|
|
import torch |
|
|
from torch import Tensor |
|
|
from tensorboardX import SummaryWriter |
|
|
import logging |
|
|
import os |
|
|
from typing import Dict, Union, Optional, List, Tuple |
|
|
from collections import OrderedDict |
|
|
|
|
|
|
|
|
def get_logger(log_file: str) -> logging.Logger: |
|
|
logger = logging.getLogger(log_file) |
|
|
logger.setLevel(logging.DEBUG) |
|
|
fh = logging.FileHandler(log_file) |
|
|
fh.setLevel(logging.DEBUG) |
|
|
ch = logging.StreamHandler() |
|
|
ch.setLevel(logging.INFO) |
|
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") |
|
|
ch.setFormatter(formatter) |
|
|
fh.setFormatter(formatter) |
|
|
logger.addHandler(ch) |
|
|
logger.addHandler(fh) |
|
|
return logger |
|
|
|
|
|
|
|
|
def get_config(config: Dict, mute: bool = False) -> str: |
|
|
config = config.copy() |
|
|
config = "\n".join([f"{k.ljust(15)}:\t{v}" for k, v in config.items()]) |
|
|
if not mute: |
|
|
print(config) |
|
|
return config |
|
|
|
|
|
|
|
|
def get_writer(ckpt_dir: str) -> SummaryWriter: |
|
|
return SummaryWriter(log_dir=os.path.join(ckpt_dir, "logs")) |
|
|
|
|
|
|
|
|
def print_epoch(epoch: int, total_epochs: int, mute: bool = False) -> Union[str, None]: |
|
|
digits = len(str(total_epochs)) |
|
|
info = f"Epoch: {(epoch):0{digits}d} / {total_epochs:0{digits}d}" |
|
|
if mute: |
|
|
return info |
|
|
print(info) |
|
|
|
|
|
|
|
|
def print_train_result(loss_info: Dict[str, float], mute: bool = False) -> Union[str, None]: |
|
|
loss_info = [f"{k}: {v};" for k, v in loss_info.items()] |
|
|
info = "Training: " + " ".join(loss_info) |
|
|
if mute: |
|
|
return info |
|
|
print(info) |
|
|
|
|
|
|
|
|
def print_eval_result(curr_scores: Dict[str, float], best_scores: Dict[str, float], mute: bool = False) -> Union[str, None]: |
|
|
scores = [] |
|
|
for k in curr_scores.keys(): |
|
|
info = f"Curr {k}: {curr_scores[k]:.4f}; \t Best {k}: " |
|
|
info += " ".join([f"{best_scores[k][i]:.4f};" for i in range(len(best_scores[k]))]) |
|
|
scores.append(info) |
|
|
|
|
|
info = "Evaluation:\n" + "\n".join(scores) |
|
|
if mute: |
|
|
return info |
|
|
print(info) |
|
|
|
|
|
|
|
|
def update_train_result(epoch: int, loss_info: Dict[str, float], writer: SummaryWriter) -> None: |
|
|
for k, v in loss_info.items(): |
|
|
writer.add_scalar(f"train/{k}", v, epoch) |
|
|
|
|
|
|
|
|
def update_eval_result( |
|
|
epoch: int, |
|
|
curr_scores: Dict[str, float], |
|
|
hist_scores: Dict[str, List[float]], |
|
|
best_scores: Dict[str, List[float]], |
|
|
writer: SummaryWriter, |
|
|
state_dict: OrderedDict[str, Tensor], |
|
|
ckpt_dir: str, |
|
|
) -> Tuple[Dict[str, List[float]], Dict[str, float]]: |
|
|
os.makedirs(ckpt_dir, exist_ok=True) |
|
|
for k, v in curr_scores.items(): |
|
|
hist_scores[k].append(v) |
|
|
writer.add_scalar(f"val/{k}", v, epoch) |
|
|
|
|
|
|
|
|
|
|
|
loc = None |
|
|
for i in range(len(best_scores[k])): |
|
|
if v < best_scores[k][i]: |
|
|
best_scores[k].insert(i, v) |
|
|
loc = i |
|
|
break |
|
|
|
|
|
|
|
|
if loc is not None: |
|
|
|
|
|
best_scores[k] = best_scores[k][:len(best_scores[k]) - 1] |
|
|
|
|
|
|
|
|
for i in range(len(best_scores[k]) - 1, loc, -1): |
|
|
if os.path.exists(os.path.join(ckpt_dir, f"best_{k}_{i-1}.pth")): |
|
|
os.rename(os.path.join(ckpt_dir, f"best_{k}_{i-1}.pth"), os.path.join(ckpt_dir, f"best_{k}_{i}.pth")) |
|
|
|
|
|
|
|
|
torch.save(state_dict, os.path.join(ckpt_dir, f"best_{k}_{loc}.pth")) |
|
|
|
|
|
return hist_scores, best_scores |
|
|
|
|
|
|
|
|
def update_loss_info(hist_scores: Union[Dict[str, List[float]], None], curr_scores: Dict[str, float]) -> Dict[str, List[float]]: |
|
|
assert all([isinstance(v, float) for v in curr_scores.values()]), f"Expected all values to be float, got {curr_scores}" |
|
|
if hist_scores is None or len(hist_scores) == 0: |
|
|
hist_scores = {k: [v] for k, v in curr_scores.items()} |
|
|
else: |
|
|
for k, v in curr_scores.items(): |
|
|
hist_scores[k].append(v) |
|
|
return hist_scores |
|
|
|
|
|
|
|
|
def log( |
|
|
logger: logging.Logger, |
|
|
epoch: int, |
|
|
total_epochs: int, |
|
|
loss_info: Optional[Dict[str, float]] = None, |
|
|
curr_scores: Optional[Dict[str, float]] = None, |
|
|
best_scores: Optional[Dict[str, float]] = None, |
|
|
message: Optional[str] = None, |
|
|
) -> None: |
|
|
if epoch is None: |
|
|
assert total_epochs is None, f"Expected total_epochs to be None when epoch is None, got {total_epochs}" |
|
|
msg = "" |
|
|
else: |
|
|
assert total_epochs is not None, f"Expected total_epochs to be not None when epoch is not None, got {total_epochs}" |
|
|
msg = print_epoch(epoch, total_epochs, mute=True) |
|
|
|
|
|
if loss_info is not None: |
|
|
msg += "\n" if len(msg) > 0 else "" |
|
|
msg += print_train_result(loss_info, mute=True) |
|
|
|
|
|
if curr_scores is not None: |
|
|
assert best_scores is not None, f"Expected best_scores to be not None when curr_scores is not None, got {best_scores}" |
|
|
msg += "\n" if len(msg) > 0 else "" |
|
|
msg += print_eval_result(curr_scores, best_scores, mute=True) |
|
|
|
|
|
msg += message if message is not None else "" |
|
|
|
|
|
logger.info(msg) |
|
|
|