Renamed Weights Folder Names; Added app.py
Browse files- app.py +160 -0
- pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/README.md +0 -0
- pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/config.json +0 -0
- pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/model.safetensors +0 -0
- pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/README.md +0 -0
- pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/config.json +0 -0
- pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/model.safetensors +0 -0
app.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import json, os
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torchvision.transforms.functional as TF
|
| 8 |
+
from safetensors.torch import load_file # Import the load_file function from safetensors
|
| 9 |
+
from matplotlib import cm
|
| 10 |
+
|
| 11 |
+
from models import get_model
|
| 12 |
+
from utils import resize_density_map, init_seeds
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
mean = (0.485, 0.456, 0.406)
|
| 16 |
+
std = (0.229, 0.224, 0.225)
|
| 17 |
+
alpha = 0.8
|
| 18 |
+
init_seeds(42)
|
| 19 |
+
|
| 20 |
+
# -----------------------------
|
| 21 |
+
# Define the model architecture
|
| 22 |
+
# -----------------------------
|
| 23 |
+
truncation = 4
|
| 24 |
+
reduction = 8
|
| 25 |
+
granularity = "fine"
|
| 26 |
+
anchor_points = "average"
|
| 27 |
+
|
| 28 |
+
model_name = "clip_vit_l_14"
|
| 29 |
+
input_size = 224
|
| 30 |
+
|
| 31 |
+
# Comment the lines below to test non-CLIP models.
|
| 32 |
+
prompt_type = "word"
|
| 33 |
+
num_vpt = 32
|
| 34 |
+
vpt_drop = 0.
|
| 35 |
+
deep_vpt = True
|
| 36 |
+
|
| 37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if truncation is None: # regression, no truncation.
|
| 41 |
+
bins, anchor_points = None, None
|
| 42 |
+
else:
|
| 43 |
+
with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
|
| 44 |
+
config = json.load(f)[str(truncation)]["nwpu"]
|
| 45 |
+
bins = config["bins"][granularity]
|
| 46 |
+
anchor_points = config["anchor_points"][granularity]["average"] if anchor_points == "average" else config["anchor_points"][granularity]["middle"]
|
| 47 |
+
bins = [(float(b[0]), float(b[1])) for b in bins]
|
| 48 |
+
anchor_points = [float(p) for p in anchor_points]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
model = get_model(
|
| 52 |
+
backbone=model_name,
|
| 53 |
+
input_size=input_size,
|
| 54 |
+
reduction=reduction,
|
| 55 |
+
bins=bins,
|
| 56 |
+
anchor_points=anchor_points,
|
| 57 |
+
# CLIP parameters
|
| 58 |
+
prompt_type=prompt_type,
|
| 59 |
+
num_vpt=num_vpt,
|
| 60 |
+
vpt_drop=vpt_drop,
|
| 61 |
+
deep_vpt=deep_vpt
|
| 62 |
+
)
|
| 63 |
+
weights_path = os.path.join("pre-trained weights", "CLIP-EBC-ViT-L-14-NWPU", "model.safetensors")
|
| 64 |
+
state_dict = load_file(weights_path)
|
| 65 |
+
new_state_dict = {}
|
| 66 |
+
for k, v in state_dict.items():
|
| 67 |
+
new_state_dict[k.replace("model.", "")] = v
|
| 68 |
+
model.load_state_dict(new_state_dict)
|
| 69 |
+
model.to(device)
|
| 70 |
+
model.eval()
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# -----------------------------
|
| 74 |
+
# Preprocessing function
|
| 75 |
+
# -----------------------------
|
| 76 |
+
# Adjust the image transforms to match what your model expects.
|
| 77 |
+
def transform(image: Image.Image):
|
| 78 |
+
assert isinstance(image, Image.Image), "Input must be a PIL Image"
|
| 79 |
+
image_tensor = TF.to_tensor(image)
|
| 80 |
+
|
| 81 |
+
image_height, image_width = image_tensor.shape[-2:]
|
| 82 |
+
if image_height < input_size or image_width < input_size:
|
| 83 |
+
# Find the ratio to resize the image while maintaining the aspect ratio
|
| 84 |
+
ratio = max(input_size / image_height, input_size / image_width)
|
| 85 |
+
new_height = int(image_height * ratio) + 1
|
| 86 |
+
new_width = int(image_width * ratio) + 1
|
| 87 |
+
image_tensor = TF.resize(image_tensor, (new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
|
| 88 |
+
|
| 89 |
+
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
|
| 90 |
+
return image_tensor.unsqueeze(0) # Add batch dimension
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# -----------------------------
|
| 95 |
+
# Inference function
|
| 96 |
+
# -----------------------------
|
| 97 |
+
def predict(image: Image.Image):
|
| 98 |
+
"""
|
| 99 |
+
Given an input image, preprocess it, run the model to obtain a density map,
|
| 100 |
+
compute the total crowd count, and prepare the density map for display.
