id
int64 1
18.1k
| prompt
stringlengths 2.24k
72.3k
| ground-truth rule
stringlengths 59
649
| validation program
stringlengths 316
69.3k
| symbols
stringlengths 51
11.8k
| curriculum level
int64 1
20
| curriculum tier
stringclasses 4
values | rule sampling
stringclasses 2
values | rule complexity
stringclasses 6
values | background sampling
stringclasses 2
values | problem size
int64 2
32
| vocabulary predicates
int64 5
12
| vocabulary car constants
stringclasses 6
values |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
201
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, vert).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 50 1 vert long complet
ouest -33 1 jaune court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
202
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 183 1 rouge long rampe
ouest -24 1 blanc long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
203
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est -53 1 bleu long rampe
ouest -2 1 rouge long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
204
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 181 1 jaune court complet
ouest 38 1 vert long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
205
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), couleur_wagon(Wagon1, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 46 1 rouge court complet
ouest 239 1 jaune court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
206
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est -23 1 bleu court complet
ouest -48 1 vert long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
207
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est -24 1 blanc long complet
ouest 31 1 jaune court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
208
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 229 1 bleu court complet
ouest 197 1 rouge long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
209
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 128 1 rouge long complet
ouest 178 1 blanc long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
210
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 49 1 jaune court complet
ouest 31 1 blanc court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
211
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), longueur_wagon(Wagon1, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est -2 1 vert long rampe
ouest 173 1 bleu court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
212
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 42 1 rouge court complet
ouest 159 1 rouge long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
213
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 136 1 rouge court rampe
ouest 220 1 vert court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
214
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 35 1 bleu court rampe
ouest 179 1 blanc court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
215
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 120 1 rouge court complet
ouest -26 1 jaune long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
216
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 31 1 jaune court complet
ouest -32 1 blanc court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
217
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 173 1 rouge court complet
ouest -24 1 bleu court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
218
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), couleur_wagon(Wagon1, jaune).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 183 1 jaune long complet
ouest 182 1 blanc long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
219
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 221 1 vert court rampe
ouest 150 1 bleu long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
220
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 178 1 rouge court complet
ouest -51 1 vert long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
221
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 204 1 jaune court complet
ouest 188 1 rouge long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
222
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), couleur_wagon(Wagon1, vert).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 0 1 vert long rampe
ouest -49 1 blanc long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
223
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), couleur_wagon(Wagon1, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 41 1 blanc court complet
ouest 46 1 bleu court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
224
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 121 1 vert court rampe
ouest 24 1 vert court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
225
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 154 1 blanc long complet
ouest 126 1 bleu court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
226
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, bleu).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 225 1 bleu long complet
ouest 151 1 vert court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
227
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est -58 1 bleu long rampe
ouest 9 1 blanc long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
228
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 15 1 rouge court rampe
ouest 219 1 blanc long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
229
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, bleu).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 49 1 bleu long rampe
ouest -30 1 rouge long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
230
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est -1 1 jaune court complet
ouest -29 1 vert court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
231
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 151 1 vert court rampe
ouest 6 1 jaune long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
232
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 233 1 bleu long rampe
ouest 31 1 bleu long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
233
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est -50 1 rouge court rampe
ouest 181 1 bleu court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
234
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 148 1 vert long rampe
ouest 160 1 bleu long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
235
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), a_wagon(Train, Wagon2), a_paroi(Wagon2, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 134 1 vert court rampe
ouest 8 1 jaune court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
236
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), couleur_wagon(Wagon1, jaune).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est -14 1 jaune long rampe
ouest 151 1 vert long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
237
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 45 1 vert long complet
ouest 186 1 rouge long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
238
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 197 1 bleu long rampe
ouest 207 1 blanc court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
239
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 205 1 jaune court complet
