title,summary,link,year,venue,inclusion,modality,contribution BiE: Bi-Exponent Block Floating-Point for Large Language Models Quantization,"Nowadays, Large Language Models (LLMs) mostly possess billions of parameters, bringing significant challenges to hardware platforms. Although quantization is an efficient approach to reduce computation and memory overhead for inference optimization, we stress the challenge that mainstream low-bit quantization approaches still suffer from either various data distribution outliers or a lack of hardware efficiency. We also find that low-bit data format has further potential expressiveness to cover the atypical language data distribution. In this paper, we propose a novel numerical representation, Bi-Exponent Block Floating Point (BiE), and a new quantization flow. BiE quantization shows accuracy superiority and hardware friendliness on various models and benchmarks.",https://proceedings.mlr.press/v235/zou24d.html,2024,ICML,No,, Dynamic Evaluation of Large Language Models by Meta Probing Agents,"Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs’ abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Mattew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.",https://proceedings.mlr.press/v235/zhu24m.html,2024,ICML,Yes,Language,Methodological DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection,"Vision-language models (VLMs), such as CLIP, have demonstrated impressive zero-shot capabilities for various downstream tasks. Their performance can be further enhanced through few-shot prompt tuning methods. However, current studies evaluate the performance of learned prompts separately on base and new classes. This evaluation lacks practicality for real-world applications since downstream tasks cannot determine whether the data belongs to base or new classes in advance. In this paper, we explore a problem setting called O*pen-world Prompt Tuning (OPT), which involves tuning prompts on base classes and evaluating on a combination of base and new classes. By introducing Decomposed Prompt Tuning framework (DePT), we theoretically demonstrate that OPT can be solved by incorporating out-of-distribution detection into prompt tuning, thereby enhancing the base-to-new discriminability. Based on DePT, we present a novel prompt tuning approach, namely, Decomposed Context Op*timization (DeCoOp), which introduces new-class detectors and sub-classifiers to further enhance the base-class and new-class discriminability. Experimental results on 11 benchmark datasets validate the effectiveness of DePT and demonstrate that DeCoOp outperforms current state-of-the-art methods, providing a significant 2% average accuracy improvement.",https://proceedings.mlr.press/v235/zhou24s.html,2024,ICML,No,, Self-Infilling Code Generation,"In this work, we introduce self-infilling code generation, a general framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent infilling-capable code language models can perform self-infilling: whereas conventional infilling is designed to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize self-infilling to introduce novel interruption and looping mechanisms in conventional decoding, evolving it into a non-monotonic process. Interruptions allow for postponing the generation of specific code until a definitive suffix is established, enhancing control during decoding. Meanwhile, the looping mechanism, which leverages the complementary nature of self-infilling and left-to-right decoding, can iteratively update and synchronize each piece of generation cyclically. Extensive experiments across a variety of code generation benchmarks demonstrate that decoding with self-infilling not only improves the output quality but also regularizes the overall generation, which effectively mitigates potential degeneration and scaffolds code to be more consistent with intended functionality.",https://proceedings.mlr.press/v235/zheng24o.html,2024,ICML,No,, On Prompt-Driven Safeguarding for Large Language Models,"Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs’ behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a ""higher-refusal"" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries’ representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models’ general performance.",https://proceedings.mlr.press/v235/zheng24n.html,2024,ICML,No,, ContPhy: Continuum Physical Concept Learning and Reasoning from Videos,"We introduce the Continuum Physical Dataset (ContPhy), a novel benchmark for assessing machine physical commonsense. ContPhy complements existing physical reasoning benchmarks by encompassing the inference of diverse physical properties, such as mass and density, across various scenarios and predicting corresponding dynamics. We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy, which shows that current AI models still lack physical commonsense for the continuum, especially soft-bodies, and illustrates the value of the proposed dataset. We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models, which enjoy the advantages of both models, precise dynamic predictions, and interpretable reasoning. ContPhy aims to spur progress in perception and reasoning within diverse physical settings, narrowing the divide between human and machine intelligence in understanding the physical world.",https://proceedings.mlr.press/v235/zheng24l.html,2024,ICML,Yes,Video, "GPT-4V(ision) is a Generalist Web Agent, if Grounded","The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents—it can successfully complete 51.1% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out to be not effective for web agents, and the best grounding strategy we develop in this paper leverages both the HTML structure and visuals. Yet, there is still a substantial gap with oracle grounding, leaving ample room for further improvement. All code, data, and evaluation tools are available at https://github.com/OSU-NLP-Group/SeeAct.",https://proceedings.mlr.press/v235/zheng24e.html,2024,ICML,No,, LangCell: Language-Cell Pre-training for Cell Identity Understanding,"Cell identity encompasses various semantic aspects of a cell, including cell type, pathway information, disease information, and more, which are essential for biologists to gain insights into its biological characteristics. Understanding cell identity from the transcriptomic data, such as annotating cell types, has become an important task in bioinformatics. As these semantic aspects are determined by human experts, it is impossible for AI models to effectively carry out cell identity understanding tasks without the supervision signals provided by single-cell and label pairs. The single-cell pre-trained language models (PLMs) currently used for this task are trained only on a single modality, transcriptomics data, lack an understanding of cell identity knowledge. As a result, they have to be fine-tuned for downstream tasks and struggle when lacking labeled data with the desired semantic labels. To address this issue, we propose an innovative solution by constructing a unified representation of single-cell data and natural language during the pre-training phase, allowing the model to directly incorporate insights related to cell identity. More specifically, we introduce LangCell, the first Language-Cell pre-training framework. LangCell utilizes texts enriched with cell identity information to gain a profound comprehension of cross-modal knowledge. Results from experiments conducted on different benchmarks show that LangCell is the only single-cell PLM that can work effectively in zero-shot cell identity understanding scenarios, and also significantly outperforms existing models in few-shot and fine-tuning cell identity understanding scenarios.",https://proceedings.mlr.press/v235/zhao24u.html,2024,ICML,No,, Subgoal-based Demonstration Learning for Formal Theorem Proving,"Large language models (LLMs) present a promising pathway for advancing the domain of formal theorem proving. In this paper, we aim to improve the performance of LLMs in formal theorem proving by thoroughly examining the structure and organization of demonstrative in-context examples. We introduce a subgoal-based demonstration learning framework, specifically designed to enhance the efficiency of proof search in LLMs. First, drawing upon the insights of subgoal learning from reinforcement learning and robotics, we propose the construction of distinct subgoals for each demonstration example and refine these subgoals in accordance with the pertinent theories of subgoal learning. Second, we build upon recent advances in diffusion models to predict the optimal organization, simultaneously addressing two intricate issues that persist within the domain of demonstration organization: subset selection and order determination. Our integration of subgoal-based learning has notably increased proof accuracy from 38.9% to 44.1% on the miniF2F benchmark. Furthermore, the adoption of diffusion models for demonstration organization can lead to an additional enhancement in accuracy to 45.5%, or a $5\times$ improvement in sampling efficiency compared to previously established methods.",https://proceedings.mlr.press/v235/zhao24h.html,2024,ICML,No,, Long Is More for Alignment: A Simple but Tough-to-Beat Baseline for Instruction Fine-Tuning,"There is a consensus that instruction fine-tuning of LLMs requires high-quality data, but what are they? LIMA (NeurIPS 2023) and AlpaGasus (ICLR 2024) are state-of-the-art methods for selecting such high-quality examples, either via manual curation or using GPT-3.5-Turbo as a quality scorer. We show that the extremely simple baseline of selecting the 1,000 instructions with longest responses—that intuitively contain more learnable information and are harder to overfit—from standard datasets can consistently outperform these sophisticated methods according to GPT-4 and PaLM-2 as judges, while remaining competitive on the Open LLM benchmarks that test factual knowledge. We demonstrate this for several LLMs (Llama-2-7B, Llama-2-13B, Mistral-7B-v0.1) and datasets (Alpaca-52k, Evol-Instruct-70k). In addition, a lightweight refinement of such long instructions can further improve the abilities of the fine-tuned LLMs, and allows us to obtain competitive results on MT-Bench and the 2nd highest-ranked Llama-2-7B-based model on AlpacaEval 2.0, while training on only 1,000 examples and no extra preference data. We also conduct a thorough analysis of our models to ensure that their enhanced performance is not simply due to GPT-4’s preference for longer responses. Overall, our findings suggest that fine-tuning on the longest responses should be the default baseline for any work on instruction fine-tuning. We provide our code in this GitHub repository.",https://proceedings.mlr.press/v235/zhao24b.html,2024,ICML,No,, CaM: Cache Merging for Memory-efficient LLMs Inference,"Despite the exceptional performance of Large Language Models (LLMs), the substantial volume of key-value (KV) pairs cached during inference presents a barrier to their efficient deployment. To ameliorate this, recent works have aimed to selectively eliminate these caches, informed by the attention scores of associated tokens. However, such cache eviction invariably leads to output perturbation, regardless of the token choice. This perturbation escalates with the compression ratio, which can precipitate a marked deterioration in LLM inference performance. This paper introduces Cache Merging (CaM) as a solution to mitigate this challenge. CaM adaptively merges to-be-evicted caches into the remaining ones, employing a novel sampling strategy governed by the prominence of attention scores within discarded locations. In this manner, CaM enables memory-efficient LLMs to preserve critical token information, even obviating the need to maintain their corresponding caches. Extensive experiments utilizing LLaMA, OPT, and GPT-NeoX across various benchmarks corroborate CaM’s proficiency in bolstering the performance of memory-efficient LLMs. Code is released at https://github.com/zyxxmu/cam.",https://proceedings.mlr.press/v235/zhang24n.html,2024,ICML,No,, Candidate Pseudolabel Learning: Enhancing Vision-Language Models by Prompt Tuning with Unlabeled Data,"Fine-tuning vision-language models (VLMs) with abundant unlabeled data recently has attracted increasing attention. Existing methods that resort to the pseudolabeling strategy would suffer from heavily incorrect hard pseudolabels when VLMs exhibit low zero-shot performance in downstream tasks. To alleviate this issue, we propose a Candidate Pseudolabel Learning method, termed CPL, to fine-tune VLMs with suitable candidate pseudolabels of unlabeled data in downstream tasks. The core of our method lies in the generation strategy of candidate pseudolabels, which progressively generates refined candidate pseudolabels by both intra- and inter-instance label selection, based on a confidence score matrix for all unlabeled data. This strategy can result in better performance in true label inclusion and class-balanced instance selection. In this way, we can directly apply existing loss functions to learn with generated candidate psueudolabels. Extensive experiments on nine benchmark datasets with three learning paradigms demonstrate the effectiveness of our method. Our code can be found here.",https://proceedings.mlr.press/v235/zhang24bo.html,2024,ICML,No,, In-Context Principle Learning from Mistakes,"In-context learning (ICL, also known as few-shot prompting) has been the standard method of adapting LLMs to downstream tasks, by learning from a few input-output examples. Nonetheless, all ICL-based approaches only learn from correct input-output pairs. In this paper, we revisit this paradigm, by learning more from the few given input-output examples. We introduce Learning Principles (LEAP): First, we intentionally induce the model to make mistakes on these few examples; then we reflect on these mistakes, and learn explicit task-specific “principles” from them, which help solve similar problems and avoid common mistakes; finally, we prompt the model to answer unseen test questions using the original few-shot examples and these learned general principles. We evaluate LEAP on a wide range of benchmarks, including multi-hop question answering (Hotpot QA), textual QA (DROP), Big-Bench Hard reasoning, and math problems (GSM8K and MATH); in all these benchmarks, LEAP improves the strongest available LLMs such as GPT-3.5-turbo, GPT-4, GPT-4-turbo and Claude-2.1. For example, LEAP improves over the standard few-shot prompting using GPT-4 by 7.5% in DROP, and by 3.3% in HotpotQA. Importantly, LEAP does not require any more input or examples than the standard few-shot prompting settings.",https://proceedings.mlr.press/v235/zhang24at.html,2024,ICML,No,, Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark,"In the evolving landscape of natural language processing (NLP), fine-tuning pre-trained Large Language Models (LLMs) with first-order (FO) optimizers like SGD and Adam has become standard. Yet, as LLMs grow in size, the substantial memory overhead from back-propagation (BP) for FO gradient computation presents a significant challenge. Addressing this issue is crucial, especially for applications like on-device training where memory efficiency is paramount. This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during LLM fine-tuning, building on the initial concept introduced by (Malladi et al., 2023). Unlike traditional ZO-SGD methods, ou让work expands the exploration to a wider array of ZO optimization techniques, through a comprehensive, first-of-its-kind benchmarking study across five LLM families, three task complexities, and five fine-tuning schemes. Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance. We further introduce novel enhancements to ZO optimization, including block-wise descent, hybrid training, and gradient sparsity. Our study offers a promising direction for achieving further memory-efficient LLM fine-tuning. Codes to reproduce all our experiments will be made public.",https://proceedings.mlr.press/v235/zhang24ad.html,2024,ICML,Yes,Language,Benchmark tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models (LLMs),"Tensor networks are efficient for extremely high-dimensional representation, but their model selection, known as tensor network structure search (TN-SS), is a challenging problem. Although several works have targeted TN-SS, most existing algorithms are manually crafted heuristics with poor performance, suffering from the curse of dimensionality and local convergence. In this work, we jump out of the box, studying how to harness large language models (LLMs) to automatically discover new TN-SS algorithms, replacing the involvement of human experts. By observing how human experts innovate in research, we model their common workflow and propose an automatic algorithm discovery framework called tnGPS. The proposed framework is an elaborate prompting pipeline that instruct LLMs to generate new TN-SS algorithms through iterative refinement and enhancement. The experimental results demonstrate that the algorithms discovered by tnGPS exhibit superior performance in benchmarks compared to the current state-of-the-art methods. Our code is available at https://github.com/ChaoLiAtRIKEN/tngps.",https://proceedings.mlr.press/v235/zeng24b.html,2024,ICML,No,, MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities,"We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models.",https://proceedings.mlr.press/v235/yu24o.html,2024,ICML,Yes,Multimodal, MMT-Bench: A Comprehensive Multimodal Benchmark for Evaluating Large Vision-Language Models Towards Multitask AGI,"Large Vision-Language Models (LVLMs) show significant strides in general-propose multimodal applications such as visual dialogue and embodied navigation. However, existing multimodal evaluation benchmarks cover a limited number of multimodal tasks testing rudimentary capabilities, falling short in tracking LVLM development. In this study, we present MMT-Bench, a comprehensive benchmark designed to assess LVLMs across massive multimodal tasks requiring expert knowledge and deliberate visual recognition, localization, and reasoning. MMT-Bench comprises $31,325$ meticulously curated multi-choice visual questions from various multimodal scenarios such as vehicle driving and embodied navigation, covering $32$ core meta-tasks and $162$ subtasks in multimodal understanding. Due to its extensive task coverage, MMT-Bench enables the evaluation of LVLMs using a task map, facilitating the discovery of in- and out-of-domain tasks. Evaluation results involving $20$ publicly available LVLMs such as the proprietary GeminiProVision model, underscore the significant challenges posed by MMT-Bench. We anticipate that MMT-Bench will inspire the community to develop next-generation multimodal foundation models aimed at achieving general-purpose multimodal intelligence.",https://proceedings.mlr.press/v235/ying24a.html,2024,ICML,Yes,Multimodal, Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity,"Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge due to their colossal model size when it comes to practical deployment. In response to this challenge, efforts have been directed toward the application of traditional network pruning techniques to LLMs, uncovering a massive number of parameters can be pruned in one-shot without hurting performance. Building upon insights gained from pre-LLM models, particularly BERT-level language models, prevailing LLM pruning strategies have consistently adhered to the practice of uniformly pruning all layers at equivalent sparsity levels, resulting in robust performance. However, this observation stands in contrast to the prevailing trends observed in the field of vision models, where non-uniform layerwise sparsity typically yields substantially improved results. To elucidate the underlying reasons for this disparity, we conduct a comprehensive analysis of the distribution of token features within LLMs. In doing so, we discover a strong correlation with the emergence of outliers, defined as features exhibiting significantly greater magnitudes compared to their counterparts in feature dimensions. Inspired by this finding, we introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios specifically designed for LLM pruning, termed as Outlier Weighed Layerwise sparsity (OWL). The sparsity ratio of OWL is directly proportional to the outlier ratio observed within each layer, facilitating a more effective alignment between layerwise weight sparsity and outlier ratios. Our empirical evaluation, conducted across the LLaMA-V1/V2, Vicuna, OPT, and Mistral, spanning various benchmarks, demonstrates the distinct advantages offered by OWL over previous methods. For instance, OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively, while delivering 2.6$\times$ end-to-end inference speed-up in the DeepSparse inference engine. Code is available at https://github.com/luuyin/OWL.git.",https://proceedings.mlr.press/v235/yin24e.html,2024,ICML,No,, DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent),"Recent LLM-driven visual agents mainly focus on solving image-based tasks, which limits their ability to understand dynamic scenes, making it far from real-life applications like guiding students in laboratory experiments and identifying their mistakes. Hence, this paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes. Considering the video modality better reflects the ever-changing nature of real-world scenarios, we exemplify DoraemonGPT as a video agent. Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes. This structured representation allows for spatial-temporal querying and reasoning by well-designed sub-task tools, resulting in concise intermediate results. Recognizing that LLMs have limited internal knowledge when it comes to specialized domains (e.g., analyzing the scientific principles underlying experiments), we incorporate plug-and-play tools to assess external knowledge and address tasks across different domains. Moreover, a novel LLM-driven planner based on Monte Carlo Tree Search is introduced to explore the large planning space for scheduling various tools. The planner iteratively finds feasible solutions by backpropagating the result’s reward, and multiple solutions can be summarized into an improved final answer. We extensively evaluate DoraemonGPT’s effectiveness on three benchmarks and several in-the-wild scenarios. Project page: https://z-x-yang.github.io/doraemon-gpt.",https://proceedings.mlr.press/v235/yang24d.html,2024,ICML,No,, Retrieval Across Any Domains via Large-scale Pre-trained Model,"In order to enhance the generalization ability towards unseen domains, universal cross-domain image retrieval methods require a training dataset encompassing diverse domains, which is costly to assemble. Given this constraint, we introduce a novel problem of data-free adaptive cross-domain retrieval, eliminating the need for real images during training. Towards this goal, we propose a novel Text-driven Knowledge Integration (TKI) method, which exclusively utilizes a pre-trained vision-language model to implement an “aggregation after expansion"" training strategy. Specifically, we extract diverse implicit domain-specific information through a set of learnable domain word vectors. Subsequently, a domain-agnostic universal projection, equipped with a non-Euclidean multi-layer perceptron, can be optimized using these assorted text descriptions through the text-proxied domain aggregation. Leveraging the cross-modal transferability phenomenon of the shared latent space, we can integrate the trained domain-agnostic universal projection with the pre-trained visual encoder to extract the features of the input image for the following retrieval during testing. Extensive experimental results on several benchmark datasets demonstrate the superiority of our method.",https://proceedings.mlr.press/v235/yan24h.html,2024,ICML,No,, "Soft Prompt Recovers Compressed LLMs, Transferably","Model compression is one of the most popular approaches to improve the accessibility of Large Language Models (LLMs) by reducing their memory footprint. However, the gaining of such efficiency benefits often simultaneously demands extensive engineering efforts and intricate designs to mitigate the performance decline. In this work, we leverage (Soft) Prompt Tuning in its most vanilla form and discover such conventionally learned soft prompts can recover the performance of compressed LLMs. More surprisingly, we observe such recovery effect to be transferable among different tasks and models (albeit natural tokenizer and dimensionality limitations), resulting in further overhead reduction and yet, subverting the common belief that learned soft prompts are task-specific. Our work is fully orthogonal and compatible with model compression frameworks such as pruning and quantization, where we enable up to $8\times$ compressed LLM (with a joint 4-bit quantization and 50% weight pruning compression) to match its uncompressed counterparts on popular benchmarks. We note that we are the first to reveal vanilla Parameter-Efficient Fine-Tuning (PEFT) techniques have the potential to be utilized under a compression recovery context, opening a new line of opportunities for model accessibility advancement while freeing our fellow researchers from the previously present engineering burdens and constraints. The code is available at https://github.com/zirui-ray-liu/compress-then-prompt.",https://proceedings.mlr.press/v235/xu24s.html,2024,ICML,No,, Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study,"Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.",https://proceedings.mlr.press/v235/xu24h.html,2024,ICML,Yes,Language,Benchmark TravelPlanner: A Benchmark for Real-World Planning with Language Agents,"Planning has been part of the core pursuit for artificial intelligence since its conception, but earlier AI agents mostly focused on constrained settings because many of the cognitive substrates necessary for human-level planning have been lacking. Recently, language agents powered by large language models (LLMs) have shown interesting capabilities such as tool use and reasoning. Are these language agents capable of planning in more complex settings that are out of the reach of prior AI agents? To advance this investigation, we propose TravelPlanner, a new planning benchmark that focuses on travel planning, a common real-world planning scenario. It provides a rich sandbox environment, various tools for accessing nearly four million data records, and 1,225 meticulously curated planning intents and reference plans. Comprehensive evaluations show that the current language agents are not yet capable of handling such complex planning tasks—even GPT-4 only achieves a success rate of 0.6%. Language agents struggle to stay on task, use the right tools to collect information, or keep track of multiple constraints. However, we note that the mere possibility for language agents to tackle such a complex problem is in itself non-trivial progress. TravelPlanner provides a challenging yet meaningful testbed for future language agents.",https://proceedings.mlr.press/v235/xie24j.html,2024,ICML,Yes,Language,Benchmark Differentially Private Synthetic Data via Foundation Model APIs 2: Text,"Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications.",https://proceedings.mlr.press/v235/xie24g.html,2024,ICML,No,, VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language Model,"In the realm of household robotics, the Zero-Shot Object Navigation (ZSON) task empowers agents to adeptly traverse unfamiliar environments and locate objects from novel categories without prior explicit training. This paper introduces VoroNav, a novel semantic exploration framework that proposes the Reduced Voronoi Graph to extract exploratory paths and planning nodes from a semantic map constructed in real time. By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model (LLM). In particular, our approach presents a synergy of path and farsight descriptions to represent the environmental context, enabling LLM to apply commonsense reasoning to ascertain waypoints for navigation. Extensive evaluation on HM3D and HSSD validates VoroNav surpasses existing benchmarks in both success rate and exploration efficiency (absolute improvement: +2.8% Success and +3.7% SPL on HM3D, +2.6% Success and +3.8% SPL on HSSD). Additionally introduced metrics that evaluate obstacle avoidance proficiency and perceptual efficiency further corroborate the enhancements achieved by our method in ZSON planning. Project page: https://voro-nav.github.io",https://proceedings.mlr.press/v235/wu24u.html,2024,ICML,No,, Evaluating and Analyzing Relationship Hallucinations in Large Vision-Language Models,"The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset’s long-tail distribution significantly impacts LVLMs’ understanding of visual relationships. Additionally, our analysis reveals that current LVLMs tend to overlook visual content, overly rely on the common sense knowledge of Large Language Models (LLMs), and struggle with spatial relationship reasoning based on contextual information.",https://proceedings.mlr.press/v235/wu24l.html,2024,ICML,Yes,Multimodal, Repoformer: Selective Retrieval for Repository-Level Code Completion,"Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion. However, the invariable use of retrieval in existing methods exposes issues in both efficiency and robustness, with a large proportion of the retrieved contexts proving unhelpful or harmful to code language models (code LMs). In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary. To power this framework, we design a self-supervised learning approach to enable a code LM to accurately self-evaluate whether retrieval can improve its output quality and robustly leverage the potentially noisy retrieved contexts. Using this LM as both the selective RAG policy and the generation model, our framework achieves state-of-the-art repository-level code completion performance on diverse benchmarks including RepoEval, CrossCodeEval, and CrossCodeLongEval, a new long-form code completion benchmark. Meanwhile, our analyses show that selectively retrieving brings as much as 70% inference speedup in the online serving setting without harming the performance. We further demonstrate that our framework is able to accommodate different generation models, retrievers, and programming languages. These advancements position our framework as an important step towards more accurate and efficient repository-level code completion.",https://proceedings.mlr.press/v235/wu24a.html,2024,ICML,Yes,Language,Methodological Magicoder: Empowering Code Generation with OSS-Instruct,"We introduce Magicoder, a series of fully open-source (code, weights, and data) Large Language Models (LLMs) for code that significantly closes the gap with top code models while having no more than 7B parameters. Magicoder models are trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets to generate diverse instruction data for code. Our main motivation is to mitigate the inherent bias of the synthetic data generated by LLMs through the wealth of open-source references for the production of more realistic and controllable data. The orthogonality of OSS-Instruct and other data generation methods like Evol-Instruct further enables us to build an enhanced MagicoderS. Both Magicoder and MagicoderS substantially outperform state-of-the-art code models with similar or even larger sizes on a wide range of coding benchmarks. Notably, MagicoderS-CL-7B based on CodeLlama even surpasses the prominent ChatGPT on HumanEval+ (66.5 vs. 65.9 in pass@1 ). Overall, OSS-Instruct opens a new direction for crafting diverse synthetic instruction data for code using abundant open-source references.",https://proceedings.mlr.press/v235/wei24h.html,2024,ICML,No,, Rethinking Generative Large Language Model Evaluation for Semantic Comprehension,"Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method—multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called “Real-world questions” (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like Alpaca Eval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.",https://proceedings.mlr.press/v235/wei24c.html,2024,ICML,Yes,Language,Methodological SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models,"Most existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.",https://proceedings.mlr.press/v235/wang24z.html,2024,ICML,Yes,Language,Benchmark MEMORYLLM: Towards Self-Updatable Large Language Models,"Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates. Our code and model are open-sourced at https://github.com/wangyu-ustc/MemoryLLM.",https://proceedings.mlr.press/v235/wang24s.html,2024,ICML,No,, Executable Code Actions Elicit Better LLM Agents,"Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents’ actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.",https://proceedings.mlr.press/v235/wang24h.html,2024,ICML,Yes,Language,Technical One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts,"Large Language Models (LLMs) exhibit strong generalization capabilities to novel tasks when prompted with language instructions and in-context demos. Since this ability sensitively depends on the quality of prompts, various methods have been explored to automate the instruction design. While these methods demonstrated promising results, they also restricted the searched prompt to one instruction. Such simplification significantly limits their capacity, as a single demo-free instruction might not be able to cover the entire complex problem space of the targeted task. To alleviate this issue, we adopt the Mixture-of-Expert paradigm and divide the problem space into a set of sub-regions; Each sub-region is governed by a specialized expert, equipped with both an instruction and a set of demos. A two-phase process is developed to construct the specialized expert for each region: (1) demo assignment: Inspired by the theoretical connection between in-context learning and kernel regression, we group demos into experts based on their semantic similarity; (2) instruction assignment: A region-based joint search of an instruction per expert complements the demos assigned to it, yielding a synergistic effect. The resulting method, codenamed Mixture-of-Prompts (MoP), achieves an average win rate of 81% against prior arts across several major benchmarks.",https://proceedings.mlr.press/v235/wang24b.html,2024,ICML,No,, Do Large Language Models Perform the Way People Expect? Measuring the Human Generalization Function,"What makes large language models (LLMs) impressive is also what makes them hard to evaluate: their diversity of uses. To evaluate these models, we must understand the purposes they will be used for. We consider a setting where these deployment decisions are made by people, and in particular, people’s beliefs about where an LLM will perform well. We model such beliefs as the consequence of a human generalization function: having seen what an LLM gets right or wrong, people generalize to where else it might succeed. We collect a dataset of 19K examples of how humans make generalizations across 79 tasks from the MMLU and BIG-Bench benchmarks. We show that the human generalization function can be predicted using NLP methods: people have consistent structured ways to generalize. We then evaluate LLM alignment with the human generalization function. Our results show that – especially for cases where the cost of mistakes is high – more capable models (e.g. GPT-4) can do worse on the instances people choose to use them for, exactly because they are not aligned with the human generalization function.",https://proceedings.mlr.press/v235/vafa24a.html,2024,ICML,No,, MathScale: Scaling Instruction Tuning for Mathematical Reasoning,"Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., GPT-3.5). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct MWPBench, a benchmark of Math Word Problems, which is a collection of 9 datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on MWPBench, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.8% in micro average accuracy and 43.6% in macro average accuracy, respectively.",https://proceedings.mlr.press/v235/tang24k.html,2024,ICML,Yes,Language,Methodological Rethinking Optimization and Architecture for Tiny Language Models,"The power of large language models (LLMs) has been demonstrated through numerous data and computing resources. However, the application of language models on mobile devices is facing huge challenge on the computation and memory costs, that is, tiny language models with high performance are urgently required. Limited by the highly complex training process, there are many details for optimizing language models that are seldom studied carefully. In this study, based on a tiny language model with 1B parameters, we carefully design a series of empirical study to analyze the effect of each component. Three perspectives are mainly discussed, i.e., neural architecture, parameter initialization, and optimization strategy. Several design formulas are empirically proved especially effective for tiny language models, including tokenizer compression, architecture tweaking, parameter inheritance and multiple-round training. Then we train PanGu-$\pi$-1B Pro and PanGu-$\pi$-1.5B Pro on 1.6T multilingual corpora, following the established formulas. Experimental results demonstrate the improved optimization and architecture yield a notable average improvement of 8.87 on benchmark evaluation sets for PanGu-$\pi$-1B Pro. Besides, PanGu-$\pi$-1.5B Pro surpasses a range of SOTA models with larger model sizes, validating its superior performance. The code will be released soon. The code is available at https://github.com/YuchuanTian/RethinkTinyLM.",https://proceedings.mlr.press/v235/tang24c.html,2024,ICML,No,, video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models,"Speech understanding as an element of the more generic video understanding using audio-visual large language models (av-LLMs) is a crucial yet understudied aspect. This paper proposes video-SALMONN, a single end-to-end av-LLM for video processing, which can understand not only visual frame sequences, audio events and music, but speech as well. To obtain fine-grained temporal information required by speech understanding, while keeping efficient for other video elements, this paper proposes a novel multi-resolution causal Q-Former (MRC Q-Former) structure to connect pre-trained audio-visual encoders and the backbone large language model. Moreover, dedicated training approaches including the diversity loss and the unpaired audio-visual mixed training scheme are proposed to avoid frames or modality dominance. On the introduced audio-visual evaluation benchmark, video-SALMONN achieves more than 25% absolute accuracy improvements on the video-QA task and over 30% absolute accuracy improvements on audio-visual QA tasks with human speech. In addition, video-SALMONN demonstrates remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other av-LLMs. Our training code and model checkpoints are available at https://github.com/bytedance/SALMONN/",https://proceedings.mlr.press/v235/sun24l.html,2024,ICML,Yes,Multimodal, DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton,"This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach acts as a semantic router which enables the LLM to adhere to a deterministic response pathway. The routing is achieved by the retrieval-augmentation generation (RAG) strategy, which carefully selects dialogue examples aligned with the current conversational context. The advantages of DFA-RAG include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-RAG’s effectiveness, indicating its potential as a valuable contribution to the conversational agent.",https://proceedings.mlr.press/v235/sun24e.html,2024,ICML,No,, ED-Copilot: Reduce Emergency Department Wait Time with Language Model Diagnostic Assistance,"In the emergency department (ED), patients undergo triage and multiple laboratory tests before diagnosis. This time-consuming process causes ED crowding which impacts patient mortality, medical errors, staff burnout, etc. This work proposes (time) cost-effective diagnostic assistance that leverages artificial intelligence systems to help ED clinicians make efficient and accurate diagnoses. In collaboration with ED clinicians, we use public patient data to curate MIMIC-ED-Assist, a benchmark for AI systems to suggest laboratory tests that minimize wait time while accurately predicting critical outcomes such as death. With MIMIC-ED-Assist, we develop ED-Copilot which sequentially suggests patient-specific laboratory tests and makes diagnostic predictions. ED-Copilot employs a pre-trained bio-medical language model to encode patient information and uses reinforcement learning to minimize ED wait time and maximize prediction accuracy. On MIMIC-ED-Assist, ED-Copilot improves prediction accuracy over baselines while halving average wait time from four hours to two hours. ED-Copilot can also effectively personalize treatment recommendations based on patient severity, further highlighting its potential as a diagnostic assistant. Since MIMIC-ED-Assist is a retrospective benchmark, ED-Copilot is restricted to recommend only observed tests. We show ED-Copilot achieves competitive performance without this restriction as the maximum allowed time increases. Our code is available at https://github.com/cxcscmu/ED-Copilot.",https://proceedings.mlr.press/v235/sun24a.html,2024,ICML,Yes,Language,Technical Position: A Roadmap to Pluralistic Alignment,"With increased power and prevalence of AI systems, it is ever more critical that AI systems are designed to serve all, i.e., people with diverse values and perspectives. However, aligning models to serve pluralistic human values remains an open research question. In this piece, we propose a roadmap to pluralistic alignment, specifically using large language models as a test bed. We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution. We also formalize and discuss three possible classes of pluralistic benchmarks: 1) Multi-objective benchmarks, 2) Trade-off steerable benchmarks that incentivize models to steer to arbitrary trade-offs, and 3) Jury-pluralistic benchmarks that explicitly model diverse human ratings. We use this framework to argue that current alignment techniques may be fundamentally limited for pluralistic AI; indeed, we highlight empirical evidence, both from our own experiments and from other work, that standard alignment procedures might reduce distributional pluralism in models, motivating the need for further research on pluralistic alignment.",https://proceedings.mlr.press/v235/sorensen24a.html,2024,ICML,No,, Sparse is Enough in Fine-tuning Pre-trained Large Language Models,"With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. $\textbf{P}$arameter-$\textbf{E}$fficient $\textbf{F}$ine-$\textbf{T}$uning(PEFT) methods have been proposed for low-cost adaptation. Although PEFT has demonstrated effectiveness and been widely applied, the underlying principles are still unclear. In this paper, we adopt the PAC-Bayesian generalization error bound, viewing pre-training as a shift of prior distribution which leads to a tighter bound for generalization error. We validate this shift from the perspectives of oscillations in the loss landscape and the quasi-sparsity in gradient distribution. