
| 40 |
-
"0": "CT"
|
| 41 |
-
}
|
| 42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator2D/dataset_fingerprint.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
segmentator/segmentator2D/fold_all/.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
segmentator/segmentator2D/fold_all/checkpoint_final.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:ada16f647599214c2cf1fb3bd6eed4aaae655e67a0d6a7c92b1805f27a0a89e6
|
| 3 |
-
size 1122763814
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator2D/fold_all/debug.json
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_best_ema": "0.7794641",
|
| 3 |
-
"batch_size": "43",
|
| 4 |
-
"configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
|
| 5 |
-
"configuration_name": "2d",
|
| 6 |
-
"cudnn_version": 90100,
|
| 7 |
-
"current_epoch": "650",
|
| 8 |
-
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7123f53afe50>",
|
| 9 |
-
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7123f40ede10>",
|
| 10 |
-
"dataloader_train.num_processes": "32",
|
| 11 |
-
"dataloader_train.transform": "None",
|
| 12 |
-
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7123f4150350>",
|
| 13 |
-
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7123f417b050>",
|
| 14 |
-
"dataloader_val.num_processes": "16",
|
| 15 |
-
"dataloader_val.transform": "None",
|
| 16 |
-
"dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
|
| 17 |
-
"device": "cuda:0",
|
| 18 |
-
"disable_checkpointing": "False",
|
| 19 |
-
"enable_deep_supervision": "True",
|
| 20 |
-
"fold": "all",
|
| 21 |
-
"folder_with_segs_from_previous_stage": "None",
|
| 22 |
-
"gpu_name": "NVIDIA RTX 6000 Ada Generation",
|
| 23 |
-
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7123f69a1ed0>",
|
| 24 |
-
"hostname": "ccvl42",
|
| 25 |
-
"inference_allowed_mirroring_axes": "(0, 1)",
|
| 26 |
-
"initial_lr": "0.01",
|
| 27 |
-
"is_cascaded": "False",
|
| 28 |
-
"is_ddp": "False",
|
| 29 |
-
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7123f61d3ed0>",
|
| 30 |
-
"local_rank": "0",
|
| 31 |
-
"log_file": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_5_3_12_54_52.txt",
|
| 32 |
-
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7123f6981f10>",
|
| 33 |
-
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
| 34 |
-
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7123f72c8590>",
|
| 35 |
-
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset808_AbdomenAtlasF', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [349, 417, 349], 'spacing': [1.044035686906972, 0.7342668567257824, 1.044035686906972], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 21.503620147705078, 'median': 63.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 361.0, 'std': 215.7941131591797}}}, 'configuration': '2d', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
| 36 |
-
"network": "OptimizedModule",
|
| 37 |
-
"num_epochs": "1000",
|
| 38 |
-
"num_input_channels": "1",
|
| 39 |
-
"num_iterations_per_epoch": "250",
|
| 40 |
-
"num_val_iterations_per_epoch": "50",
|
| 41 |
-
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.003897412779133726\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
| 42 |
-
"output_folder": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all",
|
| 43 |
-
"output_folder_base": "/mnt/data/tlin67/nnUNet/nnUNet_results/Dataset808_AbdomenAtlasF/nnUNetTrainer__nnUNetResEncUNetLPlans__2d",
|
| 44 |
-
"oversample_foreground_percent": "0.33",
|
| 45 |
-
"plans_manager": "{'dataset_name': 'Dataset808_AbdomenAtlasF', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 43, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [349, 417, 349], 'spacing': [1.044035686906972, 0.7342668567257824, 1.044035686906972], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 256, 224], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 21.503620147705078, 'median': 63.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 361.0, 'std': 215.7941131591797}}}",
|
| 46 |
-
"preprocessed_dataset_folder": "/mnt/T9/temp_data_to_delete_very_soon/tlin67/Dataset808_AbdomenAtlasF/nnUNetPlans_2d",
|
| 47 |
-
"preprocessed_dataset_folder_base": "/mnt/T9/temp_data_to_delete_very_soon/tlin67/Dataset808_AbdomenAtlasF",
|
| 48 |
-
"save_every": "50",
|
| 49 |
-
"torch_version": "2.5.0+cu124",
|
| 50 |
-
"unpack_dataset": "True",
|
| 51 |
-
"was_initialized": "True",
|
| 52 |
-
"weight_decay": "3e-05"
|
| 53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator2D/plans.json
DELETED
|