ouest -8 1 jaune long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
240
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 135 1 blanc long rampe
ouest 7 1 blanc long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
241
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc), longueur_wagon(Wagon1, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 147 1 blanc long rampe
ouest 232 1 rouge court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
242
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est -17 1 rouge court complet
ouest -27 1 jaune court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
243
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, vert).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 173 1 vert long complet
ouest 20 1 rouge court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
244
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est -24 1 vert long rampe
ouest 59 1 jaune long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
245
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 186 1 rouge long complet
ouest 21 1 blanc court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
246
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, bleu).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est -32 1 bleu long complet
ouest -55 1 blanc court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
247
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 3 1 rouge long rampe
ouest 193 1 bleu court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
248
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), couleur_wagon(Wagon1, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 33 1 rouge court complet
ouest 226 1 vert court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
249
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 25 1 rouge court complet
ouest -35 1 blanc long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
250
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, bleu).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 176 1 bleu long rampe
ouest 44 1 rouge court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
251
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 17 1 rouge court rampe
ouest 13 1 rouge long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
252
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est -29 1 bleu long complet
ouest -24 1 blanc long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
253
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, rouge), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 148 1 rouge court rampe
ouest 218 1 vert long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
254
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), couleur_wagon(Wagon1, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 53 1 blanc court complet
ouest -28 1 jaune court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
255
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, vert).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 231 1 vert court complet
ouest 167 1 bleu long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
256
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 49 1 blanc long complet
ouest 171 1 rouge long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
257
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
|
est 157 1 jaune long complet
ouest 28 1 vert long complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
258
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
|
est 203 1 jaune court rampe
ouest 47 1 blanc court complet
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
259
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), couleur_wagon(Wagon1, rouge).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
|
est 47 1 rouge court rampe
ouest 135 1 jaune long rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
260
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
|
est 149 1 vert court rampe
ouest 215 1 jaune court rampe
| 2
|
basic
|
random
|
1-2
|
mirror
| 2
| 5
|
1
|
261
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), a_paroi(Wagon1, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 193 1 jaune long complet
ouest -1 1 rouge long rampe
ouest 213 1 rouge long rampe
est 150 1 jaune long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
262
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 54 1 bleu court rampe
ouest 137 1 blanc long rampe
ouest 216 1 blanc long rampe
est 28 1 bleu court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
263
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc), a_wagon(Train, Wagon2), a_paroi(Wagon2, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 193 1 blanc court rampe
ouest -5 1 vert court complet
ouest 200 1 vert court complet
est -23 1 blanc court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
264
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 218 1 vert long rampe
ouest 52 1 blanc long complet
ouest 152 1 jaune long complet
est 1 1 vert long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
265
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_paroi(Wagon1, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 210 1 bleu long complet
ouest 138 1 bleu court rampe
ouest 224 1 bleu court rampe
est -27 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
266
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est 198 1 rouge court complet
ouest 173 1 rouge court rampe
ouest -18 1 rouge court rampe
est 54 1 rouge court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
267
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 155 1 jaune long complet
ouest -33 1 bleu long complet
ouest 158 1 bleu long complet
est -4 1 jaune long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
268
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 10 1 blanc court rampe
ouest 220 1 rouge court rampe
ouest -20 1 vert court rampe
est 148 1 blanc court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
269
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est 132 1 vert court complet
ouest -44 1 jaune court rampe
ouest 207 1 blanc court rampe
est 215 1 vert court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
270
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 240 1 jaune court rampe
ouest 151 1 blanc court rampe
ouest 129 1 blanc court rampe
est 60 1 jaune court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
271
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, court), a_wagon(Train, Wagon2), a_paroi(Wagon2, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 142 1 vert court rampe
ouest 233 1 vert long complet
ouest 216 1 vert long complet
est 189 1 vert court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
272
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 35 1 bleu long rampe
ouest 127 1 vert long rampe
ouest 181 1 jaune long rampe
est 240 1 bleu long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
273
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est -35 1 blanc court complet
ouest -57 1 vert long complet
ouest 27 1 bleu long complet
est 9 1 blanc court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
274
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), longueur_wagon(Wagon1, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 28 1 vert long complet
