--- license: bsd-3-clause dataset_info: features: - name: cond_exp_y dtype: float64 - name: m1 dtype: float64 - name: g1 dtype: float64 - name: l1 dtype: float64 - name: Y dtype: float64 - name: D_1 dtype: float64 - name: carat dtype: float64 - name: depth dtype: float64 - name: table dtype: float64 - name: price dtype: float64 - name: x dtype: float64 - name: y dtype: float64 - name: z dtype: float64 - name: review dtype: string - name: sentiment dtype: string - name: label dtype: int64 - name: cut_Good dtype: bool - name: cut_Ideal dtype: bool - name: cut_Premium dtype: bool - name: cut_Very Good dtype: bool - name: color_E dtype: bool - name: color_F dtype: bool - name: color_G dtype: bool - name: color_H dtype: bool - name: color_I dtype: bool - name: color_J dtype: bool - name: clarity_IF dtype: bool - name: clarity_SI1 dtype: bool - name: clarity_SI2 dtype: bool - name: clarity_VS1 dtype: bool - name: clarity_VS2 dtype: bool - name: clarity_VVS1 dtype: bool - name: clarity_VVS2 dtype: bool - name: image dtype: image splits: - name: train num_bytes: 185209908.0 num_examples: 50000 download_size: 174280492 dataset_size: 185209908.0 tags: - Causal Inference size_categories: - 10K} ``` ### Dataset Sources The dataset is based on the three commonly used datasets: - [Diamonds dataset](https://www.kaggle.com/datasets/shivam2503/diamonds) - [IMDB dataset](https://huggingface.co/datasets/imdb) - [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) The versions to create this dataset can be found on Kaggle: - [Diamonds dataset (Kaggle)](https://www.kaggle.com/datasets/shivam2503/diamonds) - [IMDB dataset (Kaggle)](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews?select=IMDB+Dataset.csv) - [CIFAR-10 dataset (Kaggle)](https://www.kaggle.com/datasets/swaroopkml/cifar10-pngs-in-folders) The original citations can be found below. ### Dataset Preprocessing All datasets are subsampled to be of equal size (`50,000`). The CIFAR-10 data is based on the trainings dataset, whereas the IMDB data contains train and test data to obtain `50,000` observations. The labels of the CIFAR-10 data are set to integer values `0` to `9`. The Diamonds dataset is cleaned (values with `x`, `y`, `z` equal to `0` are removed) and outliers are dropped (such that `45