File size: 5,547 Bytes
60ef668
 
 
 
 
 
8a3f970
d199fdd
8a3f970
14a1842
8a3f970
 
 
 
 
 
 
 
d199fdd
 
 
 
 
 
 
 
 
 
 
b2f64cb
60ef668
 
 
 
 
 
 
 
 
 
 
 
 
14a1842
60ef668
 
 
06c4438
 
 
 
 
 
 
 
 
 
60ef668
 
 
 
 
06c4438
 
 
 
 
 
d199fdd
06c4438
 
 
 
d199fdd
 
 
 
06c4438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a1842
 
 
 
 
06c4438
 
60ef668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: cc-by-4.0
task_categories:
- text-retrieval
language:
- en
configs:
- config_name: Papers
  data_files:
  - split: papers_collection
    path:
    - papers_collection.jsonl
  - split: papers_test
    path:
    - papers_test.jsonl
  - split: papers_test_judgeable
    path:
    - papers_test_judgeable.jsonl
- config_name: Qrels
  data_files:
  - split: qrels_authors
    path:
    - qrels/qrels.test.authors.tsv
  - split: qrels_cite
    path:
    - qrels/qrels.test.cite.tsv
  - split: qrels_simcite
    path:
    - qrels/qrels.test.simcite.tsv
  sep: "\t"
tags:
- reviewer-assignment
- scientific-papers
- authorship
- information-retrieval
pretty_name: exHarmony
size_categories:
- 1M<n<10M
---


# exHarmony: Authorship and Citations for Benchmarking the Reviewer Assignment Problem

Quick links: 📃 [Paper](https://arxiv.org/pdf/2502.07683) | ⚙️ [Code](https://github.com/Reviewerly-Inc/exHarmony) 

## Dataset Summary

**exHarmony** is a large-scale benchmark dataset for the **Reviewer Assignment Problem (RAP)**, reframing reviewer recommendation as an **information retrieval** task.
It leverages publication metadata from **OpenAlex** to construct a collection of papers, their authors, citation links, and multiple **qrel definitions** for evaluation.

The dataset allows researchers to systematically study reviewer recommendation under different assumptions of reviewer expertise (e.g., authorship, citation networks, and similarity-filtered citations).

exHarmony was introduced in the paper:

> *exHarmony: Authorship and Citations for Benchmarking the Reviewer Assignment Problem*
> Ebrahimi, Salamat, Arabzadeh, Bashari, Bagheri (ECIR 2025)

* **Collection split**: A large set of scientific papers used for indexing.
* **Test split**: Papers held out for evaluation.
* **Authors' works mapping**: Links each author to their published works.
* **Authors' information**: Includes metadata such as citation counts, institutional affiliation, and years of experience.


## Usage

```python
from datasets import load_dataset

dataset = load_dataset("Reviewerly/exHarmony", "Papers") # Select data type from ['Papers', 'Qrels']

# Example: Access paper collection
papers = dataset["papers_collection"]
print(papers[0])

# Example: Access paper collection
qrels = dataset["qrels_authors"]
print(qrels[0])
```

## Dataset Structure

### Data Files

| Description            | File Name                            | File Size | Num Records | Format                                                             |
| ---------------------- | ------------------------------------ | --------- | ----------- | ------------------------------------------------------------------ |
| Collection             | `papers_collection.jsonl`            | 1.6 GB    | 1,204,150   | paper\_id, title, abstract                                         |
| Test                   | `papers_test.jsonl`                  | 15 MB     | 9,771       | paper\_id, title, abstract                                         |
| Test (judgable)        | `papers_test_judgable.jsonl`         | 14 MB     | 7,944       | paper\_id, title, abstract                                         |
| Authors’ Works Mapping | `authors_works_collection_ids.jsonl` | 222 MB    | 1,589,723   | author\_id, list\_of\_authors\_papers                              |
| Authors’ Information   | `authors_info.jsonl`                 | 225 MB    | 1,589,723   | author\_id, citation, works\_count, experience\_years, institution |

**Format:** JSON Lines (`.jsonl`), one JSON object per record.

### Example Records

**Paper record:**

```json
{"id": "https://openalex.org/W4323317762", "title": "Sharding-Based Proof-of-Stake Blockchain Protocols: Key Components & Probabilistic Security Analysis", "abstract": "Blockchain technology has been gaining great interest from a variety of sectors including healthcare, supply chain, and cryptocurrencies..."}
```

**Author works mapping:**

```json
{"id": "https://openalex.org/A5083262615", "works": ["https://openalex.org/W4323317762", "https://openalex.org/W4285189682"]}
```

**Author information:**

```json
{"id": "https://openalex.org/A5083262615", "citations": 238, "works_count": 14, "experience_years": 5, "institution": "Université de Montréal"}
```


## Qrel Files

exHarmony provides **multiple qrels** to evaluate RAP under different assumptions:

| Qrel Set              | Description                                                                   |
| --------------------- | ----------------------------------------------------------------------------- |
| **exHarmony-Authors** | Authors of each paper are considered relevant.                                |
| **exHarmony-Cite**    | Authors of the most similar paper in the test set are considered relevant.    |
| **exHarmony-SimCite** | Narrows citation-based relevance to the top-10 most similar cited papers.     |


## Citation

If you use this resource, please cite our paper:

```
@inproceedings{ebrahimi2025exharmony,
  author = {Ebrahimi, Sajad and Salamat, Sara and Arabzadeh, Negar and Bashari, Mahdi and Bagheri, Ebrahim},
  title = {exHarmony: Authorship and Citations for Benchmarking the Reviewer Assignment Problem},
  year = {2025},
  isbn = {978-3-031-88713-0},
  publisher = {Springer-Verlag},
  doi = {10.1007/978-3-031-88714-7_1},
  booktitle = {Advances in Information Retrieval: 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6–10, 2025, Proceedings, Part III},
  pages = {1–16},
}
```