|
|
import torch |
|
|
from torch import Tensor, nn |
|
|
import torch.nn.functional as F |
|
|
import numpy as np |
|
|
from typing import Dict, Tuple, Union |
|
|
|
|
|
|
|
|
def calculate_errors(pred_counts: np.ndarray, gt_counts: np.ndarray) -> Dict[str, float]: |
|
|
assert isinstance(pred_counts, np.ndarray), f"Expected numpy.ndarray, got {type(pred_counts)}" |
|
|
assert isinstance(gt_counts, np.ndarray), f"Expected numpy.ndarray, got {type(gt_counts)}" |
|
|
assert len(pred_counts) == len(gt_counts), f"Length of predictions and ground truths should be equal, but got {len(pred_counts)} and {len(gt_counts)}" |
|
|
errors = { |
|
|
"mae": np.mean(np.abs(pred_counts - gt_counts)), |
|
|
"rmse": np.sqrt(np.mean((pred_counts - gt_counts) ** 2)), |
|
|
} |
|
|
return errors |
|
|
|
|
|
|
|
|
def resize_density_map(x: Tensor, size: Tuple[int, int]) -> Tensor: |
|
|
x_sum = torch.sum(x, dim=(-1, -2)) |
|
|
x = F.interpolate(x, size=size, mode="bilinear") |
|
|
scale_factor = torch.nan_to_num(torch.sum(x, dim=(-1, -2)) / x_sum, nan=0.0, posinf=0.0, neginf=0.0) |
|
|
return x * scale_factor |
|
|
|
|
|
|
|
|
def sliding_window_predict( |
|
|
model: nn.Module, |
|
|
image: Tensor, |
|
|
window_size: Union[int, Tuple[int, int]], |
|
|
stride: Union[int, Tuple[int, int]], |
|
|
) -> Tensor: |
|
|
""" |
|
|
Generate the density map for an image using the sliding window method. Overlapping regions will be averaged. |
|
|
|
|
|
Args: |
|
|
model (nn.Module): The model to use. |
|
|
image (Tensor): The image (1, c, h, w) to generate the density map for. The batch size must be 1 due to varying image sizes. |
|
|
window_size (Union[int, Tuple[int, int]]): The size of the window. |
|
|
stride (Union[int, Tuple[int, int]]): The step size of the window. |
|
|
""" |
|
|
assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}" |
|
|
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size |
|
|
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride |
|
|
window_size = tuple(window_size) |
|
|
stride = tuple(stride) |
|
|
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}" |
|
|
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}" |
|
|
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}" |
|
|
|
|
|
image_height, image_width = image.shape[-2:] |
|
|
window_height, window_width = window_size |
|
|
stride_height, stride_width = stride |
|
|
|
|
|
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1) |
|
|
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1) |
|
|
|
|
|
reduction = model.reduction if hasattr(model, "reduction") else 1 |
|
|
windows = [] |
|
|
for i in range(num_rows): |
|
|
for j in range(num_cols): |
|
|
x_start, y_start = i * stride_height, j * stride_width |
|
|
x_end, y_end = x_start + window_height, y_start + window_width |
|
|
if x_end > image_height: |
|
|
x_start, x_end = image_height - window_height, image_height |
|
|
if y_end > image_width: |
|
|
y_start, y_end = image_width - window_width, image_width |
|
|
|
|
|
window = image[:, :, x_start:x_end, y_start:y_end] |
|
|
windows.append(window) |
|
|
|
|
|
windows = torch.cat(windows, dim=0).to(image.device) |
|
|
|
|
|
model.eval() |
|
|
with torch.no_grad(): |
|
|
preds = model(windows) |
|
|
preds = preds.cpu().detach().numpy() |
|
|
|
|
|
|
|
|
pred_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32) |
|
|
count_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32) |
|
|
idx = 0 |
|
|
for i in range(num_rows): |
|
|
for j in range(num_cols): |
|
|
x_start, y_start = i * stride_height, j * stride_width |
|
|
x_end, y_end = x_start + window_height, y_start + window_width |
|
|
if x_end > image_height: |
|
|
x_start, x_end = image_height - window_height, image_height |
|
|
if y_end > image_width: |
|
|
y_start, y_end = image_width - window_width, image_width |
|
|
|
|
|
pred_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += preds[idx, :, :, :] |
|
|
count_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += 1. |
|
|
idx += 1 |
|
|
|
|
|
pred_map /= count_map |
|
|
return torch.tensor(pred_map).unsqueeze(0) |
|
|
|