Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +0 -0
- chat_template.jinja +74 -0
- config.json +348 -0
- configuration_step_audio_2.py +128 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_step_audio_2.py +426 -0
- recipe.yaml +6 -0
- special_tokens_map.json +49 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|BOT|>system
|
| 3 |
+
' }}
|
| 4 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 5 |
+
{{- messages[0]['content'] + '<|EOT|>' }}
|
| 6 |
+
{%- else %}
|
| 7 |
+
{{- 'You are a helpful assistant. Please think step by step and provide your reasoning process within <think> </think> tags, followed by your final answer. Format: <think>your reasoning here</think>your final answer<|EOT|>' }}
|
| 8 |
+
{%- endif %}
|
| 9 |
+
{{- '<|BOT|>' }}
|
| 10 |
+
{{- "tool_json_schemas
|
| 11 |
+
" }}
|
| 12 |
+
{{- tools | tojson }}
|
| 13 |
+
{{- '<|EOT|>' }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|BOT|>system
|
| 17 |
+
' + messages[0]['content'] + '<|EOT|>' }}
|
| 18 |
+
{%- else %}
|
| 19 |
+
{{- '<|BOT|>system
|
| 20 |
+
You are a helpful assistant. Please think step by step and provide your reasoning process within <think> </think> tags, followed by your final answer. Format: <think>your reasoning here</think>your final answer<|EOT|>' }}
|
| 21 |
+
{%- endif %}
|
| 22 |
+
{%- endif %}
|
| 23 |
+
{%- for message in messages %}
|
| 24 |
+
{%- if message["role"] == "user" %}
|
| 25 |
+
{{- '<|BOT|>human
|
| 26 |
+
' + message["content"] + '<|EOT|>' }}
|
| 27 |
+
{%- elif (message["role"] == "system" and not loop.first) or (message["role"] == "assistant" and not message["tool_calls"]) %}
|
| 28 |
+
{{- '<|BOT|>' + message["role"] + '
|
| 29 |
+
' + message["content"] + '<|EOT|>' }}
|
| 30 |
+
{%- elif message["role"] == "assistant" %}
|
| 31 |
+
{{- '<|BOT|>' + message["role"] + '
|
| 32 |
+
' }}
|
| 33 |
+
{%- if message["content"] %}
|
| 34 |
+
{{- message["content"] }}
|
| 35 |
+
{%- endif %}
|
| 36 |
+
{%- for tool_call in message.tool_calls %}
|
| 37 |
+
{%- if tool_call["function"] is defined %}
|
| 38 |
+
{%- set tool_call = tool_call["function"] %}
|
| 39 |
+
{%- endif %}
|
| 40 |
+
{{- '<|CALL_START|>' + 'function
|
| 41 |
+
' + tool_call["name"] + '
|
| 42 |
+
' }}
|
| 43 |
+
{{- tool_call["arguments"] | tojson }}
|
| 44 |
+
{{- '<|CALL_END|>' }}
|
| 45 |
+
{%- endfor %}
|
| 46 |
+
{{- '<|EOT|>' }}
|
| 47 |
+
{%- elif message["role"] == "tool" %}
|
| 48 |
+
{{- '<|BOT|>' }}
|
| 49 |
+
{%- set ns = namespace(function_name="tool") %}
|
| 50 |
+
{%- if message["tool_call_id"] %}
|
| 51 |
+
{%- for prev_msg in messages %}
|
| 52 |
+
{%- if prev_msg["role"] == "assistant" and prev_msg["tool_calls"] %}
|
| 53 |
+
{%- for tool_call in prev_msg["tool_calls"] %}
|
| 54 |
+
{%- if tool_call["id"] == message["tool_call_id"] %}
|
| 55 |
+
{%- if tool_call["function"] is defined %}
|
| 56 |
+
{%- set ns.function_name = tool_call["function"]["name"] %}
|
| 57 |
+
{%- endif %}
|
| 58 |
+
{%- endif %}
|
| 59 |
+
{%- endfor %}
|
| 60 |
+
{%- endif %}
|
| 61 |
+
{%- endfor %}
|
| 62 |
+
{%- endif %}
|
| 63 |
+
{{- 'function_output
|
| 64 |
+
' + ns.function_name + '
|
| 65 |
+
' }}
|
| 66 |
+
{{- message["content"] }}
|
| 67 |
+
{{- '<|EOT|>' }}
|
| 68 |
+
{%- endif %}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- if add_generation_prompt %}
|
| 71 |
+
{{- '<|BOT|>assistant
|
| 72 |
+
<think>
|
| 73 |
+
' }}
|
| 74 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"StepAudio2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"audio_encoder_config": {
|
| 6 |
+
"adapter_stride": 2,
|
| 7 |
+
"kernel_size": 3,
|
| 8 |
+
"llm_dim": 5120,
|
| 9 |
+
"model_type": "step_audio_2_encoder",
|
| 10 |
+
"n_audio_ctx": 1500,
|
| 11 |
+
"n_audio_head": 20,
|
| 12 |
+
"n_audio_layer": 32,
|
| 13 |
+
"n_audio_state": 1280,
|
| 14 |
+
"n_codebook_size": 4096,
|
| 15 |
+
"n_mels": 128
|
| 16 |
+
},
|
| 17 |
+
"auto_map": {
|
| 18 |
+
"AutoConfig": "configuration_step_audio_2.StepAudio2Config",
|
| 19 |
+
"AutoModelForCausalLM": "modeling_step_audio_2.StepAudio2ForCausalLM"
|
| 20 |
+
},
|
| 21 |
+
"dtype": "bfloat16",
|
| 22 |
+
"max_window_layers": null,
|
| 23 |
+
"model_type": "step_audio_2",
|
| 24 |
+
"quantization_config": {
|
| 25 |
+
"config_groups": {
|
| 26 |
+
"group_0": {
|
| 27 |
+
"format": "nvfp4-pack-quantized",
|
| 28 |
+
"input_activations": null,
|
| 29 |
+
"output_activations": null,
|
| 30 |
+
"targets": [
|
| 31 |
+
"Linear"
|
| 32 |
+
],
|
| 33 |
+
"weights": {
|
| 34 |
+
"actorder": null,
|
| 35 |
+
"block_structure": null,
|
| 36 |
+
"dynamic": false,
|
| 37 |
+
"group_size": 16,
|
| 38 |
+
"num_bits": 4,
|
| 39 |
+
"observer": "minmax",
|
| 40 |
+
"observer_kwargs": {},
|
| 41 |
+
"strategy": "tensor_group",
|
| 42 |
+
"symmetric": true,
|
| 43 |
+
"type": "float"
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
},
|
| 47 |
+
"format": "nvfp4-pack-quantized",
|
| 48 |
+
"global_compression_ratio": null,
|
| 49 |
+
"ignore": [
|
| 50 |
+
"encoder.blocks.0.attn.query",
|
| 51 |
+
"encoder.blocks.0.attn.key",
|
| 52 |
+
"encoder.blocks.0.attn.value",
|
| 53 |
+
"encoder.blocks.0.attn.out",
|
| 54 |
+
"encoder.blocks.0.mlp.0",
|
| 55 |
+
"encoder.blocks.0.mlp.2",
|
| 56 |
+
"encoder.blocks.1.attn.query",
|
| 57 |
+
