--- license: creativeml-openrail-m configs: - config_name: default data_files: - split: synth path: data/synth-* - split: real path: data/real-* dataset_info: features: - name: id dtype: int32 - name: original_image dtype: image - name: partedit dtype: image - name: subject dtype: string - name: edit dtype: string - name: part dtype: string - name: gt_mask dtype: image - name: class_name dtype: string - name: prompt_original dtype: string - name: prompt_changed dtype: string - name: p2p_prompt dtype: string - name: p2p_template dtype: string - name: instructp2p_edit1 dtype: string - name: instructp2p_edit2 dtype: string - name: instructp2p_edit3 dtype: string - name: seed dtype: int32 splits: - name: synth num_bytes: 159677179 num_examples: 60 - name: real num_bytes: 9967718 num_examples: 13 download_size: 169623238 dataset_size: 169644897 task_categories: - text-to-image - image-to-image language: - en tags: - Part Editing - image - Editing size_categories: - n<1K arxiv: 2502.0405 pretty_name: PartEdit ---
[![Paper](https://img.shields.io/badge/arXiv-2502.04050-b31b1b)](https://arxiv.org/abs/2502.04050) [![Project Page](https://img.shields.io/badge/🌐-Project_Website-blue)](https://gorluxor.github.io/part-edit/) [![🎨 SIGGRAPH 2025](https://img.shields.io/badge/🎨%20Accepted-SIGGRAPH%202025-blueviolet)](https://dl.acm.org/doi/10.1145/3721238.3730747)
# Dataset Card for Dataset Name This benchmark is part of [PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models](https://arxiv.org/abs/2502.04050) accepted in Siggraph 2025. ## Dataset Details ### Dataset Description Small benchmark of part editing. - **Curated by:** Authors - **Funded by [optional]:** KAUST - **Shared by [optional]:** Authors - **Language(s) (NLP):** EN - **License:** creativeml-openrail-m ### Dataset Sources [optional] - **Repository:** https://gorluxor.github.io/part-edit/ - **Paper [optional]:** https://arxiv.org/abs/2502.04050 - **Demo [optional]:** https://gorluxor.github.io/part-edit/ #### Annotation process Using https://www.makesense.ai/ to annotate ground truth regions. ## Bias, Risks, and Limitations The generated images might contain biases from the underlying models. ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation **BibTeX:** ``` @inproceedings{cvejic2025partedit, title={PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models}, author={Cvejic, Aleksandar and Eldesokey, Abdelrahman and Wonka, Peter}, booktitle={Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers}, pages={1--11}, year={2025} } ``` **APA:** ``` Cvejic, A., Eldesokey, A., & Wonka, P. (2025, August). PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers (pp. 1-11). ```