ouest 50 1 jaune court complet
ouest 125 1 jaune court complet
est 130 1 vert long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
275
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est -36 1 vert court complet
ouest 6 1 vert long rampe
ouest 52 1 vert long rampe
est 192 1 vert court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
276
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est 4 1 blanc court complet
ouest 16 1 jaune court complet
ouest -54 1 bleu court complet
est 146 1 blanc court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
277
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_paroi(Wagon1, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 120 1 bleu long complet
ouest 171 1 blanc long rampe
ouest 21 1 vert long rampe
est 54 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
278
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, jaune).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est -40 1 jaune court complet
ouest -54 1 rouge court rampe
ouest -56 1 blanc court rampe
est 160 1 jaune court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
279
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), longueur_wagon(Wagon1, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 237 1 jaune long rampe
ouest 175 1 bleu court rampe
ouest 31 1 bleu court rampe
est 217 1 jaune long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
280
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 234 1 bleu court rampe
ouest 216 1 bleu court complet
ouest 197 1 bleu court complet
est 129 1 bleu court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
281
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, vert), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, vert).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, vert).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est -60 1 vert long complet
ouest -21 1 bleu long complet
ouest -53 1 blanc long complet
est 216 1 vert long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
282
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_paroi(Wagon1, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 224 1 jaune long rampe
ouest 179 1 jaune court complet
ouest 133 1 jaune court complet
est 41 1 jaune long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
283
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 4 1 jaune court rampe
ouest 228 1 jaune long complet
ouest 149 1 jaune long complet
est 0 1 jaune court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
284
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 208 1 jaune court rampe
ouest 152 1 jaune court complet
ouest 233 1 jaune court complet
est 30 1 jaune court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
285
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), longueur_wagon(Wagon1, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 225 1 bleu long complet
ouest 235 1 vert court complet
ouest 8 1 vert court complet
est 19 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
286
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 133 1 blanc long complet
ouest 132 1 blanc court complet
ouest 34 1 blanc court complet
est 236 1 blanc long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
287
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 121 1 rouge court rampe
ouest 5 1 rouge long complet
ouest 141 1 rouge long complet
est 19 1 rouge court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
288
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, bleu).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 195 1 bleu long complet
ouest -6 1 blanc long complet
ouest 125 1 rouge long complet
est -26 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
289
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), longueur_wagon(Wagon1, court).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est -21 1 jaune court complet
ouest 221 1 jaune long rampe
ouest 51 1 jaune long rampe
est 51 1 jaune court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
290
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, complet), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est 11 1 bleu court complet
ouest 148 1 bleu court rampe
ouest 17 1 bleu court rampe
est 196 1 bleu court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
291
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, jaune).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 207 1 blanc court rampe
ouest 238 1 jaune court rampe
ouest -30 1 jaune court rampe
est -48 1 blanc court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
292
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), a_wagon(Train, Wagon2), couleur_wagon(Wagon2, blanc).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 235 1 blanc long rampe
ouest -8 1 vert long complet
ouest 60 1 rouge long complet
est 6 1 blanc long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
293
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 220 1 bleu long complet
ouest 127 1 bleu court complet
ouest -36 1 bleu court complet
est 217 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
294
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, jaune), a_wagon(Train, Wagon2), a_paroi(Wagon2, complet).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, complet).
|
est -49 1 jaune court complet
ouest 236 1 bleu court rampe
ouest 19 1 bleu court rampe
est 204 1 jaune court complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
295
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, bleu).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, rampe).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, bleu).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, rampe).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 223 1 bleu long rampe
ouest 190 1 bleu court rampe
ouest 196 1 bleu court rampe
est 235 1 bleu long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
296
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), longueur_wagon(Wagon1, long), a_wagon(Train, Wagon2), a_paroi(Wagon2, rampe).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, rouge).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, rouge).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, rouge).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 146 1 rouge long rampe
ouest -45 1 rouge court complet
ouest 236 1 rouge court complet
est 177 1 rouge long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
297
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, blanc).
longueur_wagon(wagon0_1, court).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, blanc).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, blanc).
longueur_wagon(wagon3_1, court).
a_paroi(wagon3_1, rampe).
|
est 160 1 blanc court rampe
ouest 31 1 blanc court complet
ouest 215 1 blanc court complet
est -14 1 blanc court rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
298
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), a_paroi(Wagon1, rampe), couleur_wagon(Wagon1, jaune).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, jaune).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, rampe).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, vert).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, jaune).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, rampe).
