nielsr HF Staff commited on
Commit
1a233a0
·
verified ·
1 Parent(s): 4db1ef6

Improve model card: Add metadata, paper link, and usage example

Browse files

This PR enhances the model card for **TriP-LLM** by adding crucial metadata, including:
- `pipeline_tag`: `time-series-forecasting`
- `library_name`: `pytorch`
- `license`: `other` (as no specific license was provided in the context)
- Additional `tags`: `time-series`, `anomaly-detection`, `LLM`
- `datasets`: `NIPS-TS-SWAN`, `MSL`, `SMD`, `SWaT`, `PSM`

Furthermore, a direct link to the Hugging Face paper page ([TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection](https://huggingface.co/papers/2508.00047)) has been added.

The "Usage" section has been updated to include installation steps and a sample code snippet for reproducing the main experiments, as found in the GitHub README, to provide users with immediate instructions on how to run the model.

Files changed (1) hide show
  1. README.md +69 -31
README.md CHANGED
@@ -1,32 +1,70 @@
1
- # TriP-LLM
2
-
3
- This is the official checkpoints release for the **TriP-LLM**, a novel framework for unsupervised anomaly detection in multivariate time-series data using pretrained Large Language Models (LLMs).
4
-
5
- ## Model Description
6
- - **Name**: TriP-LLM
7
- - **Task**: Time-Series Anomaly Detection
8
- - **Framework**: PyTorch
9
- - **Repository**: [GitHub – YYZStart/TriP-LLM](https://github.com/YYZStart/TriP-LLM)
10
-
11
-
12
- ## Usage
13
-
14
- Please refer to our [GitHub repository](https://github.com/YYZStart/TriP-LLM)
15
- for model definitions, training code, and usage examples.
16
-
17
-
18
- ## 📎 Citation
19
-
20
- If you find this repository useful for your research, please cite our paper:
21
-
22
- ```bibtex
23
- @misc{TriPLLM,
24
- title={TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection},
25
- author={Yuan-Cheng Yu and Yen-Chieh Ouyang and Chun-An Lin},
26
- year={2025},
27
- eprint={2508.00047},
28
- archivePrefix={arXiv},
29
- primaryClass={cs.LG},
30
- url={https://arxiv.org/abs/2508.00047},
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ```
 
1
+ ---
2
+ license: other
3
+ pipeline_tag: time-series-forecasting
4
+ library_name: pytorch
5
+ tags:
6
+ - time-series
7
+ - anomaly-detection
8
+ - LLM
9
+ datasets:
10
+ - NIPS-TS-SWAN
11
+ - MSL
12
+ - SMD
13
+ - SWaT
14
+ - PSM
15
+ ---
16
+
17
+ # TriP-LLM
18
+
19
+ This is the official checkpoints release for the **TriP-LLM**, a novel framework for unsupervised anomaly detection in multivariate time-series data using pretrained Large Language Models (LLMs).
20
+
21
+ The model was presented in the paper: [TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection](https://huggingface.co/papers/2508.00047)
22
+
23
+ ## Model Description
24
+ - **Name**: TriP-LLM
25
+ - **Task**: Time-Series Anomaly Detection
26
+ - **Framework**: PyTorch
27
+ - **Repository**: [GitHub – YYZStart/TriP-LLM](https://github.com/YYZStart/TriP-LLM)
28
+
29
+
30
+ ## Usage
31
+
32
+ To get started with TriP-LLM, you can follow the installation and usage instructions from the [GitHub repository](https://github.com/YYZStart/TriP-LLM).
33
+
34
+ ### Installation
35
+
36
+ We conducted our experiments using PyTorch 2.4.1, Python 3.11 and CUDA 12.4.
37
+ ```bash
38
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
39
+ ```
40
+ To install the required dependencies and set up the environment, run the following commands:
41
+
42
+ ```bash
43
+ git clone https://github.com/YYZStart/TriP-LLM.git
44
+ cd TriP-LLM
45
+ pip install -r requirements.txt
46
+ ```
47
+
48
+ ### Reproduce Experiments
49
+
50
+ You can reproduce our main experiments with:
51
+
52
+ ```bash
53
+ python main.py
54
+ ```
55
+
56
+ ## 📎 Citation
57
+
58
+ If you find this repository useful for your research, please cite our paper:
59
+
60
+ ```bibtex
61
+ @misc{TriPLLM,
62
+ title={TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection},
63
+ author={Yuan-Cheng Yu and Yen-Chieh Ouyang and Chun-An Lin},
64
+ year={2025},
65
+ eprint={2508.00047},
66
+ archivePrefix={arXiv},
67
+ primaryClass={cs.LG},
68
+ url={https://arxiv.org/abs/2508.00047},
69
+ }
70
  ```