@@ -1,532 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"dataset_name": "Dataset808_AbdomenAtlasF",
|
| 3 |
-
"plans_name": "nnUNetResEncUNetLPlans",
|
| 4 |
-
"original_median_spacing_after_transp": [
|
| 5 |
-
0.7109375,
|
| 6 |
-
0.5,
|
| 7 |
-
0.7109375
|
| 8 |
-
],
|
| 9 |
-
"original_median_shape_after_transp": [
|
| 10 |
-
512,
|
| 11 |
-
608,
|
| 12 |
-
512
|
| 13 |
-
],
|
| 14 |
-
"image_reader_writer": "SimpleITKIO",
|
| 15 |
-
"transpose_forward": [
|
| 16 |
-
1,
|
| 17 |
-
0,
|
| 18 |
-
2
|
| 19 |
-
],
|
| 20 |
-
"transpose_backward": [
|
| 21 |
-
1,
|
| 22 |
-
0,
|
| 23 |
-
2
|
| 24 |
-
],
|
| 25 |
-
"configurations": {
|
| 26 |
-
"2d": {
|
| 27 |
-
"data_identifier": "nnUNetPlans_2d",
|
| 28 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 29 |
-
"batch_size": 43,
|
| 30 |
-
"patch_size": [
|
| 31 |
-
640,
|
| 32 |
-
640
|
| 33 |
-
],
|
| 34 |
-
"median_image_size_in_voxels": [
|
| 35 |
-
613.0,
|
| 36 |
-
513.0
|
| 37 |
-
],
|
| 38 |
-
"spacing": [
|
| 39 |
-
0.5,
|
| 40 |
-
0.7109375
|
| 41 |
-
],
|
| 42 |
-
"normalization_schemes": [
|
| 43 |
-
"CTNormalization"
|
| 44 |
-
],
|
| 45 |
-
"use_mask_for_norm": [
|
| 46 |
-
false
|
| 47 |
-
],
|
| 48 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 49 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 50 |
-
"resampling_fn_data_kwargs": {
|
| 51 |
-
"is_seg": false,
|
| 52 |
-
"order": 3,
|
| 53 |
-
"order_z": 0,
|
| 54 |
-
"force_separate_z": null
|
| 55 |
-
},
|
| 56 |
-
"resampling_fn_seg_kwargs": {
|
| 57 |
-
"is_seg": true,
|
| 58 |
-
"order": 1,
|
| 59 |
-
"order_z": 0,
|
| 60 |
-
"force_separate_z": null
|
| 61 |
-
},
|
| 62 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 63 |
-
"resampling_fn_probabilities_kwargs": {
|
| 64 |
-
"is_seg": false,
|
| 65 |
-
"order": 1,
|
| 66 |
-
"order_z": 0,
|
| 67 |
-
"force_separate_z": null
|
| 68 |
-
},
|
| 69 |
-
"architecture": {
|
| 70 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 71 |
-
"arch_kwargs": {
|
| 72 |
-
"n_stages": 8,
|
| 73 |
-
"features_per_stage": [
|
| 74 |
-
32,
|
| 75 |
-
64,
|
| 76 |
-
128,
|
| 77 |
-
256,
|
| 78 |
-
512,
|
| 79 |
-
512,
|
| 80 |
-
512,
|
| 81 |
-
512
|
| 82 |
-
],
|
| 83 |
-
"conv_op": "torch.nn.modules.conv.Conv2d",
|
| 84 |
-
"kernel_sizes": [
|
| 85 |
-
[
|
| 86 |
-
3,
|
| 87 |
-
3
|
| 88 |
-
],
|
| 89 |
-
[
|
| 90 |
-
3,
|
| 91 |
-
3
|
| 92 |
-
],
|
| 93 |
-
[
|
| 94 |
-
3,
|
| 95 |
-
3
|
| 96 |
-
],
|
| 97 |
-
[
|
| 98 |
-
3,
|
| 99 |
-
3
|
| 100 |
-
],
|
| 101 |
-
[
|
| 102 |
-
3,
|
| 103 |
-
3
|
| 104 |
-
],
|
| 105 |
-
[
|
| 106 |
-
3,
|
| 107 |
-
3
|
| 108 |
-
],
|
| 109 |
-
[
|
| 110 |
-
3,
|
| 111 |
-
3
|
| 112 |
-
],
|
| 113 |
-
[
|
| 114 |
-
3,
|
| 115 |
-
3
|
| 116 |
-
]
|
| 117 |
-
],
|
| 118 |
-
"strides": [
|
| 119 |
-
[
|
| 120 |
-
1,
|
| 121 |
-
1
|
| 122 |
-
],
|
| 123 |
-
[
|
| 124 |
-
2,
|
| 125 |
-
2
|
| 126 |
-
],
|
| 127 |
-
[
|
| 128 |
-
2,
|
| 129 |
-
2
|
| 130 |
-
],
|
| 131 |
-
[
|
| 132 |
-
2,
|
| 133 |
-
2
|
| 134 |
-
],
|
| 135 |
-
[
|
| 136 |
-
2,
|
| 137 |
-
2
|
| 138 |
-
],
|
| 139 |
-
[
|
| 140 |
-
2,
|
| 141 |
-
2
|
| 142 |
-
],
|
| 143 |
-
[
|
| 144 |
-
2,
|
| 145 |
-
2
|
| 146 |
-
],
|
| 147 |
-
[
|
| 148 |
-
2,
|
| 149 |
-
2
|
| 150 |
-
]
|
| 151 |
-
],
|
| 152 |
-
"n_blocks_per_stage": [
|
| 153 |
-
1,
|
| 154 |
-
3,
|
| 155 |
-
4,
|
| 156 |
-
6,
|
| 157 |
-
6,
|
| 158 |
-
6,
|
| 159 |
-
6,
|
| 160 |
-
6
|
| 161 |
-
],
|
| 162 |
-
"n_conv_per_stage_decoder": [
|
| 163 |
-
1,
|
| 164 |
-
1,
|
| 165 |
-
1,
|
| 166 |
-
1,
|
| 167 |
-
1,
|
| 168 |
-
1,
|
| 169 |
-
1
|
| 170 |
-
],
|
| 171 |
-
"conv_bias": true,
|
| 172 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
|
| 173 |
-
"norm_op_kwargs": {
|
| 174 |
-
"eps": 1e-05,
|
| 175 |
-
"affine": true
|
| 176 |
-
},
|
| 177 |
-
"dropout_op": null,
|
| 178 |
-
"dropout_op_kwargs": null,
|
| 179 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 180 |
-
"nonlin_kwargs": {
|
| 181 |
-
"inplace": true
|
| 182 |
-
}
|
| 183 |
-
},
|
| 184 |
-
"_kw_requires_import": [
|
| 185 |
-
"conv_op",
|
| 186 |
-
"norm_op",
|
| 187 |
-
"dropout_op",
|
| 188 |
-
"nonlin"
|
| 189 |
-
]
|
| 190 |
-
},
|
| 191 |
-
"batch_dice": true
|
| 192 |
-
},
|
| 193 |
-
"3d_lowres": {
|
| 194 |
-
"data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
|
| 195 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 196 |
-
"batch_size": 2,
|
| 197 |
-
"patch_size": [
|
| 198 |
-
224,
|
| 199 |
-
256,
|
| 200 |
-
224
|
| 201 |
-
],
|
| 202 |
-
"median_image_size_in_voxels": [
|
| 203 |
-
