vosk-model-ru / decode-onnx.py
nshmyrevgmail's picture
vosk-model-ru-0.54
870988c
raw
history blame
1.44 kB
#!/usr/bin/env python3
import wave
from pathlib import Path
from typing import Tuple
import sys
import numpy as np
import sherpa_onnx
import sys
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def main():
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder="am-onnx/encoder.onnx",
decoder="am-onnx/decoder.onnx",
joiner="am-onnx/joiner.onnx",
tokens="lang/tokens.txt",
num_threads=0,
provider='cpu',
sample_rate=16000,
dither=3e-5,
max_active_paths=10,
decoding_method="modified_beam_search")
samples, sample_rate = read_wave(sys.argv[1])
s = recognizer.create_stream()
s.accept_waveform(sample_rate, samples)
recognizer.decode_stream(s)
print ("Text:", s.result.text)
print ("Tokens:", s.result.tokens)
print ("Timestamps:", s.result.timestamps)
if __name__ == "__main__":
main()