---
license: creativeml-openrail-m
configs:
- config_name: default
data_files:
- split: synth
path: data/synth-*
- split: real
path: data/real-*
dataset_info:
features:
- name: id
dtype: int32
- name: original_image
dtype: image
- name: partedit
dtype: image
- name: subject
dtype: string
- name: edit
dtype: string
- name: part
dtype: string
- name: gt_mask
dtype: image
- name: class_name
dtype: string
- name: prompt_original
dtype: string
- name: prompt_changed
dtype: string
- name: p2p_prompt
dtype: string
- name: p2p_template
dtype: string
- name: instructp2p_edit1
dtype: string
- name: instructp2p_edit2
dtype: string
- name: instructp2p_edit3
dtype: string
- name: seed
dtype: int32
splits:
- name: synth
num_bytes: 159677179
num_examples: 60
- name: real
num_bytes: 9967718
num_examples: 13
download_size: 169623238
dataset_size: 169644897
task_categories:
- text-to-image
- image-to-image
language:
- en
tags:
- Part Editing
- image
- Editing
size_categories:
- n<1K
arxiv: 2502.0405
pretty_name: PartEdit
---
[](https://arxiv.org/abs/2502.04050)
[](https://gorluxor.github.io/part-edit/)
[](https://dl.acm.org/doi/10.1145/3721238.3730747)
# Dataset Card for Dataset Name
This benchmark is part of [PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models](https://arxiv.org/abs/2502.04050) accepted in Siggraph 2025.
## Dataset Details
### Dataset Description
Small benchmark of part editing.
- **Curated by:** Authors
- **Funded by [optional]:** KAUST
- **Shared by [optional]:** Authors
- **Language(s) (NLP):** EN
- **License:** creativeml-openrail-m
### Dataset Sources [optional]
- **Repository:** https://gorluxor.github.io/part-edit/
- **Paper [optional]:** https://arxiv.org/abs/2502.04050
- **Demo [optional]:** https://gorluxor.github.io/part-edit/
#### Annotation process
Using https://www.makesense.ai/ to annotate ground truth regions.
## Bias, Risks, and Limitations
The generated images might contain biases from the underlying models.
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation
**BibTeX:**
```
@inproceedings{cvejic2025partedit,
title={PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models},
author={Cvejic, Aleksandar and Eldesokey, Abdelrahman and Wonka, Peter},
booktitle={Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers},
pages={1--11},
year={2025}
}
```
**APA:**
```
Cvejic, A., Eldesokey, A., & Wonka, P. (2025, August). PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers (pp. 1-11).
```