349,
|
| 204 |
-
417,
|
| 205 |
-
349
|
| 206 |
-
],
|
| 207 |
-
"spacing": [
|
| 208 |
-
1.044035686906972,
|
| 209 |
-
0.7342668567257824,
|
| 210 |
-
1.044035686906972
|
| 211 |
-
],
|
| 212 |
-
"normalization_schemes": [
|
| 213 |
-
"CTNormalization"
|
| 214 |
-
],
|
| 215 |
-
"use_mask_for_norm": [
|
| 216 |
-
false
|
| 217 |
-
],
|
| 218 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 219 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 220 |
-
"resampling_fn_data_kwargs": {
|
| 221 |
-
"is_seg": false,
|
| 222 |
-
"order": 3,
|
| 223 |
-
"order_z": 0,
|
| 224 |
-
"force_separate_z": null
|
| 225 |
-
},
|
| 226 |
-
"resampling_fn_seg_kwargs": {
|
| 227 |
-
"is_seg": true,
|
| 228 |
-
"order": 1,
|
| 229 |
-
"order_z": 0,
|
| 230 |
-
"force_separate_z": null
|
| 231 |
-
},
|
| 232 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 233 |
-
"resampling_fn_probabilities_kwargs": {
|
| 234 |
-
"is_seg": false,
|
| 235 |
-
"order": 1,
|
| 236 |
-
"order_z": 0,
|
| 237 |
-
"force_separate_z": null
|
| 238 |
-
},
|
| 239 |
-
"architecture": {
|
| 240 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 241 |
-
"arch_kwargs": {
|
| 242 |
-
"n_stages": 6,
|
| 243 |
-
"features_per_stage": [
|
| 244 |
-
32,
|
| 245 |
-
64,
|
| 246 |
-
128,
|
| 247 |
-
256,
|
| 248 |
-
320,
|
| 249 |
-
320
|
| 250 |
-
],
|
| 251 |
-
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 252 |
-
"kernel_sizes": [
|
| 253 |
-
[
|
| 254 |
-
3,
|
| 255 |
-
3,
|
| 256 |
-
3
|
| 257 |
-
],
|
| 258 |
-
[
|
| 259 |
-
3,
|
| 260 |
-
3,
|
| 261 |
-
3
|
| 262 |
-
],
|
| 263 |
-
[
|
| 264 |
-
3,
|
| 265 |
-
3,
|
| 266 |
-
3
|
| 267 |
-
],
|
| 268 |
-
[
|
| 269 |
-
3,
|
| 270 |
-
3,
|
| 271 |
-
3
|
| 272 |
-
],
|
| 273 |
-
[
|
| 274 |
-
3,
|
| 275 |
-
3,
|
| 276 |
-
3
|
| 277 |
-
],
|
| 278 |
-
[
|
| 279 |
-
3,
|
| 280 |
-
3,
|
| 281 |
-
3
|
| 282 |
-
]
|
| 283 |
-
],
|
| 284 |
-
"strides": [
|
| 285 |
-
[
|
| 286 |
-
1,
|
| 287 |
-
1,
|
| 288 |
-
1
|
| 289 |
-
],
|
| 290 |
-
[
|
| 291 |
-
2,
|
| 292 |
-
2,
|
| 293 |
-
2
|
| 294 |
-
],
|
| 295 |
-
[
|
| 296 |
-
2,
|
| 297 |
-
2,
|
| 298 |
-
2
|
| 299 |
-
],
|
| 300 |
-
[
|
| 301 |
-
2,
|
| 302 |
-
2,
|
| 303 |
-
2
|
| 304 |
-
],
|
| 305 |
-
[
|
| 306 |
-
2,
|
| 307 |
-
2,
|
| 308 |
-
2
|
| 309 |
-
],
|
| 310 |
-
[
|
| 311 |
-
2,
|
| 312 |
-
2,
|
| 313 |
-
2
|
| 314 |
-
]
|
| 315 |
-
],
|
| 316 |
-
"n_blocks_per_stage": [
|
| 317 |
-
1,
|
| 318 |
-
3,
|
| 319 |
-
4,
|
| 320 |
-
6,
|
| 321 |
-
6,
|
| 322 |
-
6
|
| 323 |
-
],
|
| 324 |
-
"n_conv_per_stage_decoder": [
|
| 325 |
-
1,
|
| 326 |
-
1,
|
| 327 |
-
1,
|
| 328 |
-
1,
|
| 329 |
-
1
|
| 330 |
-
],
|
| 331 |
-
"conv_bias": true,
|
| 332 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 333 |
-
"norm_op_kwargs": {
|
| 334 |
-
"eps": 1e-05,
|
| 335 |
-
"affine": true
|
| 336 |
-
},
|
| 337 |
-
"dropout_op": null,
|
| 338 |
-
"dropout_op_kwargs": null,
|
| 339 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 340 |
-
"nonlin_kwargs": {
|
| 341 |
-
"inplace": true
|
| 342 |
-
}
|
| 343 |
-
},
|
| 344 |
-
"_kw_requires_import": [
|
| 345 |
-
"conv_op",
|
| 346 |
-
"norm_op",
|
| 347 |
-
"dropout_op",
|
| 348 |
-
"nonlin"
|
| 349 |
-
]
|
| 350 |
-
},
|
| 351 |
-
"batch_dice": false,
|
| 352 |
-
"next_stage": "3d_cascade_fullres"
|
| 353 |
-
},
|
| 354 |
-
"3d_fullres": {
|
| 355 |
-
"data_identifier": "nnUNetPlans_3d_fullres",
|
| 356 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 357 |
-
"batch_size": 2,
|
| 358 |
-
"patch_size": [
|
| 359 |
-
224,
|
| 360 |
-
256,
|
| 361 |
-
224
|
| 362 |
-
],
|
| 363 |
-
"median_image_size_in_voxels": [
|
| 364 |
-
512.0,
|
| 365 |
-
613.0,
|
| 366 |
-
513.0
|
| 367 |
-
],
|
| 368 |
-
"spacing": [
|
| 369 |
-
0.7109375,
|
| 370 |
-
0.5,
|
| 371 |
-
0.7109375
|
| 372 |
-
],
|
| 373 |
-
"normalization_schemes": [
|
| 374 |
-
"CTNormalization"
|
| 375 |
-
],
|
| 376 |
-
"use_mask_for_norm": [
|
| 377 |
-
false
|
| 378 |
-
],
|
| 379 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 380 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 381 |
-
"resampling_fn_data_kwargs": {
|
| 382 |
-
"is_seg": false,
|
| 383 |
-
"order": 3,
|
| 384 |
-
"order_z": 0,
|
| 385 |
-
"force_separate_z": null
|
| 386 |
-
},
|
| 387 |
-
"resampling_fn_seg_kwargs": {
|
| 388 |
-
"is_seg": true,
|
| 389 |
-
"order": 1,
|
| 390 |
-
"order_z": 0,
|
| 391 |
-
"force_separate_z": null
|
| 392 |
-
},
|
| 393 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 394 |
-
"resampling_fn_probabilities_kwargs": {
|
| 395 |
-