"encoder.blocks.1.attn.key",
|
| 58 |
+
"encoder.blocks.1.attn.value",
|
| 59 |
+
"encoder.blocks.1.attn.out",
|
| 60 |
+
"encoder.blocks.1.mlp.0",
|
| 61 |
+
"encoder.blocks.1.mlp.2",
|
| 62 |
+
"encoder.blocks.2.attn.query",
|
| 63 |
+
"encoder.blocks.2.attn.key",
|
| 64 |
+
"encoder.blocks.2.attn.value",
|
| 65 |
+
"encoder.blocks.2.attn.out",
|
| 66 |
+
"encoder.blocks.2.mlp.0",
|
| 67 |
+
"encoder.blocks.2.mlp.2",
|
| 68 |
+
"encoder.blocks.3.attn.query",
|
| 69 |
+
"encoder.blocks.3.attn.key",
|
| 70 |
+
"encoder.blocks.3.attn.value",
|
| 71 |
+
"encoder.blocks.3.attn.out",
|
| 72 |
+
"encoder.blocks.3.mlp.0",
|
| 73 |
+
"encoder.blocks.3.mlp.2",
|
| 74 |
+
"encoder.blocks.4.attn.query",
|
| 75 |
+
"encoder.blocks.4.attn.key",
|
| 76 |
+
"encoder.blocks.4.attn.value",
|
| 77 |
+
"encoder.blocks.4.attn.out",
|
| 78 |
+
"encoder.blocks.4.mlp.0",
|
| 79 |
+
"encoder.blocks.4.mlp.2",
|
| 80 |
+
"encoder.blocks.5.attn.query",
|
| 81 |
+
"encoder.blocks.5.attn.key",
|
| 82 |
+
"encoder.blocks.5.attn.value",
|
| 83 |
+
"encoder.blocks.5.attn.out",
|
| 84 |
+
"encoder.blocks.5.mlp.0",
|
| 85 |
+
"encoder.blocks.5.mlp.2",
|
| 86 |
+
"encoder.blocks.6.attn.query",
|
| 87 |
+
"encoder.blocks.6.attn.key",
|
| 88 |
+
"encoder.blocks.6.attn.value",
|
| 89 |
+
"encoder.blocks.6.attn.out",
|
| 90 |
+
"encoder.blocks.6.mlp.0",
|
| 91 |
+
"encoder.blocks.6.mlp.2",
|
| 92 |
+
"encoder.blocks.7.attn.query",
|
| 93 |
+
"encoder.blocks.7.attn.key",
|
| 94 |
+
"encoder.blocks.7.attn.value",
|
| 95 |
+
"encoder.blocks.7.attn.out",
|
| 96 |
+
"encoder.blocks.7.mlp.0",
|
| 97 |
+
"encoder.blocks.7.mlp.2",
|
| 98 |
+
"encoder.blocks.8.attn.query",
|
| 99 |
+
"encoder.blocks.8.attn.key",
|
| 100 |
+
"encoder.blocks.8.attn.value",
|
| 101 |
+
"encoder.blocks.8.attn.out",
|
| 102 |
+
"encoder.blocks.8.mlp.0",
|
| 103 |
+
"encoder.blocks.8.mlp.2",
|
| 104 |
+
"encoder.blocks.9.attn.query",
|
| 105 |
+
"encoder.blocks.9.attn.key",
|
| 106 |
+
"encoder.blocks.9.attn.value",
|
| 107 |
+
"encoder.blocks.9.attn.out",
|
| 108 |
+
"encoder.blocks.9.mlp.0",
|
| 109 |
+
"encoder.blocks.9.mlp.2",
|
| 110 |
+
"encoder.blocks.10.attn.query",
|
| 111 |
+
"encoder.blocks.10.attn.key",
|
| 112 |
+
"encoder.blocks.10.attn.value",
|
| 113 |
+
"encoder.blocks.10.attn.out",
|
| 114 |
+
"encoder.blocks.10.mlp.0",
|
| 115 |
+
"encoder.blocks.10.mlp.2",
|
| 116 |
+
"encoder.blocks.11.attn.query",
|
| 117 |
+
"encoder.blocks.11.attn.key",
|
| 118 |
+
"encoder.blocks.11.attn.value",
|
| 119 |
+
"encoder.blocks.11.attn.out",
|
| 120 |
+
"encoder.blocks.11.mlp.0",
|
| 121 |
+
"encoder.blocks.11.mlp.2",
|
| 122 |
+
"encoder.blocks.12.attn.query",
|
| 123 |
+
"encoder.blocks.12.attn.key",
|
| 124 |
+
"encoder.blocks.12.attn.value",
|
| 125 |
+
"encoder.blocks.12.attn.out",
|
| 126 |
+
"encoder.blocks.12.mlp.0",
|
| 127 |
+
"encoder.blocks.12.mlp.2",
|
| 128 |
+
"encoder.blocks.13.attn.query",
|
| 129 |
+
"encoder.blocks.13.attn.key",
|
| 130 |
+
"encoder.blocks.13.attn.value",
|
| 131 |
+
"encoder.blocks.13.attn.out",
|
| 132 |
+
"encoder.blocks.13.mlp.0",
|
| 133 |
+
"encoder.blocks.13.mlp.2",
|
| 134 |
+
"encoder.blocks.14.attn.query",
|
| 135 |
+
"encoder.blocks.14.attn.key",
|
| 136 |
+
"encoder.blocks.14.attn.value",
|
| 137 |
+
"encoder.blocks.14.attn.out",
|
| 138 |
+
"encoder.blocks.14.mlp.0",
|
| 139 |
+
"encoder.blocks.14.mlp.2",
|
| 140 |
+
"encoder.blocks.15.attn.query",
|
| 141 |
+
"encoder.blocks.15.attn.key",
|
| 142 |
+
"encoder.blocks.15.attn.value",
|
| 143 |
+
"encoder.blocks.15.attn.out",
|
| 144 |
+
"encoder.blocks.15.mlp.0",
|
| 145 |
+
"encoder.blocks.15.mlp.2",
|
| 146 |
+
"encoder.blocks.16.attn.query",
|
| 147 |
+
"encoder.blocks.16.attn.key",
|
| 148 |
+
"encoder.blocks.16.attn.value",
|
| 149 |
+
"encoder.blocks.16.attn.out",
|
| 150 |
+
"encoder.blocks.16.mlp.0",
|
| 151 |
+
"encoder.blocks.16.mlp.2",
|
| 152 |
+
"encoder.blocks.17.attn.query",
|
| 153 |
+
"encoder.blocks.17.attn.key",
|
| 154 |
+
"encoder.blocks.17.attn.value",
|
| 155 |
+
"encoder.blocks.17.attn.out",
|
| 156 |
+
"encoder.blocks.17.mlp.0",
|
| 157 |
+
"encoder.blocks.17.mlp.2",
|
| 158 |
+
"encoder.blocks.18.attn.query",
|
| 159 |
+
"encoder.blocks.18.attn.key",
|
| 160 |
+
"encoder.blocks.18.attn.value",
|
| 161 |
+
"encoder.blocks.18.attn.out",
|
| 162 |
+
"encoder.blocks.18.mlp.0",
|
| 163 |
+
"encoder.blocks.18.mlp.2",
|
| 164 |
+
"encoder.blocks.19.attn.query",
|
| 165 |
+
"encoder.blocks.19.attn.key",
|
| 166 |
+
"encoder.blocks.19.attn.value",
|
| 167 |
+
"encoder.blocks.19.attn.out",
|
| 168 |
+
"encoder.blocks.19.mlp.0",
|
| 169 |
+
"encoder.blocks.19.mlp.2",
|
| 170 |
+
"encoder.blocks.20.attn.query",
|
| 171 |
+
"encoder.blocks.20.attn.key",
|
| 172 |
+
"encoder.blocks.20.attn.value",
|
| 173 |
+
"encoder.blocks.20.attn.out",
|
| 174 |
+
"encoder.blocks.20.mlp.0",
|
| 175 |
+
"encoder.blocks.20.mlp.2",
|
| 176 |
+
"encoder.blocks.21.attn.query",
|
| 177 |
+
"encoder.blocks.21.attn.key",
|
| 178 |
+
"encoder.blocks.21.attn.value",
|
| 179 |
+
"encoder.blocks.21.attn.out",
|
| 180 |
+
"encoder.blocks.21.mlp.0",
|
| 181 |
+
"encoder.blocks.21.mlp.2",
|
| 182 |
+
"encoder.blocks.22.attn.query",
|
| 183 |
+
"encoder.blocks.22.attn.key",
|
| 184 |
+
"encoder.blocks.22.attn.value",
|
| 185 |
+
"encoder.blocks.22.attn.out",
