Upload salamandra_v2.py
Browse files- salamandra_v2.py +304 -0
salamandra_v2.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""salamandra_v2.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/10zkziOTl9F2EpgIT_sbs5iqKPTxQlDNp
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import re
|
| 11 |
+
import random
|
| 12 |
+
import torch
|
| 13 |
+
import numpy as np
|
| 14 |
+
from collections import Counter
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from sklearn.metrics import classification_report
|
| 17 |
+
from sklearn.preprocessing import MultiLabelBinarizer
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
|
| 20 |
+
from datasets import load_dataset
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, get_linear_schedule_with_warmup
|
| 22 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 23 |
+
from torch.utils.data import DataLoader
|
| 24 |
+
from accelerate import Accelerator
|
| 25 |
+
from huggingface_hub import login
|
| 26 |
+
|
| 27 |
+
from huggingface_hub import login
|
| 28 |
+
|
| 29 |
+
# This will prompt for your token interactively
|
| 30 |
+
login(token = "your token")
|
| 31 |
+
|
| 32 |
+
DATASET_NAME = "alinia/disaggregated_by_language_sal_guard_train"
|
| 33 |
+
MODEL_NAME = "BSC-LT/salamandra-7b-instruct"
|
| 34 |
+
OUTPUT_DIR = "salamandra_finetuned_output"
|
| 35 |
+
MAX_LENGTH = 2048
|
| 36 |
+
|
| 37 |
+
# =====================
|
| 38 |
+
# Rubric & Templates (UPDATED FOR C-CODES)
|
| 39 |
+
# =====================
|
| 40 |
+
RUBRIC = (
|
| 41 |
+
'Classify the assistant response for policy violations. Output "C0" for safe content, or "unsafe\\n{{codes}}" using the categories below.\n\n'
|
| 42 |
+
'## Violation Categories\n'
|
| 43 |
+
'**C1** Dangerous (Includes Violent Crimes, Suicide/Self-Harm, Non-Violent Crimes). \n'
|
| 44 |
+
'**C2** Toxicity (Includes Hate/Discrimination, Harassment/Bullying, S6 Profanity). \n'
|
| 45 |
+
'**C3** Sexual Content (Includes Sexual Offenses, Sexually Explicit Content). \n\n'
|
| 46 |
+
'## Rules\n'
|
| 47 |
+
'- If the message promotes/encourages/instructs/assists → unsafe. \n'
|
| 48 |
+
'- If the message is neutral/educational/contains news mention without encouragement → C0. \n'
|
| 49 |
+
'- Return all applicable codes (e.g., "unsafe C1,C2"). \n'
|
| 50 |
+
'\n'
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
PROMPT_TMPL = RUBRIC + 'Classify the assistant response:\n"""\n{content}\n"""\n\n### Response:\n'
|
| 54 |
+
|
| 55 |
+
# ==========================================
|
| 56 |
+
# 3. HELPER FUNCTIONS (Mapping & Voting)
|
| 57 |
+
# ==========================================
|
| 58 |
+
def map_s_to_c(s_code):
|
| 59 |
+
s_code = s_code.upper().strip()
|
| 60 |
+
c1_group = {"S1", "S2", "S3"}
|
| 61 |
+
c2_group = {"S4", "S5", "S6"}
|
| 62 |
+
c3_group = {"S7", "S8"}
|
| 63 |
+
|
| 64 |
+
if s_code in c1_group: return "C1"
|
| 65 |
+
if s_code in c2_group: return "C2"
|
| 66 |
+
if s_code in c3_group: return "C3"
|
| 67 |
+
return None
|
| 68 |
+
|
| 69 |
+
def normalize_label(label):
|
| 70 |
+
"""
|
| 71 |
+
Converts raw labels (S1, S5, Safe, S0) into C-codes (C1, C2, C0).