"is_seg": false,
|
| 396 |
-
"order": 1,
|
| 397 |
-
"order_z": 0,
|
| 398 |
-
"force_separate_z": null
|
| 399 |
-
},
|
| 400 |
-
"architecture": {
|
| 401 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 402 |
-
"arch_kwargs": {
|
| 403 |
-
"n_stages": 6,
|
| 404 |
-
"features_per_stage": [
|
| 405 |
-
32,
|
| 406 |
-
64,
|
| 407 |
-
128,
|
| 408 |
-
256,
|
| 409 |
-
320,
|
| 410 |
-
320
|
| 411 |
-
],
|
| 412 |
-
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 413 |
-
"kernel_sizes": [
|
| 414 |
-
[
|
| 415 |
-
3,
|
| 416 |
-
3,
|
| 417 |
-
3
|
| 418 |
-
],
|
| 419 |
-
[
|
| 420 |
-
3,
|
| 421 |
-
3,
|
| 422 |
-
3
|
| 423 |
-
],
|
| 424 |
-
[
|
| 425 |
-
3,
|
| 426 |
-
3,
|
| 427 |
-
3
|
| 428 |
-
],
|
| 429 |
-
[
|
| 430 |
-
3,
|
| 431 |
-
3,
|
| 432 |
-
3
|
| 433 |
-
],
|
| 434 |
-
[
|
| 435 |
-
3,
|
| 436 |
-
3,
|
| 437 |
-
3
|
| 438 |
-
],
|
| 439 |
-
[
|
| 440 |
-
3,
|
| 441 |
-
3,
|
| 442 |
-
3
|
| 443 |
-
]
|
| 444 |
-
],
|
| 445 |
-
"strides": [
|
| 446 |
-
[
|
| 447 |
-
1,
|
| 448 |
-
1,
|
| 449 |
-
1
|
| 450 |
-
],
|
| 451 |
-
[
|
| 452 |
-
2,
|
| 453 |
-
2,
|
| 454 |
-
2
|
| 455 |
-
],
|
| 456 |
-
[
|
| 457 |
-
2,
|
| 458 |
-
2,
|
| 459 |
-
2
|
| 460 |
-
],
|
| 461 |
-
[
|
| 462 |
-
2,
|
| 463 |
-
2,
|
| 464 |
-
2
|
| 465 |
-
],
|
| 466 |
-
[
|
| 467 |
-
2,
|
| 468 |
-
2,
|
| 469 |
-
2
|
| 470 |
-
],
|
| 471 |
-
[
|
| 472 |
-
2,
|
| 473 |
-
2,
|
| 474 |
-
2
|
| 475 |
-
]
|
| 476 |
-
],
|
| 477 |
-
"n_blocks_per_stage": [
|
| 478 |
-
1,
|
| 479 |
-
3,
|
| 480 |
-
4,
|
| 481 |
-
6,
|
| 482 |
-
6,
|
| 483 |
-
6
|
| 484 |
-
],
|
| 485 |
-
"n_conv_per_stage_decoder": [
|
| 486 |
-
1,
|
| 487 |
-
1,
|
| 488 |
-
1,
|
| 489 |
-
1,
|
| 490 |
-
1
|
| 491 |
-
],
|
| 492 |
-
"conv_bias": true,
|
| 493 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 494 |
-
"norm_op_kwargs": {
|
| 495 |
-
"eps": 1e-05,
|
| 496 |
-
"affine": true
|
| 497 |
-
},
|
| 498 |
-
"dropout_op": null,
|
| 499 |
-
"dropout_op_kwargs": null,
|
| 500 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 501 |
-
"nonlin_kwargs": {
|
| 502 |
-
"inplace": true
|
| 503 |
-
}
|
| 504 |
-
},
|
| 505 |
-
"_kw_requires_import": [
|
| 506 |
-
"conv_op",
|
| 507 |
-
"norm_op",
|
| 508 |
-
"dropout_op",
|
| 509 |
-
"nonlin"
|
| 510 |
-
]
|
| 511 |
-
},
|
| 512 |
-
"batch_dice": true
|
| 513 |
-
},
|
| 514 |
-
"3d_cascade_fullres": {
|
| 515 |
-
"inherits_from": "3d_fullres",
|
| 516 |
-
"previous_stage": "3d_lowres"
|
| 517 |
-
}
|
| 518 |
-
},
|
| 519 |
-
"experiment_planner_used": "nnUNetPlannerResEncL",
|
| 520 |
-
"label_manager": "LabelManager",
|
| 521 |
-
"foreground_intensity_properties_per_channel": {
|
| 522 |
-
"0": {
|
| 523 |
-
"max": 1000.0,
|
| 524 |
-
"mean": 21.503620147705078,
|
| 525 |
-
"median": 63.0,
|
| 526 |
-
"min": -1000.0,
|
| 527 |
-
"percentile_00_5": -1000.0,
|
| 528 |
-
"percentile_99_5": 361.0,
|
| 529 |
-
"std": 215.7941131591797
|
| 530 |
-
}
|
| 531 |
-
}
|
| 532 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator3D/dataset.json
DELETED
|
@@ -1,39 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"channel_names": {
|
| 3 |
-
"0": "CT"
|
| 4 |
-
},
|
| 5 |
-
"labels": {
|
| 6 |
-
"background": 0,
|
| 7 |
-
"aorta": 1,
|
| 8 |
-
"adrenal_gland_left": 2,
|
| 9 |
-
"adrenal_gland_right": 3,
|
| 10 |
-
"common_bile_duct": 4,
|
| 11 |
-
"celiac_aa": 5,
|
| 12 |
-
"colon": 6,
|
| 13 |
-
"duodenum": 7,
|
| 14 |
-
"gall_bladder": 8,
|
| 15 |
-
"postcava": 9,
|
| 16 |
-
"kidney_left": 10,
|
| 17 |
-
"kidney_right": 11,
|
| 18 |
-
"liver": 12,
|
| 19 |
-
"pancreas": 13,
|
| 20 |
-
"pancreatic_duct": 14,
|
| 21 |
-
"superior_mesenteric_artery": 15,
|
| 22 |
-
"intestine": 16,
|
| 23 |
-
"spleen": 17,
|
| 24 |
-
"stomach": 18,
|
| 25 |
-
"veins": 19,
|
| 26 |
-
"renal_vein_left": 20,
|
| 27 |
-
"renal_vein_right": 21,
|
| 28 |
-
"cbd_stent": 22,
|
| 29 |
-
"pancreatic_pdac": 23,
|
| 30 |
-
"pancreatic_cyst": 24,
|
| 31 |
-
"pancreatic_pnet": 25
|
| 32 |
-
},
|
| 33 |
-
"numTraining": 3145,
|
| 34 |
-
"file_ending": ".nii.gz",
|
| 35 |
-
"licence": "Whoever converted this dataset was lazy and didn't look it up!",
|
| 36 |
-
"converted_by": "Please enter your name, especially when sharing datasets with others in a common infrastructure!",
|
| 37 |
-
"overwrite_image_reader_writer": "NibabelIOWithReorient",
|
| 38 |
-
"name": "Dataset1013_ePAI_3MM"
|
| 39 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator3D/dataset_fingerprint.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
