File size: 1,834 Bytes
90ddbd0
 
 
e9ded9c
 
90ddbd0
 
 
 
 
 
67585d0
90ddbd0
67585d0
 
90ddbd0
 
 
 
 
 
737fde6
 
17f4b5c
737fde6
4e361db
737fde6
 
66f2ae7
 
 
 
 
737fde6
 
66f2ae7
 
737fde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e361db
737fde6
 
914ddad
66f2ae7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
dataset_info:
  features:
  - name: images
    sequence: image
  - name: problem
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 167434471.0
    num_examples: 2000
  download_size: 166955903
  dataset_size: 167434471.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


This is the official release of the training data for paper **PAPO: Perception-Aware Policy Optimization for Multimodal Reasoning**. (arxiv.org/abs/2507.06448)

(Optional) This dataset can be used as the `val` split of the training dataset for PAPO. You may find the full training dataset at [PAPOGalaxy/PAPO_ViRL39K_train](https://huggingface.co/datasets/PAPOGalaxy/PAPO_ViRL39K_train).

# Data Source
## **Training**
- We adapt the multimodal benchmark [TIGER-Lab/ViRL39K](https://huggingface.co/datasets/TIGER-Lab/ViRL39K) to construct our PAPO training dataset.
## **Validation (Optional)**
- (Optional) We use the `test` set from [FanqingM/MMK12](https://huggingface.co/datasets/FanqingM/MMK12) for validation during training.
- Note that this is solely for monitoring. We do not pick checkpoints based on this in our paper.

# Dataset Structure
- **train:** training set consisting of **38870** multimodal reasoning samples
- **val:** validation set consisting of **2000** multimodal reasoning samples

# Data Fields
- **id:** data id
  - data type: String
- **problem:** input question or statement
- - data type: String
- **images:** input image(s)
  - data type: List
- **answer:** ground-truth answer
- - data type: String

# Usage
To use the full dataset with both `train` and `val` split, you may code as follows:
```python
# Train
train_dataset = load_dataset("PAPOGalaxy/PAPO_ViRL39K_train")

# Val
val_dataset = load_dataset("PAPOGalaxy/PAPO_MMK12_test")
```