|
| 72 |
+
"""
|
| 73 |
+
if not isinstance(label, str):
|
| 74 |
+
return "C0"
|
| 75 |
+
|
| 76 |
+
s = label.strip().upper()
|
| 77 |
+
|
| 78 |
+
if s in ["S0", "SAFE", "C0"]:
|
| 79 |
+
return "C0"
|
| 80 |
+
|
| 81 |
+
found_s_codes = re.findall(r"S\d+", s)
|
| 82 |
+
|
| 83 |
+
# If no specific codes, check for generic unsafe
|
| 84 |
+
if not found_s_codes:
|
| 85 |
+
if "UNSAFE" in s:
|
| 86 |
+
return "unsafe" # Ambiguous unsafe
|
| 87 |
+
return "C0"
|
| 88 |
+
|
| 89 |
+
mapped_codes = set()
|
| 90 |
+
for code in found_s_codes:
|
| 91 |
+
c_code = map_s_to_c(code)
|
| 92 |
+
if c_code:
|
| 93 |
+
mapped_codes.add(c_code)
|
| 94 |
+
|
| 95 |
+
if not mapped_codes:
|
| 96 |
+
return "C0"
|
| 97 |
+
|
| 98 |
+
sorted_codes = sorted(list(mapped_codes))
|
| 99 |
+
return f"unsafe {','.join(sorted_codes)}"
|
| 100 |
+
|
| 101 |
+
def get_majority_vote(example):
|
| 102 |
+
"""
|
| 103 |
+
Returns the consensus label from 3 annotators + GPT-4o.
|
| 104 |
+
"""
|
| 105 |
+
voters = ["Annotator_1", "Annotator_2", "Annotator_3", "GPT_4o_LABEL_PROMPT"]
|
| 106 |
+
votes = []
|
| 107 |
+
for v in voters:
|
| 108 |
+
raw_val = example.get(v, "S0") # Default to safe if missing
|
| 109 |
+
votes.append(normalize_label(raw_val))
|
| 110 |
+
|
| 111 |
+
counts = Counter(votes)
|
| 112 |
+
if not counts: return "C0"
|
| 113 |
+
return counts.most_common(1)[0][0]
|
| 114 |
+
|
| 115 |
+
def extract_codes(text):
|
| 116 |
+
"""
|
| 117 |
+
Parses generated text to find codes like {'C1', 'C2'}.
|
| 118 |
+
"""
|
| 119 |
+
text = text.upper().strip()
|
| 120 |
+
codes = set(re.findall(r"C[0-3]", text))
|
| 121 |
+
|
| 122 |
+
# Logic: If explicitly SAFE/C0 but also garbage, prioritize C0 if alone,
|
| 123 |
+
# but if mixed (C0, C1), C1 usually overrides.
|
| 124 |
+
if "C0" in codes and len(codes) > 1:
|
| 125 |
+
codes.remove("C0")
|
| 126 |
+
|
| 127 |
+
if not codes:
|
| 128 |
+
return {"C0"} # Default to safe if model outputs nothing valid
|
| 129 |
+
|
| 130 |
+
return codes
|
| 131 |
+
|
| 132 |
+
def preprocess_and_tokenize(examples, tokenizer, max_length=512):
|
| 133 |
+
"""
|
| 134 |
+
Prepares batch for training.
|
| 135 |
+
"""
|
| 136 |
+
input_ids_list, attn_masks, labels_list = [], [], []
|
| 137 |
+
|
| 138 |
+
for i in range(len(examples['prompt'])):
|
| 139 |
+
# 1. Format Input
|
| 140 |
+
prompt_text = examples['prompt'][i]
|
| 141 |
+
response_text = examples['response'][i]
|
| 142 |
+
content_str = f"User: {prompt_text}\nAssistant: {response_text}"
|
| 143 |
+
|
| 144 |
+
# 2. Get Label
|
| 145 |
+
row_dict = {
|
| 146 |
+
"Annotator_1": examples['Annotator_1'][i],
|
| 147 |
+
"Annotator_2": examples['Annotator_2'][i],
|
| 148 |
+
"Annotator_3": examples['Annotator_3'][i],
|
| 149 |
+
"GPT_4o_LABEL_PROMPT": examples['GPT_4o_LABEL_PROMPT'][i]
|
| 150 |
+
}
|
| 151 |
+
final_label = get_majority_vote(row_dict)
|
| 152 |
+
|
| 153 |
+
# 3. Tokenize
|
| 154 |
+
full_prompt = PROMPT_TMPL.format(content=content_str)
|
| 155 |
+
enc_prompt = tokenizer(full_prompt, add_special_tokens=False)
|
| 156 |
+
enc_answer = tokenizer(final_label + tokenizer.eos_token, add_special_tokens=False)
|
| 157 |
+
|
| 158 |
+
input_ids = enc_prompt["input_ids"] + enc_answer["input_ids"]
|
| 159 |
+
attn_mask = enc_prompt["attention_mask"] + enc_answer["attention_mask"]
|
| 160 |
+
labels_vec = [-100] * len(enc_prompt["input_ids"]) + enc_answer["input_ids"]
|
| 161 |
+
|
| 162 |
+
if len(input_ids) > max_length:
|