segmentator/segmentator3D/fold_all/checkpoint_final.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:727a9b4b809c8748ab3311ec83db341021d6fd87a116018917f606d5b962975b
|
| 3 |
-
size 248017790
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator3D/fold_all/debug.json
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_best_ema": "None",
|
| 3 |
-
"batch_size": "2",
|
| 4 |
-
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
|
| 5 |
-
"configuration_name": "3d_fullres",
|
| 6 |
-
"cudnn_version": 90100,
|
| 7 |
-
"current_epoch": "0",
|
| 8 |
-
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x757bae1e30a0>",
|
| 9 |
-
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0x757bae1e2fe0>",
|
| 10 |
-
"dataloader_train.num_processes": "12",
|
| 11 |
-
"dataloader_train.transform": "None",
|
| 12 |
-
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x757bae1e3280>",
|
| 13 |
-
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0x757bae1e3040>",
|
| 14 |
-
"dataloader_val.num_processes": "6",
|
| 15 |
-
"dataloader_val.transform": "None",
|
| 16 |
-
"dataset_json": "{'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3145, 'file_ending': '.nii.gz', 'licence': \"Whoever converted this dataset was lazy and didn't look it up!\", 'converted_by': 'Please enter your name, especially when sharing datasets with others in a common infrastructure!', 'overwrite_image_reader_writer': 'NibabelIOWithReorient', 'name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm'}",
|
| 17 |
-
"device": "cuda:0",
|
| 18 |
-
"disable_checkpointing": "False",
|
| 19 |
-
"enable_deep_supervision": "True",
|
| 20 |
-
"fold": "all",
|
| 21 |
-
"folder_with_segs_from_previous_stage": "None",
|
| 22 |
-
"gpu_name": "Quadro RTX 8000",
|
| 23 |
-
"grad_scaler": "<torch.amp.grad_scaler.GradScaler object at 0x757bb972ad70>",
|
| 24 |
-
"hostname": "ccvl26",
|
| 25 |
-
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
| 26 |
-
"initial_lr": "0.01",
|
| 27 |
-
"is_cascaded": "False",
|
| 28 |
-
"is_ddp": "False",
|
| 29 |
-
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x757d3ddc0940>",
|
| 30 |
-
"local_rank": "0",
|
| 31 |
-
"log_file": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/training_log_2025_3_18_10_53_12.txt",
|
| 32 |
-
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x757bb972ac50>",
|
| 33 |
-
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
| 34 |
-
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x757bb9777af0>",
|
| 35 |
-
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.7109375, 0.7109375], 'original_median_shape_after_transp': [102, 512, 512], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 9, 'patch_size': [512, 640], 'median_image_size_in_voxels': [512.0, 513.0], 'spacing': [0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 160, 160], 'median_image_size_in_voxels': [102, 252, 252], 'spacing': [3.0, 1.4451895600616937, 1.4451895600616937], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 29.496681213378906, 'median': 66.66667175292969, 'min': -1024.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 356.86273193359375, 'std': 210.9158172607422}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'common_bile_duct': 4, 'celiac_aa': 5, 'colon': 6, 'duodenum': 7, 'gall_bladder': 8, 'postcava': 9, 'kidney_left': 10, 'kidney_right': 11, 'liver': 12, 'pancreas': 13, 'pancreatic_duct': 14, 'superior_mesenteric_artery': 15, 'intestine': 16, 'spleen': 17, 'stomach': 18, 'veins': 19, 'renal_vein_left': 20, 'renal_vein_right': 21, 'cbd_stent': 22, 'pancreatic_pdac': 23, 'pancreatic_cyst': 24, 'pancreatic_pnet': 25}, 'numTraining': 3145, 'file_ending': '.nii.gz', 'licence': \"Whoever converted this dataset was lazy and didn't look it up!\", 'converted_by': 'Please enter your name, especially when sharing datasets with others in a common infrastructure!', 'overwrite_image_reader_writer': 'NibabelIOWithReorient', 'name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm'}, 'device': device(type='cuda')}",
|
| 36 |
-
"network": "OptimizedModule",
|
| 37 |
-
"num_epochs": "1000",
|
| 38 |
-
"num_input_channels": "1",
|
| 39 |
-
"num_iterations_per_epoch": "250",
|
| 40 |
-
"num_val_iterations_per_epoch": "50",
|
| 41 |
-
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
| 42 |
-
"output_folder": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all",
|
| 43 |
-
"output_folder_base": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_results/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
| 44 |
-