|
| 186 |
+
"encoder.blocks.22.mlp.0",
|
| 187 |
+
"encoder.blocks.22.mlp.2",
|
| 188 |
+
"encoder.blocks.23.attn.query",
|
| 189 |
+
"encoder.blocks.23.attn.key",
|
| 190 |
+
"encoder.blocks.23.attn.value",
|
| 191 |
+
"encoder.blocks.23.attn.out",
|
| 192 |
+
"encoder.blocks.23.mlp.0",
|
| 193 |
+
"encoder.blocks.23.mlp.2",
|
| 194 |
+
"encoder.blocks.24.attn.query",
|
| 195 |
+
"encoder.blocks.24.attn.key",
|
| 196 |
+
"encoder.blocks.24.attn.value",
|
| 197 |
+
"encoder.blocks.24.attn.out",
|
| 198 |
+
"encoder.blocks.24.mlp.0",
|
| 199 |
+
"encoder.blocks.24.mlp.2",
|
| 200 |
+
"encoder.blocks.25.attn.query",
|
| 201 |
+
"encoder.blocks.25.attn.key",
|
| 202 |
+
"encoder.blocks.25.attn.value",
|
| 203 |
+
"encoder.blocks.25.attn.out",
|
| 204 |
+
"encoder.blocks.25.mlp.0",
|
| 205 |
+
"encoder.blocks.25.mlp.2",
|
| 206 |
+
"encoder.blocks.26.attn.query",
|
| 207 |
+
"encoder.blocks.26.attn.key",
|
| 208 |
+
"encoder.blocks.26.attn.value",
|
| 209 |
+
"encoder.blocks.26.attn.out",
|
| 210 |
+
"encoder.blocks.26.mlp.0",
|
| 211 |
+
"encoder.blocks.26.mlp.2",
|
| 212 |
+
"encoder.blocks.27.attn.query",
|
| 213 |
+
"encoder.blocks.27.attn.key",
|
| 214 |
+
"encoder.blocks.27.attn.value",
|
| 215 |
+
"encoder.blocks.27.attn.out",
|
| 216 |
+
"encoder.blocks.27.mlp.0",
|
| 217 |
+
"encoder.blocks.27.mlp.2",
|
| 218 |
+
"encoder.blocks.28.attn.query",
|
| 219 |
+
"encoder.blocks.28.attn.key",
|
| 220 |
+
"encoder.blocks.28.attn.value",
|
| 221 |
+
"encoder.blocks.28.attn.out",
|
| 222 |
+
"encoder.blocks.28.mlp.0",
|
| 223 |
+
"encoder.blocks.28.mlp.2",
|
| 224 |
+
"encoder.blocks.29.attn.query",
|
| 225 |
+
"encoder.blocks.29.attn.key",
|
| 226 |
+
"encoder.blocks.29.attn.value",
|
| 227 |
+
"encoder.blocks.29.attn.out",
|
| 228 |
+
"encoder.blocks.29.mlp.0",
|
| 229 |
+
"encoder.blocks.29.mlp.2",
|
| 230 |
+
"encoder.blocks.30.attn.query",
|
| 231 |
+
"encoder.blocks.30.attn.key",
|
| 232 |
+
"encoder.blocks.30.attn.value",
|
| 233 |
+
"encoder.blocks.30.attn.out",
|
| 234 |
+
"encoder.blocks.30.mlp.0",
|
| 235 |
+
"encoder.blocks.30.mlp.2",
|
| 236 |
+
"encoder.blocks.31.attn.query",
|
| 237 |
+
"encoder.blocks.31.attn.key",
|
| 238 |
+
"encoder.blocks.31.attn.value",
|
| 239 |
+
"encoder.blocks.31.attn.out",
|
| 240 |
+
"encoder.blocks.31.mlp.0",
|
| 241 |
+
"encoder.blocks.31.mlp.2",
|
| 242 |
+
"adapter.linear1",
|
| 243 |
+
"adapter.linear2",
|
| 244 |
+
"lm_head"
|
| 245 |
+
],
|
| 246 |
+
"kv_cache_scheme": null,
|
| 247 |
+
"quant_method": "compressed-tensors",
|
| 248 |
+
"quantization_status": "compressed",
|
| 249 |
+
"sparsity_config": {},
|
| 250 |
+
"transform_config": {},
|
| 251 |
+
"version": "0.12.2"
|
| 252 |
+
},
|
| 253 |
+
"sliding_window": 2048,
|
| 254 |
+
"text_config": {
|
| 255 |
+
"architectures": [
|
| 256 |
+
"Qwen2ForCausalLM"
|
| 257 |
+
],
|
| 258 |
+
"attention_dropout": 0.0,
|
| 259 |
+
"dtype": "bfloat16",
|
| 260 |
+
"hidden_act": "silu",
|
| 261 |
+
"hidden_size": 5120,
|
| 262 |
+
"initializer_range": 0.02,
|
| 263 |
+
"intermediate_size": 27648,
|
| 264 |
+
"layer_types": [
|
| 265 |
+
"full_attention",
|
| 266 |
+
"full_attention",
|
| 267 |
+
"full_attention",
|
| 268 |
+
"full_attention",
|
| 269 |
+
"full_attention",
|
| 270 |
+
"full_attention",
|
| 271 |
+
"full_attention",
|
| 272 |
+
"full_attention",
|
| 273 |
+
"full_attention",
|
| 274 |
+
"full_attention",
|
| 275 |
+
"full_attention",
|
| 276 |
+
"full_attention",
|
| 277 |
+
"full_attention",
|
| 278 |
+
"full_attention",
|
| 279 |
+
"full_attention",
|
| 280 |
+
"full_attention",
|
| 281 |
+
"full_attention",
|
| 282 |
+
"full_attention",
|
| 283 |
+
"full_attention",
|
| 284 |
+
"full_attention",
|
| 285 |
+
"full_attention",
|
| 286 |
+
"full_attention",
|
| 287 |
+
"full_attention",
|
| 288 |
+
"full_attention",
|
| 289 |
+
"full_attention",
|
| 290 |
+
"full_attention",
|
| 291 |
+
"full_attention",
|
| 292 |
+
"full_attention",
|
| 293 |
+
"full_attention",
|
| 294 |
+
"full_attention",
|
| 295 |
+
"full_attention",
|
| 296 |
+
"full_attention",
|
| 297 |
+
"full_attention",
|
| 298 |
+
"full_attention",
|
| 299 |
+
"full_attention",
|
| 300 |
+
"full_attention",
|
| 301 |
+
"full_attention",
|
| 302 |
+
"full_attention",
|
| 303 |
+
"full_attention",
|
| 304 |
+
"full_attention",
|
| 305 |
+
"full_attention",
|
| 306 |
+
"full_attention",
|
| 307 |
+
"full_attention",
|
| 308 |
+
"full_attention",
|
| 309 |
+
"full_attention",
|
| 310 |
+
"full_attention",
|
| 311 |
+
"full_attention",
|
| 312 |
+
"full_attention",
|
| 313 |
+
"full_attention",
|
| 314 |
+
"full_attention",
|
| 315 |
+
"full_attention",
|
| 316 |
+
"full_attention",
|
| 317 |
+
"full_attention",
|
| 318 |
+
"full_attention",
|
| 319 |
+
"full_attention",
|
| 320 |
+
"full_attention",
|
| 321 |
+
"full_attention",
|
| 322 |
+
"full_attention",
|
| 323 |
+
"full_attention",
|
| 324 |
+
"full_attention",
|
| 325 |
+
"full_attention",
|
| 326 |
+
"full_attention",
|
| 327 |
+
"full_attention",
|
| 328 |
+
"full_attention"
|
| 329 |
+
],
|
| 330 |
+
"max_position_embeddings": 65536,
|
| 331 |
+
"max_window_layers": 28,
|
| 332 |
+
"model_type": "qwen2",
|
| 333 |
+
"num_attention_heads": 40,
|
| 334 |
+
"num_hidden_layers": 64,
|
| 335 |
+
"num_attention_groups": 8,
|
| 336 |
+
