hungnm commited on
Commit
70d6715
·
verified ·
1 Parent(s): d625b9f

Model save

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: answerdotai/ModernBERT-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: Fin-ModernBERT
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Fin-ModernBERT
17
+
18
+ This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1497
21
+ - Accuracy: 0.7445
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 9e-05
41
+ - train_batch_size: 96
42
+ - eval_batch_size: 96
43
+ - seed: 0
44
+ - gradient_accumulation_steps: 64
45
+ - total_train_batch_size: 6144
46
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.148 | 1.0 | 17 | 1.1497 | 0.7445 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.55.0
61
+ - Pytorch 2.8.0+cu128
62
+ - Datasets 3.6.0
63
+ - Tokenizers 0.21.4