--- license: apache-2.0 pipeline_tag: image-to-text --- # UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters [[Paper](https://huggingface.co/papers/2512.21095)] [[Code](https://github.com/Topdu/OpenOCR)] [[ModelScope Demo](https://www.modelscope.cn/studios/topdktu/OpenOCR-UniRec-Demo)] [[Hugging Face Demo](https://huggingface.co/spaces/topdu/OpenOCR-UniRec-Demo)] [[Local Demo](#local-demo)] ## Introduction **UniRec-0.1B** is a unified recognition model with only 0.1B parameters, designed for high-accuracy and efficient recognition of plain text (words, lines, paragraphs), mathematical formulas (single-line, multi-line), and mixed content in both Chinese and English. It addresses structural variability and semantic entanglement by using a hierarchical supervision training strategy and a semantic-decoupled tokenizer. Despite its small size, it achieves performance comparable to or better than much larger vision-language models. ## Get Started with ONNX ### Install OpenOCR and Dependencies: ```shell git clone https://github.com/Topdu/OpenOCR.git pip install onnxruntime cd OpenOCR huggingface-cli download topdu/unirec_0_1b_onnx --local-dir ./unirec_0_1b_onnx ``` ### Inference ```shell python ./tools/depolyment/unirec_onnx/infer_onnx.py --image /path/to/image ``` ## Get Started with Pytorch ### Dependencies: - [PyTorch](http://pytorch.org/) version >= 1.13.0 - Python version >= 3.7 ```shell conda create -n openocr python==3.10 conda activate openocr # install gpu version torch >=1.13.0 conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia # or cpu version conda install pytorch torchvision torchaudio cpuonly -c pytorch git clone https://github.com/Topdu/OpenOCR.git ``` ### Downloding the UniRec Model from ModelScope or Hugging Face ```shell cd OpenOCR pip install -r requirements.txt # download model from modelscope modelscope download topdktu/unirec-0.1b --local_dir ./unirec-0.1b # or download model from huggingface huggingface-cli download topdu/unirec-0.1b --local-dir ./unirec-0.1b ``` ### Inference ```shell python tools/infer_rec.py --c ./configs/rec/unirec/focalsvtr_ardecoder_unirec.yml --o Global.infer_img=/path/img_fold or /path/img_file ``` ### Local Demo ```shell pip install gradio==4.20.0 python demo_unirec.py ``` ### Training Additional dependencies: ```shell pip install PyMuPDF pip install pdf2image pip install numpy==1.26.4 pip install albumentations==1.4.24 pip install transformers==4.49.0 pip install -U flash-attn --no-build-isolation ``` It is recommended to organize your working directory as follows: ```shell |-UniRec40M # Main directory for UniRec40M dataset |-OpenOCR # Directory for OpenOCR-related files |-evaluation # Directory for evaluation dataset ``` Download the UniRec40M dataset from Hugging Face ```shell # downloading small data for quickly training huggingface-cli download topdu/UniRec40M --include "hiertext_lmdb/**" --repo-type dataset --local-dir ./UniRec40M/ huggingface-cli download topdu/OpenOCR-Data --include "evaluation/**" --repo-type dataset --local-dir ./ ``` Run the following command to train the model quickly: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port=23333 --nproc_per_node=8 tools/train_rec.py --c configs/rec/unirec/focalsvtr_ardecoder_unirec.yml ``` Downloading the full dataset requires 3.5 TB of available storage space. Then, you need to merge the split files named `data.mdb.part_*` (located in `HWDB2Train`, `ch_pdf_lmdb`, and `en_pdf_lmdb`) into a single `data.mdb` file. Execute the commands below step by step: ```shell # downloading full data huggingface-cli download topdu/UniRec40M --repo-type dataset --local-dir ./UniRec40M/ cd UniRec40M/HWDB2Train/image_lmdb & cat data.mdb.part_* > data.mdb cd UniRec40M/ch_pdf_lmdb & cat data.mdb.part_* > data.mdb cd UniRec40M/en_pdf_lmdb & cat data.mdb.part_* > data.mdb ``` And modify the `configs/rec/unirec/focalsvtr_ardecoder_unirec.yml` file as follows: ```yaml ... Train: dataset: name: NaSizeDataSet divided_factor: ÷d_factor [64, 64] # w, h max_side: &max_side [960, 1408] # [64*30, 64*44] # w, h [960, 1408] # root_path: path/to/UniRec40M add_return: True zoom_min_factor: 4 use_zoom: True all_data: True test_data: False use_aug: True use_linedata: True transforms: - UniRecLabelEncode: # Class handling label max_text_length: *max_text_length vlmocr: True tokenizer_path: *vlm_ocr_config # path to tokenizer, e.g. 'vocab.json', 'merges.txt' - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order sampler: name: NaSizeSampler # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple min_bs: 1 max_bs: 24 loader: shuffle: True batch_size_per_card: 64 drop_last: True num_workers: 8 ... ``` ## Citation If you find our method useful for your research, please cite: ```bibtex @article{du2025unirec, title={UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters}, author={Yongkun Du and Zhineng Chen and Yazhen Xie and Weikang Bai and Hao Feng and Wei Shi and Yuchen Su and Can Huang and Yu-Gang Jiang}, journal={arXiv preprint arXiv:2512.21095}, year={2025} } ```