"num_key_value_heads": 8,
|
| 337 |
+
"rms_norm_eps": 1e-05,
|
| 338 |
+
"rope_scaling": null,
|
| 339 |
+
"rope_theta": 1000000.0,
|
| 340 |
+
"sliding_window": null,
|
| 341 |
+
"use_cache": true,
|
| 342 |
+
"use_sliding_window": false,
|
| 343 |
+
"vocab_size": 158720
|
| 344 |
+
},
|
| 345 |
+
"tie_word_embeddings": false,
|
| 346 |
+
"transformers_version": "4.56.2",
|
| 347 |
+
"use_sliding_window": false
|
| 348 |
+
}
|
configuration_step_audio_2.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
+
|
| 3 |
+
from transformers import Qwen2Config
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class StepAudio2EncoderConfig(PretrainedConfig):
|
| 8 |
+
model_type = "step_audio_2_encoder"
|
| 9 |
+
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
n_mels=128,
|
| 13 |
+
n_audio_ctx=1500,
|
| 14 |
+
n_audio_state=512,
|
| 15 |
+
n_audio_head=8,
|
| 16 |
+
n_audio_layer=6,
|
| 17 |
+
llm_dim=4096,
|
| 18 |
+
kernel_size=3,
|
| 19 |
+
adapter_stride=2,
|
| 20 |
+
**kwargs,
|
| 21 |
+
):
|
| 22 |
+
self.n_mels = n_mels
|
| 23 |
+
self.n_audio_ctx = n_audio_ctx
|
| 24 |
+
self.n_audio_state = n_audio_state
|
| 25 |
+
self.n_audio_head = n_audio_head
|
| 26 |
+
self.n_audio_layer = n_audio_layer
|
| 27 |
+
self.llm_dim = llm_dim
|
| 28 |
+
self.kernel_size = kernel_size
|
| 29 |
+
self.adapter_stride = adapter_stride
|
| 30 |
+
super().__init__(**kwargs)
|
| 31 |
+
|
| 32 |
+
class StepAudio2TextConfig(PretrainedConfig):
|
| 33 |
+
model_type = "step_audio_2_text"
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
vocab_size=64012,
|
| 38 |
+
hidden_size=4096,
|
| 39 |
+
intermediate_size=11008,
|
| 40 |
+
num_hidden_layers=48,
|
| 41 |
+
num_attention_heads=32,
|
| 42 |
+
num_attention_groups=4,
|
| 43 |
+
num_key_value_heads=4,
|
| 44 |
+
hidden_act="silu",
|
| 45 |
+
max_position_embeddings=8192,
|
| 46 |
+
initializer_range=0.02,
|
| 47 |
+
rms_norm_eps=1e-6,
|
| 48 |
+
rope_theta=1000000.0,
|
| 49 |
+
rope_scaling=None,
|
| 50 |
+
eos_token_id=None,
|
| 51 |
+
**kwargs
|
| 52 |
+
):
|
| 53 |
+
|
| 54 |
+
if eos_token_id is not None:
|
| 55 |
+
if isinstance(eos_token_id, list):
|
| 56 |
+
eos_token_id = list(set([151643, 151645, 151665] + eos_token_id))
|
| 57 |
+
else:
|
| 58 |
+
eos_token_id = [151643, 151645, 151665, eos_token_id]
|
| 59 |
+
else:
|
| 60 |
+
eos_token_id = [151643, 151645, 151665]
|
| 61 |
+
|
| 62 |
+
super().__init__(
|
| 63 |
+
eos_token_id=eos_token_id,
|
| 64 |
+
**kwargs)
|
| 65 |
+
|
| 66 |
+
self.vocab_size = vocab_size
|
| 67 |
+
self.hidden_size = hidden_size
|
| 68 |
+
self.intermediate_size = intermediate_size
|
| 69 |
+
self.num_hidden_layers = num_hidden_layers
|
| 70 |
+
self.num_attention_heads = num_attention_heads
|
| 71 |
+
self.num_attention_groups = num_attention_groups
|
| 72 |
+
self.num_key_value_heads = num_key_value_heads
|
| 73 |
+
assert self.num_attention_groups == self.num_key_value_heads, "num_attention_groups must be equal to num_key_value_heads"
|
| 74 |
+
self.hidden_act = hidden_act
|
| 75 |
+
self.max_position_embeddings = max_position_embeddings
|
| 76 |
+
self.initializer_range = initializer_range
|
| 77 |
+
self.rms_norm_eps = rms_norm_eps
|
| 78 |
+
self.rope_theta = rope_theta
|
| 79 |
+
self.rope_scaling = rope_scaling
|
| 80 |
+
|
| 81 |
+
self.text_config = Qwen2Config(
|
| 82 |
+
vocab_size=vocab_size,
|
| 83 |
+
hidden_size=hidden_size,
|
| 84 |
+
intermediate_size=intermediate_size,
|
| 85 |
+
num_hidden_layers=num_hidden_layers,
|
| 86 |
+
num_attention_heads=num_attention_heads,
|
| 87 |
+
num_key_value_heads=num_key_value_heads,
|
| 88 |
+
hidden_act=hidden_act,
|
| 89 |
+
max_position_embeddings=max_position_embeddings,
|
| 90 |
+
initializer_range=initializer_range,
|
| 91 |
+
rms_norm_eps=rms_norm_eps,
|
| 92 |
+
rope_theta=rope_theta,
|
| 93 |
+
rope_scaling=rope_scaling,
|
| 94 |
+
architectures=["Qwen2ForCausalLM"],
|
| 95 |
+
torch_dtype=getattr(self, "torch_dtype", "bfloat16"),
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
class StepAudio2Config(PretrainedConfig):
|
| 99 |
+
model_type = "step_audio_2"
|
| 100 |
+
architectures = ["StepAudio2ForCausalLM"]
|
| 101 |
+
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
audio_encoder_config :Optional[Union[dict, StepAudio2EncoderConfig]] = None,
|
| 105 |
+
text_config: Optional[Union[dict, StepAudio2TextConfig]] = None,
|
| 106 |
+
use_sliding_window: bool = False,
|
| 107 |
+
sliding_window: Optional[int] = 2048,
|
| 108 |
+
max_window_layers: Optional[int] = None,
|
| 109 |
+
**kwargs
|
| 110 |
+
):
|
| 111 |
+
kwargs.setdefault("use_sliding_window", use_sliding_window)
|
| 112 |
+
kwargs.setdefault("sliding_window", sliding_window)
|
| 113 |
+
if max_window_layers is None:
|
| 114 |
+
max_window_layers = kwargs.get("num_hidden_layers", None)
|
| 115 |
+
kwargs.setdefault("max_window_layers", max_window_layers)
|
| 116 |
+
super().__init__(**kwargs)
|
| 117 |
+
|
| 118 |
+
if text_config is None:
|
| 119 |
+
text_config = StepAudio2TextConfig().text_config
|
| 120 |
+
elif isinstance(text_config, dict):
|
| 121 |
+
text_config = StepAudio2TextConfig(**text_config).text_config
|
| 122 |
+
|
| 123 |
+
self.text_config = text_config
|
| 124 |
+
|
| 125 |
+
if audio_encoder_config is None:
|
| 126 |
+
