Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
100B<n<1T
License:
Changed the name of my dataset loading script.
Browse files- ColonCancerCTDataset.py +158 -0
ColonCancerCTDataset.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pydicom
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import io
|
| 5 |
+
import datasets
|
| 6 |
+
import gdown
|
| 7 |
+
import re
|
| 8 |
+
import s3fs
|
| 9 |
+
import random
|
| 10 |
+
|
| 11 |
+
example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
|
| 12 |
+
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
|
| 13 |
+
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
|
| 14 |
+
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
|
| 15 |
+
fs = s3fs.S3FileSystem(anon=True)
|
| 16 |
+
|
| 17 |
+
_DESCRIPTION = "This is the description"
|
| 18 |
+
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
|
| 19 |
+
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
|
| 20 |
+
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
| 24 |
+
"""TODO: Short description of my dataset."""
|
| 25 |
+
VERSION = datasets.Version("1.1.0")
|
| 26 |
+
|
| 27 |
+
BUILDER_CONFIGS = [
|
| 28 |
+
datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
|
| 29 |
+
datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
|
| 30 |
+
]
|
| 31 |
+
DEFAULT_CONFIG_NAME = "example"
|
| 32 |
+
|
| 33 |
+
def _info(self):
|
| 34 |
+
return datasets.DatasetInfo(
|
| 35 |
+
description=_DESCRIPTION,
|
| 36 |
+
features=datasets.Features(
|
| 37 |
+
{
|
| 38 |
+
"image": datasets.Image(),
|
| 39 |
+
"ImageType": datasets.Sequence(datasets.Value('string')),
|
| 40 |
+
"StudyDate": datasets.Value('string'),
|
| 41 |
+
"SeriesDate": datasets.Value('string'),
|
| 42 |
+
"Manufacturer": datasets.Value('string'),
|
| 43 |
+
"StudyDescription": datasets.Value('string'),
|
| 44 |
+
"SeriesDescription": datasets.Value('string'),
|
| 45 |
+
"PatientSex": datasets.Value('string'),
|
| 46 |
+
"PatientAge": datasets.Value('string'),
|
| 47 |
+
"PregnancyStatus": datasets.Value('string'),
|
| 48 |
+
"BodyPartExamined": datasets.Value('string'),
|
| 49 |
+
}),
|
| 50 |
+
homepage = _HOMEPAGE,
|
| 51 |
+
license = _LICENSE,
|
| 52 |
+
citation = _CITATION
|
| 53 |
+
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
def _split_generators(self, dl_manager):
|
| 57 |
+
"""Returns SplitGenerators."""
|
| 58 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
|
| 59 |
+
s3_series_paths = []
|
| 60 |
+
s3_individual_paths = []
|
| 61 |
+
if self.config.name == 'example':
|
| 62 |
+
manifest_file = example_manifest_file
|
| 63 |
+
else:
|
| 64 |
+
manifest_file = full_manifest_file
|
| 65 |
+
|
| 66 |
+
with open(manifest_file, 'r') as file:
|
| 67 |
+
for line in file:
|
| 68 |
+
match = re.search(r'cp (s3://[\S]+) .', line)
|
| 69 |
+
if match:
|
| 70 |
+
s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
|
| 71 |
+
for series in s3_series_paths:
|
| 72 |
+
for content in fs.ls(series):
|
| 73 |
+
s3_individual_paths.append(fs.info(content)['Key'])
|
| 74 |
+
|
| 75 |
+
random.shuffle(s3_individual_paths)
|
| 76 |
+
|
| 77 |
+
# Define the split sizes
|
| 78 |
+
train_size = int(0.7 * len(s3_individual_paths))
|
| 79 |
+
val_size = int(0.15 * len(s3_individual_paths))
|
| 80 |
+
# Split the paths into train, validation, and test sets
|
| 81 |
+
train_paths = s3_individual_paths[:train_size]
|
| 82 |
+
val_paths = s3_individual_paths[train_size:train_size + val_size]
|
| 83 |
+
test_paths = s3_individual_paths[train_size + val_size:]
|
| 84 |
+
|
| 85 |
+
return [
|
| 86 |
+
datasets.SplitGenerator(
|
| 87 |
+
name=datasets.Split.TRAIN,
|
| 88 |
+
gen_kwargs={
|
| 89 |
+
"paths": train_paths,
|
| 90 |
+
"split": "train"
|
| 91 |
+
},
|
| 92 |
+
),
|
| 93 |
+
datasets.SplitGenerator(
|
| 94 |
+
name=datasets.Split.VALIDATION,
|
| 95 |
+
gen_kwargs={
|
| 96 |
+
"paths": val_paths,
|
| 97 |
+
"split": "dev"
|
| 98 |
+
},
|
| 99 |
+
),
|
| 100 |
+
datasets.SplitGenerator(
|
| 101 |
+
name=datasets.Split.TEST,
|
| 102 |
+
gen_kwargs={
|
| 103 |
+
"paths": test_paths,
|
| 104 |
+
"split": "test"
|
| 105 |
+
},
|
| 106 |
+
),
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
def _generate_examples(self, paths, split):
|
| 110 |
+
"""Yields examples."""