"oversample_foreground_percent": "0.33",
|
| 45 |
-
"plans_manager": "{'dataset_name': 'Dataset1013-WX_FELIX_TumorOrgan_3mm', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.7109375, 0.7109375], 'original_median_shape_after_transp': [102, 512, 512], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 9, 'patch_size': [512, 640], 'median_image_size_in_voxels': [512.0, 513.0], 'spacing': [0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 160, 160], 'median_image_size_in_voxels': [102, 252, 252], 'spacing': [3.0, 1.4451895600616937, 1.4451895600616937], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [40, 192, 224], 'median_image_size_in_voxels': [102.0, 512.0, 513.0], 'spacing': [3.0, 0.7109375, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 29.496681213378906, 'median': 66.66667175292969, 'min': -1024.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 356.86273193359375, 'std': 210.9158172607422}}}",
|
| 46 |
-
"preprocessed_dataset_folder": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_preprocessed/Dataset1013-WX_FELIX_TumorOrgan_3mm/nnUNetPlans_3d_fullres",
|
| 47 |
-
"preprocessed_dataset_folder_base": "/data/wenxuan/qchen76/data/bigpaper/nnUNet_preprocessed/Dataset1013-WX_FELIX_TumorOrgan_3mm",
|
| 48 |
-
"probabilistic_oversampling": "False",
|
| 49 |
-
"save_every": "50",
|
| 50 |
-
"torch_version": "2.5.1",
|
| 51 |
-
"was_initialized": "True",
|
| 52 |
-
"weight_decay": "3e-05"
|
| 53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentator/segmentator3D/plans.json
DELETED
|
@@ -1,532 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"dataset_name": "Dataset1013_ePAI_3MM",
|
| 3 |
-
"plans_name": "nnUNetPlans",
|
| 4 |
-
"original_median_spacing_after_transp": [
|
| 5 |
-
3.0,
|
| 6 |
-
0.7109375,
|
| 7 |
-
0.7109375
|
| 8 |
-
],
|
| 9 |
-
"original_median_shape_after_transp": [
|
| 10 |
-
102,
|
| 11 |
-
512,
|
| 12 |
-
512
|
| 13 |
-
],
|
| 14 |
-
"image_reader_writer": "NibabelIOWithReorient",
|
| 15 |
-
"transpose_forward": [
|
| 16 |
-
0,
|
| 17 |
-
1,
|
| 18 |
-
2
|
| 19 |
-
],
|
| 20 |
-
"transpose_backward": [
|
| 21 |
-
0,
|
| 22 |
-
1,
|
| 23 |
-
2
|
| 24 |
-
],
|
| 25 |
-
"configurations": {
|
| 26 |
-
"2d": {
|
| 27 |
-
"data_identifier": "nnUNetPlans_2d",
|
| 28 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 29 |
-
"batch_size": 9,
|
| 30 |
-
"patch_size": [
|
| 31 |
-
512,
|
| 32 |
-
640
|
| 33 |
-
],
|
| 34 |
-
"median_image_size_in_voxels": [
|
| 35 |
-
512.0,
|
| 36 |
-
513.0
|
| 37 |
-
],
|
| 38 |
-
"spacing": [
|
| 39 |
-
0.7109375,
|
| 40 |
-
0.7109375
|
| 41 |
-
],
|
| 42 |
-
"normalization_schemes": [
|
| 43 |
-
"CTNormalization"
|
| 44 |
-
],
|
| 45 |
-
"use_mask_for_norm": [
|
| 46 |
-
false
|
| 47 |
-
],
|
| 48 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 49 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 50 |
-
"resampling_fn_data_kwargs": {
|
| 51 |
-
"is_seg": false,
|
| 52 |
-
"order": 3,
|
| 53 |
-
"order_z": 0,
|
| 54 |
-
"force_separate_z": null
|
| 55 |
-
},
|
| 56 |
-
"resampling_fn_seg_kwargs": {
|
| 57 |
-
"is_seg": true,
|
| 58 |
-
"order": 1,
|
| 59 |
-
"order_z": 0,
|
| 60 |
-
"force_separate_z": null
|
| 61 |
-
},
|
| 62 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 63 |
-
"resampling_fn_probabilities_kwargs": {
|
| 64 |
-
"is_seg": false,
|
| 65 |
-
"order": 1,
|
| 66 |
-
"order_z": 0,
|
| 67 |
-
"force_separate_z": null
|
| 68 |
-
},
|
| 69 |
-
"architecture": {
|
| 70 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
| 71 |
-
"arch_kwargs": {
|
| 72 |
-
"n_stages": 8,
|
| 73 |
-
"features_per_stage": [
|
| 74 |
-
32,
|
| 75 |
-
64,
|
| 76 |
-
128,
|
| 77 |
-
256,
|
| 78 |
-
512,
|
| 79 |
-
512,
|
| 80 |
-
512,
|
| 81 |
-
512
|
| 82 |
-
],
|
| 83 |
-
"conv_op": "torch.nn.modules.conv.Conv2d",
|
| 84 |
-
"kernel_sizes": [
|
| 85 |
-
[
|
| 86 |
-
3,
|
| 87 |
-
3
|
| 88 |
-
],
|
| 89 |
-
[
|
| 90 |
-
3,
|
| 91 |
-
3
|
| 92 |
-
],
|
| 93 |
-
[
|
| 94 |
-
3,
|
| 95 |
-
3
|
| 96 |
-
],
|
| 97 |
-
[
|
| 98 |
-
3,
|
| 99 |
-
3
|
| 100 |
-
],
|
| 101 |
-
[
|
| 102 |
-
3,
|
| 103 |
-
3
|
| 104 |
-
],
|
| 105 |
-
[
|
| 106 |
-
3,
|
| 107 |
-
3
|
| 108 |
-
],
|
| 109 |
-
[
|
| 110 |
-
3,
|
| 111 |
-
3
|
| 112 |
-
],
|
| 113 |
-
[
|
| 114 |
-
3,
|
| 115 |
-
3
|
| 116 |
-
]
|
| 117 |
-
],
|
| 118 |
-
"strides": [
|
| 119 |
-
[
|
| 120 |
-
1,
|
| 121 |
-
1
|
| 122 |
-
],
|
| 123 |
-
[
|
| 124 |
-
2,
|
| 125 |
-
2
|
| 126 |
-
],
|
| 127 |
-
[
|
| 128 |
-
2,
|
| 129 |
-
2
|
| 130 |
-
],
|
| 131 |
-
[
|
| 132 |
-
2,
|
| 133 |
-
2