self.audio_encoder_config = StepAudio2EncoderConfig()
|
| 127 |
+
elif isinstance(audio_encoder_config, dict):
|
| 128 |
+
self.audio_encoder_config = StepAudio2EncoderConfig(**audio_encoder_config)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.56.2"
|
| 4 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6a7081330c6f8ab4c50e0f494f5bfbf97600b2e4cb6da7980ec451d2d25b6fc
|
| 3 |
+
size 4952370688
|
model-00002-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8163e602803002f0fec5eec86605dcffc1eb2a8d9c78ffff87efed340f3439f0
|
| 3 |
+
size 4937507688
|
model-00003-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:102f0220802e3c746c0c2fc4a2709f8efef538f7687e75bba2a6c6a6d86d1a24
|
| 3 |
+
size 4937507688
|
model-00004-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5242ab3703db9f7cac5239a6bbe79c771e1085706ae7886cf694f4a376341db6
|
| 3 |
+
size 4997822352
|
model-00005-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d812abb83c44af00a386341fc563d9c15cda01c08e1851ff1c904eb09d793a8
|
| 3 |
+
size 2291022848
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_step_audio_2.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Iterable, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import librosa
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torchaudio
|
| 7 |
+
from torch import Tensor, nn
|
| 8 |
+
from transformers import PreTrainedModel, Qwen2Model
|
| 9 |
+
from transformers.generation.utils import GenerationMixin
|
| 10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 11 |
+
|
| 12 |
+
from .configuration_step_audio_2 import StepAudio2Config
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _mel_filters(n_mels: int) -> torch.Tensor:
|
| 16 |
+
"""Load the mel filterbank matrix for projecting STFT into a Mel spectrogram."""
|
| 17 |
+
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
| 18 |
+
if n_mels == 128:
|
| 19 |
+
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=128))
|
| 20 |
+
else:
|
| 21 |
+
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=80))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_audio(file_path, target_rate=16000, max_length=None):
|
| 25 |
+
"""
|
| 26 |
+
Open an audio file and read as mono waveform, resampling as necessary
|
| 27 |
+
If max_length is provided, truncate the audio to that length
|
| 28 |
+
"""
|
| 29 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
| 30 |
+
if sample_rate != target_rate:
|
| 31 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_rate)(waveform)
|
| 32 |
+
audio = waveform[0] # get the first channel
|
| 33 |
+
|
| 34 |
+
# Truncate audio if it exceeds max_length
|
| 35 |
+
if max_length is not None and audio.shape[0] > max_length:
|
| 36 |
+
audio = audio[:max_length]
|
| 37 |
+
|
| 38 |
+
return audio
|
| 39 |
+
|
| 40 |
+
def log_mel_spectrogram(audio, n_mels=128, padding=479, device=None):
|
| 41 |
+
"""
|
| 42 |
+
Compute the log-Mel spectrogram with specific padding for StepAudio
|
| 43 |
+
"""
|
| 44 |
+
if not torch.is_tensor(audio):
|
| 45 |
+
if isinstance(audio, str):
|
| 46 |
+
audio = load_audio(audio)
|
| 47 |
+
audio = torch.from_numpy(audio)
|
| 48 |
+
if device is not None:
|
| 49 |
+
audio = audio.to(device)
|
| 50 |
+
if padding > 0:
|
| 51 |
+
audio = F.pad(audio, (0, padding))
|
| 52 |
+
window = torch.hann_window(400).to(audio.device)
|
| 53 |
+
stft = torch.stft(audio, 400, 160, window=window, return_complex=True)
|
| 54 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
| 55 |
+
filters = _mel_filters(n_mels)
|
| 56 |
+
mel_spec = filters @ magnitudes
|
| 57 |
+
|
| 58 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
| 59 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
| 60 |
+
log_spec = (log_spec + 4.0) / 4.0
|
| 61 |
+
return log_spec
|
| 62 |
+
|
| 63 |
+
def compute_token_num(max_feature_len):
|
| 64 |
+
# First, audio goes through encoder:
|
| 65 |
+
# 1. conv1: kernel=3, stride=1, padding=1 -> size unchanged
|
| 66 |
+
# 2. conv2: kernel=3, stride=2, padding=1 -> size/2
|
| 67 |
+
# 3. avg_pooler: kernel=2, stride=2 -> size/2
|
| 68 |
+
max_feature_len = max_feature_len - 2 # remove padding
|
| 69 |
+
encoder_output_dim = (max_feature_len + 1) // 2 // 2 # after conv2 and avg_pooler
|
| 70 |
+
|
| 71 |
+
# Then through adaptor (parameters from config file):
|
| 72 |
+
padding = 1
|
| 73 |
+
kernel_size = 3 # from config: audio_encoder_config.kernel_size
|
| 74 |
+
stride = 2 # from config: audio_encoder_config.adapter_stride
|
| 75 |
+
adapter_output_dim = (encoder_output_dim + 2 * padding - kernel_size) // stride + 1
|
| 76 |
+
return adapter_output_dim
|
| 77 |
+
|
| 78 |
+
def make_non_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
| 79 |
+
"""Make mask tensor containing indices of non-padded part.
|
| 80 |
+
|
| 81 |
+
The sequences in a batch may have different lengths. To enable
|
| 82 |
+
batch computing, padding is need to make all sequence in same
|
| 83 |
+
size. To avoid the padding part pass value to context dependent
|
| 84 |
+
block such as attention or convolution , this padding part is
|
| 85 |
+
masked.
|
| 86 |
+
|
| 87 |
+
1 for non-padded part and 0 for padded part.
|
| 88 |
+
|
| 89 |
+
Parameters
|
| 90 |
+
----------
|
| 91 |
+
lengths (torch.Tensor): Batch of lengths (B,).