|
est 56 1 jaune long rampe
ouest 234 1 vert long complet
ouest 219 1 vert long complet
est -7 1 jaune long rampe
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
299
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), numero_wagon(Wagon1, 1).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, blanc).
longueur_wagon(wagon1_1, long).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, vert).
longueur_wagon(wagon2_1, long).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est -27 1 bleu long complet
ouest -39 1 blanc long complet
ouest 25 1 vert long complet
est -2 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
300
|
Vous êtes un classificateur de trains qui observe des trains se déplaçant soit vers l'est soit vers l'ouest.
Chaque train est composé d'un ou plusieurs wagons, et chaque wagon est caractérisé par un ensemble de propriétés, représentées comme des atomes de base sur un ensemble fixe de prédicats.
La direction (vers l'est ou vers l'ouest) d'un train doit être déterminée à partir de sa composition.
Pour décrire les trains, nous définissons un ensemble de prédicats et de domaines de base :
- 'a_wagon(Train, Wagon)' : Indique que 'Wagon' fait partie du train 'Train'.
- 'numero_wagon(Wagon, Numero)' : Indique la position du wagon dans son train. 'Numero' est un entier positif.
- 'couleur_wagon(Wagon, Couleur)' : Indique la couleur du wagon. 'Couleur' peut être 'rouge', 'bleu', 'vert', 'jaune' ou 'blanc'.
- 'longueur_wagon(Wagon, Longueur)' : Indique la longueur du wagon. 'Longueur' peut être 'court' ou 'long'.
- 'a_paroi(Wagon, TypeParoi)' : Indique le type de paroi d'un wagon. 'TypeParoi' peut être 'complet' ou 'rampe'.
Vous disposez d'exemples positifs et négatifs sous la forme est(t) ou ouest(t) pour chaque train t, ainsi que de faits de base décrivant sa composition sur les prédicats ci-dessus.
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
Votre tâche consiste à formuler une hypothèse sous la forme d'une règle Prolog „est(T) :- Corps.“ qui distingue correctement les trains se dirigeant vers l'est de ceux se dirigeant vers l'ouest.
L'hypothèse doit être vraie pour tous les exemples positifs (c'est-à-dire les trains étiquetés est(t)) et fausse pour tous les exemples négatifs (c'est-à-dire les trains ouest(t)).
L'objectif est de trouver la règle correcte la plus courte, c'est-à-dire celle qui utilise le nombre minimal de littéraux dans le corps sans perdre de conditions nécessaires.
Votre règle ne peut utiliser que les prédicats définis dans l'ouverture ci-dessus et doit parfaitement séparer les trains vers l'est des trains vers l'ouest.
|
est(Train):- a_wagon(Train, Wagon1), couleur_wagon(Wagon1, bleu), a_wagon(Train, Wagon2), longueur_wagon(Wagon2, long).
|
est(train0).
a_wagon(train0, wagon0_1).
numero_wagon(wagon0_1, 1).
couleur_wagon(wagon0_1, bleu).
longueur_wagon(wagon0_1, long).
a_paroi(wagon0_1, complet).
ouest(train1).
a_wagon(train1, wagon1_1).
numero_wagon(wagon1_1, 1).
couleur_wagon(wagon1_1, jaune).
longueur_wagon(wagon1_1, court).
a_paroi(wagon1_1, complet).
ouest(train2).
a_wagon(train2, wagon2_1).
numero_wagon(wagon2_1, 1).
couleur_wagon(wagon2_1, rouge).
longueur_wagon(wagon2_1, court).
a_paroi(wagon2_1, complet).
est(train3).
a_wagon(train3, wagon3_1).
numero_wagon(wagon3_1, 1).
couleur_wagon(wagon3_1, bleu).
longueur_wagon(wagon3_1, long).
a_paroi(wagon3_1, complet).
|
est 13 1 bleu long complet
ouest 121 1 jaune court complet
ouest 132 1 rouge court complet
est -24 1 bleu long complet
| 3
|
basic
|
random
|
1-2
|
mirror
| 4
| 5
|
1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.