|
| 134 |
-
],
|
| 135 |
-
[
|
| 136 |
-
2,
|
| 137 |
-
2
|
| 138 |
-
],
|
| 139 |
-
[
|
| 140 |
-
2,
|
| 141 |
-
2
|
| 142 |
-
],
|
| 143 |
-
[
|
| 144 |
-
2,
|
| 145 |
-
2
|
| 146 |
-
],
|
| 147 |
-
[
|
| 148 |
-
2,
|
| 149 |
-
2
|
| 150 |
-
]
|
| 151 |
-
],
|
| 152 |
-
"n_conv_per_stage": [
|
| 153 |
-
2,
|
| 154 |
-
2,
|
| 155 |
-
2,
|
| 156 |
-
2,
|
| 157 |
-
2,
|
| 158 |
-
2,
|
| 159 |
-
2,
|
| 160 |
-
2
|
| 161 |
-
],
|
| 162 |
-
"n_conv_per_stage_decoder": [
|
| 163 |
-
2,
|
| 164 |
-
2,
|
| 165 |
-
2,
|
| 166 |
-
2,
|
| 167 |
-
2,
|
| 168 |
-
2,
|
| 169 |
-
2
|
| 170 |
-
],
|
| 171 |
-
"conv_bias": true,
|
| 172 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
|
| 173 |
-
"norm_op_kwargs": {
|
| 174 |
-
"eps": 1e-05,
|
| 175 |
-
"affine": true
|
| 176 |
-
},
|
| 177 |
-
"dropout_op": null,
|
| 178 |
-
"dropout_op_kwargs": null,
|
| 179 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 180 |
-
"nonlin_kwargs": {
|
| 181 |
-
"inplace": true
|
| 182 |
-
}
|
| 183 |
-
},
|
| 184 |
-
"_kw_requires_import": [
|
| 185 |
-
"conv_op",
|
| 186 |
-
"norm_op",
|
| 187 |
-
"dropout_op",
|
| 188 |
-
"nonlin"
|
| 189 |
-
]
|
| 190 |
-
},
|
| 191 |
-
"batch_dice": true
|
| 192 |
-
},
|
| 193 |
-
"3d_lowres": {
|
| 194 |
-
"data_identifier": "nnUNetPlans_3d_lowres",
|
| 195 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 196 |
-
"batch_size": 2,
|
| 197 |
-
"patch_size": [
|
| 198 |
-
64,
|
| 199 |
-
160,
|
| 200 |
-
160
|
| 201 |
-
],
|
| 202 |
-
"median_image_size_in_voxels": [
|
| 203 |
-
102,
|
| 204 |
-
252,
|
| 205 |
-
252
|
| 206 |
-
],
|
| 207 |
-
"spacing": [
|
| 208 |
-
3.0,
|
| 209 |
-
1.4451895600616937,
|
| 210 |
-
1.4451895600616937
|
| 211 |
-
],
|
| 212 |
-
"normalization_schemes": [
|
| 213 |
-
"CTNormalization"
|
| 214 |
-
],
|
| 215 |
-
"use_mask_for_norm": [
|
| 216 |
-
false
|
| 217 |
-
],
|
| 218 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 219 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 220 |
-
"resampling_fn_data_kwargs": {
|
| 221 |
-
"is_seg": false,
|
| 222 |
-
"order": 3,
|
| 223 |
-
"order_z": 0,
|
| 224 |
-
"force_separate_z": null
|
| 225 |
-
},
|
| 226 |
-
"resampling_fn_seg_kwargs": {
|
| 227 |
-
"is_seg": true,
|
| 228 |
-
"order": 1,
|
| 229 |
-
"order_z": 0,
|
| 230 |
-
"force_separate_z": null
|
| 231 |
-
},
|
| 232 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 233 |
-
"resampling_fn_probabilities_kwargs": {
|
| 234 |
-
"is_seg": false,
|
| 235 |
-
"order": 1,
|
| 236 |
-
"order_z": 0,
|
| 237 |
-
"force_separate_z": null
|
| 238 |
-
},
|
| 239 |
-
"architecture": {
|
| 240 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
| 241 |
-
"arch_kwargs": {
|
| 242 |
-
"n_stages": 6,
|
| 243 |
-
"features_per_stage": [
|
| 244 |
-
32,
|
| 245 |
-
64,
|
| 246 |
-
128,
|
| 247 |
-
256,
|
| 248 |
-
320,
|
| 249 |
-
320
|
| 250 |
-
],
|
| 251 |
-
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 252 |
-
"kernel_sizes": [
|
| 253 |
-
[
|
| 254 |
-
1,
|
| 255 |
-
3,
|
| 256 |
-
3
|
| 257 |
-
],
|
| 258 |
-
[
|
| 259 |
-
3,
|
| 260 |
-
3,
|
| 261 |
-
3
|
| 262 |
-
],
|
| 263 |
-
[
|
| 264 |
-
3,
|
| 265 |
-
3,
|
| 266 |
-
3
|
| 267 |
-
],
|
| 268 |
-
[
|
| 269 |
-
3,
|
| 270 |
-
3,
|
| 271 |
-
3
|
| 272 |
-
],
|
| 273 |
-
[
|
| 274 |
-
3,
|
| 275 |
-
3,
|
| 276 |
-
3
|
| 277 |
-
],
|
| 278 |
-
[
|
| 279 |
-
3,
|
| 280 |
-
3,
|
| 281 |
-
3
|
| 282 |
-
]
|
| 283 |
-
],
|
| 284 |
-
"strides": [
|
| 285 |
-
[
|
| 286 |
-
1,
|
| 287 |
-
1,
|
| 288 |
-
1
|
| 289 |
-
],
|
| 290 |
-
[
|
| 291 |
-
1,
|
| 292 |
-
2,
|
| 293 |
-
2
|
| 294 |
-
],
|
| 295 |
-
[
|
| 296 |
-
2,
|
| 297 |
-
2,
|
| 298 |
-
2
|
| 299 |
-
],
|
| 300 |
-
[
|
| 301 |
-
2,
|
| 302 |
-
2,
|
| 303 |
-
2
|
| 304 |
-
],
|
| 305 |
-
[
|
| 306 |
-
2,
|
| 307 |
-
2,
|
| 308 |
-
2
|
| 309 |
-
],
|
| 310 |
-
[
|
| 311 |
-
2,
|
| 312 |
-
2,
|
| 313 |
-
2
|
| 314 |
-
]
|
| 315 |
-
],
|
| 316 |
-
"n_conv_per_stage": [
|
| 317 |
-
2,
|
| 318 |
-
2,
|
| 319 |
-
2,
|
| 320 |
-
2,
|
| 321 |
-
2,
|
| 322 |
-
2
|
| 323 |
-
],
|
| 324 |
-
"n_conv_per_stage_decoder": [
|
| 325 |
-
2,
|
| 326 |
-
2,
|
| 327 |
-
2,
|
| 328 |
-
2,
|
| 329 |
-
2
|
| 330 |
-
],
|
| 331 |
-
"conv_bias": true,
|
| 332 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 333 |
-
"norm_op_kwargs": {
|
| 334 |
-
"eps": 1e-05,
|
| 335 |
-
"affine": true
|
| 336 |
-
},
|
| 337 |
-
"dropout_op": null,
|
| 338 |
-
"dropout_op_kwargs": null,
|
| 339 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 340 |
-
"nonlin_kwargs": {
|
| 341 |
-