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
-------
|
| 95 |
+
torch.Tensor: Mask tensor containing indices of padded part (B, max_T).
|
| 96 |
+
|
| 97 |
+
Examples:
|
| 98 |
+
>>> import torch
|
| 99 |
+
>>> import s3tokenizer
|
| 100 |
+
>>> lengths = torch.tensor([5, 3, 2])
|
| 101 |
+
>>> masks = s3tokenizer.make_non_pad_mask(lengths)
|
| 102 |
+
masks = [[1, 1, 1, 1, 1],
|
| 103 |
+
[1, 1, 1, 0, 0],
|
| 104 |
+
[1, 1, 0, 0, 0]]
|
| 105 |
+
"""
|
| 106 |
+
batch_size = lengths.size(0)
|
| 107 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
| 108 |
+
seq_range = torch.arange(0,
|
| 109 |
+
max_len,
|
| 110 |
+
dtype=torch.int64,
|
| 111 |
+
device=lengths.device)
|
| 112 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
| 113 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
| 114 |
+
mask = seq_range_expand >= seq_length_expand
|
| 115 |
+
return ~mask
|
| 116 |
+
|
| 117 |
+
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
| 118 |
+
"""Convert bool-tensor to float-tensor for flash attention.
|
| 119 |
+
|
| 120 |
+
Parameters
|
| 121 |
+
----------
|
| 122 |
+
lengths (torch.Tensor): Batch of lengths (B, ?).
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
-------
|
| 126 |
+
torch.Tensor: Mask tensor containing indices of padded part (B, ?).
|
| 127 |
+
|
| 128 |
+
Examples:
|
| 129 |
+
>>> import torch
|
| 130 |
+
>>> import s3tokenizer
|
| 131 |
+
>>> lengths = torch.tensor([5, 3, 2])
|
| 132 |
+
>>> masks = s3tokenizer.make_non_pad_mask(lengths)
|
| 133 |
+
masks = [[1, 1, 1, 1, 1],
|
| 134 |
+
[1, 1, 1, 0, 0],
|
| 135 |
+
[1, 1, 0, 0, 0]]
|
| 136 |
+
>>> new_masks = s3tokenizer.mask_to_bias(masks, torch.float32)
|
| 137 |
+
new_masks = [[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00],
|
| 138 |
+
[-0.0000e+00, -0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10],
|
| 139 |
+
[-0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10, -1.0000e+10]]
|
| 140 |
+
"""
|
| 141 |
+
assert mask.dtype == torch.bool
|
| 142 |
+
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
| 143 |
+
mask = mask.to(dtype)
|
| 144 |
+
# attention mask bias
|
| 145 |
+
# NOTE(Mddct): torch.finfo jit issues
|
| 146 |
+
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
| 147 |
+
mask = (1.0 - mask) * -1.0e+10
|
| 148 |
+
return mask
|
| 149 |
+
|
| 150 |
+
class LayerNorm(nn.LayerNorm):
|
| 151 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 152 |
+
return super().forward(input).type(input.dtype)
|
| 153 |
+
|
| 154 |
+
class Linear(nn.Linear):
|
| 155 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 156 |
+
return F.linear(
|
| 157 |
+
input,
|
| 158 |
+
self.weight.to(input.dtype),
|
| 159 |
+
None if self.bias is None else self.bias.to(input.dtype),
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
class Conv1d(nn.Conv1d):
|
| 163 |
+
def _conv_forward(
|
| 164 |
+
self, input: Tensor, weight: Tensor, bias: Optional[Tensor]
|
| 165 |
+
) -> Tensor:
|
| 166 |
+
return super()._conv_forward(
|
| 167 |
+
input, weight.to(input.dtype), None if bias is None else bias.to(input.dtype)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
class MultiHeadAttention(nn.Module):
|
| 171 |
+
def __init__(self, n_state: int, n_head: int):
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.n_head = n_head
|
| 174 |
+
self.query = Linear(n_state, n_state)
|
| 175 |
+
self.key = Linear(n_state, n_state, bias=False)
|
| 176 |
+
self.value = Linear(n_state, n_state)
|
| 177 |
+
self.out = Linear(n_state, n_state)
|
| 178 |
+
|
| 179 |
+
def forward(
|
| 180 |
+
self,
|
| 181 |
+
x: Tensor,
|
| 182 |
+
mask: Optional[Tensor] = None,
|
| 183 |
+
):
|
| 184 |
+
q = self.query(x)
|
| 185 |
+
k = self.key(x)
|
| 186 |
+
v = self.value(x)
|
| 187 |
+
|
| 188 |
+
wv, qk = self.qkv_attention(q, k, v, mask)
|
| 189 |
+
return self.out(wv), qk
|
| 190 |
+
|
| 191 |
+
def qkv_attention(
|
| 192 |
+
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
|
| 193 |
+
):
|
| 194 |
+
_, T, D = q.shape
|
| 195 |
+
scale = (D // self.n_head) ** -0.25
|
| 196 |
+
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
| 197 |
+
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
| 198 |
+
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
| 199 |
+
|
| 200 |
+
qk = q @ k # (B, n_head, T, T)
|
| 201 |
+
if mask is not None:
|
| 202 |
+
qk = qk + mask
|
| 203 |
+
qk = qk.float()
|
| 204 |
+
|
| 205 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
| 206 |
+
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
| 207 |
+
|
| 208 |
+
class ResidualAttentionBlock(nn.Module):
|
| 209 |
+
def __init__(self, n_state: int, n_head: int):
|
| 210 |
+
super().__init__()
|
| 211 |
+
|
| 212 |
+
self.attn = MultiHeadAttention(n_state, n_head)
|
| 213 |
+
self.attn_ln = LayerNorm(n_state)
|
| 214 |
+
|
| 215 |
+
n_mlp = n_state * 4
|
| 216 |
+
self.mlp = nn.Sequential(
|
| 217 |
+
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
|
| 218 |
+
)
|
| 219 |
+
self.mlp_ln = LayerNorm(n_state)
|
| 220 |
+
|
| 221 |
+
def forward(
|
| 222 |
+
self,
|
| 223 |
+
x: Tensor,
|
| 224 |
+
mask: Optional[Tensor] = None,
|
| 225 |
+
):
|
| 226 |
+
x = x + self.attn(self.attn_ln(x.contiguous()), mask=mask)[0]
|
| 227 |
+
x = x + self.mlp(self.mlp_ln(x.contiguous()))
|
| 228 |
+
return x
|
| 229 |
+
|
| 230 |
