File size: 5,437 Bytes
5cc45ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: apache-2.0
pipeline_tag: image-to-text
---
# UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters
[[Paper](https://huggingface.co/papers/2512.21095)] [[Code](https://github.com/Topdu/OpenOCR)] [[ModelScope Demo](https://www.modelscope.cn/studios/topdktu/OpenOCR-UniRec-Demo)] [[Hugging Face Demo](https://huggingface.co/spaces/topdu/OpenOCR-UniRec-Demo)] [[Local Demo](#local-demo)]
## Introduction
**UniRec-0.1B** is a unified recognition model with only 0.1B parameters, designed for high-accuracy and efficient recognition of plain text (words, lines, paragraphs), mathematical formulas (single-line, multi-line), and mixed content in both Chinese and English.
It addresses structural variability and semantic entanglement by using a hierarchical supervision training strategy and a semantic-decoupled tokenizer. Despite its small size, it achieves performance comparable to or better than much larger vision-language models.
## Get Started with ONNX
### Install OpenOCR and Dependencies:
```shell
git clone https://github.com/Topdu/OpenOCR.git
pip install onnxruntime
cd OpenOCR
huggingface-cli download topdu/unirec_0_1b_onnx --local-dir ./unirec_0_1b_onnx
```
### Inference
```shell
python ./tools/depolyment/unirec_onnx/infer_onnx.py --image /path/to/image
```
## Get Started with Pytorch
### Dependencies:
- [PyTorch](http://pytorch.org/) version >= 1.13.0
- Python version >= 3.7
```shell
conda create -n openocr python==3.10
conda activate openocr
# install gpu version torch >=1.13.0
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# or cpu version
conda install pytorch torchvision torchaudio cpuonly -c pytorch
git clone https://github.com/Topdu/OpenOCR.git
```
### Downloding the UniRec Model from ModelScope or Hugging Face
```shell
cd OpenOCR
pip install -r requirements.txt
# download model from modelscope
modelscope download topdktu/unirec-0.1b --local_dir ./unirec-0.1b
# or download model from huggingface
huggingface-cli download topdu/unirec-0.1b --local-dir ./unirec-0.1b
```
### Inference
```shell
python tools/infer_rec.py --c ./configs/rec/unirec/focalsvtr_ardecoder_unirec.yml --o Global.infer_img=/path/img_fold or /path/img_file
```
### Local Demo
```shell
pip install gradio==4.20.0
python demo_unirec.py
```
### Training
Additional dependencies:
```shell
pip install PyMuPDF
pip install pdf2image
pip install numpy==1.26.4
pip install albumentations==1.4.24
pip install transformers==4.49.0
pip install -U flash-attn --no-build-isolation
```
It is recommended to organize your working directory as follows:
```shell
|-UniRec40M # Main directory for UniRec40M dataset
|-OpenOCR # Directory for OpenOCR-related files
|-evaluation # Directory for evaluation dataset
```
Download the UniRec40M dataset from Hugging Face
```shell
# downloading small data for quickly training
huggingface-cli download topdu/UniRec40M --include "hiertext_lmdb/**" --repo-type dataset --local-dir ./UniRec40M/
huggingface-cli download topdu/OpenOCR-Data --include "evaluation/**" --repo-type dataset --local-dir ./
```
Run the following command to train the model quickly:
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port=23333 --nproc_per_node=8 tools/train_rec.py --c configs/rec/unirec/focalsvtr_ardecoder_unirec.yml
```
Downloading the full dataset requires 3.5 TB of available storage space. Then, you need to merge the split files named `data.mdb.part_*` (located in `HWDB2Train`, `ch_pdf_lmdb`, and `en_pdf_lmdb`) into a single `data.mdb` file. Execute the commands below step by step:
```shell
# downloading full data
huggingface-cli download topdu/UniRec40M --repo-type dataset --local-dir ./UniRec40M/
cd UniRec40M/HWDB2Train/image_lmdb & cat data.mdb.part_* > data.mdb
cd UniRec40M/ch_pdf_lmdb & cat data.mdb.part_* > data.mdb
cd UniRec40M/en_pdf_lmdb & cat data.mdb.part_* > data.mdb
```
And modify the `configs/rec/unirec/focalsvtr_ardecoder_unirec.yml` file as follows:
```yaml
...
Train:
dataset:
name: NaSizeDataSet
divided_factor: ÷d_factor [64, 64] # w, h
max_side: &max_side [960, 1408] # [64*30, 64*44] # w, h [960, 1408] #
root_path: path/to/UniRec40M
add_return: True
zoom_min_factor: 4
use_zoom: True
all_data: True
test_data: False
use_aug: True
use_linedata: True
transforms:
- UniRecLabelEncode: # Class handling label
max_text_length: *max_text_length
vlmocr: True
tokenizer_path: *vlm_ocr_config # path to tokenizer, e.g. 'vocab.json', 'merges.txt'
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: NaSizeSampler
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
min_bs: 1
max_bs: 24
loader:
shuffle: True
batch_size_per_card: 64
drop_last: True
num_workers: 8
...
```
## Citation
If you find our method useful for your research, please cite:
```bibtex
@article{du2025unirec,
title={UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters},
author={Yongkun Du and Zhineng Chen and Yazhen Xie and Weikang Bai and Hao Feng and Wei Shi and Yuchen Su and Can Huang and Yu-Gang Jiang},
journal={arXiv preprint arXiv:2512.21095},
year={2025}
}
``` |