|
| 111 |
+
# TODO: This method will yield examples, i.e. rows in the dataset.
|
| 112 |
+
for path in paths:
|
| 113 |
+
key = path
|
| 114 |
+
with fs.open(path, 'rb') as f:
|
| 115 |
+
dicom_data = pydicom.dcmread(f)
|
| 116 |
+
pixel_array = dicom_data.pixel_array
|
| 117 |
+
# Adjust for MONOCHROME1 to invert the grayscale values
|
| 118 |
+
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
|
| 119 |
+
pixel_array = np.max(pixel_array) - pixel_array
|
| 120 |
+
# Normalize or scale 16-bit or other depth images to 8-bit
|
| 121 |
+
if pixel_array.dtype != np.uint8:
|
| 122 |
+
pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
|
| 123 |
+
# Convert to RGB if it is not already (e.g., for color images)
|
| 124 |
+
if len(pixel_array.shape) == 2:
|
| 125 |
+
im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale
|
| 126 |
+
elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
|
| 127 |
+
im = Image.fromarray(pixel_array, mode="RGB")
|
| 128 |
+
else:
|
| 129 |
+
raise ValueError("Unsupported DICOM image format")
|
| 130 |
+
with io.BytesIO() as output:
|
| 131 |
+
im.save(output, format="PNG")
|
| 132 |
+
png_image = output.getvalue()
|
| 133 |
+
# Extracting metadata
|
| 134 |
+
ImageType = dicom_data.get("ImageType", "")
|
| 135 |
+
StudyDate = dicom_data.get("StudyDate", "")
|
| 136 |
+
SeriesDate = dicom_data.get("SeriesDate", "")
|
| 137 |
+
Manufacturer = dicom_data.get("Manufacturer", "")
|
| 138 |
+
StudyDescription = dicom_data.get("StudyDescription", "")
|
| 139 |
+
SeriesDescription = dicom_data.get("SeriesDescription", "")
|
| 140 |
+
PatientSex = dicom_data.get("PatientSex", "")
|
| 141 |
+
PatientAge = dicom_data.get("PatientAge", "")
|
| 142 |
+
PregnancyStatus = dicom_data.get("PregnancyStatus", "")
|
| 143 |
+
if PregnancyStatus == None:
|
| 144 |
+
PregnancyStatus = "None"
|
| 145 |
+
else:
|
| 146 |
+
PregnancyStatus = "Yes"
|
| 147 |
+
BodyPartExamined = dicom_data.get("BodyPartExamined", "")
|
| 148 |
+
yield key, {"image": png_image,
|
| 149 |
+
"ImageType": ImageType,
|
| 150 |
+
"StudyDate": StudyDate,
|
| 151 |
+
"SeriesDate": SeriesDate,
|
| 152 |
+
"Manufacturer": Manufacturer,
|
| 153 |
+
"StudyDescription": StudyDescription,
|
| 154 |
+
"SeriesDescription": SeriesDescription,
|
| 155 |
+
"PatientSex": PatientSex,
|
| 156 |
+
"PatientAge": PatientAge,
|
| 157 |
+
"PregnancyStatus": PregnancyStatus,
|
| 158 |
+
"BodyPartExamined": BodyPartExamined}
|