+
class AudioEncoder(nn.Module):
|
| 231 |
+
def __init__(
|
| 232 |
+
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
|
| 233 |
+
):
|
| 234 |
+
super().__init__()
|
| 235 |
+
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
| 236 |
+
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
| 237 |
+
self.positional_embedding = nn.Embedding(n_ctx, n_state)
|
| 238 |
+
self.positional_embedding.requires_grad_(False)
|
| 239 |
+
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
| 240 |
+
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
| 241 |
+
)
|
| 242 |
+
self.avg_pooler = nn.AvgPool1d(2, stride=2)
|
| 243 |
+
self.after_norm = LayerNorm(n_state)
|
| 244 |
+
self.gradient_checkpointing = False
|
| 245 |
+
|
| 246 |
+
def forward(self, x: Tensor, x_len: Tensor) -> Tuple[Tensor, Tensor]:
|
| 247 |
+
T = x.size(-1)
|
| 248 |
+
x = F.gelu(self.conv1(x))
|
| 249 |
+
x = F.gelu(self.conv2(x))
|
| 250 |
+
x = x.permute(0, 2, 1) # (B, T // 2, n_state)
|
| 251 |
+
mask = make_non_pad_mask(x_len, T).unsqueeze(1) # (B, 1, T)
|
| 252 |
+
mask = mask_to_bias(mask[:, :, (T + 1) % 2::2], x.dtype) # (B, 1, T // 2)
|
| 253 |
+
x = (x + self.positional_embedding.weight[:x.shape[1], :]).to(x.dtype)
|
| 254 |
+
for block in self.blocks:
|
| 255 |
+
if self.gradient_checkpointing and self.training:
|
| 256 |
+
x = torch.utils.checkpoint.checkpoint(block, x, mask.unsqueeze(1))
|
| 257 |
+
else:
|
| 258 |
+
x = block(x, mask.unsqueeze(1))
|
| 259 |
+
x = x.permute(0, 2, 1)
|
| 260 |
+
x = self.avg_pooler(x)
|
| 261 |
+
x = x.permute(0, 2, 1)
|
| 262 |
+
x_len = (x_len + 1) // 2 // 2
|
| 263 |
+
x = self.after_norm(x.contiguous())
|
| 264 |
+
return x, x_len
|
| 265 |
+
|
| 266 |
+
class Adaptor(nn.Module):
|
| 267 |
+
def __init__(
|
| 268 |
+
self,
|
| 269 |
+
n_state: int = 1280,
|
| 270 |
+
n_hidden: int = 3072,
|
| 271 |
+
kernel_size: int = 7,
|
| 272 |
+
stride: int = 4
|
| 273 |
+
):
|
| 274 |
+
super().__init__()
|
| 275 |
+
self.stride = stride
|
| 276 |
+
if self.stride != -1:
|
| 277 |
+
# print("self.stride: {}".format(self.stride))
|
| 278 |
+
self.conv = Conv1d(n_state, n_state, kernel_size, stride, padding=1)
|
| 279 |
+
self.linear1 = nn.Linear(n_state, 2048)
|
| 280 |
+
self.relu = nn.ReLU()
|
| 281 |
+
self.linear2 = nn.Linear(2048, n_hidden)
|
| 282 |
+
self.gradient_checkpointing = False
|
| 283 |
+
|
| 284 |
+
def forward(self, x: Tensor) -> Tuple[Tensor]:
|
| 285 |
+
T = x.size(-1)
|
| 286 |
+
if self.stride != -1:
|
| 287 |
+
if self.gradient_checkpointing and self.training:
|
| 288 |
+
x = torch.utils.checkpoint.checkpoint(self.conv, x.permute(0, 2, 1))
|
| 289 |
+
x = x.permute(0, 2, 1)
|
| 290 |
+
else:
|
| 291 |
+
x = x.permute(0, 2, 1)
|
| 292 |
+
x = F.gelu(self.conv(x))
|
| 293 |
+
x = x.permute(0, 2, 1)
|
| 294 |
+
if self.gradient_checkpointing and self.training:
|
| 295 |
+
x = torch.utils.checkpoint.checkpoint(self.linear1, x)
|
| 296 |
+
x = torch.utils.checkpoint.checkpoint(self.relu, x)
|
| 297 |
+
x = torch.utils.checkpoint.checkpoint(self.linear2, x)
|
| 298 |
+
else:
|
| 299 |
+
x = self.linear1(x)
|
| 300 |
+
x = self.relu(x)
|
| 301 |
+
x = self.linear2(x)
|
| 302 |
+
return x
|
| 303 |
+
|
| 304 |
+
class StepAudio2ForCausalLM(PreTrainedModel, GenerationMixin):
|
| 305 |
+
config_class = StepAudio2Config
|
| 306 |
+
main_input_name = "input_ids"
|
| 307 |
+
# Important: Add this attribute to make HF recognize it as a model with generation capability
|
| 308 |
+
# _keys_to_ignore_on_load_missing = ["lm_head.weight"]
|
| 309 |
+
supports_gradient_checkpointing = True # 新增,声明支持gradient checkpointing
|
| 310 |
+
|
| 311 |
+
def __init__(self, config: StepAudio2Config):
|
| 312 |
+
super().__init__(config)
|
| 313 |
+
if isinstance(config.torch_dtype, str):
|
| 314 |
+
dtype = getattr(torch, config.torch_dtype)
|
| 315 |
+
else:
|
| 316 |
+
dtype = config.torch_dtype
|
| 317 |
+
self.model = Qwen2Model(config.text_config)
|
| 318 |
+
self.bf16 = dtype==torch.bfloat16
|
| 319 |
+
self.encoder = AudioEncoder(
|
| 320 |
+
config.audio_encoder_config.n_mels, config.audio_encoder_config.n_audio_ctx, config.audio_encoder_config.n_audio_state,
|
| 321 |
+
config.audio_encoder_config.n_audio_head, config.audio_encoder_config.n_audio_layer
|
| 322 |
+
)
|
| 323 |
+
self.adapter = Adaptor(
|
| 324 |
+
config.audio_encoder_config.n_audio_state, config.audio_encoder_config.llm_dim,
|
| 325 |
+
config.audio_encoder_config.kernel_size, config.audio_encoder_config.adapter_stride
|
| 326 |
+
)
|
| 327 |
+
if self.bf16:
|
| 328 |
+
self.encoder = self.encoder.bfloat16()
|
| 329 |
+
self.adapter = self.adapter.bfloat16()
|
| 330 |
+
self.lm_head = torch.nn.Linear(
|
| 331 |
+
config.text_config.hidden_size,
|
| 332 |
+
config.text_config.vocab_size,
|
| 333 |
+
bias=False,
|
| 334 |
+
dtype=dtype
|
| 335 |
+
)
|
| 336 |
+
self.post_init()
|
| 337 |
+
|
| 338 |
+
def forward(
|
| 339 |
+
self,
|
| 340 |
+
input_ids=None,
|
| 341 |
+
wavs=None,
|
| 342 |
+
wav_lens=None,
|
| 343 |
+
attention_mask=None,
|
| 344 |
+
**kwargs
|
| 345 |
+
):
|
| 346 |
+
hidden_states = self.model.embed_tokens(input_ids)
|
| 347 |
+
if wavs is not None:
|
| 348 |
+
if self.bf16:
|
| 349 |
+
wavs = wavs.bfloat16()
|
| 350 |
+
out, feat_lens = self.encoder(wavs, wav_lens)
|
| 351 |
+
out = self.adapter(out)
|
| 352 |