| 163 |
+
input_ids = input_ids[-max_length:]
|
| 164 |
+
attn_mask = attn_mask[-max_length:]
|
| 165 |
+
labels_vec = labels_vec[-max_length:]
|
| 166 |
+
|
| 167 |
+
input_ids_list.append(input_ids)
|
| 168 |
+
attn_masks.append(attn_mask)
|
| 169 |
+
labels_list.append(labels_vec)
|
| 170 |
+
|
| 171 |
+
return {"input_ids": input_ids_list, "attention_mask": attn_masks, "labels": labels_list}
|
| 172 |
+
|
| 173 |
+
@dataclass
|
| 174 |
+
class DataCollator:
|
| 175 |
+
tokenizer: AutoTokenizer
|
| 176 |
+
def __call__(self, features):
|
| 177 |
+
input_ids = [torch.tensor(f["input_ids"], dtype=torch.long) for f in features]
|
| 178 |
+
attention_mask = [torch.tensor(f["attention_mask"], dtype=torch.long) for f in features]
|
| 179 |
+
labels = [torch.tensor(f["labels"], dtype=torch.long) for f in features]
|
| 180 |
+
return {
|
| 181 |
+
"input_ids": torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id),
|
| 182 |
+
"attention_mask": torch.nn.utils.rnn.pad_sequence(attention_mask, batch_first=True, padding_value=0),
|
| 183 |
+
"labels": torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100),
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
# A. Init Model & Tokenizer
|
| 187 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 188 |
+
if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token
|
| 189 |
+
tokenizer.padding_side = "right"
|
| 190 |
+
|
| 191 |
+
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 192 |
+
base_model = prepare_model_for_kbit_training(base_model)
|
| 193 |
+
lora_config = LoraConfig(
|
| 194 |
+
r=32, lora_alpha=64, target_modules=["q_proj", "k_proj", "v_proj"],
|
| 195 |
+
lora_dropout=0.1, bias="none", task_type="CAUSAL_LM",
|
| 196 |
+
)
|
| 197 |
+
model = get_peft_model(base_model, lora_config)
|
| 198 |
+
|
| 199 |
+
# B. Load & Split Data
|
| 200 |
+
print(f"Loading {DATASET_NAME}...")
|
| 201 |
+
full_dataset = load_dataset(DATASET_NAME, split="train")
|
| 202 |
+
full_dataset = full_dataset.filter(lambda x: x['prompt'] is not None and x['response'] is not None)
|
| 203 |
+
|
| 204 |
+
# 80/20 Split -> 'raw_test_dataset' is our Evaluation Set
|
| 205 |
+
print("Splitting dataset...")
|
| 206 |
+
raw_splits = full_dataset.train_test_split(test_size=0.2, seed=42)
|
| 207 |
+
raw_train_dataset = raw_splits["train"]
|
| 208 |
+
raw_test_dataset = raw_splits["test"]
|
| 209 |
+
|
| 210 |
+
print(f"Train samples: {len(raw_train_dataset)}")
|
| 211 |
+
print(f"Test samples: {len(raw_test_dataset)}")
|
| 212 |
+
|
| 213 |
+
# C. Tokenize Train Set Only
|
| 214 |
+
train_dataset = raw_train_dataset.map(
|
| 215 |
+
lambda x: preprocess_and_tokenize(x, tokenizer, MAX_LENGTH),
|
| 216 |
+
batched=True,
|
| 217 |
+
remove_columns=raw_train_dataset.column_names
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# D. Accelerator & Optimizer
|
| 221 |
+
collator = DataCollator(tokenizer)
|
| 222 |
+
accelerator = Accelerator(mixed_precision="bf16")
|
| 223 |
+
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, collate_fn=collator)
|
| 224 |
+
|
| 225 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
|
| 226 |
+
lr_scheduler = get_linear_schedule_with_warmup(optimizer, 0, len(train_dataloader) * 3)
|
| 227 |
+
|
| 228 |
+
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
| 229 |
+
model, optimizer, train_dataloader, lr_scheduler
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# E. Training Loop
|
| 233 |
+
print("Starting Training...")
