import argparse import json import os from datetime import datetime import subprocess # the emprical settings for each dataset full_datasets = { "MathVista_MINI": "train_prompt_sampling", "MathVision": "train_prompt_greedy", "MathVerse_MINI": "train_prompt_greedy", "MMMU_DEV_VAL": "origin_prompt_greedy", "MMStar": "train_prompt_greedy", "DynaMath": "train_prompt_greedy", "WeMath": "train_prompt_greedy", "TextVQA_VAL": "origin_prompt_greedy", "DocVQA_TEST": "origin_prompt_greedy", "MMVet": "origin_prompt_greedy", } settings = { "train_prompt_sampling": { "use_reasoning_prompt": 2, "do_sample": True, "top_p": 1, "top_k": -1, "temperature": 1, }, "train_prompt_greedy": { "use_reasoning_prompt": 2, "do_sample": True, "top_p": 0.001, "top_k": 1, "temperature": 0.01, }, "origin_prompt_greedy": { "use_reasoning_prompt": 0, "do_sample": True, "top_p": 0.001, "top_k": 1, "temperature": 0.01, }, } def main(): parser = argparse.ArgumentParser() parser.add_argument("--run_name", type=str, required=True, help="Name of the run") parser.add_argument("--gpus", type=int, default=8, help="Number of GPUs to use") parser.add_argument("--path", type=str, required=True, help="Path to the model") parser.add_argument( "--dataset", type=str, nargs="+", required=True, help="List of datasets to use" ) parser.add_argument( "--min_pixels", type=int, default=3136, help="Minimum number of pixels" ) parser.add_argument( "--max_pixels", type=int, default=12845056, help="Maximum number of pixels" ) parser.add_argument( "--max_new_tokens", type=int, default=2048, help="Maximum number of new tokens" ) args = parser.parse_args() assert len(args.dataset), "--dataset should be a list of datasets" datasets = args.dataset if len(args.dataset) == 1 and args.dataset[0] == "full": datasets = list(full_datasets.keys()) for dataset in datasets: assert ( dataset in full_datasets ), f"Dataset {dataset} is not in the list of available datasets: {list(full_datasets.keys())}" print("Datasets to be used:", datasets) print("Run name:", args.run_name) print("Number of GPUs:", args.gpus) print("Model path:", args.path) for dataset in datasets: config = { "model": { args.run_name: { "class": "Qwen2VLChat", "model_path": args.path, "min_pixels": args.min_pixels, "max_pixels": args.max_pixels, "use_vllm": True, "max_new_tokens": args.max_new_tokens, **settings[full_datasets[dataset]], }, }, "datasets": datasets, } current_datetime = datetime.now().strftime("%Y%m%d") save_dir = f"public_eval/{args.run_name}/{dataset}/{current_datetime}" os.makedirs(save_dir, exist_ok=True) config_name = f"config.json" config_path = os.path.join(save_dir, config_name) with open(config_path, "w") as json_file: json.dump(config, json_file, indent=4) print(f"Start evaluating on {dataset}.") print(f"Eval config {full_datasets[dataset]}") env_vars = os.environ.copy() env_vars["VLLM_USE_V1"] = "0" command = [ "torchrun", f"--nproc_per_node={args.gpus}", "run_for_bash.py", "--config", f"{config_path}", "--data", f"{dataset}", "--verbose", "--work-dir", f"{save_dir}", ] stdout_file = os.path.join(save_dir, f"{dataset}_stdout.log") stderr_file = os.path.join(save_dir, f"{dataset}_stderr.log") with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr: try: print(f"Output redirected to {stdout_file}") print(f"Errors redirected to {stderr_file}") subprocess.run( command, env=env_vars, check=True, stdout=stdout, stderr=stderr ) # os.symlink(source, link_name) except subprocess.CalledProcessError as e: print(f"torchrun failed. Check {stderr_file} for error details.") if __name__ == "__main__": main()