+
feat_lens = (feat_lens - 1) // 2 + 1
|
| 353 |
+
insert_location = torch.nonzero(input_ids == 151688)
|
| 354 |
+
insert_location[:,1] += 1
|
| 355 |
+
for idx in range(len(insert_location)):
|
| 356 |
+
i,s = insert_location[idx]
|
| 357 |
+
hidden_states[i][s : s+feat_lens[idx]] = out[idx][:feat_lens[idx]]
|
| 358 |
+
|
| 359 |
+
x = self.model(inputs_embeds=hidden_states, attention_mask=attention_mask)[0]
|
| 360 |
+
logits = self.lm_head(x)
|
| 361 |
+
return CausalLMOutputWithPast(
|
| 362 |
+
logits=logits,
|
| 363 |
+
past_key_values=None,
|
| 364 |
+
hidden_states=None,
|
| 365 |
+
attentions=None
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
def get_input_embeddings(self):
|
| 369 |
+
"""Return the model's input embeddings - required for GenerationMixin"""
|
| 370 |
+
return self.model.embed_tokens
|
| 371 |
+
|
| 372 |
+
def get_output_embeddings(self):
|
| 373 |
+
"""Return the model's output embeddings (LM head) - required for GenerationMixin"""
|
| 374 |
+
return self.lm_head
|
| 375 |
+
|
| 376 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs):
|
| 377 |
+
"""Prepare inputs for generation - required for GenerationMixin"""
|
| 378 |
+
# Keep the wavs and wav_lens from the initial call
|
| 379 |
+
wavs = kwargs.get("wavs", None)
|
| 380 |
+
wav_lens = kwargs.get("wav_lens", None)
|
| 381 |
+
|
| 382 |
+
# For generation steps after the first, we don't need to process audio again
|
| 383 |
+
# because the audio tokens have already been replaced in the input sequence
|
| 384 |
+
if "past_key_values" in kwargs and kwargs["past_key_values"] is not None:
|
| 385 |
+
# We're in a generation step, no need to process audio again
|
| 386 |
+
return {
|
| 387 |
+
"input_ids": input_ids,
|
| 388 |
+
"attention_mask": attention_mask,
|
| 389 |
+
"past_key_values": kwargs.get("past_key_values")
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
# First generation step, include audio processing
|
| 393 |
+
return {
|
| 394 |
+
"input_ids": input_ids,
|
| 395 |
+
"attention_mask": attention_mask,
|
| 396 |
+
"wavs": wavs,
|
| 397 |
+
"wav_lens": wav_lens
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 401 |
+
"""Reorder the cache for beam search - required for GenerationMixin if using beam search"""
|
| 402 |
+
# If you're not using past_key_values or beam search, this can be a simple pass-through
|
| 403 |
+
# Otherwise implement according to your model's cache structure
|
| 404 |
+
return past_key_values
|
| 405 |
+
|
| 406 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 407 |
+
# For Qwen2Model
|
| 408 |
+
if hasattr(self.model, 'gradient_checkpointing'):
|
| 409 |
+
self.model.gradient_checkpointing = value
|
| 410 |
+
|
| 411 |
+
# Add the missing _gradient_checkpointing_func method to Qwen2Model
|
| 412 |
+
# This is what Qwen2Model tries to use when gradient_checkpointing=True
|
| 413 |
+
if value and not hasattr(self.model, '_gradient_checkpointing_func'):
|
| 414 |
+
def _gradient_checkpointing_func(module_to_run, *args, **kwargs):
|
| 415 |
+
# This function wraps torch.utils.checkpoint.checkpoint
|
| 416 |
+
# and is used by Qwen2Model to perform checkpointing
|
| 417 |
+
return torch.utils.checkpoint.checkpoint(module_to_run, *args, **kwargs)
|
| 418 |
+
|
| 419 |
+
self.model._gradient_checkpointing_func = _gradient_checkpointing_func
|
| 420 |
+
|
| 421 |
+
# For custom encoder and adapter
|
| 422 |
+
if hasattr(self.encoder, 'gradient_checkpointing'):
|
| 423 |
+
self.encoder.gradient_checkpointing = value
|
| 424 |
+
if hasattr(self.adapter, 'gradient_checkpointing'):
|
| 425 |
+
self.adapter.gradient_checkpointing = value
|
| 426 |
+
|
recipe.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
default_stage:
|
| 2 |
+
default_modifiers:
|
| 3 |
+
QuantizationModifier:
|
| 4 |
+
targets: [Linear]
|
| 5 |
+
ignore: [lm_head, 're:encoder.*', 're:adapter.*']
|
| 6 |
+
scheme: NVFP4A16
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|EOT|>",
|
| 4 |
+
"<|BOT|>",
|
| 5 |
+
"<|CALL_START|>",
|
| 6 |
+
"<|CALL_END|>",
|
| 7 |
+
"<|THINK_START|>",
|
| 8 |
+
"<|THINK_END|>",
|
| 9 |
+
"<|IMG_START|>",
|
| 10 |
+
"<|IMG_END|>",
|
| 11 |
+
"<|META_START|>",
|
| 12 |
+
"<|META_END|>",
|
| 13 |
+
"<im_patch>",
|
| 14 |
+
"<im_start>",
|
| 15 |
+
"<im_end>",
|
| 16 |
+
"<dream>",
|
| 17 |
+
"<dream_start>",
|
| 18 |
+
"<dream_end>",
|
| 19 |
+
"<|MASK_1e69f|>",
|
| 20 |
+
"<|UNMASK_1e69f|>",
|
| 21 |
+
"<video_start>",
|
| 22 |
+
"<video_end>",
|
| 23 |
+
"<patch_start>",
|
| 24 |
+
"<patch_end>",
|
| 25 |
+
"<patch_newline>",
|
| 26 |
+
"<audio_start>",
|
| 27 |
+
"<audio_end>",
|
| 28 |
+
"<audio_patch>",
|
| 29 |
+
"<audio_patch_pad>",
|
| 30 |
+
"<|SC|>",
|
| 31 |
+
"<tts_start>",
|
| 32 |
+
"<tts_end>",
|
| 33 |
+
"<tts_pad>"
|
| 34 |
+
],
|
| 35 |
+
"eos_token": {
|
| 36 |
+
"content": "<|endoftext|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false
|
| 41 |
+
},
|
| 42 |
+
"pad_token": {
|
| 43 |
+
"content": "<|endoftext|>",
|
| 44 |
+
"lstrip": false,
|
| 45 |
+
"normalized": false,
|
| 46 |
+
"rstrip": false,
|
| 47 |
+
"single_word": false
|
| 48 |
+
}
|
| 49 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c23796e0498b651e92b0d514d43636d0dfd556534f8dde7b72ed0e2ff1d07744
|
| 3 |
+
size 12684616
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|