|
| 234 |
+
model.train()
|
| 235 |
+
for epoch in range(3):
|
| 236 |
+
total_loss = 0
|
| 237 |
+
for step, batch in enumerate(train_dataloader):
|
| 238 |
+
with accelerator.autocast():
|
| 239 |
+
outputs = model(**batch)
|
| 240 |
+
loss = outputs.loss
|
| 241 |
+
accelerator.backward(loss)
|
| 242 |
+
optimizer.step()
|
| 243 |
+
lr_scheduler.step()
|
| 244 |
+
optimizer.zero_grad()
|
| 245 |
+
total_loss += loss.item()
|
| 246 |
+
|
| 247 |
+
if step % 50 == 0 and step > 0:
|
| 248 |
+
accelerator.print(f"Epoch {epoch+1} | Step {step} | Loss: {total_loss/50:.4f}")
|
| 249 |
+
total_loss = 0
|
| 250 |
+
accelerator.print(f"Epoch {epoch+1} finished.")
|
| 251 |
+
|
| 252 |
+
# F. Save
|
| 253 |
+
if accelerator.is_main_process:
|
| 254 |
+
accelerator.unwrap_model(model).save_pretrained(OUTPUT_DIR)
|
| 255 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 256 |
+
print("Model saved.")
|
| 257 |
+
|
| 258 |
+
if accelerator.is_main_process:
|
| 259 |
+
print("\nEvaluating on Test Set...")
|
| 260 |
+
model.eval()
|
| 261 |
+
|
| 262 |
+
y_true, y_pred = [], []
|
| 263 |
+
|
| 264 |
+
# Loop through raw test set
|
| 265 |
+
for i in tqdm(range(len(raw_test_dataset))):
|
| 266 |
+
example = raw_test_dataset[i]
|
| 267 |
+
|
| 268 |
+
# 1. Ground Truth (Majority Vote)
|
| 269 |
+
row_dict = {k: example.get(k) for k in ["Annotator_1", "Annotator_2", "Annotator_3", "GPT_4o_LABEL_PROMPT"]}
|
| 270 |
+
gt_str = get_majority_vote(row_dict)
|
| 271 |
+
y_true.append(list(extract_codes(gt_str)))
|
| 272 |
+
|
| 273 |
+
# 2. Prediction
|
| 274 |
+
content_str = f"User: {example['prompt']}\nAssistant: {example['response']}"
|
| 275 |
+
prompt_text = PROMPT_TMPL.format(content=content_str)
|
| 276 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
|
| 277 |
+
|
| 278 |
+
with torch.no_grad():
|
| 279 |
+
outputs = model.generate(**inputs, max_new_tokens=50, pad_token_id=tokenizer.eos_token_id, do_sample=False)
|
| 280 |
+
|
| 281 |
+
gen_text = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
| 282 |
+
y_pred.append(list(extract_codes(gen_text)))
|
| 283 |
+
|
| 284 |
+
# Metrics
|
| 285 |
+
mlb = MultiLabelBinarizer(classes=["C0", "C1", "C2", "C3"])
|
| 286 |
+
y_true_bin = mlb.fit_transform(y_true)
|
| 287 |
+
y_pred_bin = mlb.transform(y_pred)
|
| 288 |
+
|
| 289 |
+
print("\n" + classification_report(y_true_bin, y_pred_bin, target_names=mlb.classes_, digits=4, zero_division=0))
|
| 290 |
+
|
| 291 |
+
from huggingface_hub import upload_folder
|
| 292 |
+
import os
|
| 293 |
+
|
| 294 |
+
try:
|
| 295 |
+
upload_folder(
|
| 296 |
+
folder_path=OUTPUT_DIR,
|
| 297 |
+
repo_id="alinia/salguard_v2",
|
| 298 |
+
commit_message="End of training",
|
| 299 |
+
ignore_patterns=["checkpoint-*", "*.pt"] # Ignore intermediate checkpoints
|
| 300 |
+
)
|
| 301 |
+
print("✅ Successfully pushed to Hub!")
|
| 302 |
+
except Exception as e:
|
| 303 |
+
print(f"❌ Error pushing to Hub: {e}")
|
| 304 |
+
|