|
| 101 |
+
"""
|
| 102 |
+
# Preprocess the image
|
| 103 |
+
input_width, input_height = image.size
|
| 104 |
+
input_tensor = transform(image).to(device) # shape: (1, 3, H, W)
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
density_map = model(input_tensor) # expected shape: (1, 1, H, W)
|
| 108 |
+
total_count = density_map.sum().item()
|
| 109 |
+
resized_density_map = resize_density_map(density_map, (input_height, input_width)).cpu().squeeze().numpy()
|
| 110 |
+
|
| 111 |
+
# Normalize the density map for display purposes
|
| 112 |
+
eps = 1e-8
|
| 113 |
+
density_map_norm = (resized_density_map - resized_density_map.min()) / (resized_density_map.max() - resized_density_map.min() + eps)
|
| 114 |
+
|
| 115 |
+
# Apply a colormap (e.g., 'jet') to get an RGBA image
|
| 116 |
+
colormap = cm.get_cmap("jet")
|
| 117 |
+
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
|
| 118 |
+
density_map_color = (colormap(density_map_norm) * 255).astype(np.uint8)
|
| 119 |
+
density_map_color_img = Image.fromarray(density_map_color).convert("RGBA")
|
| 120 |
+
|
| 121 |
+
# Ensure the original image is in RGBA format.
|
| 122 |
+
image_rgba = image.convert("RGBA")
|
| 123 |
+
overlayed_image = Image.blend(image_rgba, density_map_color_img, alpha=alpha)
|
| 124 |
+
|
| 125 |
+
return image, overlayed_image, f"Predicted Count: {total_count:.2f}"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# -----------------------------
|
| 129 |
+
# Build Gradio Interface using Blocks for a two-column layout
|
| 130 |
+
# -----------------------------
|
| 131 |
+
with gr.Blocks() as demo:
|
| 132 |
+
gr.Markdown("# Crowd Counting Demo")
|
| 133 |
+
gr.Markdown("Upload an image or select an example below to see the predicted crowd density map and total count.")
|
| 134 |
+
|
| 135 |
+
with gr.Row():
|
| 136 |
+
with gr.Column():
|
| 137 |
+
input_img = gr.Image(
|
| 138 |
+
label="Input Image",
|
| 139 |
+
sources=["upload", "clipboard"],
|
| 140 |
+
type="pil",
|
| 141 |
+
)
|
| 142 |
+
submit_btn = gr.Button("Predict")
|
| 143 |
+
with gr.Column():
|
| 144 |
+
output_img = gr.Image(label="Predicted Density Map", type="pil")
|
| 145 |
+
output_text = gr.Textbox(label="Total Count")
|
| 146 |
+
|
| 147 |
+
submit_btn.click(fn=predict, inputs=input_img, outputs=[input_img, output_img, output_text])
|
| 148 |
+
|
| 149 |
+
# Optional: add example images. Ensure these files are in your repo.
|
| 150 |
+
gr.Examples(
|
| 151 |
+
examples=[
|
| 152 |
+
["example1.jpg"],
|
| 153 |
+
["example2.jpg"]
|
| 154 |
+
],
|
| 155 |
+
inputs=input_img,
|
| 156 |
+
label="Try an example"
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# Launch the app
|
| 160 |
+
demo.launch(share=True)
|
pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/README.md
RENAMED
|
File without changes
|
pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/config.json
RENAMED
|
File without changes
|
pre-trained weights/{CLIP-EBC-ViT-B:16 (NWPU) β CLIP-EBC-ViT-B-16-NWPU}/model.safetensors
RENAMED
|
File without changes
|
pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/README.md
RENAMED
|
File without changes
|
pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/config.json
RENAMED
|
File without changes
|
pre-trained weights/{CLIP-EBC-ViT-L:14 (NWPU) β CLIP-EBC-ViT-L-14-NWPU}/model.safetensors
RENAMED
|
File without changes
|