Datasets:
Upload 3 files
Browse files- README.md +45 -0
- test.parquet +3 -0
- train.parquet +3 -0
README.md
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# T5-XXL Embeddings for Stable Diffusion Prompts
|
| 6 |
+
|
| 7 |
+
This dataset contains 4096-dimensional text embeddings for prompts from the [Gustavosta/Stable-Diffusion-Prompts](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts) dataset.
|
| 8 |
+
|
| 9 |
+
## Model Used
|
| 10 |
+
|
| 11 |
+
The embeddings were generated using a T5-XXL encoder model. Specifically, the weights from `t5xxl_fp8_e4m3fn_scaled.safetensors` were used.
|
| 12 |
+
|
| 13 |
+
**Important Note:** While the source model weights were in a FP8 format, the embeddings in this dataset have been calculated and stored in full **`float32`** precision to ensure numerical stability and maximum quality.
|
| 14 |
+
|
| 15 |
+
## Data Fields
|
| 16 |
+
|
| 17 |
+
- `Prompt`: A `string` containing the original text prompt.
|
| 18 |
+
- `vector`: A `list` of `float32` numbers, representing the 4096-dimensional embedding of the prompt.
|
| 19 |
+
|
| 20 |
+
## Data Splits
|
| 21 |
+
|
| 22 |
+
- `train`: Contains 73,718 prompts and their corresponding vectors.
|
| 23 |
+
- `test`: Contains 8192 prompts and their corresponding vectors, sampled from the end of the original train set.
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
You can load the dataset easily using the `datasets` library:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
from datasets import load_dataset
|
| 31 |
+
|
| 32 |
+
# Load the dataset
|
| 33 |
+
dataset = load_dataset("VotreUsername/le-nom-de-votre-dataset")
|
| 34 |
+
|
| 35 |
+
# Access the splits
|
| 36 |
+
train_data = dataset['train']
|
| 37 |
+
test_data = dataset['test']
|
| 38 |
+
|
| 39 |
+
# Example
|
| 40 |
+
print(train_data[0]['Prompt'])
|
| 41 |
+
print(len(train_data[0]['vector']))
|
| 42 |
+
# Output: 4096
|
| 43 |
+
|
| 44 |
+
Please credit the original prompt dataset: Gustavosta/Stable-Diffusion-Prompts.
|
| 45 |
+
The model architecture is based on Google's T5.
|
test.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82fb9d43a0972060372ceb7458bce8c7812a2e55ac367eebc7c9e090866fa38f
|
| 3 |
+
size 211671845
|
train.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:902a68322ef984dd187e19ada2db0e96be26f48b1c60acbe9ab3199188874746
|
| 3 |
+
size 1902706133
|