"inplace": true
|
| 342 |
-
}
|
| 343 |
-
},
|
| 344 |
-
"_kw_requires_import": [
|
| 345 |
-
"conv_op",
|
| 346 |
-
"norm_op",
|
| 347 |
-
"dropout_op",
|
| 348 |
-
"nonlin"
|
| 349 |
-
]
|
| 350 |
-
},
|
| 351 |
-
"batch_dice": false,
|
| 352 |
-
"next_stage": "3d_cascade_fullres"
|
| 353 |
-
},
|
| 354 |
-
"3d_fullres": {
|
| 355 |
-
"data_identifier": "nnUNetPlans_3d_fullres",
|
| 356 |
-
"preprocessor_name": "DefaultPreprocessor",
|
| 357 |
-
"batch_size": 2,
|
| 358 |
-
"patch_size": [
|
| 359 |
-
40,
|
| 360 |
-
192,
|
| 361 |
-
224
|
| 362 |
-
],
|
| 363 |
-
"median_image_size_in_voxels": [
|
| 364 |
-
102.0,
|
| 365 |
-
512.0,
|
| 366 |
-
513.0
|
| 367 |
-
],
|
| 368 |
-
"spacing": [
|
| 369 |
-
3.0,
|
| 370 |
-
0.7109375,
|
| 371 |
-
0.7109375
|
| 372 |
-
],
|
| 373 |
-
"normalization_schemes": [
|
| 374 |
-
"CTNormalization"
|
| 375 |
-
],
|
| 376 |
-
"use_mask_for_norm": [
|
| 377 |
-
false
|
| 378 |
-
],
|
| 379 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 380 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 381 |
-
"resampling_fn_data_kwargs": {
|
| 382 |
-
"is_seg": false,
|
| 383 |
-
"order": 3,
|
| 384 |
-
"order_z": 0,
|
| 385 |
-
"force_separate_z": null
|
| 386 |
-
},
|
| 387 |
-
"resampling_fn_seg_kwargs": {
|
| 388 |
-
"is_seg": true,
|
| 389 |
-
"order": 1,
|
| 390 |
-
"order_z": 0,
|
| 391 |
-
"force_separate_z": null
|
| 392 |
-
},
|
| 393 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 394 |
-
"resampling_fn_probabilities_kwargs": {
|
| 395 |
-
"is_seg": false,
|
| 396 |
-
"order": 1,
|
| 397 |
-
"order_z": 0,
|
| 398 |
-
"force_separate_z": null
|
| 399 |
-
},
|
| 400 |
-
"architecture": {
|
| 401 |
-
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
| 402 |
-
"arch_kwargs": {
|
| 403 |
-
"n_stages": 6,
|
| 404 |
-
"features_per_stage": [
|
| 405 |
-
32,
|
| 406 |
-
64,
|
| 407 |
-
128,
|
| 408 |
-
256,
|
| 409 |
-
320,
|
| 410 |
-
320
|
| 411 |
-
],
|
| 412 |
-
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 413 |
-
"kernel_sizes": [
|
| 414 |
-
[
|
| 415 |
-
1,
|
| 416 |
-
3,
|
| 417 |
-
3
|
| 418 |
-
],
|
| 419 |
-
[
|
| 420 |
-
1,
|
| 421 |
-
3,
|
| 422 |
-
3
|
| 423 |
-
],
|
| 424 |
-
[
|
| 425 |
-
3,
|
| 426 |
-
3,
|
| 427 |
-
3
|
| 428 |
-
],
|
| 429 |
-
[
|
| 430 |
-
3,
|
| 431 |
-
3,
|
| 432 |
-
3
|
| 433 |
-
],
|
| 434 |
-
[
|
| 435 |
-
3,
|
| 436 |
-
3,
|
| 437 |
-
3
|
| 438 |
-
],
|
| 439 |
-
[
|
| 440 |
-
3,
|
| 441 |
-
3,
|
| 442 |
-
3
|
| 443 |
-
]
|
| 444 |
-
],
|
| 445 |
-
"strides": [
|
| 446 |
-
[
|
| 447 |
-
1,
|
| 448 |
-
1,
|
| 449 |
-
1
|
| 450 |
-
],
|
| 451 |
-
[
|
| 452 |
-
1,
|
| 453 |
-
2,
|
| 454 |
-
2
|
| 455 |
-
],
|
| 456 |
-
[
|
| 457 |
-
1,
|
| 458 |
-
2,
|
| 459 |
-
2
|
| 460 |
-
],
|
| 461 |
-
[
|
| 462 |
-
2,
|
| 463 |
-
2,
|
| 464 |
-
2
|
| 465 |
-
],
|
| 466 |
-
[
|
| 467 |
-
2,
|
| 468 |
-
2,
|
| 469 |
-
2
|
| 470 |
-
],
|
| 471 |
-
[
|
| 472 |
-
2,
|
| 473 |
-
2,
|
| 474 |
-
2
|
| 475 |
-
]
|
| 476 |
-
],
|
| 477 |
-
"n_conv_per_stage": [
|
| 478 |
-
2,
|
| 479 |
-
2,
|
| 480 |
-
2,
|
| 481 |
-
2,
|
| 482 |
-
2,
|
| 483 |
-
2
|
| 484 |
-
],
|
| 485 |
-
"n_conv_per_stage_decoder": [
|
| 486 |
-
2,
|
| 487 |
-
2,
|
| 488 |
-
2,
|
| 489 |
-
2,
|
| 490 |
-
2
|
| 491 |
-
],
|
| 492 |
-
"conv_bias": true,
|
| 493 |
-
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 494 |
-
"norm_op_kwargs": {
|
| 495 |
-
"eps": 1e-05,
|
| 496 |
-
"affine": true
|
| 497 |
-
},
|
| 498 |
-
"dropout_op": null,
|
| 499 |
-
"dropout_op_kwargs": null,
|
| 500 |
-
"nonlin": "torch.nn.LeakyReLU",
|
| 501 |
-
"nonlin_kwargs": {
|
| 502 |
-
"inplace": true
|
| 503 |
-
}
|
| 504 |
-
},
|
| 505 |
-
"_kw_requires_import": [
|
| 506 |
-
"conv_op",
|
| 507 |
-
"norm_op",
|
| 508 |
-
"dropout_op",
|
| 509 |
-
"nonlin"
|
| 510 |
-
]
|
| 511 |
-
},
|
| 512 |
-
"batch_dice": true
|
| 513 |
-
},
|
| 514 |
-
"3d_cascade_fullres": {
|
| 515 |
-
"inherits_from": "3d_fullres",
|
| 516 |
-
"previous_stage": "3d_lowres"
|
| 517 |
-
}
|
| 518 |
-
},
|
| 519 |
-
"experiment_planner_used": "ExperimentPlanner",
|
| 520 |
-
"label_manager": "LabelManager",
|
| 521 |
-
"foreground_intensity_properties_per_channel": {
|
| 522 |
-
"0": {
|
| 523 |
-
"max": 1000.0,
|
| 524 |
-
"mean": 29.496681213378906,
|
| 525 |
-
"median": 66.66667175292969,
|
| 526 |
-
"min": -1024.0,
|
| 527 |
-
"percentile_00_5": -1000.0,
|
| 528 |
-
"percentile_99_5": 356.86273193359375,
|
| 529 |
-
"std": 210.9158172607422
|
| 530 |
-
}
|
| 531 |
-
}
|
| 532 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|