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named $\textbf{S}$parse $\textbf{I}$ncrement $\textbf{F}$ine-$\textbf{T}$uning(SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at https://github.com/song-wx/SIFT/.",https://proceedings.mlr.press/v235/song24e.html,2024,ICML,No,, Should we be going MAD? A Look at Multi-Agent Debate Strategies for LLMs,"Recent advancements in large language models (LLMs) underscore their potential for responding to inquiries in various domains. However, ensuring that generative agents provide accurate and reliable answers remains an ongoing challenge. In this context, multi-agent debate (MAD) has emerged as a promising strategy for enhancing the truthfulness of LLMs. We benchmark a range of debating and prompting strategies to explore the trade-offs between cost, time, and accuracy. Importantly, we find that multi-agent debating systems, in their current form, do not reliably outperform other proposed prompting strategies, such as self-consistency and ensembling using multiple reasoning paths. However, when performing hyperparameter tuning, several MAD systems, such as Multi-Persona, perform better. This suggests that MAD protocols might not be inherently worse than other approaches, but that they are more sensitive to different hyperparameter settings and difficult to optimize. We build on these results to offer insights into improving debating strategies, such as adjusting agent agreement levels, which can significantly enhance performance and even surpass all other non-debate protocols we evaluated. We provide an open-source repository to the community with several state-of-the-art protocols together with evaluation scripts to benchmark across popular research datasets.",https://proceedings.mlr.press/v235/smit24a.html,2024,ICML,Yes,Language,Benchmark LCA-on-the-Line: Benchmarking Out of Distribution Generalization with Class Taxonomies,"We tackle the challenge of predicting models’ Out-of-Distribution (OOD) performance using in-distribution (ID) measurements without requiring OOD data. Existing evaluations with “Effective robustness”, which use ID accuracy as an indicator of OOD accuracy, encounter limitations when models are trained with diverse supervision and distributions, such as class labels (Vision Models, VMs, on ImageNet) and textual descriptions (Visual-Language Models, VLMs, on LAION). VLMs often generalize better to OOD data than VMs despite having similar or lower ID performance. To improve the prediction of models’ OOD performance from ID measurements, we introduce the Lowest Common Ancestor (LCA)-on-the-Line framework. This approach revisits the established concept of LCA distance, which measures the hierarchical distance between labels and predictions within a predefined class hierarchy, such as WordNet. We assess 75 models using ImageNet as the ID dataset and five significantly shifted OOD variants, uncovering a strong linear correlation between ID LCA distance and OOD top-1 accuracy. Our method provides a compelling alternative for understanding why VLMs tend to generalize better. Additionally, we propose a technique to construct a taxonomic hierarchy on any dataset using $K$-means clustering, demonstrating that LCA distance is robust to the constructed taxonomic hierarchy. Moreover, we demonstrate that aligning model predictions with class taxonomies, through soft labels or prompt engineering, can enhance model generalization. Open source code in our Project Page.",https://proceedings.mlr.press/v235/shi24c.html,2024,ICML,Yes,Image, Thermometer: Towards Universal Calibration for Large Language Models,"We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.",https://proceedings.mlr.press/v235/shen24c.html,2024,ICML,No,, Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling,"Large-scale sequence modeling has sparked rapid advances that now extend into biology and genomics. However, modeling genomic sequences introduces challenges such as the need to model long-range token interactions, the effects of upstream and downstream regions of the genome, and the reverse complementarity (RC) of DNA. Here, we propose an architecture motivated by these challenges that builds off the long-range Mamba block, and extends it to a BiMamba component that supports bi-directionality, and to a MambaDNA block that additionally supports RC equivariance. We use MambaDNA as the basis of Caduceus, the first family of RC equivariant bi-directional long-range DNA language models, and we introduce pre-training and fine-tuning strategies that yield Caduceus DNA foundation models. Caduceus outperforms previous long-range models on downstream benchmarks; on a challenging long-range variant effect prediction task, Caduceus exceeds the performance of 10x larger models that do not leverage bi-directionality or equivariance. Code to reproduce our experiments is available here: https://github.com/kuleshov-group/caduceus.",https://proceedings.mlr.press/v235/schiff24a.html,2024,ICML,No,, Stay on Topic with Classifier-Free Guidance,"Classifier-Free Guidance (CFG) has recently emerged in as a lightweight technique to encourage prompt-adherence in generations, yet has not yet been successfully applied to language modeling. In this work, we demonstrate across a wide array of benchmarks that CFG can be used broadly as an inference-time technique in pure language modeling. We show that CFG (1) improves the performance of Pythia, GPT-2 and LLaMA-family models across: Q&A, reasoning, code generation, and machine translation, achieving SOTA on LAMBADA with LLaMA-7B over PaLM-540B; (2) brings improvements equivalent to a model with twice the parameter-count; (3) can stack alongside other inference-time methods like Chain-of-Thought and Self-Consistency, yielding further improvements in difficult tasks; (4) can be used to increase the faithfulness and coherence of assistants in challenging form-driven and content-driven prompts: in human evaluations we show a 75% preference for using CFG over baseline.",https://proceedings.mlr.press/v235/sanchez24a.html,2024,ICML,No,, Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT,"Retrieval pipelines are an integral component of many machine learning systems. However, they perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to finetune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based models by at least 22.2 points, despite containing 90× fewer parameters.",https://proceedings.mlr.press/v235/saad-falcon24a.html,2024,ICML,Yes,Language,Benchmark STEER: Assessing the Economic Rationality of Large Language Models,"There is increasing interest in using LLMs as decision-making ""agents"". Doing so includes many degrees of freedom: which model should be used; how should it be prompted; should it be asked to introspect, conduct chain-of-thought reasoning, etc? Settling these questions—and more broadly, determining whether an LLM agent is reliable enough to be trusted—requires a methodology for assessing such an agent’s economic rationality. In this paper, we provide one. We begin by surveying the economic literature on rational decision making, taxonomizing a large set of fine-grained ""elements"" that an agent should exhibit, along with dependencies between them. We then propose a benchmark distribution that quantitatively scores an LLMs performance on these elements and, combined with a user-provided rubric, produces a ""rationality report card"". Finally, we describe the results of a large-scale empirical experiment with 14 different LLMs, characterizing the both current state of the art and the impact of different model sizes on models’ ability to exhibit rational behavior.",https://proceedings.mlr.press/v235/raman24b.html,2024,ICML,Yes,Language,Methodological "Various Lengths, Constant Speed: Efficient Language Modeling with Lightning Attention","We present Lightning Attention, the first linear attention implementation that maintains a constant training speed for various sequence lengths under fixed memory consumption. Due to the issue with cumulative summation operations (cumsum), previous linear attention implementations cannot achieve their theoretical advantage in a casual setting. However, this issue can be effectively solved by utilizing different attention calculation strategies to compute the different parts of attention. Specifically, we split the attention calculation into intra-blocks and inter-blocks and use conventional attention computation for intra-blocks and linear attention kernel tricks for inter-blocks. This eliminates the need for cumsum in the linear attention calculation. Furthermore, a tiling technique is adopted through both forward and backward procedures to take full advantage of the GPU hardware. To enhance accuracy while preserving efficacy, we introduce TransNormerLLM (TNL), a new architecture that is tailored to our lightning attention. We conduct rigorous testing on standard and self-collected datasets with varying model sizes and sequence lengths. TNL is notably more efficient than other language models. In addition, benchmark results indicate that TNL performs on par with state-of-the-art LLMs utilizing conventional transformer structures. The source code is released at github.com/OpenNLPLab/TransnormerLLM.",https://proceedings.mlr.press/v235/qin24c.html,2024,ICML,No,, "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data","With tremendous efforts on developing effective e-commerce models, conventional e-commerce models show limited success in generalist e-commerce modeling, and suffer from unsatisfactory performance on new users and new products – a typical out-of-domain generalization challenge. Meanwhile, large language models (LLMs) demonstrate outstanding performance in generalist modeling and out-of-domain generalizability in many fields. Toward fully unleashing their power for e-commerce, in this paper, we construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce. Leveraging ECInstruct, we develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs. Our comprehensive experiments and evaluation demonstrate that eCeLLM models substantially outperform baseline models, including the most advanced GPT-4, and the state-of-the-art task-specific models in in-domain evaluation. Moreover, eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions, highlighting its superiority as a generalist e-commerce model. Both the ECInstruct dataset and the eCeLLM models show great potential in empowering versatile and effective LLMs for e-commerce. ECInstruct and eCeLLM models are publicly accessible through this link.",https://proceedings.mlr.press/v235/peng24c.html,2024,ICML,Yes,Language,Methodological BetterV: Controlled Verilog Generation with Discriminative Guidance,"Due to the growing complexity of modern Integrated Circuits (ICs), there is a need for automated circuit design methods. Recent years have seen increasing research in hardware design language generation to facilitate the design process. In this work, we propose a Verilog generation framework, BetterV, which fine-tunes large language models (LLMs) on processed domain-specific datasets and incorporates generative discriminators for guidance on particular design demands. Verilog modules are collected, filtered, and processed from the internet to form a clean and abundant dataset. Instruct-tuning methods are specially designed to fine-tune the LLMs to understand knowledge about Verilog. Furthermore, data are augmented to enrich the training set and are also used to train a generative discriminator on particular downstream tasks, providing guidance for the LLMs to optimize Verilog implementation. BetterV has the ability to generate syntactically and functionally correct Verilog, outperforming GPT-4 on the VerilogEval benchmark. With the help of task-specific generative discriminators, BetterV achieves remarkable improvements on various electronic design automation (EDA) downstream tasks, including netlist node reduction for synthesis and verification runtime reduction with Boolean Satisfiability (SAT) solving.",https://proceedings.mlr.press/v235/pei24e.html,2024,ICML,No,, State-Free Inference of State-Space Models: The *Transfer Function* Approach,"We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel’s spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers – parametrized in time-domain – on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.",https://proceedings.mlr.press/v235/parnichkun24a.html,2024,ICML,No,, Self-Alignment of Large Language Models via Monopolylogue-based Social Scene Simulation,"Aligning large language models (LLMs) with human values is imperative to mitigate potential adverse effects resulting from their misuse. Drawing from the sociological insight that acknowledging all parties’ concerns is a key factor in shaping human values, this paper proposes a novel direction to align LLMs by themselves: social scene simulation. To achieve this, we present MATRIX, a novel social scene simulator that emulates realistic scenes around a user’s input query, enabling the LLM to take social consequences into account before responding. MATRIX serves as a virtual rehearsal space, akin to a Monopolylogue, where the LLM performs diverse roles related to the query and practice by itself. To inject this alignment, we fine-tune the LLM with MATRIX-simulated data, ensuring adherence to human values without compromising inference speed. We theoretically show that the LLM with MATRIX outperforms existing methods under mild assumptions. Finally, extensive experiments validate that our method outperforms over 10 baselines across 4 benchmarks. As evidenced by 875 user ratings, our tuned 13B-size LLM exceeds GPT-4 in aligning with human values. See our project page at https://shuotang123.github.io/MATRIX.",https://proceedings.mlr.press/v235/pang24a.html,2024,ICML,No,, $S^2$IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting,"Recently, there has been a growing interest in leveraging pre-trained large language models (LLMs) for various time series applications. However, the semantic space of LLMs, established through the pre-training, is still underexplored and may help yield more distinctive and informative representations to facilitate time series forecasting. To this end, we propose Semantic Space Informed Prompt learning with LLM ($S^2$IP-LLM) to align the pre-trained semantic space with time series embedding space and perform time series forecasting based on learned prompts from the joint space. We first design a tokenization module tailored for cross-modality alignment, which explicitly concatenates patches of decomposed time series components to create embeddings that effectively encode the temporal dynamics. Next, we leverage the pre-trained word token embeddings to derive semantic anchors and align selected anchors with time series embeddings by maximizing the cosine similarity in the joint space. This way, $S^2$IP-LLM can retrieve relevant semantic anchors as prompts to provide strong indicators (context) for time series that exhibit different temporal dynamics. With thorough empirical studies on multiple benchmark datasets, we demonstrate that the proposed $S^2$IP-LLM can achieve superior forecasting performance over state-of-the-art baselines. Furthermore, our ablation studies and visualizations verify the necessity of prompt learning informed by semantic space.",https://proceedings.mlr.press/v235/pan24c.html,2024,ICML,No,, Towards Modular LLMs by Building and Reusing a Library of LoRAs,"Given the increasing number of parameter-efficient adapters of large language models (LLMs), how can we reuse them to improve LLM performance on new tasks? We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, $\texttt{MBC}$, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. In order to reuse the library, we present a novel zero-shot routing mechanism, $\texttt{Arrow}$, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. Thus, we make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.",https://proceedings.mlr.press/v235/ostapenko24a.html,2024,ICML,No,, Risk Aware Benchmarking of Large Language Models,"We propose a distributional framework for benchmarking socio-technical risks of foundation models with quantified statistical significance. Our approach hinges on a new statistical relative testing based on first and second order stochastic dominance of real random variables. We show that the second order statistics in this test are linked to mean-risk models commonly used in econometrics and mathematical finance to balance risk and utility when choosing between alternatives. Using this framework, we formally develop a risk-aware approach for foundation model selection given guardrails quantified by specified metrics. Inspired by portfolio optimization and selection theory in mathematical finance, we define a metrics portfolio for each model as a means to aggregate a collection of metrics, and perform model selection based on the stochastic dominance of these portfolios. The statistical significance of our tests is backed theoretically by an asymptotic analysis via central limit theorems instantiated in practice via a bootstrap variance estimate. We use our framework to compare various large language models regarding risks related to drifting from instructions and outputting toxic content.",https://proceedings.mlr.press/v235/nitsure24a.html,2024,ICML,Yes,Language,Methodological Compositional Text-to-Image Generation with Dense Blob Representations,"Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks.",https://proceedings.mlr.press/v235/nie24b.html,2024,ICML,No,, Online Cascade Learning for Efficient Inference over Streams,"Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning, the first approach to address this challenge. The objective here is to learn a “cascade” of models, starting with lower-capacity models (such as logistic regression) and ending with a powerful LLM, along with a deferral policy that determines the model to be used on a given input. We formulate the task of learning cascades online as an imitation-learning problem, where smaller models are updated over time imitating the collected LLM demonstrations, and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90% with strong robustness against input distribution shifts, underscoring its efficacy and adaptability in stream processing. Our source code is available at https://github.com/flitternie/online_cascade_learning.",https://proceedings.mlr.press/v235/nie24a.html,2024,ICML,No,, Autoformalizing Euclidean Geometry,"Autoformalization involves automatically translating informal math into formal theorems and proofs that are machine-verifiable. Euclidean geometry provides an interesting and controllable domain for studying autoformalization. In this paper, we introduce a neuro-symbolic framework for autoformalizing Euclidean geometry, which combines domain knowledge, SMT solvers, and large language models (LLMs). One challenge in Euclidean geometry is that informal proofs rely on diagrams, leaving gaps in texts that are hard to formalize. To address this issue, we use theorem provers to fill in such diagrammatic information automatically, so that the LLM only needs to autoformalize the explicit textual steps, making it easier for the model. We also provide automatic semantic evaluation for autoformalized theorem statements. We construct LeanEuclid, an autoformalization benchmark consisting of problems from Euclid’s Elements and the UniGeo dataset formalized in the Lean proof assistant. Experiments with GPT-4 and GPT-4V show the capability and limitations of state-of-the-art LLMs on autoformalizing geometry problems. The data and code are available at https://github.com/loganrjmurphy/LeanEuclid.",https://proceedings.mlr.press/v235/murphy24a.html,2024,ICML,Yes,Language,Methodological Learning to Route Among Specialized Experts for Zero-Shot Generalization,"Recently, there has been a widespread proliferation of ""expert"" language models that are specialized to a specific task or domain through parameter-efficient fine-tuning. How can we recycle large collections of expert language models to improve zero-shot generalization to unseen tasks? In this work, we propose $\textbf{P}$ost-$\textbf{H}$oc $\textbf{A}$daptive $\textbf{T}$okenwise $\textbf{G}$ating $\textbf{O}$ver an $\textbf{O}$cean of $\textbf{S}$pecialized $\textbf{E}$xperts (PHATGOOSE), which learns to route among specialized modules that were produced through parameter-efficient fine-tuning. Unlike past methods that learn to route among specialized models, PHATGOOSE explores the possibility that zero-shot generalization will be improved if different experts can be adaptively chosen for each token and at each layer in the model. Crucially, our method is post-hoc - it does not require simultaneous access to the datasets used to create the specialized models and only requires a modest amount of additional compute after each expert model is trained. In experiments covering a range of specialized model collections and zero-shot generalization benchmarks, we find that PHATGOOSE outperforms past methods for post-hoc routing and, in some cases, outperforms explicit multitask training (which requires simultaneous data access). To better understand the routing strategy learned by PHATGOOSE, we perform qualitative experiments to validate that PHATGOOSE’s performance stems from its ability to make adaptive per-token and per-module expert choices.",https://proceedings.mlr.press/v235/muqeeth24a.html,2024,ICML,No,, Controlled Decoding from Language Models,"KL-regularized reinforcement learning (RL) is a popular alignment framework to control the language model responses towards high reward outcomes. We pose a tokenwise RL objective and propose a modular solver for it, called controlled decoding (CD). CD exerts control through a separate prefix scorer module, which is trained to learn a value function for the reward. The prefix scorer is used at inference time to control the generation from a frozen base model, provably sampling from a solution to the RL objective. We empirically demonstrate that CD is effective as a control mechanism on popular benchmarks. We also show that prefix scorers for multiple rewards may be combined at inference time, effectively solving a multi-objective RL problem with no additional training. We show that the benefits of applying CD transfer to an unseen base model with no further tuning as well. Finally, we show that CD can be applied in a blockwise decoding fashion at inference-time, essentially bridging the gap between the popular best-of-$K$ strategy and tokenwise control through reinforcement learning. This makes CD a promising approach for alignment of language models.",https://proceedings.mlr.press/v235/mudgal24a.html,2024,ICML,No,, A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks,"In dense retrieval, deep encoders provide embeddings for both inputs and targets, and the softmax function is used to parameterize a distribution over a large number of candidate targets (e.g., textual passages for information retrieval). Significant challenges arise in training such encoders in the increasingly prevalent scenario of (1) a large number of targets, (2) a computationally expensive target encoder model, (3) cached target embeddings that are out-of-date due to ongoing training of target encoder parameters. This paper presents a simple and highly scalable response to these challenges by training a small parametric corrector network that adjusts stale cached target embeddings, enabling an accurate softmax approximation and thereby sampling of up-to-date high scoring ""hard negatives."" We theoretically investigate the generalization properties of our proposed target corrector, relating the complexity of the network, staleness of cached representations, and the amount of training data. We present experimental results on large benchmark dense retrieval datasets as well as on QA with retrieval augmented language models. Our approach matches state-of-the-art results even when no target embedding updates are made during training beyond an initial cache from the unsupervised pre-trained model, providing a 4-80x reduction in re-embedding computational cost.",https://proceedings.mlr.press/v235/monath24a.html,2024,ICML,No,, Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation,"Despite the successes of large language models (LLMs), they exhibit significant drawbacks, particularly when processing long contexts. Their inference cost scales quadratically with respect to sequence length, making it expensive for deployment in some real-world text processing applications, such as retrieval-augmented generation (RAG). Additionally, LLMs also exhibit the ""distraction phenomenon"", where irrelevant context in the prompt degrades output quality. To address these drawbacks, we propose a novel RAG prompting methodology, superposition prompting, which can be directly applied to pre-trained transformer-based LLMs without the need for fine-tuning. At a high level, superposition prompting allows the LLM to process input documents in parallel prompt paths, discarding paths once they are deemed irrelevant. We demonstrate the capability of our method to simultaneously enhance time efficiency across a variety of question-answering benchmarks using multiple pre-trained LLMs. Furthermore, our technique significantly improves accuracy when the retrieved context is large relative the context the model was trained on. For example, our approach facilitates a $93\times$ reduction in compute time while improving accuracy by $43%$ on the NaturalQuestions-Open dataset with the MPT-7B instruction-tuned model over naive RAG.",https://proceedings.mlr.press/v235/merth24a.html,2024,ICML,No,, LASER: Linear Compression in Wireless Distributed Optimization,"Data-parallel SGD is the de facto algorithm for distributed optimization, especially for large scale machine learning. Despite its merits, communication bottleneck is one of its persistent issues. Most compression schemes to alleviate this either assume noiseless communication links, or fail to achieve good performance on practical tasks. In this paper, we close this gap and introduce LASER: LineAr CompreSsion in WirEless DistRibuted Optimization. LASER capitalizes on the inherent low-rank structure of gradients and transmits them efficiently over the noisy channels. Whilst enjoying theoretical guarantees similar to those of the classical SGD, LASER shows consistent gains over baselines on a variety of practical benchmarks. In particular, it outperforms the state-of-the-art compression schemes on challenging computer vision and GPT language modeling tasks. On the latter, we obtain 50-64% improvement in perplexity over our baselines for noisy channels.",https://proceedings.mlr.press/v235/makkuva24a.html,2024,ICML,No,, tinyBenchmarks: evaluating LLMs with fewer examples,"The versatility of large language models (LLMs) led to the creation of diverse benchmarks that thoroughly test a variety of language models’ abilities. These benchmarks consist of tens of thousands of examples making evaluation of LLMs very expensive. In this paper, we investigate strategies to reduce the number of evaluations needed to assess the performance of an LLM on several key benchmarks. For example, we show that to accurately estimate the performance of an LLM on MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it is sufficient to evaluate this LLM on 100 curated examples. We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.",https://proceedings.mlr.press/v235/maia-polo24a.html,2024,ICML,Yes,Language,Benchmark Neighboring Perturbations of Knowledge Editing on Large Language Models,"Despite their exceptional capabilities, large language models (LLMs) are prone to generating unintended text due to false or outdated knowledge. Given the resource-intensive nature of retraining LLMs, there has been a notable increase in the development of knowledge editing. However, current approaches and evaluations rarely explore the perturbation of editing on neighboring knowledge. This paper studies whether updating new knowledge to LLMs perturbs the neighboring knowledge encapsulated within them. Specifically, we seek to figure out whether appending a new answer into an answer list to a factual question leads to catastrophic forgetting of original correct answers in this list, as well as unintentional inclusion of incorrect answers. A metric of additivity is introduced and a benchmark dubbed as Perturbation Evaluation of Appending Knowledge (PEAK) is constructed to evaluate the degree of perturbation to neighboring knowledge when appending new knowledge. Besides, a plug-and-play framework termed Appending via Preservation and Prevention (APP) is proposed to mitigate the neighboring perturbation by maintaining the integrity of the answer list. Experiments demonstrate the effectiveness of APP coupling with four editing methods on three LLMs.",https://proceedings.mlr.press/v235/ma24h.html,2024,ICML,Yes,Language,Methodological Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models,"Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM)—which enhances models with up-to-date knowledge—emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel COarse-to-Fine highlighTing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: recaller, scorer, and selector. First, recaller applies a knowledge graph to extract potential key entities in a given context. Second, scorer measures the importance of each entity by calculating its contextual weight. Finally, selector selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over 30% in F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.",https://proceedings.mlr.press/v235/lv24c.html,2024,ICML,No,, RoboMP$^2$: A Robotic Multimodal Perception-Planning Framework with Multimodal Large Language Models,"Multimodal Large Language Models (MLLMs) have shown impressive reasoning abilities and general intelligence in various domains. It inspires researchers to train end-to-end MLLMs or utilize large models to generate policies with human-selected prompts for embodied agents. However, these methods exhibit limited generalization capabilities on unseen tasks or scenarios, and overlook the multimodal environment information which is critical for robots to make decisions. In this paper, we introduce a novel Robotic Multimodal Perception-Planning (RoboMP$^2$) framework for robotic manipulation which consists of a Goal-Conditioned Multimodal Preceptor (GCMP) and a Retrieval-Augmented Multimodal Planner (RAMP). Specially, GCMP captures environment states by employing a tailored MLLMs for embodied agents with the abilities of semantic reasoning and localization. RAMP utilizes coarse-to-fine retrieval method to find the $k$ most-relevant policies as in-context demonstrations to enhance the planner. Extensive experiments demonstrate the superiority of RoboMP$^2$ on both VIMA benchmark and real-world tasks, with around 10% improvement over the baselines.",https://proceedings.mlr.press/v235/lv24a.html,2024,ICML,No,, WebLINX: Real-World Website Navigation with Multi-Turn Dialogue,"We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings.",https://proceedings.mlr.press/v235/lu24e.html,2024,ICML,Yes,Language,Benchmark MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases,"This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.",https://proceedings.mlr.press/v235/liu24ce.html,2024,ICML,No,, SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models,"We propose SPHINX-X, an extensive Multi-modality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multi-modal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama-1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral-8$\times$7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory.",https://proceedings.mlr.press/v235/liu24cc.html,2024,ICML,No,, Timer: Generative Pre-trained Transformers Are Large Time Series Models,"Deep learning has contributed remarkably to the advancement of time series analysis. Still, deep models can encounter performance bottlenecks in real-world data-scarce scenarios, which can be concealed due to the performance saturation with small models on current benchmarks. Meanwhile, large models have demonstrated great powers in these scenarios through large-scale pre-training. Continuous progress has been achieved with the emergence of large language models, exhibiting unprecedented abilities such as few-shot generalization, scalability, and task generality, which are however absent in small deep models. To change the status quo of training scenario-specific small models from scratch, this paper aims at the early development of large time series models (LTSM). During pre-training, we curate large-scale datasets with up to 1 billion time points, unify heterogeneous time series into single-series sequence (S3) format, and develop the GPT-style architecture toward LTSMs. To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task. The outcome of this study is a Time Series Transformer (Timer), which is generative pre-trained by next token prediction and adapted to various downstream tasks with promising capabilities as an LTSM. Code and datasets are available at: https://github.com/thuml/Large-Time-Series-Model.",https://proceedings.mlr.press/v235/liu24cb.html,2024,ICML,No,, Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model,"Heuristics are widely used for dealing with complex search and optimization problems. However, manual design of heuristics can be often very labour extensive and requires rich working experience and knowledge. This paper proposes Evolution of Heuristic (EoH), a novel evolutionary paradigm that leverages both Large Language Models (LLMs) and Evolutionary Computation (EC) methods for Automatic Heuristic Design (AHD). EoH represents the ideas of heuristics in natural language, termed thoughts. They are then translated into executable codes by LLMs. The evolution of both thoughts and codes in an evolutionary search framework makes it very effective and efficient for generating high-performance heuristics. Experiments on three widely studied combinatorial optimization benchmark problems demonstrate that EoH outperforms commonly used handcrafted heuristics and other recent AHD methods including FunSearch. Particularly, the heuristic produced by EoH with a low computational budget (in terms of the number of queries to LLMs) significantly outperforms widely-used human hand-crafted baseline algorithms for the online bin packing problem.",https://proceedings.mlr.press/v235/liu24bs.html,2024,ICML,No,, Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement,"Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL’s versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10% annotated training data, averaged across all six datasets.",https://proceedings.mlr.press/v235/liu24bg.html,2024,ICML,Yes,Other, Entropy-Reinforced Planning with Large Language Models for Drug Discovery,"The objective of drug discovery is to identify chemical compounds that possess specific pharmaceutical properties toward a binding target. Existing large language models (LLMS) can achieve high token matching scores in terms of likelihood for molecule generation. However, relying solely on LLM decoding often results in the generation of molecules that are either invalid due to a single misused token, or suboptimal due to unbalanced exploration and exploitation as a consequence of the LLM’s prior experience. Here we propose ERP, Entropy-Reinforced Planning for Transformer Decoding, which employs an entropy-reinforced planning algorithm to enhance the Transformer decoding process and strike a balance between exploitation and exploration. ERP aims to achieve improvements in multiple properties compared to direct sampling from the Transformer. We evaluated ERP on the SARS-CoV-2 virus (3CLPro) and human cancer cell target protein (RTCB) benchmarks and demonstrated that, in both benchmarks, ERP consistently outperforms the current state-of-the-art algorithm by 1-5 percent, and baselines by 5-10 percent, respectively. Moreover, such improvement is robust across Transformer models trained with different objectives. Finally, to further illustrate the capabilities of ERP, we tested our algorithm on three code generation benchmarks and outperformed the current state-of-the-art approach as well. Our code is publicly available at: https://github.com/xuefeng-cs/ERP.",https://proceedings.mlr.press/v235/liu24be.html,2024,ICML,No,, KnowFormer: Revisiting Transformers for Knowledge Graph Reasoning,"Knowledge graph reasoning plays a vital role in various applications and has garnered considerable attention. Recently, path-based methods have achieved impressive performance. However, they may face limitations stemming from constraints in message-passing neural networks, such as missing paths and information over-squashing. In this paper, we revisit the application of transformers for knowledge graph reasoning to address the constraints faced by path-based methods and propose a novel method KnowFormer. KnowFormer utilizes a transformer architecture to perform reasoning on knowledge graphs from the message-passing perspective, rather than reasoning by textual information like previous pretrained language model based methods. Specifically, we define the attention computation based on the query prototype of knowledge graph reasoning, facilitating convenient construction and efficient optimization. To incorporate structural information into the self-attention mechanism, we introduce structure-aware modules to calculate query, key, and value respectively. Additionally, we present an efficient attention computation method for better scalability. Experimental results demonstrate the superior performance of KnowFormer compared to prominent baseline methods on both transductive and inductive benchmarks.",https://proceedings.mlr.press/v235/liu24au.html,2024,ICML,No,, Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences,"To mitigate the computational complexity in the self-attention mechanism on long sequences, linear attention utilizes computation tricks to achieve linear complexity, while state space models (SSMs) popularize a favourable practice of using non-data-dependent memory pattern, i.e., emphasize the near and neglect the distant, to processing sequences. Recent studies have shown the priorities by combining them as one. However, the efficiency of linear attention remains only at the theoretical level in a causal setting, and SSMs require various designed constraints to operate effectively on specific data. Therefore, in order to unveil the true power of the hybrid design, the following two issues need to be addressed: (1) hardware-efficient implementation for linear attention and (2) stabilization of SSMs. To achieve this, we leverage the thought of tiling and hierarchy to propose CHELA (short-long Convolutions with Hardware-Efficient Linear Attention), which replaces SSMs with short-long convolutions and implements linear attention in a divide-and-conquer manner. This approach enjoys global abstraction and data-dependent selection from stable SSM and linear attention while maintaining real linear complexity. Our comprehensive experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.",https://proceedings.mlr.press/v235/liu24ak.html,2024,ICML,No,, Graph-enhanced Large Language Models in Asynchronous Plan Reasoning,"Planning is a fundamental property of human intelligence. Reasoning about asynchronous plans is challenging since it requires sequential and parallel planning to optimize time costs. Can large language models (LLMs) succeed at this task? Here, we present the first large-scale study investigating this question. We find that a representative set of closed and open-source LLMs, including GPT-4 and LLaMA-2, behave poorly when not supplied with illustrations about the task-solving process in our benchmark AsyncHow. We propose a novel technique called Plan Like a Graph (PLaG) that combines graphs with natural language prompts and achieves state-of-the-art results. We show that although PLaG can boost model performance, LLMs still suffer from drastic degradation when task complexity increases, highlighting the limits of utilizing LLMs for simulating digital devices. We see our study as an exciting step towards using LLMs as efficient autonomous agents. Our code and data are available at https://github.com/fangru-lin/graph-llm-asynchow-plan.",https://proceedings.mlr.press/v235/lin24k.html,2024,ICML,Yes,Language,Methodological Revisiting the Role of Language Priors in Vision-Language Models,"Vision-language models (VLMs) are impactful in part because they can be applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning. We study $\textit{generative VLMs}$ that are trained for next-word generation given an image. We explore their zero-shot performance on the illustrative task of image-text retrieval across nine popular vision-language benchmarks. Our first observation is that they can be repurposed for discriminative tasks (such as image-text retrieval) by simply computing the match score of generating a particular text string given an image. We call this probabilistic score the Visual Generative Pre-Training Score (VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior through a probabilistic lens, pointing out that some benchmarks inadvertently capture unnatural language distributions by creating adversarial but unlikely text captions. In fact, we demonstrate that even a ""blind"" language model that ignores any image evidence can sometimes outperform all prior art, reminiscent of similar challenges faced by the visual-question answering (VQA) community many years ago. We derive a probabilistic post-processing scheme that controls for the amount of linguistic bias in generative VLMs at test time without having to retrain or fine-tune the model. We show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline for vision-language understanding, oftentimes producing state-of-the-art accuracy.",https://proceedings.mlr.press/v235/lin24c.html,2024,ICML,No,, The WMDP Benchmark: Measuring and Reducing Malicious Use with Unlearning,"The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private and restricted to a narrow range of malicious use scenarios, which limits further research into reducing malicious use. To fill these gaps, we release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 3,668 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. To guide progress on unlearning, we develop RMU, a state-of-the-art unlearning method based on controlling model representations. RMU reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai.",https://proceedings.mlr.press/v235/li24bc.html,2024,ICML,Yes,Language,Benchmark Chain of Code: Reasoning with a Language Model-Augmented Code Emulator,"Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter – we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for ""detect_sarcasm(string)"" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively ""emulate"" the interpreter by generating the expected output of ""detect_sarcasm(string)"". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an ""LMulator""). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. In a nutshell, CoC broadens the scope of reasoning questions that LMs can answer by ""thinking in code"".",https://proceedings.mlr.press/v235/li24ar.html,2024,ICML,No,, Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation,"Pre-trained vision-language models, e.g., CLIP, have been successfully applied to zero-shot semantic segmentation. Existing CLIP-based approaches primarily utilize visual features from the last layer to align with text embeddings, while they neglect the crucial information in intermediate layers that contain rich object details. However, we find that directly aggregating the multi-level visual features weakens the zero-shot ability for novel classes. The large differences between the visual features from different layers make these features hard to align well with the text embeddings. We resolve this problem by introducing a series of independent decoders to align the multi-level visual features with the text embeddings in a cascaded way, forming a novel but simple framework named Cascade-CLIP. Our Cascade-CLIP is flexible and can be easily applied to existing zero-shot semantic segmentation methods. Experimental results show that our simple Cascade-CLIP achieves superior zero-shot performance on segmentation benchmarks, like COCO-Stuff, Pascal-VOC, and Pascal-Context. Our code is available at https://github.com/HVision-NKU/Cascade-CLIP.",https://proceedings.mlr.press/v235/li24aq.html,2024,ICML,No,, Improving Instruction Following in Language Models through Proxy-Based Uncertainty Estimation,"Assessing response quality to instructions in language models is vital but challenging due to the complexity of human language across different contexts. This complexity often results in ambiguous or inconsistent interpretations, making accurate assessment difficult. To address this issue, we propose a novel Uncertainty-aware Reward Model (URM) that introduces a robust uncertainty estimation for the quality of paired responses based on Bayesian approximation. Trained with preference datasets, our uncertainty-enabled proxy not only scores rewards for responses but also evaluates their inherent uncertainty. Empirical results demonstrate significant benefits of incorporating the proposed proxy into language model training. Our method boosts the instruction following capability of language models by refining data curation for training and improving policy optimization objectives, thereby surpassing existing methods by a large margin on benchmarks such as Vicuna and MT-bench. These findings highlight that our proposed approach substantially advances language model training and paves a new way of harnessing uncertainty within language models.",https://proceedings.mlr.press/v235/lee24z.html,2024,ICML,No,, CLLMs: Consistency Large Language Models,"Jacobi decoding shows promise for more efficient LLM inference as it breaks the sequential nature of the LLM decoding process and transforms it into more parallelizable computation. However, in practice, it achieves little speedup compared to traditional autoregressive (AR) decoding, primarily because Jacobi decoding seldom accurately predicts more than one token in a single fixed-point iteration step. To address this, we develop a new approach aimed at realizing fast convergence from any state to the fixed point in a Jacobi trajectory. This is accomplished by refining the target LLM to consistently predict the fixed point given any state as input. Extensive experiments demonstrate the effectiveness of our method, showing 2.4$\times$ to 3.4$\times$ improvements in generation speed while preserving generation quality across both domain-specific and open-domain benchmarks.",https://proceedings.mlr.press/v235/kou24a.html,2024,ICML,No,, Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities,"Augmenting large language models (LLMs) to understand audio – including non-speech sounds and non-verbal speech – is critically important for diverse real-world applications of LLMs. In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities. We introduce a series of training techniques, architecture design, and data strategies to enhance our model with these abilities. Extensive evaluations across various audio understanding tasks confirm the efficacy of our method, setting new state-of-the-art benchmarks. Our demo website is https://audioflamingo.github.io/ and the code is open-sourced at https://github.com/NVIDIA/audio-flamingo.",https://proceedings.mlr.press/v235/kong24a.html,2024,ICML,Yes,Audio, An LLM Compiler for Parallel Function Calling,"The reasoning capabilities of the recent LLMs enable them to execute external function calls to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has allowed LLMs to select and coordinate multiple functions based on the context to tackle more complex problems. However, current methods for function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multiple function calls. Drawing inspiration from the principles of classical compilers, LLMCompiler enables parallel function calling with three components: (i) a Function Calling Planner, formulating execution plans for function calling; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically generates an optimized orchestration for the function calls and can be used with both open-source and closed-source models. We have benchmarked LLMCompiler on a range of tasks with different patterns of function calling. We observe consistent latency speedup of up to $3.7 \times$, cost savings of up to $6.7 \times$, and accuracy improvement of up to $\sim 9 %$ compared to ReAct.Our code is available at https://github.com/SqueezeAILab/LLMCompiler.",https://proceedings.mlr.press/v235/kim24y.html,2024,ICML,No,, Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization,"In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models are available at https://video-lavit.github.io.",https://proceedings.mlr.press/v235/jin24f.html,2024,ICML,No,, LLM Maybe LongLM: SelfExtend LLM Context Window Without Tuning,"It is well known that LLMs cannot generalize well to long contexts whose lengths are larger than the training sequence length. This poses challenges when employing LLMs for processing long input sequences during inference. In this work, we argue that LLMs themselves have inherent capabilities to handles s long contexts without fine-tuning. To achieve this goal, we propose SelfExtend to extend the context window of LLMs by constructing bi-level attention information: the grouped attention and the neighbor attention. The grouped attention captures the dependencies among tokens that are far apart, while neighbor attention captures dependencies among adjacent tokens within a specified range. The two-level attentions are computed based on the original model’s self-attention mechanism during inference. With minor code modification, our SelfExtend can effortlessly extend existing LLMs’ context window without any fine-tuning. We conduct comprehensive experiments on multiple benchmarks and the results show that our SelfExtend can effectively extend existing LLMs’ context window length.",https://proceedings.mlr.press/v235/jin24b.html,2024,ICML,No,, R2E: Turning any Github Repository into a Programming Agent Environment,"While Large Language Models’ (LLMs) coding capabilities have advanced rapidly, corresponding evaluation benchmarks on real-world programming setups are yet to catch up. Building a scalable and interactive testbed for evaluating general-purpose AI coding agents for real-world code has been challenging, particularly due to a lack of high-quality test suites available. In this paper, we present Repository to Environment (R2E), a framework that can turn any GitHub repository into a test environment to evaluate the performance of code-generating systems, both static and interactive. R2E is powered by a synergistic combination of program analysis and LLMs to construct equivalence test harnesses for any GitHub function. We instantiate our framework to build the first large-scale benchmark, R2E-Eval1, for building realistic environments for AI coding assistants. Our results demonstrate that even when SOTA models cannot generate correct solutions with advanced prompting techniques, they can effectively use environment feedback highlighting the need to move from static functional coding to interactive programming paradigm. We hope that our framework (and the instantiated benchmark) can motivate research directions by providing web-scale open-ended coding environments. R2E code is available at https://r2e.dev/",https://proceedings.mlr.press/v235/jain24c.html,2024,ICML,Yes,Language,Benchmark Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks,"Ecological rationality refers to the notion that humans are rational agents adapted to their environment. However, testing this theory remains challenging due to two reasons: the difficulty in defining what tasks are ecologically valid and building rational models for these tasks. In this work, we demonstrate that large language models can generate cognitive tasks, specifically category learning tasks, that match the statistics of real-world tasks, thereby addressing the first challenge. We tackle the second challenge by deriving rational agents adapted to these tasks using the framework of meta-learning, leading to a class of models called ecologically rational meta-learned inference (ERMI). ERMI quantitatively explains human data better than seven other cognitive models in two different experiments. It additionally matches human behavior on a qualitative level: (1) it finds the same tasks difficult that humans find difficult, (2) it becomes more reliant on an exemplar-based strategy for assigning categories with learning, and (3) it generalizes to unseen stimuli in a human-like way. Furthermore, we show that ERMI’s ecologically valid priors allow it to achieve state-of-the-art performance on the OpenML-CC18 classification benchmark.",https://proceedings.mlr.press/v235/jagadish24a.html,2024,ICML,No,, MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation,"A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination.",https://proceedings.mlr.press/v235/huang24y.html,2024,ICML,Yes,Language,Benchmark Position: TrustLLM: Trustworthiness in Large Language Models,"Large language models (LLMs) have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and capability (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones, suggesting that open-source models can achieve high levels of trustworthiness without additional mechanisms like moderator, offering valuable insights for developers in this field. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Besides these observations, we’ve uncovered key insights into the multifaceted trustworthiness in LLMs. We emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. We advocate that the establishment of an AI alliance between industry, academia, the open-source community to foster collaboration is imperative to advance the trustworthiness of LLMs.",https://proceedings.mlr.press/v235/huang24x.html,2024,ICML,Yes,Language,Benchmark InstructSpeech: Following Speech Editing Instructions via Large Language Models,"Instruction-guided speech editing aims to follow the user’s natural language instruction to manipulate the semantic and acoustic attributes of a speech. In this work, we construct triplet paired data (instruction, input speech, output speech) to alleviate data scarcity and train a multi-task large language model named InstructSpeech. To mitigate the challenges of accurately executing user’s instructions, we 1) introduce the learned task embeddings with a fine-tuned Flan-T5-XL to guide the generation process towards the correct generative task; 2) include an extensive and diverse set of speech editing and processing tasks to enhance model capabilities; 3) investigate chain-of-thought reasoning for free-form semantic content editing; and 4) propose a hierarchical adapter that effectively updates a small portion of parameters for generalization to new tasks. To assess instruction speech editing in greater depth, we introduce a benchmark evaluation with contrastive instruction-speech pre-training (CISP) to test the speech quality and instruction-speech alignment faithfulness. Experimental results demonstrate that InstructSpeech achieves state-of-the-art results in eleven tasks, for the first time unlocking the ability to edit speech’s acoustic and semantic attributes following a user’s instruction. Audio samples are available at https://InstructSpeech.github.io",https://proceedings.mlr.press/v235/huang24k.html,2024,ICML,Yes,Audio, InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks,"In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. Agents need to solve these tasks end-to-end by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 603 data analysis questions derived from 124 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluating. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building upon our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at https://github.com/InfiAgent/InfiAgent.",https://proceedings.mlr.press/v235/hu24s.html,2024,ICML,Yes,Language,Benchmark xT: Nested Tokenization for Larger Context in Large Images,"Modern computer vision pipelines handle large images in one of two sub-optimal ways: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. There are many downstream applications in which global context matters as much as high frequency details, such as in real-world satellite imagery; in such cases researchers have to make the uncomfortable choice of which information to discard. We introduce xT, a simple framework for vision transformers which effectively aggregates global context with local details and can model large images end-to-end on contemporary GPUs. We select a set of benchmark datasets across classic vision tasks which accurately reflect a vision model’s ability to understand truly large images and incorporate fine details over large scales and assess our method’s improvement on them. xT is a streaming, two-stage architecture that adapts existing vision backbones and long sequence language models to effectively model large images without quadratic memory growth. We are able to increase accuracy by up to 8.6% on challenging classification tasks and F1 score by 11.6 on context-dependent segmentation on images as large as 29,000 x 29,000 pixels.",https://proceedings.mlr.press/v235/gupta24b.html,2024,ICML,No,, Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks,"We introduce Syntax-Aware Fill-in-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at https://github.com/gonglinyuan/safim, and the leaderboard is available at https://safimbenchmark.com.",https://proceedings.mlr.press/v235/gong24f.html,2024,ICML,Yes,Language,Benchmark Better & Faster Large Language Models via Multi-token Prediction,"Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language models to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following $n$ tokens using $n$ independent output heads, operating on top of a shared model trunk. Considering multi-token prediction as an auxiliary training task, we measure improved downstream capabilities with no overhead in training time for both code and natural language models. The method is increasingly useful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are especially pronounced on generative benchmarks like coding, where our models consistently outperform strong baselines by several percentage points. Our 13B parameter models solves 12% more problems on Human Eval and 17% more on MBPP than comparable next-token models. Experiments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to $3\times$ faster at inference, even with large batch sizes.",https://proceedings.mlr.press/v235/gloeckle24a.html,2024,ICML,No,, Understanding Finetuning for Factual Knowledge Extraction,"In this work, we study the impact of QA fine-tuning data on downstream factuality. We show that fine-tuning on lesser-known facts that are poorly stored during pretraining yields significantly worse factuality than fine-tuning on well-known facts, even when all facts are seen during pretraining. We prove this phenomenon theoretically, showing that training on lesser-known facts can lead the model to ignore subject entity names and instead output a generic plausible response even when the relevant factual knowledge is encoded in the model. On three question answering benchmarks (PopQA, Entity Questions, and MMLU) and two language models (Llama-2-7B and Mistral-7B), we find that (i) finetuning on a completely factual but lesser-known subset of the data deteriorates downstream factuality (5-10%) and (ii) finetuning on a subset of better-known examples matches or outperforms finetuning on the entire dataset. Ultimately, our results shed light on the interaction between pretrained knowledge and finetuning data and demonstrate the importance of taking into account how facts are stored in the pretrained model when fine-tuning for knowledge-intensive tasks.",https://proceedings.mlr.press/v235/ghosal24a.html,2024,ICML,No,, Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models,"Fine-tuning language models (LMs) has demonstrated success in a wide array of downstream tasks. However, as LMs are scaled up, the memory requirements for backpropagation become prohibitively high. Zeroth-order (ZO) optimization methods can leverage memory-efficient forward passes to estimate gradients. More recently, MeZO, an adaptation of ZO-SGD, has been shown to consistently outperform zero-shot and in-context learning when combined with suitable task prompts. In this work, we couple ZO methods with variance reduction techniques to enhance stability and convergence for inference-based LM fine-tuning. We introduce Memory-Efficient Zeroth-Order Stochastic Variance-Reduced Gradient (MeZO-SVRG) and demonstrate its efficacy across multiple LM fine-tuning tasks, eliminating the reliance on task-specific prompts. Evaluated across a range of both masked and autoregressive LMs on benchmark GLUE tasks, MeZO-SVRG outperforms MeZO with up to 20% increase in test accuracies in both full- and partial-parameter fine-tuning settings. MeZO-SVRG benefits from reduced computation time as it often surpasses MeZO’s peak test accuracy with a $2\times$ reduction in GPU-hours. MeZO-SVRG significantly reduces the required memory footprint compared to first-order SGD, i.e. by $2\times$ for autoregressive models. Our experiments highlight that MeZO-SVRG’s memory savings progressively improve compared to SGD with larger batch sizes.",https://proceedings.mlr.press/v235/gautam24a.html,2024,ICML,No,, Let Go of Your Labels with Unsupervised Transfer,"Foundation vision-language models have enabled remarkable zero-shot transferability of the pre-trained representations to a wide range of downstream tasks. However, to solve a new task, zero-shot transfer still necessitates human guidance to define visual categories that appear in the data. Here, we show that fully unsupervised transfer emerges when searching for the labeling of a dataset that induces maximal margin classifiers in representation spaces of different foundation models. We present TURTLE, a fully unsupervised method that effectively employs this guiding principle to uncover the underlying labeling of a downstream dataset without any supervision and task-specific representation learning. We evaluate TURTLE on a diverse benchmark suite of 26 datasets and show that it achieves new state-of-the-art unsupervised performance. Furthermore, TURTLE, although being fully unsupervised, outperforms zero-shot transfer baselines on a wide range of datasets. In particular, TURTLE matches the average performance of CLIP zero-shot on 26 datasets by employing the same representation space, spanning a wide range of architectures and model sizes. By guiding the search for the underlying labeling using the representation spaces of two foundation models, TURTLE surpasses zero-shot transfer and unsupervised prompt tuning baselines, demonstrating the surprising power and effectiveness of unsupervised transfer.",https://proceedings.mlr.press/v235/gadetsky24a.html,2024,ICML,No,, FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning,"In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: https://github.com/fuyw/FuRL.",https://proceedings.mlr.press/v235/fu24j.html,2024,ICML,No,, "A Touch, Vision, and Language Dataset for Multimodal Alignment","Touch is an important sensing modality for humans, but it has not yet been incorporated into a multimodal generative language model. This is partially due to the difficulty of obtaining natural language labels for tactile data and the complexity of aligning tactile readings with both visual observations and language descriptions. As a step towards bridging that gap, this work introduces a new dataset of 44K in-the-wild visiontouch pairs, with English language labels annotated by humans (10%) and textual pseudo-labels from GPT-4V (90%). We use this dataset to train a vision-language-aligned tactile encoder for open-vocabulary classification and a touch-visionlanguage (TVL) model for text generation using the trained encoder. Results suggest that by incorporating touch, the TVL model improves (+29% classification accuracy) tactile-vision-language alignment over existing models trained on any pair of those modalities. Although only a small fraction of the dataset is human labeled, the TVL model demonstrates improved visual-tactile understanding over GPT-4V (+12%) and open-source vision-language models (+32%) on a new touch-vision understanding benchmark. Code, checkpoints and data are available on https: //tactile-vlm.github.io.",https://proceedings.mlr.press/v235/fu24b.html,2024,ICML,Yes,Multimodal, Promptbreeder: Self-Referential Self-Improvement via Prompt Evolution,"Popular prompt strategies like Chain-of-Thought Prompting can dramatically improve the reasoning abilities of Large Language Models (LLMs) in various domains. However, such hand-crafted prompt-strategies are often sub-optimal. In this paper, we present Promptbreeder, a general-purpose self-referential self-improvement mechanism that evolves and adapts prompts for a given domain. Driven by an LLM, Promptbreeder mutates a population of task-prompts, evaluates them for fitness on a training set, and repeats this process over multiple generations to evolve task-prompts. Crucially, the mutation of these task-prompts is governed by mutation-prompts that the LLM generates and improves throughout evolution in a self-referential way. That is, Promptbreeder is not just improving task-prompts, but it is also improving the mutation-prompts that improve these task-prompts. Promptbreeder outperforms state-of-the-art prompt strategies such as Chain-of-Thought and Plan-and-Solve Prompting on commonly used arithmetic and commonsense reasoning benchmarks. Furthermore, Promptbreeder is able to evolve intricate task-prompts for the challenging problem of hate speech classification.",https://proceedings.mlr.press/v235/fernando24a.html,2024,ICML,No,, Keypoint-based Progressive Chain-of-Thought Distillation for LLMs,"Chain-of-thought distillation is a powerful technique for transferring reasoning abilities from large language models (LLMs) to smaller student models. Previous methods typically require the student to mimic the step-by-step rationale produced by LLMs, often facing the following challenges: (i) Tokens within a rationale vary in significance, and treating them equally may fail to accurately mimic keypoint tokens, leading to reasoning errors. (ii) They usually distill knowledge by consistently predicting all the steps in a rationale, which falls short in distinguishing the learning order of step generation. This diverges from the human cognitive progression of starting with easy tasks and advancing to harder ones, resulting in sub-optimal outcomes. To this end, we propose a unified framework, called KPOD, to address these issues. Specifically, we propose a token weighting module utilizing mask learning to encourage accurate mimicry of keypoint tokens by the student during distillation. Besides, we develop an in-rationale progressive distillation strategy, starting with training the student to generate the final reasoning steps and gradually extending to cover the entire rationale. To accomplish this, a weighted token generation loss is proposed to assess step reasoning difficulty, and a value function is devised to schedule the progressive distillation by considering both step difficulty and question diversity. Extensive experiments on four reasoning benchmarks illustrate our KPOD outperforms previous methods by a large margin.",https://proceedings.mlr.press/v235/feng24e.html,2024,ICML,No,, Video-of-Thought: Step-by-Step Video Reasoning from Perception to Cognition,"Existing research of video understanding still struggles to achieve in-depth comprehension and reasoning in complex videos, primarily due to the under-exploration of two key bottlenecks: fine-grained spatial-temporal perceptive understanding and cognitive-level video scene comprehension. This paper bridges the gap by presenting a novel solution. We first introduce a novel video Multimodal Large Language Model (MLLM), MotionEpic, which achieves fine-grained pixel-level spatial-temporal video grounding by integrating video spatial-temporal scene graph (STSG) representation. Building upon MotionEpic, we then develop a Video-of-Thought (VoT) reasoning framework. VoT inherits the Chain-of-Thought (CoT) core, breaking down a complex task into simpler and manageable sub-problems, and addressing them step-by-step from a low-level pixel perception to high-level cognitive interpretation. Extensive experiments across various complex video QA benchmarks demonstrate that our overall framework strikingly boosts existing state-of-the-art. To our knowledge, this is the first attempt at successfully implementing the CoT technique for achieving human-level video reasoning, where we show great potential in extending it to a wider range of video understanding scenarios. Systems and codes will be open later.",https://proceedings.mlr.press/v235/fei24a.html,2024,ICML,No,, DsDm: Model-Aware Dataset Selection with Datamodels,"When selecting data for training large-scale models, standard practice is to filter for examples that match human notions of data quality. Such filtering yields qualitatively clean datapoints that intuitively should improve model behavior. However, in practice the opposite can often happen: we find that selecting according to similarity with ""high quality"" data sources may not increase (and can even hurt) performance compared to randomly selecting data. To develop better methods for selecting data, we start by framing dataset selection as an optimization problem that we can directly solve for: given target tasks, a learning algorithm, and candidate data, select the subset that maximizes model performance. This framework thus avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks. Our resulting method greatly improves language model (LM) performance on both pre-specified tasks and previously unseen tasks. Specifically, choosing target tasks representative of standard LM problems and evaluating on diverse held-out benchmarks, our selected datasets provide a 2x compute multiplier over baseline methods.",https://proceedings.mlr.press/v235/engstrom24a.html,2024,ICML,No,, DE-COP: Detecting Copyrighted Content in Language Models Training Data,"How can we detect if copyrighted content was used in the training process of a language model, considering that the training data is typically undisclosed? We are motivated by the premise that a language model is likely to identify verbatim excerpts from its training text. We propose DE-COP, a method to determine whether a piece of copyrighted content is included in training. DE-COP’s core approach is to probe an LLM with multiple-choice questions, whose options include both verbatim text and their paraphrases. We construct BookTection, a benchmark with excerpts from 165 books published prior and subsequent to a model’s training cutoff, along with their paraphrases. Our experiments show that DE-COP outperforms the prior best method by 8.6% in detection accuracy (AUC) on models with logits available. Moreover, DE-COP also achieves an average accuracy of 72% for detecting suspect books on fully black-box models where prior methods give approximately 0% accuracy. The code and datasets are available at https://github.com/LeiLiLab/DE-COP.",https://proceedings.mlr.press/v235/duarte24a.html,2024,ICML,Yes,Language,Methodological "AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls","We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.5% in terms of average pass rate on ToolBench.",https://proceedings.mlr.press/v235/du24h.html,2024,ICML,Yes,Language,Technical GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative Decoding,"Speculative decoding is a relatively new decoding framework that leverages small and efficient draft models to reduce the latency of LLMs. In this study, we introduce GliDe and CaPE, two low-hassle modifications to vanilla speculative decoding to further improve the decoding speed of a frozen LLM. Specifically, GliDe is a modified draft model architecture that reuses the cached keys and values from the target LLM, while CaPE is a proposal expansion method that uses the draft model’s confidence scores to help select additional candidate tokens for verification. Extensive experiments on different benchmarks demonstrate that our proposed GliDe draft model significantly reduces the expected decoding latency. Additional evaluation using walltime reveals that GliDe can accelerate Vicuna models up to 2.17x and further extend the improvement to 2.61x with CaPE. We will release our code, data, and the trained draft models.",https://proceedings.mlr.press/v235/du24c.html,2024,ICML,No,, WorkArena: How Capable are Web Agents at Solving Common Knowledge Work Tasks?,"We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuring the agents’ ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.",https://proceedings.mlr.press/v235/drouin24a.html,2024,ICML,Yes,Language,Benchmark Multicalibration for Confidence Scoring in LLMs,"This paper proposes the use of ""multicalibration"": to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs). Multicalibration asks for calibration not just marginally, but simultaneously across various intersecting groupings of the data. We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and ""self-annotation"" - querying the LLM by asking it various yes-or-no questions about the prompt. We also develop novel variants of multicalibration algorithms that offer performance improvements by reducing their tendency to overfit. Through systematic benchmarking across various question answering datasets and LLMs, we show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.",https://proceedings.mlr.press/v235/detommaso24a.html,2024,ICML,No,, Larimar: Large Language Models with Episodic Memory Control,"Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar’s memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed—yielding speed-ups of 8-10x depending on the base LLM —as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting, information leakage prevention, and input context length generalization with Larimar and show their effectiveness. Our code is available at https://github.com/IBM/larimar.",https://proceedings.mlr.press/v235/das24a.html,2024,ICML,No,, ULTRAFEEDBACK: Boosting Language Models with Scaled AI Feedback,"Learning from human feedback has become a pivot technique in aligning large language models (LLMs) with human preferences. However, acquiring vast and premium human feedback is bottlenecked by time, labor, and human capability, resulting in small sizes or limited topics of current datasets. This further hinders feedback learning as well as alignment research within the open-source community. To address this issue, we explore how to go beyond human feedback and collect high-quality AI feedback automatically for a scalable alternative. Specifically, we identify scale and diversity as the key factors for feedback data to take effect. Accordingly, we first broaden instructions and responses in both amount and breadth to encompass a wider range of user-assistant interactions. Then, we meticulously apply a series of techniques to mitigate annotation biases for more reliable AI feedback. We finally present UltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset, which contains over 1 million GPT-4 feedback for 250k user-assistant conversations from various aspects. Built upon UltraFeedback, we align a LLaMA-based model by best-of-$n$ sampling and reinforcement learning, demonstrating its exceptional performance on chat benchmarks. Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models, serving as a solid foundation for future feedback learning research.",https://proceedings.mlr.press/v235/cui24f.html,2024,ICML,Yes,Language,Methodological CogBench: a large language model walks into a psychology lab,"Large language models (LLMs) have significantly advanced the field of artificial intelligence. Yet, evaluating them comprehensively remains challenging. We argue that this is partly due to the predominant focus on performance metrics in most benchmarks. This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments. This novel approach offers a toolkit for phenotyping LLMs’ behavior. We apply CogBench to 40 LLMs, yielding a rich and diverse dataset. We analyze this data using statistical multilevel modeling techniques, accounting for the nested dependencies among fine-tuned versions of specific LLMs. Our study highlights the crucial role of model size and reinforcement learning from human feedback (RLHF) in improving performance and aligning with human behavior. Interestingly, we find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs’ behavior. Finally, we explore the effects of prompt-engineering techniques. We discover that chain-of-thought prompting improves probabilistic reasoning, while take-a-step-back prompting fosters model-based behaviors.",https://proceedings.mlr.press/v235/coda-forno24a.html,2024,ICML,Yes,Language,Benchmark Embodied CoT Distillation From LLM To Off-the-shelf Agents,"We address the challenge of utilizing large language models (LLMs) for complex embodied tasks, in the environment where decision-making systems operate timely on capacity-limited, off-the-shelf devices. We present DeDer, a framework for decomposing and distilling the embodied reasoning capabilities from LLMs to efficient, small language model (sLM)-based policies. In DeDer, the decision-making process of LLM-based strategies is restructured into a hierarchy with a reasoning-policy and planning-policy. The reasoning-policy is distilled from the data that is generated through the embodied in-context learning and self-verification of an LLM, so it can produce effective rationales. The planning-policy, guided by the rationales, can render optimized plans efficiently. In turn, DeDer allows for adopting sLMs for both policies, deployed on off-the-shelf devices. Furthermore, to enhance the quality of intermediate rationales, specific to embodied tasks, we devise the embodied knowledge graph, and to generate multiple rationales timely through a single inference, we also use the contrastively prompted attention model. Our experiments with the ALFRED benchmark demonstrate that DeDer surpasses leading language planning and distillation approaches, indicating the applicability and efficiency of sLM-based embodied policies derived through DeDer.",https://proceedings.mlr.press/v235/choi24d.html,2024,ICML,No,, Language Models as Science Tutors,"NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations publicly.",https://proceedings.mlr.press/v235/chevalier24a.html,2024,ICML,Yes,Language,Benchmark Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models,"Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM’s performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.",https://proceedings.mlr.press/v235/chen24j.html,2024,ICML,No,, Premise Order Matters in Reasoning with Large Language Models,"Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model’s accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that even if the model performance is decent on the optimal order, permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.",https://proceedings.mlr.press/v235/chen24i.html,2024,ICML,Yes,Language,Benchmark MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark,"Multimodal Large Language Models (MLLMs) have gained significant attention recently, showing remarkable potential in artificial general intelligence. However, assessing the utility of MLLMs presents considerable challenges, primarily due to the absence multimodal benchmarks that align with human preferences. Drawing inspiration from the concept of LLM-as-a-Judge within LLMs, this paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities, encompassing three distinct tasks: Scoring Evaluation, Pair Comparison, and Batch Ranking. Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparisons, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking tasks. Furthermore, a closer examination reveals persistent challenges in the evaluative capacities of LLMs, including diverse biases, hallucinatory responses, and inconsistencies in judgment, even in advanced models such as GPT-4V. These findings emphasize the pressing need for enhancements and further research efforts to be undertaken before regarding MLLMs as fully reliable evaluators. In light of this, we advocate for additional efforts dedicated to supporting the continuous development within the domain of MLLM functioning as judges. The code and dataset are publicly available at our project homepage: https://mllm-judge.github.io/.",https://proceedings.mlr.press/v235/chen24h.html,2024,ICML,Yes,Multimodal, HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding,"While large vision-language models (LVLMs) have demonstrated impressive capabilities in interpreting multi-modal contexts, they invariably suffer from object hallucinations (OH). We introduce HALC, a novel decoding algorithm designed to mitigate OH in LVLMs. HALC leverages distinct fine-grained optimal visual information in vision-language tasks and operates on both local and global contexts simultaneously. Specifically, HALC integrates a robust auto-focal grounding mechanism (locally) to correct hallucinated tokens on the fly, and a specialized beam search algorithm (globally) to significantly reduce OH while preserving text generation quality. Additionally, HALC can be integrated into any LVLMs as a plug-and-play module without extra training. Extensive experimental studies demonstrate HALC’s effectiveness in reducing OH, outperforming state-of-the-arts across four benchmarks. Code is released at https://github.com/BillChan226/HALC.",https://proceedings.mlr.press/v235/chen24bi.html,2024,ICML,No,, LLaGA: Large Language and Graph Assistant,"Graph Neural Networks (GNNs) have empowered the advance in graph-structured data analysis. Recently, the rise of Large Language Models (LLMs) like GPT-4 has heralded a new era in deep learning. However, their application to graph data poses distinct challenges due to the inherent difficulty of translating graph structures to language. To this end, we introduce the the Large Language and Graph Assistant (LLaGA), an innovative model that effectively integrates LLM capabilities to handle the complexities of graph-structured data. LLaGA retains the general-purpose nature of LLMs while adapting graph data into a format compatible with LLM input. LLaGA achieves this by reorganizing graph nodes to structure-aware sequences and then mapping these into the token embedding space through a versatile projector. LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks, extend its ability to unseen datasets or tasks, and provide explanations for graphs. Our extensive experiments across popular graph benchmarks show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model, surpassing state-of-the-art graph models in both supervised and zero-shot scenarios.",https://proceedings.mlr.press/v235/chen24bh.html,2024,ICML,No,, In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation,"Large language models (LLMs) frequently hallucinate, e.g., making factual errors, yet our understanding of why they make these errors remains limited. In this study, we aim to understand the underlying mechanisms of LLM hallucinations from the perspective of inner representations. We discover a pattern associated with hallucinations: correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to that of the incorrect generations. Leveraging this signal, we propose an entropy-based metric to quantify the sharpness among the in-context hidden states and incorporate it into the decoding process, i.e, use the entropy value to adjust the next token prediction distribution to improve the factuality and overall quality of the generated text. Experiments on knowledge-seeking datasets (Natural Questions, HotpotQA, TriviaQA) and hallucination benchmark (TruthfulQA) demonstrate our consistent effectiveness, e.g., up to 8.6 absolute points on TruthfulQA. We believe this study can improve our understanding of hallucinations and serve as a practical solution for hallucination mitigation.",https://proceedings.mlr.press/v235/chen24av.html,2024,ICML,No,, GRATH: Gradual Self-Truthifying for Large Language Models,"Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs’ truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs. The code is available at https://github.com/chenweixin107/GRATH.",https://proceedings.mlr.press/v235/chen24aj.html,2024,ICML,No,, MAGDi: Structured Distillation of Multi-Agent Interaction Graphs Improves Reasoning in Smaller Language Models,"Multi-agent interactions between Large Language Model (LLM) agents have shown major improvements on diverse reasoning tasks. However, these involve long generations from multiple models across several rounds, making them expensive. Moreover, these multi-agent approaches fail to provide a final, single model for efficient inference. To address this, we introduce MAGDi, a new method for structured distillation of the reasoning interactions between multiple LLMs into smaller LMs. MAGDi teaches smaller models by representing multi-agent interactions as graphs, augmenting a base student model with a graph encoder, and distilling knowledge using three objective functions: next-token prediction, a contrastive loss between correct and incorrect reasoning, and a graph-based objective to model the interaction structure. Experiments on seven widely used commonsense and math reasoning benchmarks show that MAGDi improves the reasoning capabilities of smaller models, outperforming several methods that distill from a single teacher and multiple teachers. Moreover, MAGDi also demonstrates an order of magnitude higher efficiency over its teachers. We conduct extensive analyses to show that MAGDi (1) enhances the generalizability to out-of-domain tasks, (2) scales positively with the size and strength of the base student model, and (3) obtains larger improvements (via our multi-teacher training) when applying self-consistency – an inference technique that relies on model diversity.",https://proceedings.mlr.press/v235/chen24ah.html,2024,ICML,No,, DiJiang: Efficient Large Language Models through Compact Kernelization,"In an effort to reduce the computational load of Transformers, research on linear attention has gained significant momentum. However, the improvement strategies for attention mechanisms typically necessitate extensive retraining, which is impractical for large language models with a vast array of parameters. In this paper, we present DiJiang, a novel Frequency Domain Kernelization approach that enables the transformation of a pre-trained vanilla Transformer into a linear complexity model with little training costs. By employing a weighted Quasi-Monte Carlo method for sampling, the proposed approach theoretically offers superior approximation efficiency. To further reduce the training computational complexity, our kernelization is based on Discrete Cosine Transform (DCT) operations. Extensive experiments demonstrate that the proposed method achieves comparable performance to the original Transformer, but with significantly reduced training costs and much faster inference speeds. Our DiJiang-7B achieves comparable performance with LLaMA2-7B on various benchmark while requires only about 1/50 training cost. Code is available at https://github.com/YuchuanTian/DiJiang.",https://proceedings.mlr.press/v235/chen24ab.html,2024,ICML,No,, CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay,"Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach the ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the program output given input) to the output actually produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit.",https://proceedings.mlr.press/v235/butt24a.html,2024,ICML,Yes,Language,Methodological Prompt Sketching for Large Language Models,"Many recent prompting strategies for large language models (LLMs) query the model multiple times sequentially – first to produce intermediate results and then the final answer. However, using these methods, both decoder and model are unaware of potential follow-up prompts, leading to disconnected and undesirably wordy intermediate responses. In this work, we address this issue by proposing prompt sketching, a new prompting paradigm in which an LLM does not only respond by completing a prompt, but by predicting values for multiple variables in a template. This way, sketching grants users more control over the generation process, e.g., by providing a reasoning framework via intermediate instructions, leading to better overall results. The key idea enabling sketching with existing, autoregressive models is to adapt the decoding procedure to also score follow-up instructions during text generation, thus optimizing overall template likelihood in inference. Our experiments show that in a zero-shot setting, prompt sketching outperforms existing, sequential prompting schemes such as direct asking or chain-of-thought on 7 out of 8 LLM benchmarking tasks, including state tracking, arithmetic reasoning, and general question answering. To facilitate future use, we release a number of generic, yet effective sketches applicable to many tasks, and an open source library called dclib, powering our sketch-aware decoders as part of https://github.com/eth-sri/lmql.",https://proceedings.mlr.press/v235/beurer-kellner24b.html,2024,ICML,No,, Unsupervised Evaluation of Code LLMs with Round-Trip Correctness,"To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.",https://proceedings.mlr.press/v235/allamanis24a.html,2024,ICML,Yes,Language,Methodological Evaluating Model Bias Requires Characterizing its Mistakes,"The ability to properly benchmark model performance in the face of spurious correlations is important to both build better predictors and increase confidence that models are operating as intended. We demonstrate that characterizing (as opposed to simply quantifying) model mistakes across subgroups is pivotal to properly reflect model biases, which are ignored by standard metrics such as worst-group accuracy or accuracy gap. Inspired by the hypothesis testing framework, we introduce SkewSize, a principled and flexible metric that captures bias from mistakes in a model’s predictions. It can be used in multi-class settings or generalised to the open vocabulary setting of generative models. SkewSize is an aggregation of the effect size of the interaction between two categorical variables: the spurious variable representing the bias attribute the model’s prediction. We demonstrate the utility of SkewSize in multiple settings including: standard vision models trained on synthetic data, vision models trained on ImageNet, and large scale vision-and-language models from the BLIP-2 family. In each case, the proposed SkewSize is able to highlight biases not captured by other metrics, while also providing insights on the impact of recently proposed techniques, such as instruction tuning.",https://proceedings.mlr.press/v235/albuquerque24a.html,2024,ICML,No,, LeaPformer: Enabling Linear Transformers for Autoregressive and Simultaneous Tasks via Learned Proportions,"A promising approach to preserving model performance in linearized transformers is to employ position-based re-weighting functions. However, state-of-the-art re-weighting functions rely heavily on target sequence lengths, making it difficult or impossible to apply them to autoregressive and simultaneous tasks, where the target and sometimes even the input sequence length are unknown. To address this issue, we propose Learned Proportions (LeaP) and LeaPformers. Our contribution is built on two major components. First, we generalize the dependence on explicit positional representations and sequence lengths into dependence on sequence proportions for re-weighting. Second, we replace static positional representations with dynamic proportions derived via a compact module, enabling more flexible attention concentration patterns. We evaluate LeaPformer against eight representative efficient transformers on the Long-Range Arena benchmark, where we show that LeaPformer achieves the best quality-throughput trade-off, as well as apply LeaPformer to Wikitext-103b autoregressive language modeling and simultaneous speech-to-text translation for two language pairs, achieving competitive results in both tasks.",https://proceedings.mlr.press/v235/agostinelli-iii24a.html,2024,ICML,No,, ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object Navigation,"The ability to accurately locate and navigate to a specific object is a crucial capability for embodied agents that operate in the real world and interact with objects to complete tasks. Such object navigation tasks usually require large-scale training in visual environments with labeled objects, which generalizes poorly to novel objects in unknown environments. In this work, we present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC), that transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience nor any other training on the visual environments. First, ESC leverages a pre-trained vision and language model for open-world prompt-based grounding and a pre-trained commonsense language model for room and object reasoning. Then ESC converts commonsense knowledge into navigation actions by modeling it as soft logic predicates for efficient exploration. Extensive experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines, and achieves new state-of-the-art results for zero-shot object navigation (e.g., 288% relative Success Rate improvement than CoW on MP3D).",https://proceedings.mlr.press/v202/zhou23r.html,2023,ICML,No,, Structure-informed Language Models Are Protein Designers,"This paper demonstrates that language models are strong structure-based protein designers. We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs), that have learned massive sequential evolutionary knowledge from the universe of natural protein sequences, to acquire an immediate capability to design preferable protein sequences for given folds. We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness. During inference, iterative refinement is performed to effectively optimize the generated protein sequences. Experiments show that LM-Design improves the state-of-the-art results by a large margin, leading to 4% to 12% accuracy gains in sequence recovery (e.g., 55.65%/56.63% on CATH 4.2/4.3 single-chain benchmarks, and $>$60% when designing protein complexes). We provide extensive and in-depth analyses, which verify that LM-Design can (1) indeed leverage both structural and sequential knowledge to accurately handle structurally non-deterministic regions, (2) benefit from scaling data and model size, and (3) generalize to other proteins (e.g., antibodies and de novo proteins).",https://proceedings.mlr.press/v202/zheng23a.html,2023,ICML,No,, CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling,"Transformer has achieved remarkable success in language, image, and speech processing. Recently, various efficient attention architectures have been proposed to improve transformer’s efficiency while largely preserving its efficacy, especially in modeling long sequences. A widely-used benchmark to test these efficient methods’ capability on long-range modeling is Long Range Arena (LRA). However, LRA only focuses on the standard bidirectional (or noncausal) self attention, and completely ignores cross attentions and unidirectional (or causal) attentions, which are equally important to downstream applications. In this paper, we propose Comprehensive Attention Benchmark (CAB) under a fine-grained attention taxonomy with four distinguishable attention patterns, namely, noncausal self, causal self, noncausal cross, and causal cross attentions. CAB collects seven real-world tasks from different research areas to evaluate efficient attentions under the four attention patterns. Among these tasks, CAB validates efficient attentions in eight backbone networks to show their generalization across neural architectures. We conduct exhaustive experiments to benchmark the performances of nine widely-used efficient attention architectures designed with different philosophies on CAB. Extensive experimental results also shed light on the fundamental problems of efficient attentions, such as efficiency length against vanilla attention, performance consistency across attention patterns, the benefit of attention mechanisms, and interpolation/extrapolation on long-context language modeling.",https://proceedings.mlr.press/v202/zhang23r.html,2023,ICML,Yes,Language,Benchmark Tractable Control for Autoregressive Language Generation,"Despite the success of autoregressive large language models in text generation, it remains a major challenge to generate text that satisfies complex constraints: sampling from the conditional distribution ${\Pr}(\text{text} | \alpha)$ is intractable for even the simplest lexical constraints $\alpha$. To overcome this challenge, we propose to use tractable probabilistic models (TPMs) to impose lexical constraints in autoregressive text generation models, which we refer to as GeLaTo (Generating Language with Tractable Constraints). To demonstrate the effectiveness of this framework, we use distilled hidden Markov models, where we can efficiently compute ${\Pr}(\text{text} | \alpha)$, to guide autoregressive generation from GPT2. GeLaTo achieves state-of-the-art performance on challenging benchmarks for constrained text generation (e.g., CommonGen), beating various strong baselines by a large margin. Our work not only opens up new avenues for controlling large language models but also motivates the development of more expressive TPMs.",https://proceedings.mlr.press/v202/zhang23g.html,2023,ICML,No,, Bag of Tricks for Training Data Extraction from Language Models,"With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research. The code is available at https://github.com/weichen-yu/LM-Extraction.",https://proceedings.mlr.press/v202/yu23c.html,2023,ICML,No,, ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts,"Current protein language models (PLMs) learn protein representations mainly based on their sequences, thereby well capturing co-evolutionary information, but they are unable to explicitly acquire protein functions, which is the end goal of protein representation learning. Fortunately, for many proteins, their textual property descriptions are available, where their various functions are also described. Motivated by this fact, we first build the ProtDescribe dataset to augment protein sequences with text descriptions of their functions and other important properties. Based on this dataset, we propose the ProtST framework to enhance Protein Sequence pre-training and understanding by biomedical Texts. During pre-training, we design three types of tasks, i.e., unimodal mask prediction, multimodal representation alignment and multimodal mask prediction, to enhance a PLM with protein property information with different granularities and, at the same time, preserve the PLM’s original representation power. On downstream tasks, ProtST enables both supervised learning and zero-shot prediction. We verify the superiority of ProtST-induced PLMs over previous ones on diverse representation learning benchmarks. Under the zero-shot setting, we show the effectiveness of ProtST on zero-shot protein classification, and ProtST also enables functional protein retrieval from a large-scale database without any function annotation.",https://proceedings.mlr.press/v202/xu23t.html,2023,ICML,No,, Large Language Models Can Be Easily Distracted by Irrelevant Context,"Large language models have achieved impressive performance on various natural language processing tasks. However, so far they have been evaluated primarily on benchmarks where all information in the input context is relevant for solving the task. In this work, we investigate the distractibility of large language models, i.e., how the model prediction can be distracted by irrelevant context. In particular, we introduce Grade-School Math with Irrelevant Context (GSM-IC), an arithmetic reasoning dataset with irrelevant information in the problem description. We use this benchmark to measure the distractibility of different prompting techniques for large language models, and find that the model is easily distracted by irrelevant information. We also identify several approaches for mitigating this deficiency, such as decoding with self-consistency and adding to the prompt an instruction that tells the language model to ignore the irrelevant information.",https://proceedings.mlr.press/v202/shi23a.html,2023,ICML,Yes,Language,Benchmark FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU,"The high computational and memory requirements of large language model (LLM) inference make it feasible only with multiple high-end accelerators. Motivated by the emerging demand for latency-insensitive tasks with batched processing, this paper initiates the study of high-throughput LLM inference using limited resources, such as a single commodity GPU. We present FlexGen, a high-throughput generation engine for running LLMs with limited GPU memory. FlexGen can be flexibly configured under various hardware resource constraints by aggregating memory and computation from the GPU, CPU, and disk. By solving a linear programming problem, it searches for efficient patterns to store and access tensors. FlexGen further compresses the weights and the attention cache to 4 bits with negligible accuracy loss. These techniques enable FlexGen to have a larger space of batch size choices and thus significantly increase maximum throughput. As a result, when running OPT-175B on a single 16GB GPU, FlexGen achieves significantly higher throughput compared to state-of-the-art offloading systems, reaching a generation throughput of 1 token/s for the first time with an effective batch size of 144. On the HELM benchmark, FlexGen can benchmark a 30B model with a 16GB GPU on 7 representative sub-scenarios in 21 hours. The code is available at https://github.com/FMInference/FlexGen.",https://proceedings.mlr.press/v202/sheng23a.html,2023,ICML,No,, Enhancing Activity Prediction Models in Drug Discovery with the Ability to Understand Human Language,"Activity and property prediction models are the central workhorses in drug discovery and materials sciences, but currently, they have to be trained or fine-tuned for new tasks. Without training or fine-tuning, scientific language models could be used for such low-data tasks through their announced zero- and few-shot capabilities. However, their predictive quality at activity prediction is lacking. In this work, we envision a novel type of activity prediction model that is able to adapt to new prediction tasks at inference time, via understanding textual information describing the task. To this end, we propose a new architecture with separate modules for chemical and natural language inputs, and a contrastive pretraining objective on data from large biochemical databases. In extensive experiments, we show that our method CLAMP yields improved predictive performance on few-shot learning benchmarks and zero-shot problems in drug discovery. We attribute the advances of our method to the modularized architecture and to our pre-training objective.",https://proceedings.mlr.press/v202/seidl23a.html,2023,ICML,No,, Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards and Ethical Behavior in the Machiavelli Benchmark,"Artificial agents have traditionally been trained to maximize reward, which may incentivize power-seeking and deception, analogous to how next-token prediction in language models (LMs) may incentivize toxicity. So do agents naturally learn to be Machiavellian? And how do we measure these behaviors in general-purpose models such as GPT-4? Towards answering these questions, we introduce Machiavelli, a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios that center on social decision-making. Scenario labeling is automated with LMs, which are more performant than human annotators. We mathematize dozens of harmful behaviors and use our annotations to evaluate agents’ tendencies to be power-seeking, cause disutility, and commit ethical violations. We observe some tension between maximizing reward and behaving ethically. To improve this trade-off, we investigate LM-based methods to steer agents towards less harmful behaviors. Our results show that agents can both act competently and morally, so concrete progress can currently be made in machine ethics–designing agents that are Pareto improvements in both safety and capabilities.",https://proceedings.mlr.press/v202/pan23a.html,2023,ICML,Yes,Language,Benchmark Measuring the Impact of Programming Language Distribution,"Current benchmarks for evaluating neural code models focus on only a small subset of programming languages, excluding many popular languages such as Go or Rust. To ameliorate this issue, we present the BabelCode framework for execution-based evaluation of any benchmark in any language. BabelCode enables new investigations into the qualitative performance of models’ memory, runtime, and individual test case results. Additionally, we present a new code translation dataset called Translating Python Programming Puzzles (TP3) from the Python Programming Puzzles (Schuster et al., 2021) benchmark that involves translating expert-level python functions to any language. With both BabelCode and the TP3 benchmark, we investigate if balancing the distributions of 14 languages in a training dataset improves a large language model’s performance on low-resource languages. Training a model on a balanced corpus results in, on average, 12.34% higher $pass@k$ across all tasks and languages compared to the baseline. We find that this strategy achieves 66.48% better $pass@k$ on low-resource languages at the cost of only a 12.94% decrease to high-resource languages. In our three translation tasks, this strategy yields, on average, 30.77% better low-resource $pass@k$ while having 19.58% worse high-resource $pass@k$.",https://proceedings.mlr.press/v202/orlanski23a.html,2023,ICML,Yes,Language,Methodological Gradient-Free Structured Pruning with Unlabeled Data,"Large Language Models (LLMs) have achieved great success in solving difficult tasks across many domains, but such success comes with a high computation cost, and inference latency. As developers and third parties customize these models, the need to provide efficient inference has increased. Many efforts have attempted to reduce inference cost through model compression techniques such as pruning and distillation. However, these techniques either require labeled data, or are time-consuming as they require the compressed model to be retrained to regain accuracy. In this paper, we propose a gradient-free structured pruning framework that uses only unlabeled data. An evaluation on the GLUE and SQuAD benchmarks using BERT$_{BASE}$ and DistilBERT illustrates the effectiveness of the proposed approach. By only using the weights of the pre-trained model and unlabeled data, in a matter of a few minutes on a single GPU, up to 40% of the original FLOP count can be reduced with less than a $4%$ accuracy loss across all tasks considered.",https://proceedings.mlr.press/v202/nova23a.html,2023,ICML,No,, Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning,"Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.",https://proceedings.mlr.press/v202/meng23b.html,2023,ICML,No,, Reprogramming Pretrained Language Models for Antibody Sequence Infilling,"Antibodies comprise the most versatile class of binding molecules, with numerous applications in biomedicine. Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency. Unique to antibodies, designing the complementarity-determining region (CDR), which determines the antigen binding affinity and specificity, creates its own unique challenges. Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance, particularly lacking diversity in the generated sequences. In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data - where it may be difficult to train a high-performing model from scratch or effectively fine-tune an existing pre-trained model on the specific task. Specifically, we introduce ReprogBert in which a pretrained English language model is repurposed for protein sequence infilling - thus considers cross-language adaptation using less data. Results on antibody design benchmarks show that our model on low-resourced antibody sequence dataset provides highly diverse CDR sequences, up to more than a two-fold increase of diversity over the baselines, without losing structural integrity and naturalness. The generated sequences also demonstrate enhanced antigen binding specificity and virus neutralization ability. Code is available at https://github.com/IBM/ReprogBERT",https://proceedings.mlr.press/v202/melnyk23a.html,2023,ICML,No,, Emergent Agentic Transformer from Chain of Hindsight Experience,"Large transformer models powered by diverse data and model scale have dominated natural language modeling and computer vision and pushed the frontier of multiple AI areas. In reinforcement learning (RL), despite many efforts into transformer-based policies, a key limitation, however, is that current transformer-based policies cannot learn by directly combining information from multiple sub-optimal trials. In this work, we address this issue using recently proposed chain of hindsight to relabel experience, where we train a transformer on a sequence of trajectory experience ascending sorted according to their total rewards. Our method consists of relabelling target return of each trajectory to the maximum total reward among in sequence of trajectories and training an autoregressive model to predict actions conditioning on past states, actions, rewards, target returns, and task completion tokens, the resulting model, Agentic Transformer (AT), can learn to improve upon itself both at training and test time. As we show on D4RL and ExoRL benchmarks, to the best our knowledge, this is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches, even from sub-optimal data. Our Agentic Transformer also shows a promising scaling trend that bigger models consistently improve results.",https://proceedings.mlr.press/v202/liu23a.html,2023,ICML,No,, Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise,"In this paper, we introduce a novel dIffusion language modEl pre-training framework for text generation, which we call GENIE. GENIE is a large-scale pre-trained diffusion language model that consists of an encoder and a diffusion-based decoder, which can generate text by gradually transforming a random noise sequence into a coherent text sequence. To pre-train GENIE on a large-scale language corpus, we design a new continuous paragraph denoise objective, which encourages the diffusion-decoder to reconstruct a clean text paragraph from a corrupted version, while preserving the semantic and syntactic coherence. We evaluate GENIE on four downstream text generation benchmarks, namely XSum, CNN/DailyMail, Gigaword, and CommonGen. Our experimental results show that GENIE achieves comparable performance with the state-of-the-art autoregressive models on these benchmarks, and generates more diverse text samples. The code and models of GENIE are available at https://github.com/microsoft/ProphetNet/tree/master/GENIE.",https://proceedings.mlr.press/v202/lin23d.html,2023,ICML,No,, QASA: Advanced Question Answering on Scientific Articles,"Reasoning is the crux of intellectual thinking. While question answering (QA) tasks are prolific with various computational models and benchmark datasets, they mostly tackle factoid or shallow QA without asking deeper understanding. Dual process theory asserts that human reasoning consists of associative thinking to collect relevant pieces of knowledge and logical reasoning to consciously conclude grounding on evidential rationale. Based on our intensive think-aloud study that revealed the three types of questions: surface, testing, and deep questions, we first propose the QASA benchmark that consists of 1798 novel question answering pairs that require full-stack reasoning on scientific articles in AI and ML fields. Then we propose the QASA approach that tackles the full-stack reasoning with large language models via associative selection, evidential rationale-generation, and systematic composition. Our experimental results show that QASA’s full-stack inference outperforms the state-of-the-art InstructGPT by a big margin. We also find that rationale-generation is critical for the performance gain, claiming how we should rethink advanced question answering. The dataset is available at https://github.com/lgresearch/QASA.",https://proceedings.mlr.press/v202/lee23n.html,2023,ICML,Yes,Language,Benchmark Pretraining Language Models with Human Preferences,"Language models (LMs) are pretrained to imitate text from large and diverse datasets that contain content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, among others. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.",https://proceedings.mlr.press/v202/korbak23a.html,2023,ICML,Yes,Language,Methodological Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning,"The development of largely human-annotated benchmarks has driven the success of deep neural networks in various NLP tasks. To enhance the effectiveness of existing benchmarks, collecting new additional input-output pairs is often too costly and challenging, particularly considering their marginal impact on improving the current model accuracy. Instead, additional or complementary annotations on the existing input texts in the benchmarks can be preferable as an efficient way to pay the additional human cost. In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation. From pair-wise comparisons with respect to the task, the auxiliary preference learning enables the model to learn an additional informative training signal that cannot be captured with instance-wise task labels. To this end, we propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences. Here, we provide three different ways to collect preference signals in practice: (a) implicitly extracting from annotation records (for free, but often unavailable), (b) collecting explicitly from crowd workers (high paid), or (c) pre-trained large language models such as GPT-3 (low paid). Given existing classification NLP benchmarks, we demonstrate that the proposed auxiliary preference learning via P2C on them is effective in improving text classifiers. Our codes are publicly available.",https://proceedings.mlr.press/v202/kim23u.html,2023,ICML,No,, VIMA: Robot Manipulation with Multimodal Prompts,"Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts, interleaving textual and visual tokens. Accordingly, we develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and a four-level evaluation protocol for systematic generalization. We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. VIMA features a recipe that achieves strong model scalability and data efficiency. It outperforms alternative designs in the hardest zero-shot generalization setting by up to $2.9\times$ task success rate given the same training data. With $10\times$ less training data, VIMA still performs $2.7\times$ better than the best competing variant. Code and video demos are available at https://vimalabs.github.io",https://proceedings.mlr.press/v202/jiang23b.html,2023,ICML,Yes,Multimodal, Exploring the Benefits of Training Expert Language Models over Instruction Tuning,"Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown capabilities to generalize to unseen tasks. Previous work has shown that scaling the number of finetuning datasets and instructions is the key component in making stronger MT LMs. In this work, we report surprising findings that show an expert LM trained on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by an average of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training multiple expert LMs instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together.",https://proceedings.mlr.press/v202/jang23a.html,2023,ICML,No,, Language Instructed Reinforcement Learning for Human-AI Coordination,"One of the fundamental quests of AI is to produce agents that coordinate well with humans. This problem is challenging, especially in domains that lack high quality human behavioral data, because multi-agent reinforcement learning (RL) often converges to different equilibria from the ones that humans prefer. We propose a novel framework, instructRL, that enables humans to specify what kind of strategies they expect from their AI partners through natural language instructions. We use pretrained large language models to generate a prior policy conditioned on the human instruction and use the prior to regularize the RL objective. This leads to the RL agent converging to equilibria that are aligned with human preferences. We show that instructRL converges to human-like policies that satisfy the given instructions in a proof-of-concept environment as well as the challenging Hanabi benchmark. Finally, we show that knowing the language instruction significantly boosts human-AI coordination performance in human evaluations in Hanabi.",https://proceedings.mlr.press/v202/hu23e.html,2023,ICML,No,, Decoding Layer Saliency in Language Transformers,"In this paper, we introduce a strategy for identifying textual saliency in large-scale language models applied to classification tasks. In visual networks where saliency is more well-studied, saliency is naturally localized through the convolutional layers of the network; however, the same is not true in modern transformer-stack networks used to process natural language. We adapt gradient-based saliency methods for these networks, propose a method for evaluating the degree of semantic coherence of each layer, and demonstrate consistent improvement over numerous other methods for textual saliency on multiple benchmark classification datasets. Our approach requires no additional training or access to labelled data, and is comparatively very computationally efficient.",https://proceedings.mlr.press/v202/hou23a.html,2023,ICML,No,, LongCoder: A Long-Range Pre-trained Language Model for Code Completion,"In this paper, we introduce a new task for code completion that focuses on handling long code input and propose a sparse Transformer model, called LongCoder, to address this task. LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens - bridge tokens and memory tokens - to improve performance and efficiency. Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction, while memory tokens are included to highlight important statements that may be invoked later and need to be memorized, such as package imports and definitions of classes, functions, or structures. We conduct experiments on a newly constructed dataset that contains longer code context and the publicly available CodeXGLUE benchmark. Experimental results demonstrate that LongCoder achieves superior performance on code completion tasks compared to previous models while maintaining comparable efficiency in terms of computational resources during inference.",https://proceedings.mlr.press/v202/guo23j.html,2023,ICML,Yes,Language,Technical Unifying Molecular and Textual Representations via Multi-task Language Modelling,"The recent advances in neural language models have also been successfully applied to the field of chemistry, offering generative solutions for classical problems in molecular design and synthesis planning. These new methods have the potential to fuel a new era of data-driven automation in scientific discovery. However, specialized models are still typically required for each task, leading to the need for problem-specific fine-tuning and neglecting task interrelations. The main obstacle in this field is the lack of a unified representation between natural language and chemical representations, complicating and limiting human-machine interaction. Here, we propose the first multi-domain, multi-task language model that can solve a wide range of tasks in both the chemical and natural language domains. Our model can handle chemical and natural language concurrently, without requiring expensive pre-training on single domains or task-specific models. Interestingly, sharing weights across domains remarkably improves our model when benchmarked against state-of-the-art baselines on single-domain and cross-domain tasks. In particular, sharing information across domains and tasks gives rise to large improvements in cross-domain tasks, the magnitude of which increase with scale, as measured by more than a dozen of relevant metrics. Our work suggests that such models can robustly and efficiently accelerate discovery in physical sciences by superseding problem-specific fine-tuning and enhancing human-model interactions.",https://proceedings.mlr.press/v202/christofidellis23a.html,2023,ICML,Yes,Language,Methodological Trompt: Towards a Better Deep Neural Network for Tabular Data,"Tabular data is arguably one of the most commonly used data structures in various practical domains, including finance, healthcare and e-commerce. The inherent heterogeneity allows tabular data to store rich information. However, based on a recently published tabular benchmark, we can see deep neural networks still fall behind tree-based models on tabular datasets. In this paper, we propose Trompt–which stands for Tabular Prompt–a novel architecture inspired by prompt learning of language models. The essence of prompt learning is to adjust a large pre-trained model through a set of prompts outside the model without directly modifying the model. Based on this idea, Trompt separates the learning strategy of tabular data into two parts. The first part, analogous to pre-trained models, focus on learning the intrinsic information of a table. The second part, analogous to prompts, focus on learning the variations among samples. Trompt is evaluated with the benchmark mentioned above. The experimental results demonstrate that Trompt outperforms state-of-the-art deep neural networks and is comparable to tree-based models.",https://proceedings.mlr.press/v202/chen23c.html,2023,ICML,No,, VLUE: A Multi-Task Multi-Dimension Benchmark for Evaluating Vision-Language Pre-training,"Recent advances in vision-language pre-training (VLP) have demonstrated impressive performance in a range of vision-language (VL) tasks. However, there exist several challenges for measuring the community’s progress in building general multi-modal intelligence. First, most of the downstream VL datasets are annotated using raw images that are already seen during pre-training, which may result in an overestimation of current VLP models’ generalization ability. Second, recent VLP work mainly focuses on absolute performance but overlooks the efficiency-performance trade-off, which is also an important indicator for measuring progress. To this end, we introduce the Vision-Language Understanding Evaluation (VLUE) benchmark, a multi-task multi-dimension benchmark for evaluating the generalization capabilities and the efficiency-performance trade-off (“Pareto SOTA”) of VLP models. We demonstrate that there is a sizable generalization gap for all VLP models when testing on out-of-distribution test sets annotated on images from a more diverse distribution that spreads across cultures. Moreover, we find that measuring the efficiency-performance trade-off of VLP models leads to complementary insights for several design choices of VLP. We release the VLUE benchmark to promote research on building vision-language models that generalize well to images unseen during pre-training and are practical in terms of efficiency-performance trade-off.",https://proceedings.mlr.press/v162/zhou22n.html,2022,ICML,Yes,Multimodal, Online Decision Transformer,"Recent work has shown that offline reinforcement learning (RL) can be formulated as a sequence modeling problem (Chen et al., 2021; Janner et al., 2021) and solved via approaches similar to large-scale language modeling. However, any practical instantiation of RL also involves an online component, where policies pretrained on passive offline datasets are finetuned via task-specific interactions with the environment. We propose Online Decision Transformers (ODT), an RL algorithm based on sequence modeling that blends offline pretraining with online finetuning in a unified framework. Our framework uses sequence-level entropy regularizers in conjunction with autoregressive modeling objectives for sample-efficient exploration and finetuning. Empirically, we show that ODT is competitive with the state-of-the-art in absolute performance on the D4RL benchmark but shows much more significant gains during the finetuning procedure.",https://proceedings.mlr.press/v162/zheng22c.html,2022,ICML,No,, Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval,"The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym – an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.",https://proceedings.mlr.press/v162/notin22a.html,2022,ICML,Yes,Language,Technical Improving Transformers with Probabilistic Attention Keys,"Multi-head attention is a driving force behind state-of-the-art transformers, which achieve remarkable performance across a variety of natural language processing (NLP) and computer vision tasks. It has been observed that for many applications, those attention heads learn redundant embedding, and most of them can be removed without degrading the performance of the model. Inspired by this observation, we propose Transformer with a Mixture of Gaussian Keys (Transformer-MGK), a novel transformer architecture that replaces redundant heads in transformers with a mixture of keys at each head. These mixtures of keys follow a Gaussian mixture model and allow each attention head to focus on different parts of the input sequence efficiently. Compared to its conventional transformer counterpart, Transformer-MGK accelerates training and inference, has fewer parameters, and requires fewer FLOPs to compute while achieving comparable or better accuracy across tasks. Transformer-MGK can also be easily extended to use with linear attention. We empirically demonstrate the advantage of Transformer-MGK in a range of practical applications, including language modeling and tasks that involve very long sequences. On the Wikitext-103 and Long Range Arena benchmark, Transformer-MGKs with 4 heads attain comparable or better performance to the baseline transformers with 8 heads.",https://proceedings.mlr.press/v162/nguyen22c.html,2022,ICML,No,, StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models,"Knowledge and language understanding of models evaluated through question answering (QA) has been usually studied on static snapshots of knowledge, like Wikipedia. However, our world is dynamic, evolves over time, and our models’ knowledge becomes outdated. To study how semi-parametric QA models and their underlying parametric language models (LMs) adapt to evolving knowledge, we construct a new large-scale dataset, StreamingQA, with human written and generated questions asked on a given date, to be answered from 14 years of time-stamped news articles. We evaluate our models quarterly as they read new articles not seen in pre-training. We show that parametric models can be updated without full retraining, while avoiding catastrophic forgetting. For semi-parametric models, adding new articles into the search space allows for rapid adaptation, however, models with an outdated underlying LM under-perform those with a retrained LM. For questions about higher-frequency named entities, parametric updates are particularly beneficial. In our dynamic world, the StreamingQA dataset enables a more realistic evaluation of QA models, and our experiments highlight several promising directions for future research.",https://proceedings.mlr.press/v162/liska22a.html,2022,ICML,Yes,Language,Benchmark FedScale: Benchmarking Model and System Performance of Federated Learning at Scale,"We present FedScale, a federated learning (FL) benchmarking suite with realistic datasets and a scalable runtime to enable reproducible FL research. FedScale datasets encompass a wide range of critical FL tasks, ranging from image classification and object detection to language modeling and speech recognition. Each dataset comes with a unified evaluation protocol using real-world data splits and evaluation metrics. To reproduce realistic FL behavior, FedScale contains a scalable and extensible runtime. It provides high-level APIs to implement FL algorithms, deploy them at scale across diverse hardware and software backends, and evaluate them at scale, all with minimal developer efforts. We combine the two to perform systematic benchmarking experiments and highlight potential opportunities for heterogeneity-aware co-optimizations in FL. FedScale is open-source and actively maintained by contributors from different institutions at http://fedscale.ai. We welcome feedback and contributions from the community.",https://proceedings.mlr.press/v162/lai22a.html,2022,ICML,No,, HyperPrompt: Prompt-based Task-Conditioning of Transformers,"Prompt-Tuning is a new paradigm for finetuning pre-trained language models in a parameter efficient way. Here, we explore the use of HyperNetworks to generate hyper-prompts: we propose HyperPrompt, a novel architecture for prompt-based task-conditioning of self-attention in Transformers. The hyper-prompts are end-to-end learnable via generation by a HyperNetwork. HyperPrompt allows the network to learn task-specific feature maps where the hyper-prompts serve as task global memories for the queries to attend to, at the same time enabling flexible information sharing among tasks. We show that HyperPrompt is competitive against strong multi-task learning baselines with as few as 0.14% of additional task-conditioning parameters, achieving great parameter and computational efficiency. Through extensive empirical experiments, we demonstrate that HyperPrompt can achieve superior performances over strong T5 multi-task learning baselines and parameter-efficient adapter variants including Prompt-Tuning and HyperFormer++ on Natural Language Understanding benchmarks of GLUE and SuperGLUE across many model sizes.",https://proceedings.mlr.press/v162/he22f.html,2022,ICML,No,, Synthesizer: Rethinking Self-Attention for Transformer Models,"The dot product self-attention is known to be central and indispensable to state-of-the-art Transformer models. But is it really required? This paper investigates the true importance and contribution of the dot product-based self-attention mechanism on the performance of Transformer models. Via extensive experiments, we find that (1) random alignment matrices surprisingly perform quite competitively and (2) learning attention weights from token-token (query-key) interactions is useful but not that important after all. To this end, we propose \textsc{Synthesizer}, a model that learns synthetic attention weights without token-token interactions. In our experiments, we first show that simple Synthesizers achieve highly competitive performance when compared against vanilla Transformer models across a range of tasks, including machine translation, language modeling, text generation and GLUE/SuperGLUE benchmarks. When composed with dot product attention, we find that Synthesizers consistently outperform Transformers. Moreover, we conduct additional comparisons of Synthesizers against Dynamic Convolutions, showing that simple Random Synthesizer is not only $60%$ faster but also improves perplexity by a relative $3.5%$. Finally, we show that simple factorized Synthesizers can outperform Linformers on encoding only tasks.",https://proceedings.mlr.press/v139/tay21a.html,2021,ICML,No,, Towards Understanding and Mitigating Social Biases in Language Models,"As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such real-world deployments are large-scale pretrained language models (LMs) that can be potentially dangerous in manifesting undesirable representational biases - harmful biases resulting from stereotyping that propagate negative generalizations involving gender, race, religion, and other social constructs. As a step towards improving the fairness of LMs, we carefully define several sources of representational biases before proposing new benchmarks and metrics to measure them. With these tools, we propose steps towards mitigating social biases during text generation. Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information for high-fidelity text generation, thereby pushing forward the performance-fairness Pareto frontier.",https://proceedings.mlr.press/v139/liang21a.html,2021,ICML,Yes,Language,Methodological Unifying Vision-and-Language Tasks via Text Generation,"Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5",https://proceedings.mlr.press/v139/cho21a.html,2021,ICML,No,, Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules,"Robust perception relies on both bottom-up and top-down signals. Bottom-up signals consist of what’s directly observed through sensation. Top-down signals consist of beliefs and expectations based on past experience and the current reportable short-term memory, such as how the phrase ‘peanut butter and ...’ will be completed. The optimal combination of bottom-up and top-down information remains an open question, but the manner of combination must be dynamic and both context and task dependent. To effectively utilize the wealth of potential top-down information available, and to prevent the cacophony of intermixed signals in a bidirectional architecture, mechanisms are needed to restrict information flow. We explore deep recurrent neural net architectures in which bottom-up and top-down signals are dynamically combined using attention. Modularity of the architecture further restricts the sharing and communication of information. Together, attention and modularity direct information flow, which leads to reliable performance improvements in perceptual and language tasks, and in particular improves robustness to distractions and noisy data. We demonstrate on a variety of benchmarks in language modeling, sequential image classification, video prediction and reinforcement learning that the \emph{bidirectional} information flow can improve results over strong baselines.",https://proceedings.mlr.press/v119/mittal20a.html,2020,ICML,No,, Retrieval Augmented Language Model Pre-Training,"Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.",https://proceedings.mlr.press/v119/guu20a.html,2020,ICML,No,, Aligned Cross Entropy for Non-Autoregressive Machine Translation,"Non-autoregressive machine translation models significantly speed up decoding by allowing for parallel prediction of the entire target sequence. However, modeling word order is more challenging due to the lack of autoregressive factors in the model. This difficultly is compounded during training with cross entropy loss, which can highly penalize small shifts in word order. In this paper, we propose aligned cross entropy (AXE) as an alternative loss function for training of non-autoregressive models. AXE uses a differentiable dynamic program to assign loss based on the best possible monotonic alignment between target tokens and model predictions. AXE-based training of conditional masked language models (CMLMs) substantially improves performance on major WMT benchmarks, while setting a new state of the art for non-autoregressive models.",https://proceedings.mlr.press/v119/ghazvininejad20a.html,2020,ICML,No,, UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training,"We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of language understanding and generation tasks across several widely used benchmarks. The code and pre-trained models are available at https://github.com/microsoft/unilm.",https://proceedings.mlr.press/v119/bao20a.html,2020,ICML,No,, Noisin: Unbiased Regularization for Recurrent Neural Networks,"Recurrent neural networks (RNNs) are powerful models of sequential data. They have been successfully used in domains such as text and speech. However, RNNs are susceptible to overfitting; regularization is important. In this paper we develop Noisin, a new method for regularizing RNNs. Noisin injects random noise into the hidden states of the RNN and then maximizes the corresponding marginal likelihood of the data. We show how Noisin applies to any RNN and we study many different types of noise. Noisin is unbiased–it preserves the underlying RNN on average. We characterize how Noisin regularizes its RNN both theoretically and empirically. On language modeling benchmarks, Noisin improves over dropout by as much as 12.2% on the Penn Treebank and 9.4% on the Wikitext-2 dataset. We also compared the state-of-the-art language model of Yang et al. 2017, both with and without Noisin. On the Penn Treebank, the method with Noisin more quickly reaches state-of-the-art performance.",https://proceedings.mlr.press/v80/dieng18a.html,2018,ICML,No,, Fraternal Dropout,"Recurrent neural networks (RNNs) are important class of architectures among neural networks useful for language modeling and sequential prediction. However, optimizing RNNs is known to be harder compared to feed-forward neural networks. A number of techniques have been proposed in literature to address this problem. In this paper we propose a simple technique called fraternal dropout that takes advantage of dropout to achieve this goal. Specifically, we propose to train two identical copies of an RNN (that share parameters) with different dropout masks while minimizing the difference between their (pre-softmax) predictions. In this way our regularization encourages the representations of RNNs to be invariant to dropout mask, thus being robust. We show that our regularization term is upper bounded by the expectation-linear dropout objective which has been shown to address the gap due to the difference between the train and inference phases of dropout. We evaluate our model and achieve state-of-the-art results in sequence modeling tasks on two benchmark datasets - Penn Treebank and Wikitext-2. We also show that our approach leads to performance improvement by a significant margin in image captioning (Microsoft COCO) and semi-supervised (CIFAR-10) tasks.",https://iclr.cc//virtual/2018/poster/5,2018,ICLR,No,, MaskGAN: Better Text Generation via Filling in the _______,"Neural text generation models are often autoregressive language models or seq2seq models. Neural autoregressive and seq2seq models that generate text by sampling words sequentially, with each word conditioned on the previous model, are state-of-the-art for several machine translation and summarization benchmarks. These benchmarks are often defined by validation perplexity even though this is not a direct measure of sample quality. Language models are typically trained via maximum likelihood and most often with teacher forcing. Teacher forcing is well-suited to optimizing perplexity but can result in poor sample quality because generating text requires conditioning on sequences of words that were never observed at training time. We propose to improve sample quality using Generative Adversarial Network (GANs), which explicitly train the generator to produce high quality samples and have shown a lot of success in image generation. GANs were originally to designed to output differentiable values, so discrete language generation is challenging for them. We introduce an actor-critic conditional GAN that fills in missing text conditioned on the surrounding context. We show qualitatively and quantitatively, evidence that this produces more realistic text samples compared to a maximum likelihood trained model.",https://iclr.cc//virtual/2018/poster/10,2018,ICLR,No,, On the State of the Art of Evaluation in Neural Language Models,"Ongoing innovations in recurrent neural network architectures have provided a steady influx of apparently state-of-the-art results on language modelling benchmarks. However, these have been evaluated using differing codebases and limited computational resources, which represent uncontrolled sources of experimental variation. We reevaluate several popular architectures and regularisation methods with large-scale automatic black-box hyperparameter tuning and arrive at the somewhat surprising conclusion that standard LSTM architectures, when properly regularised, outperform more recent models. We establish a new state of the art on the Penn Treebank and Wikitext-2 corpora, as well as strong baselines on the Hutter Prize dataset. ",https://iclr.cc//virtual/2018/poster/214,2018,ICLR,No,, Adaptive Input Representations for Neural Language Modeling,"We introduce adaptive input representations for neural language modeling which extend the adaptive softmax of Grave et al. (2017) to input representations of variable capacity. There are several choices on how to factorize the input and output layers, and whether to model words, characters or sub-word units. We perform a systematic comparison of popular choices for a self-attentional architecture. Our experiments show that models equipped with adaptive embeddings are more than twice as fast to train than the popular character input CNN while having a lower number of parameters. On the WikiText-103 benchmark we achieve 18.7 perplexity, an improvement of 10.5 perplexity compared to the previously best published result and on the Billion Word benchmark, we achieve 23.02 perplexity.",https://iclr.cc//virtual/2019/poster/950,2019,ICLR,No,, Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity,"The impressive lifelong learning in animal brains is primarily enabled by plastic changes in synaptic connectivity. Importantly, these changes are not passive, but are actively controlled by neuromodulation, which is itself under the control of the brain. The resulting self-modifying abilities of the brain play an important role in learning and adaptation, and are a major basis for biological reinforcement learning. Here we show for the first time that artificial neural networks with such neuromodulated plasticity can be trained with gradient descent. Extending previous work on differentiable Hebbian plasticity, we propose a differentiable formulation for the neuromodulation of plasticity. We show that neuromodulated plasticity improves the performance of neural networks on both reinforcement learning and supervised learning tasks. In one task, neuromodulated plastic LSTMs with millions of parameters outperform standard LSTMs on a benchmark language modeling task (controlling for the number of parameters). We conclude that differentiable neuromodulation of plasticity offers a powerful new framework for training neural networks.",https://iclr.cc//virtual/2019/poster/926,2019,ICLR,No,, Trellis Networks for Sequence Modeling,"We present trellis networks, a new architecture for sequence modeling. On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. We leverage these connections to design high-performing trellis networks that absorb structural and algorithmic elements from both recurrent and convolutional models. Experiments demonstrate that trellis networks outperform the current state of the art methods on a variety of challenging benchmarks, including word-level language modeling and character-level language modeling tasks, and stress tests designed to evaluate long-term memory retention. The code is available at https://github.com/locuslab/trellisnet .",https://iclr.cc//virtual/2019/poster/825,2019,ICLR,No,, Variational Smoothing in Recurrent Neural Network Language Models,"We present a new theoretical perspective of data noising in recurrent neural network language models (Xie et al., 2017). We show that each variant of data noising is an instance of Bayesian recurrent neural networks with a particular variational distribution (i.e., a mixture of Gaussians whose weights depend on statistics derived from the corpus such as the unigram distribution). We use this insight to propose a more principled method to apply at prediction time and propose natural extensions to data noising under the variational framework. In particular, we propose variational smoothing with tied input and output embedding matrices and an element-wise variational smoothing method. We empirically verify our analysis on two benchmark language modeling datasets and demonstrate performance improvements over existing data noising methods.",https://iclr.cc//virtual/2019/poster/677,2019,ICLR,No,, Compressive Transformers for Long-Range Sequence Modelling,"We present the Compressive Transformer, an attentive sequence model which compresses past memories for long-range sequence learning. We find the Compressive Transformer obtains state-of-the-art language modelling results in the WikiText-103 and Enwik8 benchmarks, achieving 17.1 ppl and 0.97bpc respectively. We also find it can model high-frequency speech effectively and can be used as a memory mechanism for RL, demonstrated on an object matching task. To promote the domain of long-range sequence learning, we propose a new open-vocabulary language modelling benchmark derived from books, PG-19.",https://iclr.cc//virtual/2020/poster/1602,2020,ICLR,Yes,Language,Technical ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators,"Masked language modeling (MLM) pre-training methods such as BERT corrupt the input by replacing some tokens with [MASK] and then train a model to reconstruct the original tokens. While they produce good results when transferred to downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we propose a more sample-efficient pre-training task called replaced token detection. Instead of masking the input, our approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments demonstrate this new pre-training task is more efficient than MLM because the task is defined over all input tokens rather than just the small subset that was masked out. As a result, the contextual representations learned by our approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The gains are particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms GPT (trained using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also works well at scale, where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute and outperforms them when using the same amount of compute. ",https://iclr.cc//virtual/2020/poster/1587,2020,ICLR,No,, FreeLB: Enhanced Adversarial Training for Natural Language Understanding,"Adversarial training, which minimizes the maximal risk for label-preserving input perturbations, has proved to be effective for improving the generalization of language models. In this work, we propose a novel adversarial training algorithm, FreeLB, that promotes higher invariance in the embedding space, by adding adversarial perturbations to word embeddings and minimizing the resultant adversarial risk inside different regions around input samples. To validate the effectiveness of the proposed approach, we apply it to Transformer-based models for natural language understanding and commonsense reasoning tasks. Experiments on the GLUE benchmark show that when applied only to the finetuning stage, it is able to improve the overall test scores of BERT-base model from 78.3 to 79.4, and RoBERTa-large model from 88.5 to 88.8. In addition, the proposed approach achieves state-of-the-art single-model test accuracies of 85.44% and 67.75% on ARC-Easy and ARC-Challenge. Experiments on CommonsenseQA benchmark further demonstrate that FreeLB can be generalized and boost the performance of RoBERTa-large model on other tasks as well.",https://iclr.cc//virtual/2020/poster/1624,2020,ICLR,No,, Improving Neural Language Generation with Spectrum Control,"Recent Transformer-based models such as Transformer-XL and BERT have achieved huge success on various natural language processing tasks. However, contextualized embeddings at the output layer of these powerful models tend to degenerate and occupy an anisotropic cone in the vector space, which is called the representation degeneration problem. In this paper, we propose a novel spectrum control approach to address this degeneration problem. The core idea of our method is to directly guide the spectra training of the output embedding matrix with a slow-decaying singular value prior distribution through a reparameterization framework. We show that our proposed method encourages isotropy of the learned word representations while maintains the modeling power of these contextual neural models. We further provide a theoretical analysis and insight on the benefit of modeling singular value distribution. We demonstrate that our spectrum control method outperforms the state-of-the-art Transformer-XL modeling for language model, and various Transformer-based models for machine translation, on common benchmark datasets for these tasks.",https://iclr.cc//virtual/2020/poster/1601,2020,ICLR,No,, Reducing Transformer Depth on Demand with Structured Dropout,"Overparametrized transformer networks have obtained state of the art results in various natural language processing tasks, such as machine translation, language modeling, and question answering. These models contain hundreds of millions of parameters, necessitating a large amount of computation and making them prone to overfitting. In this work, we explore LayerDrop, a form of structured dropout, which has a regularization effect during training and allows for efficient pruning at inference time. In particular, we show that it is possible to select sub-networks of any depth from one large network without having to finetune them and with limited impact on performance. We demonstrate the effectiveness of our approach by improving the state of the art on machine translation, language modeling, summarization, question answering, and language understanding benchmarks. Moreover, we show that our approach leads to small BERT-like models of higher quality than when training from scratch or using distillation.",https://iclr.cc//virtual/2020/poster/1590,2020,ICLR,No,, StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding,"Recently, the pre-trained language model, BERT (and its robustly optimized version RoBERTa), has attracted a lot of attention in natural language understanding (NLU), and achieved state-of-the-art accuracy in various NLU tasks, such as sentiment classification, natural language inference, semantic textual similarity and question answering. Inspired by the linearization exploration work of Elman, we extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. As a result, the new model is adapted to different levels of language understanding required by downstream tasks. The StructBERT with structural pre-training gives surprisingly good empirical results on a variety of downstream tasks, including pushing the state-of-the-art on the GLUE benchmark to 89.0 (outperforming all published models at the time of model submission), the F1 score on SQuAD v1.1 question answering to 93.0, the accuracy on SNLI to 91.7.",https://iclr.cc//virtual/2020/poster/1693,2020,ICLR,No,, AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights,"Normalization techniques, such as batch normalization (BN), are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters (e.g. more than 90% of the weights in ResNet are scale-invariant due to BN). In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in performances in those benchmarks. Source code is available at https://github.com/clovaai/adamp",https://iclr.cc//virtual/2021/poster/2880,2021,ICLR,No,, Aligning AI With Shared Human Values,"We show how to assess a language model's knowledge of basic concepts of morality. We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality. Models predict widespread moral judgments about diverse text scenarios. This requires connecting physical and social world knowledge to value judgements, a capability that may enable us to steer chatbot outputs or eventually regularize open-ended reinforcement learning agents. With the ETHICS dataset, we find that current language models have a promising but incomplete ability to predict basic human ethical judgements. Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.",https://iclr.cc//virtual/2021/poster/2960,2021,ICLR,Yes,Language,Benchmark Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies,"Learning continuous representations of discrete objects such as text, users, movies, and URLs lies at the heart of many applications including language and user modeling. When using discrete objects as input to neural networks, we often ignore the underlying structures (e.g., natural groupings and similarities) and embed the objects independently into individual vectors. As a result, existing methods do not scale to large vocabulary sizes. In this paper, we design a simple and efficient embedding algorithm that learns a small set of anchor embeddings and a sparse transformation matrix. We call our method Anchor & Transform (ANT) as the embeddings of discrete objects are a sparse linear combination of the anchors, weighted according to the transformation matrix. ANT is scalable, flexible, and end-to-end trainable. We further provide a statistical interpretation of our algorithm as a Bayesian nonparametric prior for embeddings that encourages sparsity and leverages natural groupings among objects. By deriving an approximate inference algorithm based on Small Variance Asymptotics, we obtain a natural extension that automatically learns the optimal number of anchors instead of having to tune it as a hyperparameter. On text classification, language modeling, and movie recommendation benchmarks, we show that ANT is particularly suitable for large vocabulary sizes and demonstrates stronger performance with fewer parameters (up to 40x compression) as compared to existing compression baselines.",https://iclr.cc//virtual/2021/poster/3100,2021,ICLR,No,, Better Fine-Tuning by Reducing Representational Collapse,"Although widely adopted, existing approaches for fine-tuning pre-trained language models have been shown to be unstable across hyper-parameter settings, motivating recent work on trust region methods. In this paper, we present a simplified and efficient method rooted in trust region theory that replaces previously used adversarial objectives with parametric noise (sampling from either a normal or uniform distribution), thereby discouraging representation change during fine-tuning when possible without hurting performance. We also introduce a new analysis to motivate the use of trust region methods more generally, by studying representational collapse; the degradation of generalizable representations from pre-trained models as they are fine-tuned for a specific end task. Extensive experiments show that our fine-tuning method matches or exceeds the performance of previous trust region methods on a range of understanding and generation tasks (including DailyMail/CNN, Gigaword, Reddit TIFU, and the GLUE benchmark), while also being much faster. We also show that it is less prone to representation collapse; the pre-trained models maintain more generalizable representations every time they are fine-tuned.",https://iclr.cc//virtual/2021/poster/3061,2021,ICLR,No,, Deberta: Decoding-Enhanced Bert With Disentangled Attention,"Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions, respectively. Second, an enhanced mask decoder is used to incorporate absolute positions in the decoding layer to predict the masked tokens in model pre-training. In addition, a new virtual adversarial training method is used for fine-tuning to improve models’ generalization. We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understand(NLU) and natural langauge generation (NLG) downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa by training a larger version that consists of 48 Transform layers with 1.5 billion parameters. The significant performance boost makes the single DeBERTa model surpass the human performance on the SuperGLUE benchmark (Wang et al., 2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of January 6, 2021, outperforming the human baseline by a decent margin (90.3 versus 89.8). The pre-trained DeBERTa models and the source code were released at: https://github.com/microsoft/DeBERTa. ",https://iclr.cc//virtual/2021/poster/2562,2021,ICLR,No,, DeLighT: Deep and Light-weight Transformer,"We introduce a deep and light-weight transformer, DeLighT, that delivers similar or better performance than standard transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using the DeLighT transformation, a deep and light-weight transformation and (2) across blocks using block-wise scaling, that allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. Experiments on benchmark machine translation and language modeling tasks show that DeLighT matches or improves the performance of baseline Transformers with 2 to 3 times fewer parameters on average. ",https://iclr.cc//virtual/2021/poster/2739,2021,ICLR,No,, Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models,"Massively multilingual models subsuming tens or even hundreds of languages pose great challenges to multi-task optimization. While it is a common practice to apply a language-agnostic procedure optimizing a joint multilingual task objective, how to properly characterize and take advantage of its underlying problem structure for improving optimization efficiency remains under-explored. In this paper, we attempt to peek into the black-box of multilingual optimization through the lens of loss function geometry. We find that gradient similarity measured along the optimization trajectory is an important signal, which correlates well with not only language proximity but also the overall model performance. Such observation helps us to identify a critical limitation of existing gradient-based multi-task learning methods, and thus we derive a simple and scalable optimization procedure, named Gradient Vaccine, which encourages more geometrically aligned parameter updates for close tasks. Empirically, our method obtains significant model performance gains on multilingual machine translation and XTREME benchmark tasks for multilingual language models. Our work reveals the importance of properly measuring and utilizing language proximity in multilingual optimization, and has broader implications for multi-task learning beyond multilingual modeling.",https://iclr.cc//virtual/2021/poster/2550,2021,ICLR,No,, Lipschitz Recurrent Neural Networks,"Viewing recurrent neural networks (RNNs) as continuous-time dynamical systems, we propose a recurrent unit that describes the hidden state's evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity. This particular functional form facilitates stability analysis of the long-term behavior of the recurrent unit using tools from nonlinear systems theory. In turn, this enables architectural design decisions before experimentation. Sufficient conditions for global stability of the recurrent unit are obtained, motivating a novel scheme for constructing hidden-to-hidden matrices. Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks, including computer vision, language modeling and speech prediction tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.",https://iclr.cc//virtual/2021/poster/3112,2021,ICLR,No,, MixKD: Towards Efficient Distillation of Large-scale Language Models,"Large-scale language models have recently demonstrated impressive empirical performance. Nevertheless, the improved results are attained at the price of bigger models, more power consumption, and slower inference, which hinder their applicability to low-resource (both memory and computation) platforms. Knowledge distillation (KD) has been demonstrated as an effective framework for compressing such big models. However, large-scale neural network systems are prone to memorize training instances, and thus tend to make inconsistent predictions when the data distribution is altered slightly. Moreover, the student model has few opportunities to request useful information from the teacher model when there is limited task-specific data available. To address these issues, we propose MixKD, a data-agnostic distillation framework that leverages mixup, a simple yet efficient data augmentation approach, to endow the resulting model with stronger generalization ability. Concretely, in addition to the original training examples, the student model is encouraged to mimic the teacher's behavior on the linear interpolation of example pairs as well. We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the generalization error and the empirical error. To verify its effectiveness, we conduct experiments on the GLUE benchmark, where MixKD consistently leads to significant gains over the standard KD training, and outperforms several competitive baselines. Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.",https://iclr.cc//virtual/2021/poster/2554,2021,ICLR,No,, On Learning Universal Representations Across Languages,"Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations and show the effectiveness on cross-lingual understanding and generation. Specifically, we propose a Hierarchical Contrastive Learning (HiCTL) method to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on two challenging cross-lingual tasks, XTREME and machine translation. Experimental results show that the HiCTL outperforms the state-of-the-art XLM-R by an absolute gain of 4.2% accuracy on the XTREME benchmark as well as achieves substantial improvements on both of the high resource and low-resource English$\rightarrow$X translation tasks over strong baselines.",https://iclr.cc//virtual/2021/poster/2921,2021,ICLR,No,, "On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines","Fine-tuning pre-trained transformer-based language models such as BERT has become a common practice dominating leaderboards across various NLP benchmarks. Despite the strong empirical performance of fine-tuned models, fine-tuning is an unstable process: training the same model with multiple random seeds can result in a large variance of the task performance. Previous literature (Devlin et al., 2019; Lee et al., 2020; Dodge et al., 2020) identified two potential reasons for the observed instability: catastrophic forgetting and small size of the fine-tuning datasets. In this paper, we show that both hypotheses fail to explain the fine-tuning instability. We analyze BERT, RoBERTa, and ALBERT, fine-tuned on commonly used datasets from the GLUE benchmark, and show that the observed instability is caused by optimization difficulties that lead to vanishing gradients. Additionally, we show that the remaining variance of the downstream task performance can be attributed to differences in generalization where fine-tuned models with the same training loss exhibit noticeably different test performance. Based on our analysis, we present a simple but strong baseline that makes fine-tuning BERT-based models significantly more stable than the previously proposed approaches. Code to reproduce our results is available online: https://github.com/uds-lsv/bert-stable-fine-tuning.",https://iclr.cc//virtual/2021/poster/2558,2021,ICLR,No,, Pre-training Text-to-Text Transformers for Concept-centric Common Sense,"Pretrained language models (PTLM) have achieved impressive results in a range of natural language understanding (NLU) and generation (NLG) tasks that require a syntactic and semantic understanding of the text. However, current pre-training objectives such as masked token prediction (for BERT-style PTLMs) and masked span infilling (for T5-style PTLMs) do not explicitly model the relational and compositional commonsense knowledge about everyday concepts, which is crucial to many downstream tasks requiring commonsense reasoning. To augment PTLMs with common sense, we propose generative and contrastive objectives as intermediate self-supervised pre-training tasks between general pre-training and downstream task-specific fine-tuning. We also propose a joint training framework to unify generative and contrastive objectives so that these objectives can be more effective. Our proposed objectives can pack more commonsense knowledge into the parameters of a pre-trained text-to-text transformer without relying on external knowledge bases, yielding better performance on both NLU and NLG tasks. We apply our method on a pre-trained T5 model in an intermediate task transfer learning fashion to train a concept-aware language model (CALM) and experiment with five commonsense benchmarks (four NLU tasks and one NLG task). Experimental results show that CALM outperforms baseline methods by a consistent margin.",https://iclr.cc//virtual/2021/poster/3272,2021,ICLR,No,, Rethinking Embedding Coupling in Pre-trained Language Models,"We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that allocating additional capacity to the output embedding provides benefits to the model that persist through the fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger output embeddings prevent the model's last layers from overspecializing to the pre-training task and encourage Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage. ",https://iclr.cc//virtual/2021/poster/2735,2021,ICLR,No,, Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning,"State-of-the-art natural language understanding classification models follow two-stages: pre-training a large language model on an auxiliary task, and then fine-tuning the model on a task-specific labeled dataset using cross-entropy loss. However, the cross-entropy loss has several shortcomings that can lead to sub-optimal generalization and instability. Driven by the intuition that good generalization requires capturing the similarity between examples in one class and contrasting them with examples in other classes, we propose a supervised contrastive learning (SCL) objective for the fine-tuning stage. Combined with cross-entropy, our proposed SCL loss obtains significant improvements over a strong RoBERTa-Large baseline on multiple datasets of the GLUE benchmark in few-shot learning settings, without requiring specialized architecture, data augmentations, memory banks, or additional unsupervised data. Our proposed fine-tuning objective leads to models that are more robust to different levels of noise in the fine-tuning training data, and can generalize better to related tasks with limited labeled data.",https://iclr.cc//virtual/2021/poster/3275,2021,ICLR,No,, Variational Information Bottleneck for Effective Low-Resource Fine-Tuning,"While large-scale pretrained language models have obtained impressive results when fine-tuned on a wide variety of tasks, they still often suffer from overfitting in low-resource scenarios. Since such models are general-purpose feature extractors, many of these features are inevitably irrelevant for a given target task. We propose to use Variational Information Bottleneck (VIB) to suppress irrelevant features when fine-tuning on low-resource target tasks, and show that our method successfully reduces overfitting. Moreover, we show that our VIB model finds sentence representations that are more robust to biases in natural language inference datasets, and thereby obtains better generalization to out-of-domain datasets. Evaluation on seven low-resource datasets in different tasks shows that our method significantly improves transfer learning in low-resource scenarios, surpassing prior work. Moreover, it improves generalization on 13 out of 15 out-of-domain natural language inference benchmarks. Our code is publicly available in https://github.com/rabeehk/vibert.",https://iclr.cc//virtual/2021/poster/2560,2021,ICLR,No,, cosFormer: Rethinking Softmax In Attention,"Transformer has shown great successes in natural language processing, computer vision, and audio processing. As one of its core components, the softmax attention helps to capture long-range dependencies yet prohibits its scale-up due to the quadratic space and time complexity to the sequence length. Kernel methods are often adopted to reduce the complexity by approximating the softmax operator. Nevertheless, due to the approximation errors, their performances vary in different tasks/corpus and suffer crucial performance drops when compared with the vanilla softmax attention. In this paper, we propose a linear transformer called cosFormer that can achieve comparable or better accuracy to the vanilla transformer in both casual and cross attentions. cosFormer is based on two key properties of softmax attention: i). non-negativeness of the attention matrix; ii). a non-linear re-weighting scheme that can concentrate the distribution of the attention matrix. As its linear substitute, cosFormer fulfills these properties with a linear operator and a cosine-based distance re-weighting mechanism. Extensive experiments on language modeling and text understanding tasks demonstrate the effectiveness of our method. We further examine our method on long sequences and achieve state-of-the-art performance on the Long-Range Arena benchmark. The source code is available at https://github.com/OpenNLPLab/cosFormer.",https://iclr.cc//virtual/2022/poster/6040,2022,ICLR,No,, Efficiently Modeling Long Sequences with Structured State Spaces,"A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of $10000$ or more steps. A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically. However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Our technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling tasks, while performing generation $60\times$ faster (iii) SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.",https://iclr.cc//virtual/2022/poster/6959,2022,ICLR,No,, Exploring extreme parameter compression for pre-trained language models,"Recent work explored the potential of large-scale Transformer-based pre-trained models, especially Pre-trained Language Models (PLMs) in natural language processing. This raises many concerns from various perspectives, e.g., financial costs and carbon emissions. Compressing PLMs like BERT with negligible performance loss for faster inference and cheaper deployment has attracted much attention. In this work, we aim to explore larger compression ratios for PLMs, among which tensor decomposition is a potential but under-investigated one. By comparing existing decomposition methods, Tucker decomposition is found to be parameter-efficient for compression. Two decomposition and reconstruction protocols are further proposed to improve the effectiveness and efficiency of Tucker decomposition in parameter compression.Our compressed BERT with ${1}/{7}$ parameters in Transformer layers performs on-par with, sometimes slightly better than the original BERT in GLUE benchmark. A tiny version achieves 96.7\% performance of BERT-base with $ {1}/{48} $ encoder parameters (i.e., less than 2M parameters excluding the embedding layer) and \textbf{$2.7 \times$} faster on inference. To show that the proposed method is orthogonal to existing compression methods like knowledge distillation, we also explore the benefit of the proposed method on a distilled BERT. ",https://iclr.cc//virtual/2022/poster/6449,2022,ICLR,No,, Frequency-aware SGD for Efficient Embedding Learning with Provable Benefits,"Embedding learning has found widespread applications in recommendation systems and natural language modeling, among other domains. To learn quality embeddings efficiently, adaptive learning rate algorithms have demonstrated superior empirical performance over SGD, largely accredited to their token-dependent learning rate. However, the underlying mechanism for the efficiency of token-dependent learning rate remains underexplored. We show that incorporating frequency information of tokens in the embedding learning problems leads to provably efficient algorithms, and demonstrate that common adaptive algorithms implicitly exploit the frequency information to a large extent. Specifically, we propose (Counter-based) Frequency-aware Stochastic Gradient Descent, which applies a frequency-dependent learning rate for each token, and exhibits provable speed-up compared to SGD when the token distribution is imbalanced. Empirically, we show the proposed algorithms are able to improve or match the performance of adaptive algorithms on benchmark recommendation tasks and a large-scale industrial recommendation system, closing the performance gap between SGD and adaptive algorithms. Our results are the first to show token-dependent learning rate provably improves convergence for non-convex embedding learning problems.",https://iclr.cc//virtual/2022/poster/6670,2022,ICLR,No,, GNN is a Counter? Revisiting GNN for Question Answering,"Question Answering (QA) has been a long-standing research topic in AI and NLP fields, and a wealth of studies has been conducted to attempt to equip QA systems with human-level reasoning capability. To approximate the complicated human reasoning process, state-of-the-art QA systems commonly use pre-trained language models (LMs) to access knowledge encoded in LMs together with elaborately designed modules based on Graph Neural Networks (GNNs) to perform reasoning over knowledge graphs (KGs). However, many problems remain open regarding the reasoning functionality of these GNN-based modules. Can these GNN-based modules really perform a complex reasoning process? Are they under- or over-complicated for QA? To open the black box of GNN and investigate these problems, we dissect state-of-the-art GNN modules for QA and analyze their reasoning capability. We discover that even a very simple graph neural counter can outperform all the existing GNN modules on CommonsenseQA and OpenBookQA, two popular QA benchmark datasets which heavily rely on knowledge-aware reasoning. Our work reveals that existing knowledge-aware GNN modules may only carry out some simple reasoning such as counting. It remains a challenging open problem to build comprehensive reasoning modules for knowledge-powered QA.",https://iclr.cc//virtual/2022/poster/6194,2022,ICLR,No,, GPT-Critic: Offline Reinforcement Learning for End-to-End Task-Oriented Dialogue Systems,"Training a task-oriented dialogue agent can be naturally formulated as offline reinforcement learning (RL) problem, where the agent aims to learn a conversational strategy to achieve user goals, only from a dialogue corpus. It is very challenging in terms of RL since the natural language action space is astronomical, while feasible (syntactically and semantically correct) actions are very sparse. Thus, standard RL methods easily fail and generate responses diverging from human language, even when fine-tuning a powerful pre-trained language model. In this paper, we introduce GPT-Critic, an offline RL method for task-oriented dialogue. GPT-Critic is built upon GPT-2, fine-tuning the language model through behavior cloning of the critic-guided self-generated sentences. GPT-Critic is essentially free from the issue of diverging from human language since it learns from the sentences sampled from the pre-trained language model. In the experiments, we demonstrate that our algorithm outperforms the state-of-the-art in the task-oriented dialogue benchmarks including MultiWOZ 2.0 and ConvLab.",https://iclr.cc//virtual/2022/poster/6823,2022,ICLR,No,, GreaseLM: Graph REASoning Enhanced Language Models,"Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.",https://iclr.cc//virtual/2022/poster/5938,2022,ICLR,No,, HTLM: Hyper-Text Pre-Training and Prompting of Language Models,"

We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. 'class' and 'id' attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling '

' tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.
",https://iclr.cc//virtual/2022/poster/6281,2022,ICLR,No,, Memorizing Transformers,"Language models typically need to be trained or finetuned in order to acquire new knowledge, which involves updating their weights. We instead envision language models that can simply read and memorize new data at inference time, thus acquiring new knowledge immediately. In this work, we extend language models with the ability to memorize the internal representations of past inputs. We demonstrate that an approximate $k$NN lookup into a non-differentiable memory of recent (key, value) pairs improves language modeling across various benchmarks and tasks, including generic webtext (C4), math papers (arXiv), books (PG-19), code (Github), as well as formal theorems (Isabelle). We show that the performance steadily improves when we increase the size of memory up to 262K tokens. On benchmarks including code and mathematics, we find that the model is capable of making use of newly defined functions and theorems during test time.",https://iclr.cc//virtual/2022/poster/6064,2022,ICLR,No,, Multitask Prompted Training Enables Zero-Shot Task Generalization,"Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020). It has been hypothesized that this is a consequence of implicit multitask learning in language models’ pretraining (Radford et al., 2019). Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping any natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts with diverse wording. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. We fine-tune a pretrained encoder-decoder model (Raffel et al., 2020; Lester et al., 2021) on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several datasets, often outperforming models 16× its size. Further, our model attains strong performance on a subset of tasks from the BIG-Bench benchmark, outperforming models 6× its size. All trained models are available at https://github.com/bigscience-workshop/t-zero, and all prompts are available at https://github.com/bigscience-workshop/promptsource.",https://iclr.cc//virtual/2022/poster/7101,2022,ICLR,Yes,Language,Methodological Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction,"Learning on graphs has attracted significant attention in the learning community due to numerous real-world applications. In particular, graph neural networks (GNNs), which take \emph{numerical} node features and graph structure as inputs, have been shown to achieve state-of-the-art performance on various graph-related learning tasks. Recent works exploring the correlation between numerical node features and graph structure via self-supervised learning have paved the way for further performance improvements of GNNs. However, methods used for extracting numerical node features from \emph{raw data} are still \emph{graph-agnostic} within standard GNN pipelines. This practice is sub-optimal as it prevents one from fully utilizing potential correlations between graph topology and node attributes. To mitigate this issue, we propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT). GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information, and scales to large datasets. We also provide a theoretical analysis that justifies the use of XMC over link prediction and motivates integrating XR-Transformers, a powerful method for solving XMC problems, into the GIANT framework. We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets: For example, we improve the accuracy of the top-ranked method GAMLP from $68.25\%$ to $69.67\%$, SGC from $63.29\%$ to $66.10\%$ and MLP from $47.24\%$ to $61.10\%$ on the ogbn-papers100M dataset by leveraging GIANT.",https://iclr.cc//virtual/2022/poster/7187,2022,ICLR,No,, Non-Parallel Text Style Transfer with Self-Parallel Supervision,"The performance of existing text style transfer models is severely limited by the non-parallel datasets on which the models are trained. In non-parallel datasets, no direct mapping exists between sentences of the source and target style; the style transfer models thus only receive weak supervision of the target sentences during training, which often leads the model to discard too much style-independent information, or utterly fail to transfer the style.In this work, we propose LaMer, a novel text style transfer framework based on large-scale language models. LaMer first mines the roughly parallel expressions in the non-parallel datasets with scene graphs, and then employs MLE training, followed by imitation learning refinement, to leverage the intrinsic parallelism within the data. On two benchmark tasks (sentiment & formality transfer) and a newly proposed challenging task (political stance transfer), our model achieves qualitative advances in transfer accuracy, content preservation, and fluency. Further empirical and human evaluations demonstrate that our model not only makes training more efficient, but also generates more readable and diverse expressions than previous models.",https://iclr.cc//virtual/2022/poster/6175,2022,ICLR,No,, On Robust Prefix-Tuning for Text Classification,"Recently, prefix-tuning has gained increasing attention as a parameter-efficient finetuning method for large-scale pretrained language models. The method keeps the pretrained models fixed and only updates the prefix token parameters for each downstream task. Despite being lightweight and modular, prefix-tuning still lacks robustness to textual adversarial attacks. However, most currently developed defense techniques necessitate auxiliary model update and storage, which inevitably hamper the modularity and low storage of prefix-tuning. In this work, we propose a robust prefix-tuning framework that preserves the efficiency and modularity of prefix-tuning. The core idea of our framework is leveraging the layerwise activations of the language model by correctly-classified training data as the standard for additional prefix finetuning. During the test phase, an extra batch-level prefix is tuned for each batch and added to the original prefix for robustness enhancement. Extensive experiments on three text classification benchmarks show that our framework substantially improves robustness over several strong baselines against five textual attacks of different types while maintaining comparable accuracy on clean texts. We also interpret our robust prefix-tuning framework from the optimal control perspective and pose several directions for future research.",https://iclr.cc//virtual/2022/poster/5987,2022,ICLR,No,, OntoProtein: Protein Pretraining With Gene Ontology Embedding,"Self-supervised protein language models have proved their effectiveness in learning the proteins representations. With the increasing computational power, current protein language models pre-trained with millions of diverse sequences can advance the parameter scale from million-level to billion-level and achieve remarkable improvement. However, those prevailing approaches rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better protein representations. We argue that informative biology knowledge in KGs can enhance protein representation with external knowledge. In this work, we propose OntoProtein, the first general framework that makes use of structure in GO (Gene Ontology) into protein pre-training models. We construct a novel large-scale knowledge graph that consists of GO and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph. We propose novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training. Experimental results show that OntoProtein can surpass state-of-the-art methods with pre-trained protein language models in TAPE benchmark and yield better performance compared with baselines in protein-protein interaction and protein function prediction.",https://iclr.cc//virtual/2022/poster/6505,2022,ICLR,No,, Pretrained Language Model in Continual Learning: A Comparative Study,"Continual learning (CL) is a setting in which a model learns from a stream of incoming data while avoiding to forget previously learned knowledge. Pre-trained language models (PLMs) have been successfully employed in continual learning of different natural language problems. With the rapid development of many continual learning methods and PLMs, understanding and disentangling their interactions become essential for continued improvement of continual learning performance. In this paper, we thoroughly compare the continual learning performance over the combination of 5 PLMs and 4 CL approaches on 3 benchmarks in 2 typical incremental settings. Our extensive experimental analyses reveal interesting performance differences across PLMs and across CL methods. Furthermore, our representativeness probing analyses dissect PLMs’ performance characteristics in a layer-wise and task-wise manner, uncovering the extent to which their inner layers suffer from forgetting, and the effect of different CL approaches on each layer. Finally, our observations and analyses open up a number of important research questions that will inform and guide the design of effective continual learning techniques.",https://iclr.cc//virtual/2022/poster/6154,2022,ICLR,No,, Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators,"We present a new framework AMOS that pretrains text encoders with an Adversarial learning curriculum via a Mixture Of Signals from multiple auxiliary generators. Following ELECTRA-style pretraining, the main encoder is trained as a discriminator to detect replaced tokens generated by auxiliary masked language models (MLMs). Different from ELECTRA which trains one MLM as the generator, we jointly train multiple MLMs of different sizes to provide training signals at various levels of difficulty. To push the discriminator to learn better with challenging replaced tokens, we learn mixture weights over the auxiliary MLMs' outputs to maximize the discriminator loss by backpropagating the gradient from the discriminator via Gumbel-Softmax. For better pretraining efficiency, we propose a way to assemble multiple MLMs into one unified auxiliary model. AMOS outperforms ELECTRA and recent state-of-the-art pretrained models by about 1 point on the GLUE benchmark for BERT base-sized models.",https://iclr.cc//virtual/2022/poster/6049,2022,ICLR,No,, SimVLM: Simple Visual Language Model Pretraining with Weak Supervision,"With recent progress in joint modeling of visual and textual representations, Vision-Language Pretraining (VLP) has achieved impressive performance on many multimodal downstream tasks. However, the requirement for expensive annotations including clean image captions and regional labels limits the scalability of existing approaches, and complicates the pretraining procedure with the introduction of multiple dataset-specific objectives. In this work, we relax these constraints and present a minimalist pretraining framework, named Simple Visual Language Model (SimVLM). Unlike prior work, SimVLM reduces the training complexity by exploiting large-scale weak supervision, and is trained end-to-end with a single prefix language modeling objective. Without utilizing extra data or task-specific customization, the resulting model significantly outperforms previous pretraining methods and achieves new state-of-the-art results on a wide range of discriminative and generative vision-language benchmarks, including VQA (+3.74% vqa-score), NLVR2 (+1.17% accuracy), SNLI-VE (+1.37% accuracy) and image captioning tasks (+10.1% average CIDEr score). Furthermore, we demonstrate that SimVLM acquires strong generalization and transfer ability, enabling zero-shot behavior including open-ended visual question answering and cross-modality transfer.",https://iclr.cc//virtual/2022/poster/6262,2022,ICLR,No,, Sparse Attention with Learning to Hash,"Transformer has become ubiquitous in sequence modeling tasks. As a key component of Transformer, self-attention does not scale to long sequences due to its quadratic time and space complexity with respect to the sequence length. To tackle this problem, recent work developed dynamic attention sparsification techniques based on Approximate Nearest Neighbor (ANN) methods, where similar queries and keys are allocated to the same hash bucket with high probability. However, the effectiveness of those ANN methods relies on the assumption that queries and keys should lie in the same space, which is not well justified. Besides, some of the ANN methods such as Locality-Sensitive Hashing (LSH) are randomized and cannot fully utilize the available real data distributions. To overcome these issues, this paper proposes a new strategy for sparse attention, namely LHA (Learning-to-Hash Attention), which directly learns separate parameterized hash functions for queries and keys, respectively. Another advantage of LHA is that it does not impose extra constraints for queries and keys, which makes it applicable to the wide range of pre-trained Transformer models. Our experiments on evaluation of the WikiText-103 dataset for language modeling, the GLUE benchmark for natural language understanding, and the Lang-Range-Arena benchmark for multiple tasks (text/image classification, retrieval, etc.) show the superior performance of LHA over other strong Transformer variants.",https://iclr.cc//virtual/2022/poster/5999,2022,ICLR,No,, TAPEX: Table Pre-training via Learning a Neural SQL Executor,"Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes the improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks. Our code can be found at https://github.com/microsoft/Table-Pretraining.",https://iclr.cc//virtual/2022/poster/6280,2022,ICLR,No,, Towards a Unified View of Parameter-Efficient Transfer Learning,"Fine-tuning large pretrained language models on downstream tasks has become the de-facto learning paradigm in NLP. However, conventional approaches fine-tune all the parameters of the pretrained model, which becomes prohibitive as the model size and the number of tasks grow. Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance. While effective, the critical ingredients for success and the connections among the various methods are poorly understood. In this paper, we break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them. Specifically, we re-frame them as modifications to specific hidden states in pretrained models, and define a set of design dimensions along which different methods vary, such as the function to compute the modification and the position to apply the modification. Through comprehensive empirical studies across machine translation, text summarization, language understanding, and text classification benchmarks, we utilize the unified view to identify important design choices in previous methods. Furthermore, our unified framework enables the transfer of design elements across different approaches, and as a result we are able to instantiate new parameter-efficient fine-tuning methods that tune less parameters than previous methods while being more effective, achieving comparable results to fine-tuning all parameters on all four tasks.",https://iclr.cc//virtual/2022/poster/6524,2022,ICLR,No,, Towards Continual Knowledge Learning of Language Models,"Large Language Models (LMs) are known to encode world knowledge in their parameters as they pretrain on a vast amount of web corpus, which is often utilized for performing knowledge-dependent downstream tasks such as question answering, fact-checking, and open dialogue. In real-world scenarios, the world knowledge stored in the LMs can quickly become outdated as the world changes, but it is non-trivial to avoid catastrophic forgetting and reliably acquire new knowledge while preserving invariant knowledge. To push the community towards better maintenance of ever-changing LMs, we formulate a new continual learning (CL) problem called Continual Knowledge Learning (CKL). We construct a new benchmark and metric to quantify the retention of time-invariant world knowledge, the update of outdated knowledge, and the acquisition of new knowledge. We adopt applicable recent methods from literature to create several strong baselines. Through extensive experiments, we find that CKL exhibits unique challenges that are not addressed in previous CL setups, where parameter expansion is necessary to reliably retain and learn knowledge simultaneously. By highlighting the critical causes of knowledge forgetting, we show that CKL is a challenging and important problem that helps us better understand and train ever-changing LMs.",https://iclr.cc//virtual/2022/poster/6187,2022,ICLR,Yes,Language,Methodological Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations,"In NLP, a large volume of tasks involve pairwise comparison between two sequences (e.g. sentence similarity and paraphrase identification). Predominantly, two formulations are used for sentence-pair tasks: bi-encoders and cross-encoders. Bi-encoders produce fixed-dimensional sentence representations and are computationally efficient, however, they usually underperform cross-encoders. Cross-encoders can leverage their attention heads to exploit inter-sentence interactions for better performance but they require task fine-tuning and are computationally more expensive. In this paper, we present a completely unsupervised sentence representation model termed as Trans-Encoder that combines the two learning paradigms into an iterative joint framework to simultaneously learn enhanced bi- and cross-encoders. Specifically, on top of a pre-trained Language Model (PLM), we start with converting it to an unsupervised bi-encoder, and then alternate between the bi- and cross-encoder task formulations. In each alternation, one task formulation will produce pseudo-labels which are used as learning signals for the other task formulation. We then propose an extension to conduct such self-distillation approach on multiple PLMs in parallel and use the average of their pseudo-labels for mutual distillation. Trans-Encoder creates, to the best of our knowledge, the first completely unsupervised cross-encoder and also a state-of-the-art unsupervised bi-encoder for sentence similarity. Both the bi-encoder and cross-encoder formulations of Trans-Encoder outperform recently proposed state-of-the-art unsupervised sentence encoders such as Mirror-BERT and SimCSE by up to 5% on the sentence similarity benchmarks.",https://iclr.cc//virtual/2022/poster/6242,2022,ICLR,No,, Ask Me Anything: A simple strategy for prompting language models,"Large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt that demonstrates how to perform the task and no additional training. Prompting is a brittle process wherein small modifications to the prompt can cause large variations in the model predictions, and therefore significant effort is dedicated towards designing a painstakingly crafted ""perfect prompt"" for a task. To mitigate the high degree of effort, we instead ask whether collecting multiple decent, yet imperfect, prompts and aggregating them can lead to a high quality prompting strategy. Our observations motivate our proposed method, Ask Me Anything (AMA). We first develop an understanding of the effective prompt formats, finding question-answering (QA) prompts, which encourage open-ended generation (""Who went to the park?"") tend to outperform those that restrict the model outputs (""John went to the park. True or False?""). AMA recursively uses the LLM to transform task inputs to the effective QA format. AM generates multiple questions per input and applies these prompts to collect several noisy ""votes"" for the input's true label. We find the prompts have varying accuracies and dependencies and thus propose to use weak supervision, a procedure for combining the noisy predictions, to produce the final predictions. We evaluate AMA across open-source model families (EleutherAI, BLOOM, OPT, and T0) and sizes (125M-175B parameters), demonstrating an average performance lift of 10.2\% over the few-shot baseline. This simple strategy enables the open-source GPT-J-6B model to match and exceed the performance of few-shot GPT3-175B on 15 of 20 popular benchmarks. Averaged across these tasks, the GPT-J-6B model outperforms few-shot GPT3-175B. We release our code here: https://github.com/HazyResearch/ama_prompting.",https://iclr.cc//virtual/2023/poster/10791,2023,ICLR,No,, Automatic Chain of Thought Prompting in Large Language Models,"Large Language Models (LLMs) can carry out complex reasoning tasks by generating intermediate reasoning steps. These steps are triggered by what is called chain-of-thought (CoT) prompting, which comes in two flavors: one leverages a simple prompt like ""Let’s think step by step"" to facilitate step-by-step reasoning before answering a question (Zero-Shot-CoT). The other uses manual demonstrations, each composed of a question and a reasoning chain that leads to an answer (Manual-CoT). Unfortunately, the superior performance of the latter strategy crucially hinges on manually generating task-specific demonstrations. This makes it far less scalable and more dependent on the talent of the CoT engineer. We show that such manual efforts may be eliminated by leveraging LLMs to generate the reasoning chains on its own. Since these generated chains often come with mistakes we propose a number of mitigation strategies. Our proposed Auto-CoT method automaticaly samples diverse questions and we perform post-processing quality control to generate usable reasoning chains from Zero-Shot-CoT. On ten public benchmark reasoning tasks, Auto-CoT performs on par with Manual-CoT without the need for human intervention. Code is available at https://github.com/amazon-research/auto-cot.",https://iclr.cc//virtual/2023/poster/11360,2023,ICLR,No,, CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis,"Program synthesis strives to generate a computer program as a solution to a given problem specification, expressed with input-output examples or natural language descriptions. The prevalence of large language models advances the state-of-the-art for program synthesis, though limited training resources and data impede open access to such models. To democratize this, we train and release a family of large language models up to 16.1B parameters, called CODEGEN, on natural language and programming language data, and open source the training library JAXFORMER. We show the utility of the trained model by demonstrating that it is competitive with the previous state-of-the-art on zero-shot Python code generation on HumanEval. We further investigate the multi-step paradigm for program synthesis, where a single program is factorized into multiple prompts specifying subproblems. To this end, we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB), consisting of 115 diverse problem sets that are factorized into multi-turn prompts. Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-turn fashion significantly improves program synthesis over that provided as a single turn. We make the training library JAXFORMER and model checkpoints available as open source contribution: https://github.com/salesforce/CodeGen.",https://iclr.cc//virtual/2023/poster/11335,2023,ICLR,Yes,Language,Technical CodeT: Code Generation with Generated Tests,"The task of generating code solutions for a given programming problem can benefit from the use of pre-trained language models such as Codex, which can produce multiple diverse samples. However, a major challenge for this task is to select the most appropriate solution from the multiple samples generated by the pre-trained language models. A natural way to evaluate the quality and correctness of a code solution is to run it against a set of test cases, but the manual creation of such test cases is often costly and time-consuming. In this paper, we propose a novel method, CodeT, that leverages the same pre-trained language models to automatically generate test cases for the code samples, thus reducing the human effort and increasing the coverage of the test scenarios. CodeT then executes the code samples using the generated test cases, and performs a dual execution agreement, which considers both the consistency of the outputs against the generated test cases and the agreement of the outputs with other code samples. We conduct comprehensive experiments on four benchmarks, HumanEval, MBPP, APPS and CodeContests, using five different pre-trained language models with varying sizes and capabilities. Our results show that CodeT can significantly improve the performance of code solution selection over previous methods, achieving remarkable and consistent gains across different models and benchmarks. For instance, CodeT improves the pass@1 metric on HumanEval to 65.8%, which represents an absolute improvement of 18.8% over the code-davinci-002 model, and an absolute improvement of more than 20% over the previous state-of-the-art results.",https://iclr.cc//virtual/2023/poster/12011,2023,ICLR,No,, Composite Slice Transformer: An Efficient Transformer with Composition of Multi-Scale Multi-Range Attentions,"Since the introduction of Transformers, researchers have tackled the notoriously expensive quadratic complexity problem. While significant computational efficiency improvements have been achieved, they come at the cost of reduced accuracy trade-offs. In this paper, we propose Composite Slice Transformer (CST), a Transformer-based network equipped with a composition of multi-scale multi-range attentions, boosting both efficiency and modeling capability.After stacking fixed-length slices of the input sequence, each layer in CST performs a pair of fine-and-coarse-grained attentions with short-long ranges in a sequential manner, coupled with volatile instant positional embedding, enabling efficient token interactions {\em and} improving expressiveness of the model.In addition to significantly reduced $O(NL+N^2/L^2)$ complexity for sequence length $N$ and slice length $L$, CST achieves superior performance on a variety of tasks. We show that CST surpasses recently published efficient Transformers on the Long Range Arena benchmark, demonstrating the bidirectional long-range dependency modeling capability of our model. It outperforms the standard Transformer by a margin of $6.9$\% in average accuracy across the five classification tasks of the benchmark, while being of complexity comparable to other efficient transformers. Furthermore, on the word-level autoregressive language modeling task with the WikiText-103 dataset, CST performs competitively against the Transformer model with only $2$\% gap in the test perplexity while outperforming other efficient Transformers.",https://iclr.cc//virtual/2023/poster/10868,2023,ICLR,No,, Compositional Prompt Tuning with Motion Cues for Open-vocabulary Video Relation Detection,"Prompt tuning with large-scale pretrained vision-language models empowers open-vocabulary prediction trained on limited base categories, e.g., object classification and detection. In this paper, we propose compositional prompt tuning with motion cues: an extended prompt tuning paradigm for compositional predictions of video data. In particular, we present Relation Prompt (RePro) for Open-vocabulary Video Visual Relation Detection (Open-VidVRD), where conventional prompt tuning is easily biased to certain subject-object combinations and motion patterns. To this end, RePro addresses the two technical challenges of Open-VidVRD: 1) the prompt tokens should respect the two different semantic roles of subject and object, and 2) the tuning should account for the diverse spatiotemporal motion patterns of the subject-object compositions. Our RePro achieves a new state-of-the-art performance on two VidVRD benchmarks of not only the base training object and predicate categories, but also the unseen ones. Extensive ablations also demonstrate the effectiveness of the proposed compositional and multi-mode design of prompt. Code is available at https://github.com/Dawn-LX/OpenVoc-VidVRD.",https://iclr.cc//virtual/2023/poster/11182,2023,ICLR,No,, Copy is All You Need,"The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.\footnote{Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed}.}",https://iclr.cc//virtual/2023/poster/11172,2023,ICLR,No,, CrAM: A Compression-Aware Minimizer,"Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼ 1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at: https://github.com/IST-DASLab/CrAM .",https://iclr.cc//virtual/2023/poster/11058,2023,ICLR,No,, DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing,"This paper presents a new pre-trained language model, NewModel, which improves the original DeBERTa model by replacing mask language modeling (MLM) with replaced token detection (RTD), a more sample-efficient pre-training task. Our analysis shows that vanilla embedding sharing in ELECTRA hurts training efficiency and model performance. This is because the training losses of the discriminator and the generator pull token embeddings in different directions, creating the “tug-of-war” dynamics. We thus propose a new gradient-disentangled embedding sharing method that avoids the tug-of-war dynamics, improving both training efficiency and the quality of the pre-trained model. We have pre-trained NewModel using the same settings as DeBERTa to demonstrate its exceptional performance on a wide range of downstream natural language understanding (NLU) tasks. Taking the GLUE benchmark with eight tasks as an example, the NewModel Large model achieves a 91.37% average score, which is 1.37% over DeBERTa and 1.91% over ELECTRA, setting a new state-of-the-art (SOTA) among the models with a similar structure. Furthermore, we have pre-trained a multi-lingual model mNew-Model and observed a larger improvement over strong baselines compared to English models. For example, the mNewModel Base achieves a 79.8% zero-shot cross-lingual accuracy on XNLI and a 3.6% improvement over XLM-R Base, creating a new SOTA on this benchmark. We will make our model and code publicly available.",https://iclr.cc//virtual/2023/poster/11295,2023,ICLR,No,, DeCap: Decoding CLIP Latents for Zero-Shot Captioning via Text-Only Training,"Large-scale pre-trained multi-modal models (e.g., CLIP) demonstrate strong zero-shot transfer capability in many discriminative tasks, e.g., image classification. Their adaptation to zero-shot image-conditioned text generation tasks has drawn increasing interest. Prior arts approach to zero-shot captioning by either utilizing the existing large language models (e.g., GPT-2) or pre-training the encoder-decoder network in an end-to-end manner. However, the large language models may not generate sensible descriptions due to the task discrepancy between captioning and language modeling, while the end-to-end pre-training requires paired data and extensive computational resources. In this work, we propose a simple framework, named DeCap, for zero-shot captioning. We introduce a lightweight visual-aware language decoder. This decoder is both data-efficient and computation-efficient: 1) it only requires the \textit{text} data for training, easing the burden on the collection of paired data. 2) it does not require end-to-end training. When trained with text-only data, the decoder takes the text embedding extracted from the off-the-shelf CLIP encoder as a prefix embedding. The challenge is that the decoder is trained on the text corpus but at the inference stage, it needs to generate captions based on visual inputs. Though the CLIP text embedding and the visual embedding are correlated, the \textit{modality gap} issue is widely observed in multi-modal contrastive models that prevents us from directly taking the visual embedding as the prefix embedding. We propose a training-free mechanism to reduce the modality gap. We project the visual embedding into the CLIP text embedding space, while the projected embedding retains the information of the visual input. Taking the projected embedding as the prefix embedding, the decoder generates high-quality descriptions that match the visual input. The experiments show that DeCap outperforms other zero-shot captioning methods and unpaired captioning methods by a large margin on the typical image captioning benchmarks, i.e., MSCOCO and NoCaps. We apply DeCap to video captioning and achieve state-of-the-art zero-shot performance on MSR-VTT and ActivityNet-Captions. The code is available at https://github.com/dhg-wei/DeCap.",https://iclr.cc//virtual/2023/poster/11202,2023,ICLR,No,, Dr.Spider: A Diagnostic Evaluation Benchmark towards Text-to-SQL Robustness,"Neural text-to-SQL models have achieved remarkable performance in translating natural language questions into SQL queries. However, recent studies reveal that text-to-SQL models are vulnerable to task-specific perturbations. Previous curated robustness test sets usually focus on individual phenomena. In this paper, we propose a comprehensive robustness benchmark based on Spider, a cross-domain text-to-SQL benchmark, to diagnose the model robustness. We design 17 perturbations on databases, natural language questions, and SQL queries to measure the robustness from different angles. In order to collect more diversified natural question perturbations, we utilize large pretrained language models (PLMs) to simulate human behaviors in creating natural questions. We conduct a diagnostic study of the state-of-the-art models on the robustness set. Experimental results reveal that even the most robust model suffers from a 14.0% performance drop overall and a 50.7% performance drop on the most challenging perturbation. We also present a breakdown analysis regarding text-to-SQL model designs and provide insights for improving model robustness.",https://iclr.cc//virtual/2023/poster/11467,2023,ICLR,Yes,Language,Benchmark Formal Mathematics Statement Curriculum Learning,"We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we surpass previous state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.",https://iclr.cc//virtual/2023/poster/11923,2023,ICLR,No,, GLM-130B: An Open Bilingual Pre-trained Model,"We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters. It is an attempt to open-source a 100B-scale model as good as GPT-3 (davinci) and unveil how models of such a scale can be successfully pre-trained. Over the course of this effort, we face numerous unexpected technical and engineering challenges, particularly on loss spikes and divergence. In this paper, we introduce the pre-training process of GLM-130B including its design choices, training strategies for both efficiency and stability, and engineering efforts. The resultant GLM-130B model offers significant outperformance over GPT-3 175B on a wide range of popular English benchmarks while the performance advantage is not observed in OPT-175B and BLOOM-176B. It also consistently and significantly outperforms ERNIE TITAN 3.0 260B—the largest Chinese language model—across related benchmarks. Finally, we leverage a unique scaling property of GLM-130B to reach INT4 quantization with almost no performance loss, making it the first among 100B-scale models and more importantly, allowing its effective inference on 4×RTX 3090 (24G) or 8×RTX 2080 Ti (11G) GPUs, the most ever affordable GPUs required for using 100B-scale models. The GLM-130B model weights are publicly accessible and its code, training logs, related toolkit, and lessons learned are open-sourced at https://github.com/THUDM/GLM-130B/.",https://iclr.cc//virtual/2023/poster/11329,2023,ICLR,No,, Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners,"Meta-training, which fine-tunes the language model (LM) on various downstream tasks by maximizing the likelihood of the target label given the task instruction and input instance, has improved the zero-shot task generalization performance. However, meta-trained LMs still struggle to generalize to challenging tasks containing novel labels unseen during meta-training. In this paper, we propose Flipped Learning, an alternative method of meta-training which trains the LM to generate the task instruction given the input instance and label. During inference, the LM trained with Flipped Learning, referred to as FLIPPED, selects the label option that is most likely to generate the task instruction. On 14 tasks of the BIG-bench benchmark, the 11B-sized FLIPPED outperforms zero-shot T0-11B (Sanh et al, 2021) and even a 16 times larger 3-shot GPT-3 (175B) (Brown et al, 2020) on average by 8.4% and 9.7% points, respectively. FLIPPED gives particularly large improvements on tasks with unseen labels, outperforming T0-11B by up to +20% average F1 score. This indicates that the strong task generalization of FLIPPED comes from improved generalization to novel labels. We release our code at github.com/seonghyeonye/Flipped-Learning.",https://iclr.cc//virtual/2023/poster/11200,2023,ICLR,No,, Hungry Hungry Hippos: Towards Language Modeling with State Space Models,"State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in some modalities, but underperform attention in language modeling. Moreover, despite scaling nearly linearly in sequence length instead of quadratically, SSMs are still slower than Transformers due to poor hardware utilization. In this paper, we make progress on understanding the expressivity gap between SSMs and attention in language modeling, and on reducing the hardware barrier between SSMs and attention. First, we use synthetic language modeling tasks to understand the gap between SSMs and attention. We find that existing SSMs struggle with two capabilities: recalling earlier tokens in the sequence and comparing tokens across the sequence. To understand the impact on language modeling, we propose a new SSM layer, H3, that is explicitly designed for these abilities. H3 matches attention on the synthetic languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid 125M-parameter H3-attention model that retains two attention layers surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve the efficiency of training SSMs on modern hardware, we propose FlashConv. FlashConv uses a fused block FFT algorithm to improve efficiency on sequences up to 8K, and introduces a novel state passing algorithm that exploits the recurrent properties of SSMs to scale to longer sequences. FlashConv yields 2$\times$ speedup on the long-range arena benchmark and allows hybrid language models to generate text 2.4$\times$ faster than Transformers. Using FlashConv, we scale hybrid H3-attention language models up to 2.7B parameters on the Pile and find promising initial results, achieving lower perplexity than Transformers and outperforming Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE benchmark.",https://iclr.cc//virtual/2023/poster/11738,2023,ICLR,No,, "Is Reinforcement Learning (Not) for Natural Language Processing: Benchmarks, Baselines, and Building Blocks for Natural Language Policy Optimization","We tackle the problem of aligning pre-trained large language models (LMs) with human preferences. If we view text generation as a sequential decision-making problem, reinforcement learning (RL) appears to be a natural conceptual framework. However, using RL for LM-based generation faces empirical challenges, including training instability due to the combinatorial action space, as well as a lack of open-source libraries and benchmarks customized for LM alignment. Thus, a question rises in the research community: is RL a practical paradigm for NLP?To help answer this, we first introduce an open-source modular library, $RL4LMs$ (Reinforcement Learning for Language Models), for optimizing language generators with RL. The library consists of on-policy RL algorithms that can be used to train any encoder or encoder-decoder LM in the HuggingFace library (Wolf et al. 2020) with an arbitrary reward function. Next, we present the $GRUE$ (General Reinforced-language Understanding Evaluation) benchmark, a set of 6 language generation tasks which are supervised not by target strings, but by reward functions which capture automated measures of human preference.GRUE is the first leaderboard-style evaluation of RL algorithms for NLP tasks. Finally, we introduce an easy-to-use, performant RL algorithm, $NLPO$ (Natural Language Policy Optimization)} that learns to effectively reduce the combinatorial action space in language generation. We show 1) that RL techniques are generally better than supervised methods at aligning LMs to human preferences; and 2) that NLPO exhibits greater stability and performance than previous policy gradient methods (e.g., PPO (Schulman et al. 2017)), based on both automatic and human evaluations.",https://iclr.cc//virtual/2023/poster/10970,2023,ICLR,Yes,Language,Benchmark KnowDA: All-in-One Knowledge Mixture Model for Data Augmentation in Low-Resource NLP,"This paper focuses on data augmentation for low-resource NLP tasks where the training set is limited. The existing solutions either leverage task-independent heuristic rules (e.g., Synonym Replacement) or fine-tune general-purpose pre-trained language models (e.g., GPT2) using the limited training instances to produce new synthetic data. Consequently, they have trivial task-specific knowledge and are limited to yielding low-quality synthetic data. To combat this issue, we propose Knowledge Mixture Data Augmentation Model (KnowDA), a Seq2Seq language model pretrained on a mixture of diverse NLP tasks under a novel framework of Knowledge Mixture Training (KoMT). The goal of KoMT is to condense diverse NLP task-specific knowledge into the single KnowDA model(i.e., all-in-one). The resulting KnowDA could utilize these knowledge to quickly grasp the inherent synthesis law of the target task through limited training instances. Specifically, KoMT reformulates input examples from various heterogeneous NLP tasks into a unified text-to-text format and employs denoising training objectives in different granularity to learn to reconstruct partial or complete samples. To the best of our knowledge, we are the first to attempt to apply 100+ NLP multi-task training for data augmentation. Extensive experiments show that i) the synthetic data produced by KnowDA successfully improves the performance of the strong pre-trained languagemodels (i.e., Bert, ALBert and Deberta) by a large margin on the low-resource NLP benchmark FewGLUE, CoNLL’03 and WikiAnn; ii) KnowDA successful transfer the task knowledge to NLP tasks whose types are seen and unseen in KoMT.",https://iclr.cc//virtual/2023/poster/11624,2023,ICLR,No,, Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought,"Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts (examples with intermediate reasoning steps). Existing benchmarks measure reasoning ability indirectly, by evaluating accuracy on downstream tasks such as mathematical reasoning. However, it is unclear how these models obtain the answers and whether they rely on simple heuristics rather than the generated chain-of-thought. To enable systematic exploration of the reasoning ability of LLMs, we present a new synthetic question-answering dataset called PrOntoQA, where each example is generated from a synthetic world model represented in first-order logic. This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis. Our analysis on InstructGPT and GPT-3 shows that LLMs are quite capable of making correct individual deduction steps, and so are generally capable of reasoning, even in fictional contexts. However, they have difficulty with proof planning: When multiple valid deduction steps are available, they are not able to systematically explore the different options.",https://iclr.cc//virtual/2023/poster/10783,2023,ICLR,Yes,Language,Methodological Language models are multilingual chain-of-thought reasoners,"We evaluate the reasoning abilities of large language models in multilingual settings. We introduce the Multilingual Grade School Math (MGSM) benchmark, by manually translating 250 grade-school math problems from the GSM8K dataset (Cobbe et al., 2021) into ten typologically diverse languages. We find that the ability to solve MGSM problems via chain-of-thought prompting emerges with increasing model scale, and that models have strikingly strong multilingual reasoning abilities, even in underrepresented languages such as Bengali and Swahili. Finally, we show that multilingual reasoning abilities of language models extend to other tasks such as commonsense reasoning and word-in-context semantic judgment. The MGSM benchmark is publicly available at AnonymousLink and the supplementary material.",https://iclr.cc//virtual/2023/poster/10960,2023,ICLR,Yes,Language,Benchmark Learning Locality and Isotropy in Dialogue Modeling,"Existing dialogue modeling methods have achieved promising performance on various dialogue tasks with the aid of Transformer and the large-scale pre-trained language models. However, some recent studies revealed that the context representations produced by these methods suffer the problem of anisotropy. In this paper, we find that the generated representations are also not conversational, losing the conversation structure information during the context modeling stage. To this end, we identify two properties in dialogue modeling, i.e., locality and isotropy, and present a simple method for dialogue representation calibration, namely SimDRC, to build isotropic and conversational feature spaces. Experimental results show that our approach significantly outperforms current state-of-the-art models on three open-domain dialogue tasks with eight benchmarks. More in-depth analyses further confirm the effectiveness of our proposed approach. We release the code at https://github.com/hahahawu/SimDRC.",https://iclr.cc//virtual/2023/poster/11969,2023,ICLR,No,, Learning to Compose Soft Prompts for Compositional Zero-Shot Learning,"We introduce compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) like CLIP. We develop CSP for compositional zero-shot learning, the task of predicting unseen attribute-object compositions (e.g., old cat and young tiger). VLMs have a flexible text encoder that can represent arbitrary classes as natural language prompts but they often underperform task-specific architectures on the compositional zero-shot benchmark datasets. CSP treats the attributes and objects that define classes as learnable tokens of vocabulary. During training, the vocabulary is tuned to recognize classes that compose tokens in multiple ways (e.g., old cat and white cat). At test time, we recompose the learned attribute-object vocabulary in new combinations to recognize novel classes. We show that CSP outperforms the CLIP on benchmark datasets by an average of 10.9 percentage points on AUC. CSP also outperforms CoOp, a soft prompting method that fine-tunes the prefix context tokens, by an average of 5.8 percentage points on AUC. We perform additional experiments to show that CSP improves generalization to higher-order attribute-attribute-object compositions (e.g., old white cat) and combinations of pretrained attributes and fine-tuned objects. The code is available at https://github.com/BatsResearch/csp.",https://iclr.cc//virtual/2023/poster/12162,2023,ICLR,No,, Least-to-Most Prompting Enables Complex Reasoning in Large Language Models,"Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99\% using just 14 exemplars, compared to only 16\% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.",https://iclr.cc//virtual/2023/poster/12263,2023,ICLR,No,, LexMAE: Lexicon-Bottlenecked Pretraining for Large-Scale Retrieval,"In large-scale retrieval, the lexicon-weighting paradigm, learning weighted sparse representations in vocabulary space, has shown promising results with high quality and low latency. Despite it deeply exploiting the lexicon-representing capability of pre-trained language models, a crucial gap remains between language modeling and lexicon-weighting retrieval -- the former preferring certain or low-entropy words whereas the latter favoring pivot or high-entropy words -- becoming the main barrier to lexicon-weighting performance for large-scale retrieval. To bridge this gap, we propose a brand-new pre-training framework, lexicon-bottlenecked masked autoencoder (LexMAE), to learn importance-aware lexicon representations. Essentially, we present a lexicon-bottlenecked module between a normal language modeling encoder and a weakened decoder, where a continuous bag-of-words bottleneck is constructed to learn a lexicon-importance distribution in an unsupervised fashion. The pre-trained LexMAE is readily transferred to the lexicon-weighting retrieval via fine-tuning. On the ad-hoc retrieval benchmark, MS-Marco, it achieves 42.6% MRR@10 with 45.8 QPS for the passage dataset and 44.4% MRR@100 with 134.8 QPS for the document dataset, by a CPU machine. And LexMAE shows state-of-the-art zero-shot transfer capability on BEIR benchmark with 12 datasets. ",https://iclr.cc//virtual/2023/poster/11193,2023,ICLR,No,, Linearly Mapping from Image to Text Space,"The extent to which text-only language models (LMs) learn to represent the physical, non-linguistic world is an open question. Prior work has shown that pretrained LMs can be taught to ``understand'' visual inputs when the models' parameters are updated on image captioning tasks. We test a stronger hypothesis: that the conceptual representations learned by text-only models are functionally equivalent (up to a linear transformation) to those learned by models trained on vision tasks. Specifically, we show that the image representations from vision models can be transferred as continuous prompts to frozen LMs by training only a single linear projection. Using these to prompt the LM achieves competitive performance on captioning and visual question answering tasks compared to models that tune both the image encoder and text decoder (such as the MAGMA model). We compare three image encoders with increasing amounts of linguistic supervision seen during pretraining: BEIT (no linguistic information), NF-ResNET (lexical category information), and CLIP (full natural language descriptions). We find that all three encoders perform equally well at transferring visual property information to the language model (e.g., whether an animal is large or small), but that image encoders pretrained with linguistic supervision more saliently encode category information (e.g., distinguishing hippo vs.\ elephant) and thus perform significantly better on benchmark language-and-vision tasks. Our results indicate that LMs encode conceptual information structurally similarly to vision-based models, even those that are solely trained on images.",https://iclr.cc//virtual/2023/poster/10815,2023,ICLR,No,, Mega: Moving Average Equipped Gated Attention,"The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models.",https://iclr.cc//virtual/2023/poster/11941,2023,ICLR,No,, Meta Learning to Bridge Vision and Language Models for Multimodal Few-Shot Learning,"Multimodal few-shot learning is challenging due to the large domain gap between vision and language modalities. Existing methods are trying to communicate visual concepts as prompts to frozen language models, but rely on hand-engineered task induction to reduce the hypothesis space. To make the whole process learnable, we introduce a multimodal meta-learning approach. Specifically, our approach decomposes the training of the model into a set of related multimodal few-shot tasks. We define a meta-mapper network, acting as a meta-learner, to efficiently bridge frozen large-scale vision and language models and leverage their already learned capacity. By updating the learnable parameters only of the meta-mapper, it learns to accrue shared meta-knowledge among these tasks. Thus, it can rapidly adapt to newly presented samples with only a few gradient updates. Importantly, it induces the task in a completely data-driven manner, with no need for a hand-engineered task induction. We evaluate our approach on recently proposed multimodal few-shot benchmarks, measuring how rapidly the model can bind novel visual concepts to words and answer visual questions by observing only a limited set of labeled examples. The experimental results show that our meta-learning approach outperforms the baseline across multiple datasets and various training settings while being computationally more efficient.",https://iclr.cc//virtual/2023/poster/11091,2023,ICLR,No,, Mind's Eye: Grounded Language Model Reasoning through Simulation,"Successful and effective communication between humans and AI relies on a shared experience of the world. By training solely on written text, current language models (LMs) miss the grounded experience of humans in the real-world---their failure to relate language to the physical world causes knowledge to be misrepresented and obvious mistakes in their reasoning. We present Mind's Eye, a paradigm to ground language model reasoning in the physical world. Given a physical reasoning question, we use a computational physics engine (DeepMind's MuJoCo) to simulate the possible outcomes, and then use the simulation results as part of the input, which enables language models to perform reasoning. Experiments on 39 tasks in a physics alignment benchmark demonstrate that Mind's Eye can improve reasoning ability by a large margin (27.9% zero-shot, and 46.0% few-shot absolute accuracy improvement on average). Smaller language models armed with Mind's Eye can obtain similar performance to models that are 100x larger. Finally, we confirm the robustness of Mind's Eye through ablation studies.",https://iclr.cc//virtual/2023/poster/11291,2023,ICLR,Yes,Language,Methodological Multi-lingual Evaluation of Code Generation Models,"We present two new benchmarks, MBXP and Multilingual HumanEval, designed to evaluate code completion models in over 10 programming languages. These datasets are generated using a conversion framework that transpiles prompts and test cases from the original MBPP and HumanEval datasets into the corresponding data in the target language. By using these benchmarks, we are able to assess the performance of code generation models in a multi-lingual fashion, and discovered generalization ability of language models on out-of-domain languages, advantages of multi-lingual models over mono-lingual, the ability of few-shot prompting to teach the model new languages, and zero-shot translation abilities. In addition, we use our code generation model to perform large-scale bootstrapping to obtain synthetic canonical solutions in several languages, which can be used for other code-related evaluations such as code insertion, robustness, or summarization tasks.",https://iclr.cc//virtual/2023/poster/12102,2023,ICLR,Yes,Language,Benchmark On Pre-training Language Model for Antibody,"Antibodies are vital proteins offering robust protection for the human body from pathogens. The development of general protein and antibody-specific pre-trained language models both facilitate antibody prediction tasks. However, there have been limited studies that comprehensively explore the representation capability of distinct pre-trained language models on different antibody tasks. To investigate the problem, we aim to answer several key questions in this paper, such as how pre-trained language models perform in antibody tasks with different specificity and how introducing specific biological mechanisms to the pre-training process can benefit the model. Additionally, we evaluate if the learned antibody pre-trained representations can be applied to real-world antibody problems, like drug discovery and immune process understanding. Previously, no benchmark available largely hindered the study to answer these questions. To aid in our investigation, we provide an AnTibody Understanding Evaluation (ATUE) benchmark. We comprehensively evaluate the performance of protein pre-trained language models by empirical study along with conclusions and new insights. Our ATUE and code are released at https://github.com/dqwang122/EATLM.",https://iclr.cc//virtual/2023/poster/10766,2023,ICLR,Yes,Language,Benchmark Open-Vocabulary Object Detection upon Frozen Vision and Language Models,"We present F-VLM, a simple open-vocabulary object detection method built uponFrozenVision andLanguageModels. F-VLM simplifies the current multi-stage training pipeline by eliminating the need for knowledge distillation or detection-tailored pretraining. Surprisingly, we observe that a frozen VLM: 1) retains the locality-sensitive features necessary for detection, and 2) is a strong region classifier. We finetune only the detector head and combine the detector and VLM outputs for each region at inference time. F-VLM shows compelling scaling behavior and achieves +6.5 mask AP improvement over the previous state of theart on novel categories of LVIS open-vocabulary detection benchmark. In addition, we demonstrate very competitive results on COCO open-vocabulary detection benchmark and cross-dataset transfer detection, in addition to significant training speed-up and compute savings. Code will be released.",https://iclr.cc//virtual/2023/poster/11429,2023,ICLR,No,, Planning with Large Language Models for Code Generation,"Existing large language model-based code generation pipelines typically use beam search or sampling algorithms during the decoding process. Although the programs they generate achieve high token-matching-based scores, they often fail to compile or generate incorrect outputs. The main reason is that conventional Transformer decoding algorithms may not be the best choice for code generation. In this work, we propose a novel Transformer decoding algorithm, Planning-Guided Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead search and guide the Transformer to generate better programs. Specifically, instead of simply optimizing the likelihood of the generated sequences, the Transformer makes use of a planner that generates candidate programs and tests them on public test cases. The Transformer can therefore make more informed decisions and generate tokens that will eventually lead to higher-quality programs. We also design a mechanism that shares information between the Transformer and the planner to make our algorithm computationally efficient. We empirically evaluate our framework with several large language models as backbones on public coding challenge benchmarks, showing that 1) it can generate programs that consistently achieve higher performance compared with competing baseline methods; 2) it enables controllable code generation, such as concise codes and highly-commented codes by optimizing modified objective.",https://iclr.cc//virtual/2023/poster/11072,2023,ICLR,No,, Progressive Prompts: Continual Learning for Language Models,"We introduce Progressive Prompts – a simple and efficient approach for continual learning in language models. Our method allows forward transfer and resists catastrophic forgetting, without relying on data replay or a large number of task-specific parameters. Progressive Prompts learns a new soft prompt for each task and sequentially concatenates it with the previously learned prompts, while keeping the base model frozen. Experiments on standard continual learning benchmarks show that our approach outperforms state-of-the-art methods, with an improvement >20% in average test accuracy over the previous best-preforming method on T5 model. We also explore a more challenging continual learning setup with longer sequences of tasks and show that Progressive Prompts significantly outperforms prior methods.",https://iclr.cc//virtual/2023/poster/10917,2023,ICLR,No,, ReAct: Synergizing Reasoning and Acting in Language Models,"While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g. action plan generation) have primarily been studied as separate topics. In this paper, we explore the use of LLMs to generate both reasoning traces and task-specific actions in an interleaved manner, allowing for greater synergy between the two: reasoning traces help the model induce, track, and update action plans as well as handle exceptions, while actions allow it to interface with external sources, such as knowledge bases or environments, to gather additional information. We apply our approach, named ReAct, to a diverse set of language and decision making tasks and demonstrate its effectiveness over state-of-the-art baselines, as well as improved human interpretability and trustworthiness over methods without reasoning or acting components. Concretely, on question answering (HotpotQA) and fact verification (Fever), ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API, and generates human-like task-solving trajectories that are more interpretable than baselines without reasoning traces. On two interactive decision making benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute success rate of 34% and 10% respectively, while being prompted with only one or two in-context examples.",https://iclr.cc//virtual/2023/poster/11003,2023,ICLR,No,, Rethinking Symbolic Regression: Morphology and Adaptability in the Context of Evolutionary Algorithms,"Symbolic Regression (SR) is the well-studied problem of finding closed-form analytical expressions that describe the relationship between variables in a measurement dataset. In this paper, we rethink SR from two perspectives: morphology and adaptability. Morphology: Current SR algorithms typically use several man-made heuristics to influence the morphology (or structure) of the expressions in the search space. These man-made heuristics may introduce unintentional bias and data leakage, especially with the relatively few equation-recovery benchmark problems available for evaluating SR approaches. To address this, we formulate a novel minimalistic approach, based on constructing a depth-aware mathematical language model trained on terminal walks of expression trees, as a replacement to these heuristics. Adaptability: Current SR algorithms tend to select expressions based on only a single fitness function (e.g., MSE on the training set). We promote the use of an adaptability framework in evolutionary SR which uses fitness functions that alternate across generations. This leads to robust expressions that perform well on the training set and are close to the true functional form. We demonstrate this by alternating fitness functions that quantify faithfulness to values (via MSE) and empirical derivatives (via a novel theoretically justified fitness metric coined MSEDI). Proof-of-concept: We combine these ideas into a minimalistic evolutionary SR algorithm that outperforms all benchmark and state of-the-art SR algorithms in problems with unknown constants added, which we claim are more reflective of SR performance for real-world applications. Our claim is then strengthened by reproducing the superior performance on real-world regression datasets from SRBench. For researchers interested in equation-recovery problems, we also propose a set of conventions that can be used to promote fairness in comparison across SR methods and to reduce unintentional bias.",https://iclr.cc//virtual/2023/poster/10765,2023,ICLR,No,, Scaling Up Probabilistic Circuits by Latent Variable Distillation,"Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling. Our code can be found at https://github.com/UCLA-StarAI/LVD.",https://iclr.cc//virtual/2023/poster/10744,2023,ICLR,No,, Self-Consistency Improves Chain of Thought Reasoning in Language Models,"Chain-of-thought prompting combined with pretrained large language models has achieved encouraging results on complex reasoning tasks. In this paper, we propose a new decoding strategy, self-consistency, to replace the naive greedy decoding used in chain-of-thought prompting. It first samples a diverse set of reasoning paths instead of only taking the greedy one, and then selects the most consistent answer by marginalizing out all possible reasoning paths. Self-consistency leverages the intuition that a complex reasoning problem typically admits multiple different ways of thinking leading to its unique correct answer. Our extensive empirical evaluation shows that self-consistency boosts the performance of chain-of-thought prompting with a striking margin on a range of popular arithmetic and commonsense reasoning benchmarks, including GSM8K (+17.9%), SVAMP (+11.0%), AQuA (+12.2%), StrategyQA (+6.4%) and ARC-challenge (+3.9%).",https://iclr.cc//virtual/2023/poster/11718,2023,ICLR,No,, Self-Distillation for Further Pre-training of Transformers,"Pre-training a large transformer model on a massive amount of unlabeled data and fine-tuning it on labeled datasets for diverse downstream tasks has proven to be a successful strategy, for a variety of vision and natural language processing tasks. However, direct fine-tuning of the pre-trained model may be suboptimal if there exist large discrepancies across data domains for pre-training and fine-tuning. To tackle this issue, several previous studies have proposed further pre-training strategies, where we continue to pre-train the model on the target unlabeled dataset before fine-tuning. However, all of them solely focus on language models and we empirically find that a Vision Transformer is vulnerable to overfitting as we continue to pretrain the model on target unlabeled data. In order to tackle this limitation, we propose self-distillation as a regularization for a further pre-training stage. Specifically, we first further pre-train the initial pre-trained model on the target unlabeled data and then consider it as a teacher for self-distillation. Then we take the same initial pre-trained model as a student and enforce its hidden representations to be close to those of the teacher while optimizing the student with a masked auto-encoding objective. We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks. Experimentally, we show that our proposed method outperforms all the relevant baselines. Theoretically, we analyze the proposed method with a simplified model to understand how self-distillation for further pre-training can potentially help improve the performance of the downstream tasks.",https://iclr.cc//virtual/2023/poster/12123,2023,ICLR,No,, STREET: A MULTI-TASK STRUCTURED REASONING AND EXPLANATION BENCHMARK,"We introduce STREET, a unified multi-task and multi-domain natural language reasoning and explanation benchmark. Unlike most existing question-answering (QA) datasets, we expect models to not only answer questions, but also produce step-by-step structured explanations describing how premises in the question are used to produce intermediate conclusions that can prove the correctness of a certain answer. We perform extensive evaluation with popular language models such as few-shot prompting GPT-3 and fine-tuned T5. We find that these models still lag behind human performance when producing such structured reasoning steps. We believe this work will provide a way for the community to better train and test systems on multi-step reasoning and explanations in natural language.",https://iclr.cc//virtual/2023/poster/12169,2023,ICLR,Yes,Language,Benchmark StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training,"In this paper, we present StrucTexTv2, an effective document image pre-training framework, by performing masked visual-textual prediction. It consists of two self-supervised pre-training tasks: masked image modeling and masked language modeling, based on text region-level image masking. The proposed method randomly masks some image regions according to the bounding box coordinates of text words. The objectives of our pre-training tasks are reconstructing the pixels of masked image regions and the corresponding masked tokens simultaneously. Hence the pre-trained encoder can capture more textual semantics in comparison to the masked image modeling that usually predicts the masked image patches. Compared to the masked multi-modal modeling methods for document image understanding that rely on both the image and text modalities, StrucTexTv2 models image-only input and potentially deals with more application scenarios free from OCR pre-processing. Extensive experiments on mainstream benchmarks of document image understanding demonstrate the effectiveness of StrucTexTv2. It achieves competitive or even new state-of-the-art performance in various downstream tasks such as image classification, layout analysis, table structure recognition, document OCR, and information extraction under the end-to-end scenario.",https://iclr.cc//virtual/2023/poster/12020,2023,ICLR,No,, Task Ambiguity in Humans and Language Models,"Language models have recently achieved strong performance across a wide range of NLP benchmarks. However, real world tasks are often poorly specified, and agents must deduce the intended behavior from a combination of context, instructions, and examples. We investigate how both humans and models behave in the face of such task ambiguity by proposing AmbiBench, a new benchmark of six ambiguously-specified classification tasks. We evaluate humans and models on AmbiBench by seeing how well they identify the intended task using 1) instructions with varying degrees of ambiguity, and 2) different numbers of labeled examples. We find that the combination of model scaling (to 175B parameters) and reinforcement learning from human feedback (RLHF) enables models to approach or exceed the accuracy of human participants across tasks, but that either one of these alone is not sufficient. In addition, we show how to dramatically improve the accuracy of language models trained without RLHF by finetuning on a small number of ambiguous in-context examples, providing a promising direction for teaching models to generalize well in the face of ambiguity.",https://iclr.cc//virtual/2023/poster/11306,2023,ICLR,Yes,Language,Benchmark TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization,"Robustness evaluation against adversarial examples has become increasingly important to unveil the trustworthiness of the prevailing deep models in natural language processing (NLP). However, in contrast to the computer vision domain where the first-order projected gradient descent (PGD) is used as the benchmark approach to generate adversarial examples for robustness evaluation, there lacks a principled first-order gradient-based robustness evaluation framework in NLP. The emerging optimization challenges lie in 1) the discrete nature of textual inputs together with the strong coupling between the perturbation location and the actual content, and 2) the additional constraint that the perturbed text should be fluent and achieve a low perplexity under a language model. These challenges make the development of PGD-like NLP attacks difficult. To bridge the gap, we propose TextGrad, a new attack generator using gradient-driven optimization, supporting high-accuracy and high-quality assessment of adversarial robustness in NLP. Specifically, we address the aforementioned challenges in a unified optimization framework. And we develop an effective convex relaxation method to co-optimize the continuously-relaxed site selection and perturbation variables and leverage an effective sampling method to establish an accurate mapping from the continuous optimization variables to the discrete textual perturbations. Moreover, as a first-order attack generation method, TextGrad can be baked into adversarial training to further improve the robustness of NLP models. Extensive experiments are provided to demonstrate the effectiveness of TextGrad not only in attack generation for robustness evaluation but also in adversarial defense. From the attack perspective, we show that TextGrad achieves remarkable improvements in both the attack success rate and the perplexity score over five state-of-the-art baselines. From the defense perspective, TextGrad-enabled adversarial training yields the most robust NLP model against a wide spectrum of NLP attacks. ",https://iclr.cc//virtual/2023/poster/10897,2023,ICLR,No,, The Surprising Computational Power of Nondeterministic Stack RNNs,"Traditional recurrent neural networks (RNNs) have a fixed, finite number of memory cells. In theory (assuming bounded range and precision), this limits their formal language recognition power to regular languages, and in practice, RNNs have been shown to be unable to learn many context-free languages (CFLs). In order to expand the class of languages RNNs recognize, prior work has augmented RNNs with a nondeterministic stack data structure, putting them on par with pushdown automata and increasing their language recognition power to CFLs. Nondeterminism is needed for recognizing all CFLs (not just deterministic CFLs), but in this paper, we show that nondeterminism and the neural controller interact to produce two more unexpected abilities. First, the nondeterministic stack RNN can recognize not only CFLs, but also many non-context-free languages. Second, it can recognize languages with much larger alphabet sizes than one might expect given the size of its stack alphabet. Finally, to increase the information capacity in the stack and allow it to solve more complicated tasks with large alphabet sizes, we propose a new version of the nondeterministic stack that simulates stacks of vectors rather than discrete symbols. We demonstrate perplexity improvements with this new model on the Penn Treebank language modeling benchmark.",https://iclr.cc//virtual/2023/poster/11444,2023,ICLR,No,, Toeplitz Neural Network for Sequence Modeling,"Sequence modeling has important applications in natural language processing and computer vision. Recently, the transformer-based models have shown strong performance on various sequence modeling tasks, which rely on attention to capture pairwise token relations, and position embedding to inject positional information. While showing good performance, the transformer models are inefficient to scale to long input sequences, mainly due to the quadratic space-time complexity of attention. To overcome this inefficiency, we propose to model sequences with a relative position encoded Toeplitz matrix and use a Toeplitz matrix-vector production trick to reduce the space-time complexity of the sequence modeling to log linear. A lightweight sub-network called relative position encoder is proposed to generate relative position coefficients with a fixed budget of parameters, enabling the proposed Toeplitz neural network to deal with varying sequence lengths. In addition, despite being trained on 512-token sequences, our model can extrapolate input sequence length up to 14K tokens in inference with consistent performance. Extensive experiments on autoregressive and bidirectional language modeling, image modeling, and the challenging Long-range Arena Benchmark show that our method achieves better performance than its competitors in most downstream tasks while being significantly faster.",https://iclr.cc//virtual/2023/poster/11844,2023,ICLR,No,, Toward Adversarial Training on Contextualized Language Representation,"Beyond the success story of adversarial training (AT) in the recent text domain on top of pre-trained language models (PLMs), our empirical study showcases the inconsistent gains from AT on some tasks, e.g. commonsense reasoning, named entity recognition. This paper investigates AT from the perspective of the contextualized language representation outputted by PLM encoders. We find the current AT attacks lean to generate sub-optimal adversarial examples that can fool the decoder part but have a minor effect on the encoder. However, we find it necessary to effectively deviate the latter one to allow AT to gain. Based on the observation, we propose simple yet effective \textit{Contextualized representation-Adversarial Training} (CreAT), in which the attack is explicitly optimized to deviate the contextualized representation of the encoder. It allows a global optimization of adversarial examples that can fool the entire model. We also find CreAT gives rise to a better direction to optimize the adversarial examples, to let them less sensitive to hyperparameters. Compared to AT, CreAT produces consistent performance gains on a wider range of tasks and is proven to be more effective for language pre-training where only the encoder part is kept for downstream tasks. We achieve the new state-of-the-art performances on a series of challenging benchmarks, e.g. AdvGLUE (59.1 $ \rightarrow $ 61.1), HellaSWAG (93.0 $ \rightarrow $ 94.9), ANLI (68.1 $ \rightarrow $ 69.3).",https://iclr.cc//virtual/2023/poster/11683,2023,ICLR,No,, UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question Answering Over Knowledge Graph,"Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG).To cope with the vast search space, existing work usually adopts a two-stage approach: it first retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to find the answer entities accurately.Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the directed edges on KGs.For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies.Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task.Our codes and data are publicly available at~\url{https://github.com/RUCAIBox/UniKGQA}.",https://iclr.cc//virtual/2023/poster/10823,2023,ICLR,No,, UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining,"Pretrained multilingual large language models have typically used heuristic temperature-based sampling to balance between different languages. However previous work has not systematically evaluated the efficacy of different pretraining language distributions across model scales. In this paper, we propose a new sampling method, UniMax, that delivers more uniform coverage of head languages while mitigating overfitting on tail languages by explicitly capping the number of repeats over each language's corpus. We perform an extensive series of ablations testing a range of sampling strategies on a suite of multilingual benchmarks, while varying model scale. We find that UniMax outperforms standard temperature-based sampling, and the benefits persist as scale increases. As part of our contribution, we release: (i) an improved and refreshed mC4 multilingual corpus consisting of 29 trillion characters across 107 languages, and (ii) a suite of pretrained umT5 model checkpoints trained with UniMax sampling.",https://iclr.cc//virtual/2023/poster/10763,2023,ICLR,No,, "When and Why Vision-Language Models Behave like Bags-Of-Words, and What to Do About It?","Despite the success of large vision and language models (VLMs) in many downstream applications, it is unclear how well they encode the compositional relationships between objects and attributes. Here, we create the Attribution, Relation, and Order (ARO) benchmark to systematically evaluate the ability of VLMs to understand different types of relationships, attributes, and order information. ARO consists of \emph{Visual Genome Attribution}, to test the understanding of objects' properties; \emph{Visual Genome Relation}, to test for relational understanding; and \emph{COCO-Order \& Flickr30k-Order}, to test for order sensitivity in VLMs. ARO is orders of magnitude larger than previous benchmarks of compositionality, with more than 50,000 test cases. We present the settings where state-of-the-art VLMs behave like bags-of-words---i.e. when they have poor relational understanding, can blunder when linking objects to their attributes, and demonstrate a severe lack of order sensitivity. VLMs are predominantly trained and evaluated on large scale datasets with rich compositional structure in the images and captions. Yet, training on these datasets has not been enough to address the lack of compositional understanding, and evaluating on these datasets has failed to surface this deficiency. To understand why these limitations emerge and are not represented in the standard tests, we zoom into the evaluation and training procedures. We demonstrate that it is possible to perform well on image-text retrieval over existing datasets without using the composition and order information. This further motivates the value of using ARO to benchmark VLMs. Given that contrastive pretraining optimizes for retrieval on large datasets with similar shortcuts, we hypothesize that this can explain why the models do not need to learn to represent compositional information. This finding suggests a natural solution: composition-aware hard negative mining. We show that a simple-to-implement modification of contrastive learning significantly improves the performance on tasks requiring understanding of order and compositionality. ",https://iclr.cc//virtual/2023/poster/10875,2023,ICLR,Yes,Multimodal, WikiWhy: Answering and Explaining Cause-and-Effect Questions,"As large language models (LLMs) grow larger and more sophisticated, assessing their ""reasoning"" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 ""why"" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.",https://iclr.cc//virtual/2023/poster/10792,2023,ICLR,Yes,Language,Benchmark Write and Paint: Generative Vision-Language Models are Unified Modal Learners,"Recent advances in vision-language pre-training have pushed the state-of-the-art on various vision-language tasks, making machines more capable of multi-modal writing (image-to-text generation) and painting (text-to-image generation). However, few studies investigate if these two essential capabilities can be learned together and boost each other, making a versatile and powerful multi-modal foundation model. In this work, we disclose the potential of symmetric generative vision-language pre-training in learning to write and paint concurrently, and propose a new unified modal model, named DaVinci, trained with prefix language modeling and prefix image modeling, a simple generative self-supervised objective on image-text pairs. Thanks to the proposed prefix multi-modal modeling framework, DaVinci is simple to train, scalable to huge data, adaptable to both writing and painting tasks, and also strong on other vision, text, and multi-modal understanding tasks. DaVinci achieves competitive performance on a wide range of 27 generation/understanding tasks and demonstrates the superiority of combining vision/language generative pre-training. Furthermore, we carefully benchmark the performance of different vision-language pre-training objectives on different scales of pre-training datasets on a heterogeneous and broad distribution coverage. Our results demonstrate the potential of exploiting self-supervision in both language and vision inputs, and establish new, stronger baselines for future comparisons at different data scales. The code and pre-trained models are available at https://github.com/shizhediao/DaVinci.",https://iclr.cc//virtual/2023/poster/11724,2023,ICLR,Yes,Multimodal, A Benchmark for Learning to Translate a New Language from One Grammar Book,"Large language models (LLMs) can perform impressive feats with in-context learning or lightweight finetuning. It is natural to wonder how well these models adapt to genuinely new tasks, but how does one find tasks that are unseen in internet-scale training sets? We turn to a field that is explicitly motivated and bottlenecked by a scarcity of web data: low-resource languages. In this paper, we introduce MTOB (Machine Translation from One Book), a benchmark for learning to translate between English and Kalamang—a language with less than 200 speakers and therefore virtually no presence on the web—using several hundred pages of field linguistics reference materials. This task framing is novel in that it asks a model to learn a language from a single human-readable book of grammar explanations, rather than a large mined corpus of in-domain data, more akin to L2 language learning than L1 language acquisition. We demonstrate that baselines using current LLMs are promising but fall short of human performance, achieving 44.7 chrF on Kalamang to English translation and 45.8 chrF on English to Kalamang translation, compared to 51.6 and 57.0 chrF by a human who learned Kalamang from the same reference materials. We hope that MTOB will help measure LLM capabilities along a new dimension, and that the methods developed to solve it could help expand access to language technology for underserved communities by leveraging qualitatively different kinds of data than traditional machine translation.",https://iclr.cc//virtual/2024/poster/17609,2024,ICLR,Yes,Language,Benchmark Accurate Retraining-free Pruning for Pretrained Encoder-based Language Models,"Given a pretrained encoder-based language model, how can we accurately compress it without retraining? Retraining-free structured pruning algorithms are crucial in pretrained language model compression due to their significantly reduced pruning cost and capability to prune large language models. However, existing retraining-free algorithms encounter severe accuracy degradation, as they fail to handle pruning errors, especially at high compression rates. In this paper, we propose KPrune (Knowledge-preserving pruning), an accurate retraining-free structured pruning algorithm for pretrained encoder-based language models.KPrune focuses on preserving the useful knowledge of the pretrained model to minimize pruning errors through a carefully designed iterative pruning process composed of knowledge measurement, knowledge-preserving mask search, and knowledge-preserving weight-tuning. As a result, KPrune shows significant accuracy improvements up to 58.02%p higher F1 score compared to existing retraining-free pruning algorithms under a high compression rate of 80% on the SQuAD benchmark without any retraining process.",https://iclr.cc//virtual/2024/poster/17667,2024,ICLR,No,, Adapting Large Language Models via Reading Comprehension,"We explore how continued pre-training on domain-specific corpora influences large language models, revealing that training on the raw corpora endows the model with domain knowledge, but drastically hurts its prompting ability for question answering. Taken inspiration from human learning via reading comprehension--practice after reading improves the ability to answer questions based on the learned knowledge--we propose a simple method for transforming raw corpora into reading comprehension texts. Each raw text is enriched with a series of tasks related to its content. Our method, highly scalable and applicable to any pre-training corpora, consistently enhances performance across various tasks in three different domains: biomedicine, finance, and law. Notably, our 7B language model achieves competitive performance with domain-specific models of much larger scales, such as BloombergGPT-50B. Furthermore, we demonstrate that domain-specific reading comprehension texts can improve the model's performance even on general benchmarks, showing the potential to develop a general model across even more domains. Our model, code, and data are available at https://github.com/microsoft/LMOps.",https://iclr.cc//virtual/2024/poster/17426,2024,ICLR,No,, AffineQuant: Affine Transformation Quantization for Large Language Models,"The significant resource requirements associated with Large-scale Language Models (LLMs) have generated considerable interest in the development of techniques aimed at compressing and accelerating neural networks. Among these techniques, Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its noteworthy compression efficiency and cost-effectiveness in the context of training. Existing PTQ methods for LLMs limit the optimization scope to scaling transformations between pre- and post-quantization weights. This constraint results in significant errors after quantization, particularly in low-bit configurations. In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant). This approach extends the optimization scope and thus significantly minimizing quantization errors. Additionally, by employing the corresponding inverse matrix, we can ensure equivalence between the pre- and post-quantization outputs of PTQ, thereby maintaining its efficiency and generalization capabilities. To ensure the invertibility of the transformation during optimization, we further introduce a gradual mask optimization method. This method initially focuses on optimizing the diagonal elements and gradually extends to the other elements. Such an approach aligns with the Levy-Desplanques theorem, theoretically ensuring invertibility of the transformation. As a result, significant performance improvements are evident across different LLMs on diverse datasets. Notably, these improvements are most pronounced when using very low-bit quantization, enabling the deployment of large models on edge devices. To illustrate, we attain a C4 perplexity of $15.76$ (2.26$\downarrow$ vs $18.02$ in OmniQuant) on the LLaMA2-$7$B model of W$4$A$4$ quantization without overhead. On zero-shot tasks, AffineQuant achieves an average of $58.61\%$ accuracy ( $1.98\%\uparrow$ vs $56.63$ in OmniQuant) when using $4$/$4$-bit quantization for LLaMA-$30$B, which setting a new state-of-the-art benchmark for PTQ in LLMs. Codes are available at: https://github.com/bytedance/AffineQuant.",https://iclr.cc//virtual/2024/poster/17809,2024,ICLR,Yes,Language,Methodological AgentBench: Evaluating LLMs as Agents,"The potential of Large Language Model (LLM) as agents has been widely acknowledged recently.Thus, there is an urgent need to quantitatively evaluate LLMs as agents on challenging tasks in interactive environments.We present AgentBench, a multi-dimensional benchmark that consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.Our extensive test over 29 API-based and open-sourced (OSS) LLMs shows that, while top commercial LLMs present a strong ability of acting as agents in complex environments, there is a significant disparity in performance between them and many OSS competitors that are no larger than 70B.We identify the typical reasons of failures in environments and LLMs, showing that poor long-term reasoning, decision-making, and instruction following abilities are the main obstacles for developing usable LLM agents.Improving instruction following and training on high quality multi-round alignment data could improve agent performance.And different from existing assumptions, training on code present ambivalent impacts on different agent tasks.Datasets, environments, and an integrated evaluation package for AgentBench are released at https://github.com/THUDM/AgentBench.",https://iclr.cc//virtual/2024/poster/17388,2024,ICLR,Yes,Language,Benchmark "A Real-World WebAgent with Planning, Long Context Understanding, and Program Synthesis","Pre-trained large language models (LLMs) have recently achieved better generalization and sample efficiency in autonomous web automation.However, the performance on real-world websites has still suffered from (1) open domainness, (2) limited context length, and (3) lack of inductive bias on HTML.We introduce WebAgent, an LLM-driven agent that learns from self-experience to complete tasks on real websites following natural language instructions.WebAgent plans ahead by decomposing instructions into canonical sub-instructions, summarizes long HTML documents into task-relevant snippets, and acts on websites via Python programs generated from those.We design WebAgent with Flan-U-PaLM, for grounded code generation, and HTML-T5, new pre-trained LLMs for long HTML documents using local and global attention mechanisms and a mixture of long-span denoising objectives, for planning and summarization.We empirically demonstrate that our modular recipe improves the success on real websites by over 50%, and that HTML-T5 is the best model to solve various HTML understanding tasks; achieving 18.7% higher success rate than the prior method on MiniWoB web automation benchmark, and SoTA performance on Mind2Web, an offline task planning evaluation.",https://iclr.cc//virtual/2024/poster/19300,2024,ICLR,No,, Are Human-generated Demonstrations Necessary for In-context Learning?,"Despite the promising few-shot ability of large language models (LLMs), the standard paradigm of In-context Learning (ICL) suffers the disadvantages of susceptibility to selected demonstrations and the intricacy to generate these demonstrations. In this paper, we raise the fundamental question that whether human-generated demonstrations are necessary for ICL. To answer this question, we propose self-contemplation prompting strategy (SEC), a paradigm free from human-crafted demonstrations. The key point of SEC is that, instead of using hand-crafted examples as demonstrations in ICL, SEC asks LLMs to first create demonstrations on their own, based on which the final output is generated. SEC is a flexible framework and can be adapted to both the vanilla ICL and the chain-of-thought (CoT), but with greater ease: as the manual-generation process of both examples and rationale can be saved. Extensive experiments in arithmetic reasoning, commonsense reasoning, multi-task language understanding, and code generation benchmarks, show that SEC, which does not require hand-crafted demonstrations, significantly outperforms the zero-shot learning strategy, and achieves comparable results to ICL with hand-crafted demonstrations. This demonstrates that, for many tasks, contemporary LLMs possess a sufficient level of competence to exclusively depend on their own capacity for decision making, removing the need for external training data.",https://iclr.cc//virtual/2024/poster/18169,2024,ICLR,No,, Are Models Biased on Text without Gender-related Language?,"Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: *Do language models still exhibit gender bias in non-stereotypical settings?* To do so, we introduce **UnStereoEval (USE)**, a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at [ucinlp.github.io/unstereo-eval](https://ucinlp.github.io/unstereo-eval).",https://iclr.cc//virtual/2024/poster/17511,2024,ICLR,Yes,Language,Methodological A Simple and Effective Pruning Approach for Large Language Models,"As their size increases, Large Languages Models (LLMs) are natural candidates for network pruning methods: approaches that drop a subset of network weights while striving to preserve performance. Existing methods, however, require either retraining, which is rarely affordable for billion-scale LLMs, or solving a weight reconstruction problem reliant on second-order information, which may also be computationally expensive. In this paper, we introduce a novel, straightforward yet effective pruning method, termed Wanda (Pruning by Weights and activations), designed to induce sparsity in pretrained LLMs. Motivated by the recent observation of emergent large magnitude features in LLMs, our approach prunes weights with the smallest magnitudes multiplied by the corresponding input activations, on a per-output basis. Notably, Wanda requires no retraining or weight update, and the pruned LLM can be used as is. We conduct a thorough evaluation of our method Wanda on LLaMA and LLaMA-2 across various language benchmarks. Wanda significantly outperforms the established baseline of magnitude pruning and performs competitively against recent method involving intensive weight update.",https://iclr.cc//virtual/2024/poster/18687,2024,ICLR,No,, "A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks","Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience. Training such models, however, is quite inefficient and unstable. In this work, we show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one, and has theoretical guarantees in terms of convergence. The proposed algorithm, that we call incremental predictive coding (iPC) is also more biologically plausible than the original one, as it it fully automatic. In an extensive set of experiments, we show that iPC constantly performs better than the original formulation on a large number of benchmarks for image classification, as well as for the training of both conditional and masked language models, in terms of test accuracy, efficiency, and convergence with respect to a large set of hyperparameters.",https://iclr.cc//virtual/2024/poster/18624,2024,ICLR,No,, AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval,"Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%. Code is available at https://github.com/BorealisAI/Autocast-plus-plus.",https://iclr.cc//virtual/2024/poster/19174,2024,ICLR,No,, BadChain: Backdoor Chain-of-Thought Prompting for Large Language Models,"Large language models (LLMs) are shown to benefit from chain-of-thought (COT) prompting, particularly when tackling tasks that require systematic reasoning processes. On the other hand, COT prompting also poses new vulnerabilities in the form of backdoor attacks, wherein the model will output unintended malicious content under specific backdoor-triggered conditions during inference. Traditional methods for launching backdoor attacks involve either contaminating the training dataset with backdoored instances or directly manipulating the model parameters during deployment. However, these approaches are not practical for commercial LLMs that typically operate via API access. In this paper, we propose BadChain, the first backdoor attack against LLMs employing COT prompting, which does not require access to the training dataset or model parameters and imposes low computational overhead. BadChain leverages the inherent reasoning capabilities of LLMs by inserting a backdoor reasoning step into the sequence of reasoning steps of the model output, thereby altering the final response when a backdoor trigger is embedded in the query prompt. In particular, a subset of demonstrations will be manipulated to incorporate a backdoor reasoning step in COT prompting. Consequently, given any query prompt containing the backdoor trigger, the LLM will be misled to output unintended content. Empirically, we show the effectiveness of BadChain for two COT strategies across four LLMs (Llama2, GPT-3.5, PaLM2, and GPT-4) and six complex benchmark tasks encompassing arithmetic, commonsense, and symbolic reasoning. We show that the baseline backdoor attacks designed for simpler tasks such as semantic classification will fail on these complicated tasks. In addition, our findings reveal that LLMs endowed with stronger reasoning capabilities exhibit higher susceptibility to BadChain, exemplified by a high average attack success rate of 97.0\% across the six benchmark tasks on GPT-4. We also demonstrate the interpretability of BadChain by showing that the relationship between the trigger and the backdoor reasoning step can be well-explained based on the output of the backdoored model. Finally, we propose two defenses based on shuffling and demonstrate their overall ineffectiveness against BadChain. Therefore, BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.",https://iclr.cc//virtual/2024/poster/18305,2024,ICLR,No,, BayesPrompt: Prompting Large-Scale Pre-Trained Language Models on Few-shot Inference via Debiased Domain Abstraction,"As a novel and effective fine-tuning paradigm based on large-scale pre-trained language models (PLMs), prompt-tuning aims to reduce the gap between downstream tasks and pre-training objectives. While prompt-tuning has yielded continuous advancements in various tasks, such an approach still remains a persistent defect: prompt-tuning methods fail to generalize to specific few-shot patterns. From the perspective of distribution analyses, we disclose that the intrinsic issues behind the phenomenon are the over-multitudinous conceptual knowledge contained in PLMs and the abridged knowledge for target downstream domains, which jointly result in that PLMs mis-locate the knowledge distributions corresponding to the target domains in the universal knowledge embedding space. To this end, we intuitively explore to approximate the unabridged target domains of downstream tasks in a debiased manner, and then abstract such domains to generate discriminative prompts, thereby providing the de-ambiguous guidance for PLMs. Guided by such an intuition, we propose a simple yet effective approach, namely BayesPrompt, to learn prompts that contain the domain discriminative information against the interference from domain-irrelevant knowledge. BayesPrompt primitively leverages known distributions to approximate the debiased factual distributions of target domains and further uniformly samples certain representative features from the approximated distributions to generate the ultimate prompts for PLMs. We provide theoretical insights with the connection to domain adaptation. Empirically, our method achieves state-of-the-art performance on benchmarks.",https://iclr.cc//virtual/2024/poster/19127,2024,ICLR,No,, Benchmarking and Improving Generator-Validator Consistency of Language Models,"As of September 2023, ChatGPT correctly answers “what is 7+8” with 15, but when asked “7+8=15, True or False” it responds with “False”. This inconsistency between generating and validating an answer is prevalent in language models (LMs) and erodes trust. In this paper, we propose a framework for measuring the consistency between generation and validation (which we call generator-validator consistency, or GV-consistency), finding that even GPT-4 (0613), a state-of-the-art LM, is GV-consistent only 76% of the time. To improve the consistency of LMs, we propose to finetune on the filtered generator and validator responses that are GV-consistent, and call this approach consistency fine-tuning. We find that this approach improves GV-consistency of Alpaca-30B from 60% to 93%, and the improvement extrapolates to unseen tasks and domains (e.g., GV-consistency for positive style transfers extrapolates to unseen styles like humor). In addition to improving consistency, consistency fine-tuning improves both generator quality and validator accuracy without using any labeled data. Evaluated across 6 tasks, including math questions, knowledge-intensive QA, and instruction following, our method improves generator quality by an average of 16% and validator accuracy by an average of 6.3% across all tasks.",https://iclr.cc//virtual/2024/poster/17770,2024,ICLR,No,, BEND: Benchmarking DNA Language Models on Biologically Meaningful Tasks,"The genome sequence contains the blueprint for governing cellular processes. While the availability of genomes has vastly increased over the last decades, experimental annotation of the various functional, non-coding and regulatory elements encoded in the DNA sequence remains both expensive and challenging. This has sparked interest in unsupervised language modeling of genomic DNA, a paradigm that has seen great success for protein sequence data. Although various DNA language models have been proposed, evaluation tasks often differ between individual works, and might not fully recapitulate the fundamental challenges of genome annotation, including the length, scale and sparsity of the data. In this study, we introduce **BEND**, a **BEN**chmark for **D**NA language models, featuring a collection of realistic and biologically meaningful downstream tasks defined on the human genome. We find that embeddings from current DNA LMs can approach performance of expert methods on some tasks, but only capture limited information about long-range features. BEND is available at https://github.com/frederikkemarin/BEND.",https://iclr.cc//virtual/2024/poster/17578,2024,ICLR,Yes,Language,Benchmark Beyond task performance: evaluating and reducing the flaws of large multimodal models with in-context-learning,"Following the success of Large Language Models (LLMs), Large Multimodal Models (LMMs), such as the Flamingo model and its subsequent competitors, have started to emerge as natural steps towards generalist agents. However, interacting with recent LMMs reveals major limitations that are hardly captured by the current evaluation benchmarks. Indeed, task performances (e.g., VQA accuracy) alone do not provide enough clues to understand their real capabilities, limitations, and to which extent such models are aligned to human expectations. To refine our understanding of those flaws, we deviate from the current evaluation paradigm, and (1) evaluate 10 recent open-source LMMs from 3B up to 80B parameter scale, on 5 different axes; hallucinations, abstention, compositionality, explainability and instruction following. Our evaluation on these axes reveals major flaws in LMMs. While the current go-to solution to align these models is based on training, such as instruction tuning or RLHF, we rather (2) explore the training-free in-context learning (ICL) as a solution, and study how it affects these limitations. Based on our ICL study, (3) we push ICL further and propose new multimodal ICL variants such as; Multitask-ICL, Chain-of-Hindsight-ICL, and Self-Correcting-ICL. Our findings are as follows; (1) Despite their success, LMMs have flaws that remain unsolved with scaling alone. (2) The effect of ICL on LMMs flaws is nuanced; despite its effectiveness for improved explainability, answer abstention, ICL only slightly improves instruction following, does not improve compositional abilities, and actually even amplifies hallucinations. (3) The proposed ICL variants are promising as post-hoc approaches to efficiently tackle some of those flaws. The code is available here: https://github.com/mshukor/EvALign-ICL.",https://iclr.cc//virtual/2024/poster/17896,2024,ICLR,No,, Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World,"We introduce Bongard-OpenWorld, a new benchmark for evaluating real-world few-shot reasoning for machine vision. It originates from the classical Bongard Problems (BPs): Given two sets of images (positive and negative), the model needs to identify the set that query images belong to by inducing the visual concepts, which is exclusively depicted by images from the positive set. Our benchmark inherits the few-shot concept induction of the original BPs while adding the two novel layers of challenge: 1) open-world free-form concepts, as the visual concepts in Bongard-OpenWorld are unique compositions of terms from an open vocabulary, ranging from object categories to abstract visual attributes and commonsense factual knowledge; 2) real-world images, as opposed to the synthetic diagrams used by many counterparts. In our exploration, Bongard-OpenWorld already imposes a significant challenge to current few-shot reasoning algorithms. We further investigate to which extent the recently introduced Large Language Models (LLMs) and Vision-Language Models (VLMs) can solve our task, by directly probing VLMs, and combining VLMs and LLMs in an interactive reasoning scheme. We even conceived a neuro-symbolic reasoning approach that reconciles LLMs & VLMs with logical reasoning to emulate the human problem-solving process for Bongard Problems. However, none of these approaches manage to close the human-machine gap, as the best learner achieves 64% accuracy while human participants easily reach 91%. We hope Bongard-OpenWorld can help us better understand the limitations of current visual intelligence and facilitate future research on visual agents with stronger few-shot visual reasoning capabilities.",https://iclr.cc//virtual/2024/poster/18093,2024,ICLR,Yes,Image, Can Large Language Models Infer Causation from Correlation?,"Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 200K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize – they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and can be helpful in guiding future research on improving LLMs’ pure reasoning skills and generalizability. Our data is at https://huggingface.co/datasets/causalnlp/corr2cause. Our code is at https://github.com/causalNLP/corr2cause.",https://iclr.cc//virtual/2024/poster/17518,2024,ICLR,Yes,Language,Benchmark Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs,"Empowering large language models (LLMs) to accurately express confidence in their answers is essential for reliable and trustworthy decision-making. Previous confidence elicitation methods, which primarily rely on *white-box access* to internal model information or model fine-tuning, have become less suitable for LLMs, especially closed-source commercial APIs. This leads to a growing need to explore the untapped area of *black-box* approaches for LLM uncertainty estimation. To better break down the problem, we define a systematic framework with three components: *prompting* strategies for eliciting verbalized confidence, *sampling* methods for generating multiple responses, and *aggregation* techniques for computing consistency. We then benchmark these methods on two key tasks—confidence calibration and failure prediction—across five types of datasets (e.g., commonsense and arithmetic reasoning) and five widely-used LLMs including GPT-4 and LLaMA 2 Chat. Our analysis uncovers several key insights: 1) LLMs, when verbalizing their confidence, tend to be *overconfident*, potentially imitating human patterns of expressing confidence. 2) As model capability scales up, both calibration and failure prediction performance improve, yet still far from ideal performance. 3) Employing our proposed strategies, such as human-inspired prompts, consistency among multiple responses, and better aggregation strategies can help mitigate this overconfidence from various perspectives. 4) Comparisons with white-box methods indicate that while white-box methods perform better, the gap is narrow, e.g., 0.522 to 0.605 in AUROC. Despite these advancements, none of these techniques consistently outperform others, and all investigated methods struggle in challenging tasks, such as those requiring professional knowledge, indicating significant scope for improvement. We believe this study can serve as a strong baseline and provide insights for eliciting confidence in black-box LLMs. The code is publicly available at https://github.com/MiaoXiong2320/llm-uncertainty.",https://iclr.cc//virtual/2024/poster/18135,2024,ICLR,Yes,Language,Methodological Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory,"Existing efforts on quantifying privacy implications for large language models (LLMs) solely focus on measuring leakage of training data. In this work, we shed light on the often-overlooked interactive settings where an LLM receives information from multiple sources and generates an output to be shared with other entities, creating the potential of exposing sensitive input data in inappropriate contexts. In these scenarios, humans nat- urally uphold privacy by choosing whether or not to disclose information depending on the context. We ask the question “Can LLMs demonstrate an equivalent discernment and reasoning capability when considering privacy in context?” We propose CONFAIDE, a benchmark grounded in the theory of contextual integrity and designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. CONFAIDE consists of four tiers, gradually increasing in complexity, with the final tier evaluating contextual privacy reasoning and theory of mind capabilities. Our experiments show that even commercial models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively, highlighting the urgent need for a new direction of privacy-preserving approaches as we demonstrate a larger underlying problem stemmed in the models’ lack of reasoning capabilities.",https://iclr.cc//virtual/2024/poster/18131,2024,ICLR,Yes,Language,Benchmark Causal Modelling Agents: Causal Graph Discovery through Synergising Metadata- and Data-driven Reasoning,"Scientific discovery hinges on the effective integration of metadata, which refers to a set of 'cognitive' operations such as determining what information is relevant for inquiry, and data, which encompasses physical operations such as observation and experimentation. This paper introduces the Causal Modelling Agent (CMA), a novel framework that synergizes the metadata-based reasoning capabilities of Large Language Models (LLMs) with the data-driven modelling of Deep Structural Causal Models (DSCMs) for the task of causal discovery. We evaluate the CMA's performance on a number of benchmarks, as well as on the real-world task of modelling the clinical and radiological phenotype of Alzheimer's Disease (AD). Our experimental results indicate that the CMA can outperform previous data-driven or metadata-driven approaches to causal discovery. In our real-world application, we use the CMA to derive new insights into the causal relationships among biomarkers of AD.",https://iclr.cc//virtual/2024/poster/17791,2024,ICLR,No,, Chain-of-Experts: When LLMs Meet Complex Operations Research Problems,"Large language models (LLMs) have emerged as powerful techniques for various NLP tasks, such as mathematical reasoning and plan generation. In this paper, we study automatic modeling and programming for complex operation research (OR) problems, so as to alleviate the heavy dependence on domain experts and benefit a spectrum of industry sectors. We present the first LLM-based solution, namely Chain-of-Experts (CoE), a novel multi-agent cooperative framework to enhance reasoning capabilities. Specifically, each agent is assigned a specific role and endowed with domain knowledge related to OR. We also introduce a conductor to orchestrate these agents via forward thought construction and backward reflection mechanism. Furthermore, we release a benchmark dataset (ComplexOR) of complex OR problems to facilitate OR research and community development. Experimental results show that CoE significantly outperforms the state-of-the-art LLM-based approaches both on LPWP and ComplexOR.",https://iclr.cc//virtual/2024/poster/18977,2024,ICLR,Yes,Language,Methodological Chain of Hindsight aligns Language Models with Feedback,"Learning from human preferences is important for language models to match human needs and to align with human and social values. Prior works have achieved remarkable successes by learning from human feedback to understand and follow instructions. Nonetheless, these methods are either founded on hand-picked model generations that are favored by human annotators, rendering them inefficient in terms of data utilization and challenging to apply in general, or they depend on reinforcement learning, which often suffers from imperfect reward functions and relies on extremely challenging optimizations. In this work, we propose a novel technique, Chain of Hindsight, that is easy to optimize and can learn from any form of feedback, regardless of its polarity. Our idea is inspired by how humans learn from extensive feedback presented in the form of languages. We convert all types of feedback into sequences of sentences, which are then used to fine-tune the model, allowing us to take advantage of the language comprehension capabilities of language models.We condition the model on a sequence of model generations paired with feedback. By doing so, the model is trained to generate outputs based on feedback, while learning to identify and correct negative attributes or errors. Applying our method to large language models, we observed that Chain of Hindsight significantly surpasses previous methods in aligning language models with human preferences. We report significant improvements on summarization and dialogue benchmarks, with our approach markedly preferred in human evaluations.",https://iclr.cc//virtual/2024/poster/19378,2024,ICLR,No,, Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding,"Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices.",https://iclr.cc//virtual/2024/poster/19470,2024,ICLR,No,, ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate,"Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality.Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies.In this paper, we construct a multi-agent referee team called $\textbf{ChatEval}$ to autonomously discuss and evaluate the quality of different texts. Our experiments on two benchmarks illustrate that ChatEval delivers superior accuracy and correlation in alignment with human assessment. Furthermore, we find that the diverse role prompts (different personas) are essential in the multi-agent debate process; that is, utilizing the same role description in the prompts can lead to a degradation in performance. Our qualitative analysis also shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.",https://iclr.cc//virtual/2024/poster/19065,2024,ICLR,No,, CLEX: Continuous Length Extrapolation for Large Language Models,"Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4× or almost 8× training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k. Our code is available at https://github.com/DAMO-NLP-SG/CLEX.",https://iclr.cc//virtual/2024/poster/17492,2024,ICLR,No,, CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules,"Large Language Models (LLMs) have already become quite proficient at solving simpler programming tasks like those in HumanEval or MBPP benchmarks. However, solving more complex and competitive programming tasks is still quite challenging for these models - possibly due to their tendency to generate solutions as monolithic code blocks instead of decomposing them into logical sub-tasks and sub-modules. On the other hand, experienced programmers instinctively write modularized code with abstraction for solving complex tasks, often reusing previously developed modules. To address this gap, we propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions, each being guided by some representative sub-modules generated in previous iterations. Concretely, CodeChain first instructs the LLM to generate modularized codes through chain-of-thought prompting. Then it applies a chain of self-revisions by iterating the two steps: 1) extracting and clustering the generated sub-modules and selecting the cluster representatives as the more generic and re-usable implementations, and 2) augmenting the original chain-of-thought prompt with these selected module-implementations and instructing the LLM to re-generate new modularized solutions. We find that by naturally encouraging the LLM to reuse the previously developed and verified sub-modules, CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35\% on APPS and 76\% on CodeContests. It is shown to be effective on both OpenAI LLMs as well as open-sourced LLMs like WizardCoder. We also conduct comprehensive ablation studies with different methods of prompting, number of clusters, model sizes, program qualities, etc., to provide useful insights that underpin CodeChain's success.",https://iclr.cc//virtual/2024/poster/17529,2024,ICLR,No,, COLLIE: Systematic Construction of Constrained Text Generation Tasks,"Text generation under constraints have seen increasing interests in natural language processing, especially with the rapidly improving capabilities of large language models. However, existing benchmarks for constrained generation usually focus on fixed constraint types (e.g. generate a sentence containing certain words) that have proved to be easy for state-of-the-art models like GPT-4. We present COLLIE, a grammar-based framework that allows the specification of rich, compositional constraints with diverse generation levels (word, sentence, paragraph, passage) and modeling challenges (e.g. language understanding, logical reasoning, counting, semantic planning). We also develop tools for automatic extraction of task instances given a constraint structure and a raw text corpus. Using COLLIE, we compile the COLLIE-v1 dataset with 1,132 instances comprising 13 constraint structures. We perform systematic experiments across five state-of-the-art instruction-tuned language models and analyze their performances to reveal shortcomings. COLLIE is designed to be extensible and lightweight, and we hope the community finds it useful to develop more complex constraints and evaluations in the future.",https://iclr.cc//virtual/2024/poster/17952,2024,ICLR,Yes,Language,Methodological CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models,"A fundamental characteristic of audio is its compositional nature. Audio-language models (ALMs) trained using a contrastive approach (e.g., CLAP) that learns a shared representation between audio and language modalities have improved performance in many downstream applications, including zero-shot audio classification, audio retrieval, etc. However, the ability of these models to effectively perform compositional reasoning remains largely unexplored and necessitates additional research. In this paper, we propose CompA, a collection of two expert-annotated benchmarks with a majority of real-world audio samples, to evaluate compositional reasoning in ALMs. Our proposed CompA-order evaluates how well an ALM understands the order or occurrence of acoustic events in audio, and CompA-attribute evaluates attribute-binding of acoustic events. An instance from either benchmark consists of two audio-caption pairs, where both audios have the same acoustic events but with different compositions. An ALM is evaluated on how well it matches the right audio to the right caption. Using this benchmark, we first show that current ALMs perform only marginally better than random chance, thereby struggling with compositional reasoning. Next, we propose CompA-CLAP, where we fine-tune CLAP using a novel learning method to improve its compositional reasoning abilities. To train CompA-CLAP, we first propose improvements to contrastive training with composition-aware hard negatives, allowing for more focused training. Next, we propose a novel modular contrastive loss that helps the model learn fine-grained compositional understanding and overcomes the acute scarcity of openly available compositional audios. CompA-CLAP significantly improves over all our baseline models on the CompA benchmark, indicating its superior compositional reasoning capabilities.",https://iclr.cc//virtual/2024/poster/19339,2024,ICLR,Yes,Audio, Context-Aware Meta-Learning,"Large Language Models like ChatGPT demonstrate a remarkable capacity to learn new concepts during inference without any fine-tuning. However, visual models trained to detect new objects during inference have been unable to replicate this ability, and instead either perform poorly or require meta-training and/or fine-tuning on similar objects. In this work, we propose a meta-learning algorithm that emulates Large Language Models by learning new visual concepts during inference without fine-tuning. Our approach leverages a frozen pre-trained feature extractor, and analogous to in-context learning, recasts meta-learning as sequence modeling over datapoints with known labels and a test datapoint with an unknown label. On 8 out of 11 meta-learning benchmarks, our approach---without meta-training or fine-tuning---exceeds or matches the state-of-the-art algorithm, P>M>F, which is meta-trained on these benchmarks.",https://iclr.cc//virtual/2024/poster/17939,2024,ICLR,No,, ContextRef: Evaluating Referenceless Metrics for Image Description Generation,"Referenceless metrics (e.g., CLIPScore) use pretrained vision--language models to assess image descriptions directly without costly ground-truth reference texts. Such methods can facilitate rapid progress, but only if they truly align with human preference judgments. In this paper, we introduce ContextRef, a benchmark for assessing referenceless metrics for such alignment. ContextRef has two components: human ratings along a variety of established quality dimensions, and ten diverse robustness checks designed to uncover fundamental weaknesses. A crucial aspect of ContextRef is that images and descriptions are presented in context, reflecting prior work showing that context is important for description quality. Using ContextRef, we assess a variety of pretrained models, scoring functions, and techniques for incorporating context. None of the methods is successful with ContextRef, but we show that careful fine-tuning yields substantial improvements. ContextRef remains a challenging benchmark though, in large part due to the challenge of context dependence.",https://iclr.cc//virtual/2024/poster/18041,2024,ICLR,Yes,Image, CoVLM: Composing Visual Entities and Relationships in Large Language Models Via Communicative Decoding,"A remarkable ability of human beings resides in compositional reasoning, i.e., the capacity to make ""infinite use of finite means"". However, current large vision-language foundation models (VLMs) fall short of such compositional abilities due to their ``bag-of-words"" behaviors and inability to construct words that correctly represent visual entities and the relations among the entities. To this end, we propose CoVLM, which can guide the LLM to explicitly compose visual entities and relationships among the text and dynamically communicate with the vision encoder and detection network to achieve vision-language communicative decoding. Specifically, we first devise a set of novel communication tokens for the LLM, for dynamic communication between the visual detection system and the language system. A communication token is generated by the LLM following a visual entity or a relation, to inform the detection network to propose regions that are relevant to the sentence generated so far. The proposed regions-of-interests (ROIs) are then fed back into the LLM for better language generation contingent on the relevant regions. The LLM is thus able to compose the visual entities and relationships through the communication tokens. The vision-to-language and language-to-vision communication are iteratively performed until the entire sentence is generated. Our framework seamlessly bridges the gap between visual perception and LLMs and outperforms previous VLMs by a large margin on compositional reasoning benchmarks (e.g., ~20% in HICO-DET mAP, ~14% in Cola top-1 accuracy, and ~3% on ARO top-1 accuracy). We also achieve state-of-the-art performances on traditional vision-language tasks such as referring expression comprehension and visual question answering.",https://iclr.cc//virtual/2024/poster/18715,2024,ICLR,No,, Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation,"Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and VQA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics, which is adaptable to any QG/A frameworks. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.",https://iclr.cc//virtual/2024/poster/18963,2024,ICLR,Yes,Multimodal, Demystifying Poisoning Backdoor Attacks from a Statistical Perspective,"Backdoor attacks pose a significant security risk to machine learning applications due to their stealthy nature and potentially serious consequences. Such attacks involve embedding triggers within a learning model with the intention of causing malicious behavior when an active trigger is present while maintaining regular functionality without it. This paper derives a fundamental understanding of backdoor attacks that applies to both discriminative and generative models, including diffusion models and large language models. We evaluate the effectiveness of any backdoor attack incorporating a constant trigger, by establishing tight lower and upper boundaries for the performance of the compromised model on both clean and backdoor test data. The developed theory answers a series of fundamental but previously underexplored problems, including (1) what are the determining factors for a backdoor attack's success, (2) what is the direction of the most effective backdoor attack, and (3) when will a human-imperceptible trigger succeed. We demonstrate the theory by conducting experiments using benchmark datasets and state-of-the-art backdoor attack scenarios. Our code is available \href{https://github.com/KeyWgh/DemystifyBackdoor}{here}.",https://iclr.cc//virtual/2024/poster/19218,2024,ICLR,No,, DENEVIL: TOWARDS DECIPHERING AND NAVIGATING THE ETHICAL VALUES OF LARGE LANGUAGE MODELS VIA INSTRUCTION LEARNING,"Large Language Models (LLMs) have made unprecedented breakthroughs, yet their increasing integration into everyday life might raise societal risks due to generated unethical content. Despite extensive study on specific issues like bias, the intrinsic values of LLMs remain largely unexplored from a moral philosophy perspective. This work delves into ethical values utilizing Moral Foundation Theory. Moving beyond conventional discriminative evaluations with poor reliability, we propose DeNEVIL, a novel prompt generation algorithm tailored to dynamically exploit LLMs’ value vulnerabilities and elicit the violation of ethics in a generative manner, revealing their underlying value inclinations. On such a basis, we construct MoralPrompt, a high-quality dataset comprising 2,397 prompts covering 500+ value principles, and then benchmark the intrinsic values across a spectrum of LLMs. We discovered that most models are essentially misaligned, necessitating further ethical value alignment. In response, we develop VILMO, an in-context alignment method that substantially enhances the value compliance of LLM outputs by learning to generate appropriate value instructions, outperforming existing competitors. Our methods are suitable for black-box and open-source models, offering a promising initial step in studying the ethical values of LLMs.",https://iclr.cc//virtual/2024/poster/17910,2024,ICLR,Yes,Language,Methodological Detecting Pretraining Data from Large Language Models,"Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method MIN-K PROB based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. MIN-K PROB can be applied without any knowledge about the pretrainig corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that MIN-K PROB achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply MIN-K PROB to two real-world scenarios, copyrighted book detection and contaminated downstream example detection, and find that it to be a consistently effective solution.",https://iclr.cc//virtual/2024/poster/17381,2024,ICLR,Yes,Language,Methodological DistillSpec: Improving Speculative Decoding via Knowledge Distillation,"Speculative decoding~(SD) accelerates large language model inference by employing a faster {\em draft} model for generating multiple tokens, which are then verified in parallel by the larger {\em target} model, resulting in the text generated according to the target model distribution. However, identifying a compact draft model that is well-aligned with the target model is challenging. To tackle this issue, we propose {\em DistillSpec} that uses knowledge distillation to better align the draft model with the target model, before applying SD. DistillSpec makes two key design choices, which we demonstrate via systematic study to be crucial to improve the draft and target alignment: utilizing \emph{on-policy} data generation from the draft model, and \emph{tailoring the divergence function} to the task and decoding strategy. Notably, DistillSpec yields impressive $10 - 45\%$ speedups over standard SD on a range of standard benchmarks, using both greedy and non-greedy sampling. Furthermore, we combine DistillSpec with lossy SD to achieve fine-grained control over the latency vs. task performance trade-off. Finally, in practical scenarios with models of varying sizes, first using distillation to boost the performance of the target model and then applying DistillSpec to train a well-aligned draft model can reduce decoding latency by $6 - 10\times$ with minimal performance drop, compared to standard decoding without distillation.",https://iclr.cc//virtual/2024/poster/17680,2024,ICLR,No,, Domain-Agnostic Molecular Generation with Chemical Feedback,"The generation of molecules with desired properties has become increasingly popular, revolutionizing the way scientists design molecular structures and providing valuable support for chemical and drug design. However, despite the potential of language models in molecule generation, they face challenges such as generating syntactically or chemically flawed molecules, having narrow domain focus, and struggling to create diverse and feasible molecules due to limited annotated data or external molecular databases.To tackle these challenges, we introduce MolGen, a pre-trained molecular language model tailored specifically for molecule generation. Through the reconstruction of over 100 million molecular SELFIES, MolGen internalizes structural and grammatical insights. This is further enhanced by domain-agnostic molecular prefix tuning, fostering robust knowledge transfer across diverse domains. Importantly, our chemical feedback paradigm steers the model away from ""molecular hallucinations"", ensuring alignment between the model's estimated probabilities and real-world chemical preferences. Extensive experiments on well-known benchmarks underscore MolGen's optimization capabilities in properties such as penalized logP, QED, and molecular docking. Additional analyses confirm its proficiency in accurately capturing molecule distributions, discerning intricate structural patterns, and efficiently exploring the chemical space (https://github.com/zjunlp/MolGen).",https://iclr.cc//virtual/2024/poster/19281,2024,ICLR,No,, Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs,"The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training ($\texttt{DSNT}$), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, $\texttt{DSNT}$ minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, $\texttt{DSNT}$ particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of $\texttt{DSNT}$ in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, $\texttt{DSNT}$ is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.",https://iclr.cc//virtual/2024/poster/19572,2024,ICLR,No,, DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks,"Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns are raised about potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a general and flexible protocol for dynamic evaluation of LLMs. Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4. Experiments show that LLMs perform worse in DyVal-generated evaluation samples with different complexities, highlighting the significance of dynamic evaluation.We also analyze the failure cases and results of different prompting methods.Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks.We hope that DyVal can shed light on future evaluation research of LLMs. Code is available at: https://github.com/microsoft/promptbench.",https://iclr.cc//virtual/2024/poster/18134,2024,ICLR,Yes,Language,Methodological Escape Sky-high Cost: Early-stopping Self-Consistency for Multi-step Reasoning,"Self-consistency (SC) has been a widely used decoding strategy for chain-of-thought reasoning. Despite bringing significant performance improvements across a variety of multi-step reasoning tasks, it is a high-cost method that requires multiple sampling with the preset size. In this paper, we propose a simple and scalable sampling process, Early-Stopping Self-Consistency (ESC), to greatly reduce the cost of SC without sacrificing performance. On this basis, one control scheme for ESC is further derivated to dynamically choose the performance-cost balance for different tasks and models. To demonstrate ESC's effectiveness, we conducted extensive experiments on three popular categories of reasoning tasks: arithmetic, commonsense and symbolic reasoning over language models with varying scales. The empirical results show that ESC reduces the average number of sampling of chain-of-thought reasoning by a significant margin on six benchmarks, including MATH (-33.8%), GSM8K (-80.1%), StrategyQA (-76.8%), CommonsenseQA (-78.5%), Coin Flip (-84.2%) and Last Letters (-67.4%), while attaining comparable performances.",https://iclr.cc//virtual/2024/poster/17848,2024,ICLR,No,, Evaluating Language Model Agency Through Negotiations,"We introduce an approach to evaluate language model (LM) agency using negotiation games. This approach better reflects real-world use cases and addresses some of the shortcomings of alternative LM benchmarks. Negotiation games enable us to study multi-turn, and cross-model interactions, modulate complexity, and side-step accidental evaluation data leakage. We use our approach to test six widely used and publicly accessible LMs, evaluating performance and alignment in both self-play and cross-play settings. Noteworthy findings include: (i) only closed-source models tested here were able to complete these tasks; (ii) cooperative bargaining games proved to be most challenging to the models; and (iii) even the most powerful models sometimes ""lose"" to weaker opponents.",https://iclr.cc//virtual/2024/poster/19505,2024,ICLR,Yes,Language,Benchmark Evaluating Large Language Models at Evaluating Instruction Following,"As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these “LLM evaluators”, particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.",https://iclr.cc//virtual/2024/poster/17598,2024,ICLR,Yes,Language,Benchmark Evaluating the Zero-shot Robustness of Instruction-tuned Language Models,"Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper, we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing ``soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.",https://iclr.cc//virtual/2024/poster/18154,2024,ICLR,No,, ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis,"When writing programs, people have the ability to tackle a new complex task by decomposing it into smaller and more familiar subtasks. While it is difficult to measure whether neural program synthesis methods have similar capabilities, we can measure whether they compositionally generalize, that is, whether a model that has been trained on the simpler subtasks is subsequently able to solve more complex tasks. In this paper, we characterize several different forms of compositional generalization that are desirable in program synthesis, forming a meta-benchmark which we use to create generalization tasks for two popular datasets, RobustFill and DeepCoder. We then propose ExeDec, a novel decomposition-based synthesis strategy that predicts execution subgoals to solve problems step-by-step informed by program execution at each step. When used with Transformer models trained from scratch, ExeDec has better synthesis performance and greatly improved compositional generalization ability compared to baselines. Finally, we use our benchmarks to demonstrate that LLMs struggle to compositionally generalize when asked to do programming-by-example in a few-shot setting, but an ExeDec-style prompting approach can improve the generalization ability and overall performance.",https://iclr.cc//virtual/2024/poster/17817,2024,ICLR,Yes,Language,Methodological FairerCLIP: Debiasing CLIP's Zero-Shot Predictions using Functions in RKHSs,"Large pre-trained vision-language models such as CLIP provide compact and general-purpose representations of text and images that are demonstrably effective across multiple downstream zero-shot prediction tasks. However, owing to the nature of their training process, these models have the potential to 1) propagate or amplify societal biases in the training data and 2) learn to rely on spurious features. This paper proposes FairerCLIP, a general approach for making zero-shot predictions of CLIP more fair and robust to spurious correlations. We formulate the problem of jointly debiasing CLIP’s image and text representations in reproducing kernel Hilbert spaces (RKHSs), which affords multiple benefits: 1) Flexibility: Unlike existing approaches, which are specialized to either learn with or without ground-truth labels, FairerCLIP is adaptable to learning in both scenarios. 2) Ease of Optimization: FairerCLIP lends itself to an iterative optimization involving closed-form solvers, which leads to 4×-10× faster training than the existing methods. 3) Sample Efficiency: Under sample-limited conditions, FairerCLIP significantly outperforms baselines when they fail entirely. And, 4) Performance: Empirically, FairerCLIP achieves appreciable accuracy gains on benchmark fairness and spurious correlation datasets over their respective baselines.",https://iclr.cc//virtual/2024/poster/18989,2024,ICLR,No,, Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals,"Causal explanations of the predictions of NLP systems are essential to ensure safety and establish trust. Yet, existing methods often fall short of explaining model predictions effectively or efficiently and are often model-specific. In this paper, we address model-agnostic explanations, proposing two approaches for counterfactual (CF) approximation. The first approach is CF generation, where a large language model (LLM) is prompted to change a specific text concept while keeping confounding concepts unchanged. While this approach is demonstrated to be very effective, applying LLM at inference-time is costly. We hence present a second approach based on matching, and propose a method that is guided by an LLM at training-time and learns a dedicated embedding space. This space is faithful to a given causal graph and effectively serves to identify matches that approximate CFs. After showing theoretically that approximating CFs is required in order to construct faithful explanations, we benchmark our approaches and explain several models, including LLMs with billions of parameters. Our empirical results demonstrate the excellent performance of CF generation models as model-agnostic explainers. Moreover, our matching approach, which requires far less test-time resources, also provides effective explanations, surpassing many baselines. We also find that Top-K techniques universally improve every tested method. Finally, we showcase the potential of LLMs in constructing new benchmarks for model explanation and subsequently validate our conclusions. Our work illuminates new pathways for efficient and accurate approaches to interpreting NLP systems.",https://iclr.cc//virtual/2024/poster/18527,2024,ICLR,No,, Fine-tuning Multimodal LLMs to Follow Zero-shot Demonstrative Instructions,"Recent advancements in Multimodal Large Language Models (MLLMs) have been utilizing Visual Prompt Generators (VPGs) to convert visual features into tokens that LLMs can recognize. This is achieved by training the VPGs on millions of image-caption pairs, where the VPG-generated tokens of images are fed into a frozen LLM to generate the corresponding captions. However, this image-captioning based training objective inherently biases the VPG to concentrate solely on the primary visual contents sufficient for caption generation, often neglecting other visual details. This shortcoming results in MLLMs’ underperformance in comprehending demonstrative instructions consisting of multiple, interleaved, and multimodal instructions that demonstrate the required context to complete a task. To address this issue, we introduce a generic and lightweight Visual Prompt Generator Complete module (VPG-C), which can infer and complete the missing details essential for comprehending demonstrative instructions. Further, we propose a synthetic discriminative training strategy to fine-tune VPG-C, eliminating the need for supervised demonstrative instructions. As for evaluation, we build DEMON, a comprehensive benchmark for demonstrative instruction understanding. Synthetically trained with the proposed strategy, VPG-C achieves significantly stronger zero-shot performance across all tasks of DEMON. Further evaluation on the MME and OwlEval benchmarks also demonstrate the superiority of VPG-C. The code and models are available at https://github.com/DCDmllm/Cheetah.",https://iclr.cc//virtual/2024/poster/19212,2024,ICLR,Yes,Image, Functional Interpolation for Relative Positions improves Long Context Transformers,"Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.",https://iclr.cc//virtual/2024/poster/17693,2024,ICLR,No,, GAIA: a benchmark for General AI Assistants,"We introduce GAIA, a benchmark for General AI Assistants that, if solved, would represent a milestone in AI research. GAIA proposes real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency. GAIA questions are conceptually simple for humans yet challenging for most advanced AIs: we show that human respondents obtain 92% vs. 15% for GPT-4 equipped with plugins. This notable performance disparity contrasts with the recent trend of LLMs outperforming humans on tasks requiring professional skills in e.g. law or chemistry. GAIA’s philosophy departs from the current trend in AI benchmarks suggesting to target tasks that are ever more difficult for humans. We posit that the advent of Artificial General Intelligence (AGI) hinges on a system’s capability to exhibit similar robustness as the average human does on such questions. Using GAIA’s methodology, we devise 466 questions and their answer. We release our questions while retaining answers to 300 of them to power a leader-board accessible at https://huggingface.co/gaia-benchmark.",https://iclr.cc//virtual/2024/poster/18176,2024,ICLR,Yes,Language,Benchmark GenSim: Generating Robotic Simulation Tasks via Large Language Models,"Collecting large amounts of real-world interaction data to train general robotic policies is often prohibitively expensive, thus motivating the use of simulation data. However, existing methods for data generation have generally focused on scene-level diversity (e.g., object instances and poses) rather than task-level diversity, due to the human effort required to come up with and verify novel tasks. This has made it challenging for policies trained on simulation data to demonstrate significant task-level generalization. In this paper, we propose to automatically generate rich simulation environments and expert demonstrations by exploiting a large language models' (LLM) grounding and coding ability. Our approach, dubbed GenSim, has two modes: goal-directed generation, wherein a target task is given to the LLM and the LLM proposes a task curriculum to solve the target task, and exploratory generation, wherein the LLM bootstraps from previous tasks and iteratively proposes novel tasks that would be helpful in solving more complex tasks. We use GPT4 to expand the existing benchmark by ten times to over 100 tasks, on which we conduct supervised finetuning and evaluate several LLMs including finetuned GPTs and Code Llama on code generation for robotic simulation tasks. Furthermore, we observe that LLMs-generated simulation programs can enhance task-level generalization significantly when used for multitask policy training. We further find that with minimal sim-to-real adaptation, the multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world and outperform baselines by 25%. See our project website (https://gen-sim.github.io) and demo (https://huggingface.co/spaces/Gen-Sim/Gen-Sim) for visualizations and open-source models and datasets.",https://iclr.cc//virtual/2024/poster/18747,2024,ICLR,No,, Gen-Z: Generative Zero-Shot Text Classification with Contextualized Label Descriptions,"Language model (LM) prompting—a popular paradigm for solving NLP tasks—has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z—a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions.",https://iclr.cc//virtual/2024/poster/17686,2024,ICLR,No,, GeoLLM: Extracting Geospatial Knowledge from Large Language Models,"The application of machine learning (ML) in a range of geospatial tasks is increasingly common but often relies on globally available covariates such as satellite imagery that can either be expensive or lack predictive power.Here we explore the question of whether the vast amounts of knowledge found in Internet language corpora, now compressed within large language models (LLMs), can be leveraged for geospatial prediction tasks. We first demonstrate that LLMs embed remarkable spatial information about locations, but naively querying LLMs using geographic coordinates alone is ineffective in predicting key indicators like population density. We then present GeoLLM, a novel method that can effectively extract geospatial knowledge from LLMs with auxiliary map data from OpenStreetMap.We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.Across these tasks, our method demonstrates a 70\% improvement in performance (measured using Pearson's $r^2$) relative to baselines that use nearest neighbors or use information directly from the prompt, and performance equal to or exceeding satellite-based benchmarks in the literature.With GeoLLM, we observe that GPT-3.5 outperforms Llama 2 and RoBERTa by 19\% and 51\% respectively, suggesting that the performance of our method scales well with the size of the model and its pretraining dataset.Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.Crucially, GeoLLM shows promise in mitigating the limitations of existing geospatial covariates and complementing them well.Code is available on the project website: https://rohinmanvi.github.io/GeoLLM",https://iclr.cc//virtual/2024/poster/18551,2024,ICLR,No,, HAZARD Challenge: Embodied Decision Making in Dynamically Changing Environments,"Recent advances in high-fidelity virtual environments serve as one of the major driving forces for building intelligent embodied agents to perceive, reason and interact with the physical world. Typically, these environments remain unchanged unless agents interact with them. However, in real-world scenarios, agents might also face dynamically changing environments characterized by unexpected events and need to rapidly take action accordingly. To remedy this gap, we propose a new simulated embodied benchmark, called HAZARD, specifically designed to assess the decision-making abilities of embodied agents in dynamic situations. HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind, and specifically supports the utilization of large language models (LLMs) to assist common sense reasoning and decision-making. This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines, including reinforcement learning (RL), rule-based, and search-based methods in dynamically changing environments. As a first step toward addressing this challenge using large language models, we further develop an LLM-based agent and perform an in-depth analysis of its promise and challenge of solving these challenging tasks. HAZARD is available at https://vis-www.cs.umass.edu/hazard/.",https://iclr.cc//virtual/2024/poster/17872,2024,ICLR,Yes,Language,Benchmark Hypothesis Search: Inductive Reasoning with Language Models,"Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which can then be robustly generalized to novel scenarios. Recent work has evaluated large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding ""in context learning."" This can work well for straightforward inductive tasks, but performs very poorly on more complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be directly verified by running on the observed examples and generalized to novel inputs. To reduce the hypothesis search space, we explore steps to filter the set of hypotheses to be implemented as programs: we either ask the LLM to summarize them into a smaller set of hypotheses, or ask human annotators to select a subset. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, and string transformation dataset SyGuS. On a random 40-problem subset of ARC, our automated pipeline using LLM summaries achieves 27.5% accuracy, significantly outperforming the direct prompting baseline (accuracy of 12.5%). With the minimal human input of selecting from LLM-generated candidates, the performance is boosted to 37.5%. Our ablation studies show that abstract hypothesis generation and concrete program representations are both beneficial for LLMs to perform inductive reasoning tasks.",https://iclr.cc//virtual/2024/poster/19039,2024,ICLR,No,, IceFormer: Accelerated Inference with Long-Sequence Transformers on CPUs,"One limitation of existing Transformer-based models is that they cannot handle very long sequences as input since their self-attention operations exhibit quadratic time and space complexity. This problem becomes especially acute when Transformers are deployed on hardware platforms equipped only with CPUs. To address this issue, we propose a novel method for accelerating self-attention at inference time that works with pretrained Transformer models out-of-the-box without requiring retraining. We experiment using our method to accelerate various long-sequence Transformers, including a leading LLaMA 2-based LLM, on various benchmarks and demonstrate a greater speedup of $2.73\times$ - $7.63\times$ while retaining $98.6$% - $99.6$% of the accuracy of the original pretrained models. The code is available on our project website at https://yuzhenmao.github.io/IceFormer/.",https://iclr.cc//virtual/2024/poster/19389,2024,ICLR,No,, IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models,"In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influence-driven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection.",https://iclr.cc//virtual/2024/poster/18589,2024,ICLR,No,, Identifying the Risks of LM Agents with an LM-Emulated Sandbox,"Recent advances in Language Model (LM) agents and tool use, exemplified by applications like ChatGPT Plugins, enable a rich set of capabilities but also amplify potential risks—such as leaking private data or causing financial losses. Identifying these risks is labor-intensive, necessitating implementing the tools, setting up the environment for each test scenario manually, and finding risky cases. As tools and agents become more complex, the high cost of testing these agents will make it increasingly difficult to find high-stakes, long-tail risks. To address these challenges, we introduce ToolEmu: a framework that uses an LM to emulate tool execution and enables scalable testing of LM agents against a diverse range of tools and scenarios. Alongside the emulator, we develop an LM-based automatic safety evaluator that examines agent failures and quantifies associated risks. We test both the tool emulator and evaluator through human evaluation and find that 68.8% of failures identified with ToolEmu would be valid real-world agent failures. Using our curated initial benchmark consisting of 36 high-stakes toolkits and 144 test cases, we provide a quantitative risk analysis of current LM agents and identify numerous failures with potentially severe outcomes. Notably, even the safest LM agent exhibits such failures 23.9% of the time according to our evaluator, underscoring the need to develop safer LM agents for real-world deployment.",https://iclr.cc//virtual/2024/poster/19037,2024,ICLR,Yes,Language,Methodological In-Context Learning Dynamics with Random Binary Sequences,"Large language models (LLMs) trained on huge text datasets demonstrate intriguing capabilities, achieving state-of-the-art performance on tasks they were not explicitly trained for. The precise nature of LLM capabilities is often mysterious, and different prompts can elicit different capabilities through in-context learning. We propose a framework that enables us to analyze in-context learning dynamics to understand latent concepts underlying LLMs’ behavioral patterns. This provides a more nuanced understanding than success-or-failure evaluation benchmarks, but does not require observing internal activations as a mechanistic interpretation of circuits would. Inspired by the cognitive science of human randomness perception, we use random binary sequences as context and study dynamics of in-context learning by manipulating properties of context data, such as sequence length. In the latest GPT-3.5+ models, we find emergent abilities to generate seemingly random numbers and learn basic formal languages, with striking in-context learning dynamics where model outputs transition sharply from seemingly random behaviors to deterministic repetition.",https://iclr.cc//virtual/2024/poster/19405,2024,ICLR,No,, INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection,"Knowledge hallucination have raised widespread concerns for the security and reliability of deployed LLMs. Previous efforts in detecting hallucinations have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, where the semantic information is inevitably lost during the token-decoding procedure. Thus, we propose to explore the dense semantic information retained within LLMs' \textbf{IN}ternal \textbf{S}tates for halluc\textbf{I}nation \textbf{DE}tection (\textbf{INSIDE}). In particular, a simple yet effective \textbf{EigenScore} metric is proposed to better evaluate responses' self-consistency, which exploits the eigenvalues of responses' covariance matrix to measure the semantic consistency/diversity in the dense embedding space. Furthermore, from the perspective of self-consistent hallucination detection, a test time feature clipping approach is explored to truncate extreme activations in the internal states, which reduces overconfident generations and potentially benefits the detection of overconfident hallucinations. Extensive experiments and ablation studies are performed on several popular LLMs and question-answering (QA) benchmarks, showing the effectiveness of our proposal.",https://iclr.cc//virtual/2024/poster/18385,2024,ICLR,No,, KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval,"We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., “a list of ice cream shops in San Diego”). In the past, such queries were considered as tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.",https://iclr.cc//virtual/2024/poster/18346,2024,ICLR,Yes,Language,Benchmark Knowledge Card: Filling LLMs' Knowledge Gaps with Plug-in Specialized Language Models,"By design, large language models (LLMs) are static general-purpose models, expensive to retrain or update frequently. As they are increasingly adopted for knowledge-intensive tasks, it becomes evident that these design choices lead to failures to generate factual, relevant, and up-to-date knowledge. To this end, we propose Knowledge Card, a modular framework to plug in new factual and relevant knowledge into general-purpose LLMs. We first introduce knowledge cards---specialized language models trained on corpora from specific domains and sources. Knowledge cards serve as parametric repositories that are selected at inference time to generate background knowledge for the base LLM. We then propose three content selectors to dynamically select and retain information in documents generated by knowledge cards, specifically controlling for relevance, brevity, and factuality of outputs. Finally, we propose two complementary integration approaches to augment the base LLM with the (relevant, factual) knowledge curated from the specialized LMs. Through extensive experiments, we demonstrate that Knowledge Card achieves state-of-the-art performance on six benchmark datasets. Ultimately, Knowledge Card framework enables dynamic synthesis and updates of knowledge from diverse domains. Its modularity will ensure that relevant knowledge can be continuously updated through the collective efforts of the research community.",https://iclr.cc//virtual/2024/poster/18471,2024,ICLR,No,, Knowledge Fusion of Large Language Models,"While training large language models (LLMs) from scratch can generate models with distinct functionalities and strengths, it comes at significant costs and may result in redundant capabilities. Alternatively, a cost-effective and compelling approach is to merge existing pre-trained LLMs into a more potent model. However, due to the varying architectures of these LLMs, directly blending their weights is impractical. In this paper, we introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a single LLM. By leveraging the generative distributions of source LLMs, we externalize their collective knowledge and unique strengths, thereby potentially elevating the capabilities of the target model beyond those of any individual source LLM. We validate our approach using three popular LLMs with different architectures—Llama-2, MPT, and OpenLLaMA—across various benchmarks and tasks. Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation. Our code, model weights, and data are public at \url{https://github.com/fanqiwan/FuseLLM}.",https://iclr.cc//virtual/2024/poster/18013,2024,ICLR,No,, KoLA: Carefully Benchmarking World Knowledge of Large Language Models,"The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering 19 tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models, and a unique self-contrast metric for automatically evaluating knowledge-creating ability. We evaluate 21 open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset will be updated every three months to provide timely references for developing LLMs and knowledge-related systems.",https://iclr.cc//virtual/2024/poster/19238,2024,ICLR,Yes,Language,Benchmark Language Model Beats Diffusion - Tokenizer is key to visual generation,"While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce \modelname{}, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.",https://iclr.cc//virtual/2024/poster/18119,2024,ICLR,No,, Language Model Cascades: Token-Level Uncertainty And Beyond,"Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks, but at the expense of increased inference costs. A simple strategy to achieve more favorable cost-quality tradeoffs is cascading: here, a small model is invoked for most “easy” instances, while a few “hard” instances are deferred to the large model. While the principles underpinning effective cascading are well-studied for classification tasks — with deferral based on predicted class uncertainty favored theoretically and practically — a similar understanding is lacking for generative LM tasks. In this work, we initiate a systematic study of deferral rules for LM cascades. We begin by examining the natural extension of predicted class uncertainty to generative LM tasks, namely, the predicted sequence uncertainty. We show that this measure suffers from the length bias problem, either over- or under-emphasizing outputs based on their lengths. This is because LMs produce a sequence of uncertainty values, one for each output token; and moreover, the number of output tokens is variable across different examples. To mitigate the length bias, we propose to exploit the richer token-level uncertainty information implicit in generative LMs. We argue that naive predicted sequence uncertainty corresponds to a simple aggregation of these uncertainties. By contrast, we show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform such simple aggregation strategies, via experiments on a range of natural language benchmarks with FLAN-T5 models. We further show that incorporating embeddings from the smaller model and intermediate layers of the larger model can give an additional boost in the overall cost-quality tradeoff.",https://iclr.cc//virtual/2024/poster/18893,2024,ICLR,No,, Large Language Model Cascades with Mixture of Thought Representations for Cost-Efficient Reasoning,"Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services. In this paper, we are motivated to study building an LLM ""cascade"" to save the cost of using LLMs, particularly for performing (e.g., mathematical, causal) reasoning tasks. Our cascade pipeline follows the intuition that simpler questions can be addressed by a weaker but more affordable LLM, whereas only the most challenging questions necessitate the stronger and more expensive LLM. To realize this decision-making, we consider the ""answer consistency"" of the weaker LLM as a signal of the question difficulty and propose several methods for answering sampling and consistency checking, including one leveraging a mixture of two thought representations (i.e., Chain-of-Thought and Program-of-Thought). Through experiments on six reasoning benchmark datasets, with GPT-3.5-turbo and GPT-4 being the weaker and stronger LLMs, respectively, our cascade pipeline demonstrates comparable performance but reduces about 60% of the cost compared with fully using the stronger LLM.",https://iclr.cc//virtual/2024/poster/19383,2024,ICLR,No,, Large Language Models are Efficient Learners of Noise-Robust Speech Recognition,"Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with ""HyPoradise"" dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising.",https://iclr.cc//virtual/2024/poster/18285,2024,ICLR,Yes,Audio, Large Language Models Are Not Robust Multiple Choice Selectors,"Multiple choice questions (MCQs) serve as a common yet important task format in the evaluation of large language models (LLMs). This work shows that modern LLMs are vulnerable to option position changes in MCQs due to their inherent “selection bias”, namely, they prefer to select specific option IDs as answers (like “Option A”). Through extensive empirical analyses with 20 LLMs on three benchmarks, we pinpoint that this behavioral bias primarily stems from LLMs’ token bias, where the model a priori assigns more probabilistic mass to specific option ID tokens (e.g., A/B/C/D) when predicting answers from the option IDs. To mitigate selection bias, we propose a label-free, inference-time debiasing method, called PriDe, which separates the model’s prior bias for option IDs from the overall prediction distribution. PriDe first estimates the prior by permutating option contents on a small number of test samples, and then applies the estimated prior to debias the remaining samples. We demonstrate that it achieves interpretable and transferable debiasing with high computational efficiency. We hope this work can draw broader research attention to the bias and robustness of modern LLMs.",https://iclr.cc//virtual/2024/poster/17638,2024,ICLR,No,, Large Language Models as Automated Aligners for benchmarking Vision-Language Models,"With the advancements in Large Language Models (LLMs), Vision-Language Models (VLMs) have reached a new level of sophistication, showing notable competence in executing intricate cognition and reasoning tasks. However, existing evaluation benchmarks, primarily relying on rigid, hand-crafted datasets to measure task-specific performance, face significant limitations in assessing the alignment of these increasingly anthropomorphic models with human intelligence. In this work, we address the limitations via Auto-Bench, which delves into exploring LLMs as proficient aligners, measuring the alignment between VLMs and human intelligence and value through automatic data curation and assessment. Specifically, for data curation, Auto-Bench utilizes LLMs (e.g., GPT-4) to automatically generate a vast set of question-answer-reasoning triplets via prompting on visual symbolic representations (e.g., captions, object locations, instance relationships, and etc. The curated data closely matches human intent, owing to the extensive world knowledge embedded in LLMs. Through this pipeline, a total of 28.5K human-verified and 3,504K unfiltered question-answer-reasoning triplets have been curated, covering 4 primary abilities and 16 sub-abilities. We subsequently engage LLMs like GPT-3.5 to serve as judges, implementing the quantitative and qualitative automated assessments to facilitate a comprehensive evaluation of VLMs. Our validation results reveal that LLMs are proficient in both evaluation data curation and model assessment, achieving an average agreement rate of 85%. We envision Auto-Bench as a flexible, scalable, and comprehensive benchmark for evaluating the evolving sophisticated VLMs.",https://iclr.cc//virtual/2024/poster/17968,2024,ICLR,Yes,Language,Benchmark Large Language Models as Generalizable Policies for Embodied Tasks,"We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement.",https://iclr.cc//virtual/2024/poster/17588,2024,ICLR,Yes,Language,Methodological Large Language Models to Enhance Bayesian Optimization,"Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present \texttt{LLAMBO}, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively \emph{propose} and \emph{evaluate} promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that \texttt{LLAMBO} is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate \texttt{LLAMBO}'s efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.",https://iclr.cc//virtual/2024/poster/18743,2024,ICLR,No,, Learning Grounded Action Abstractions from Language,"Effective planning in the real world requires not only world knowledge, but the ability to leverage that knowledge to build the right representation of the task at hand. Decades of hierarchical planning techniques have used domain-specific temporal action abstractions to support efficient and accurate planning, almost always relying on human priors and domain knowledge to decompose hard tasks into smaller subproblems appropriate for a goal or set of goals. This paper describes Ada (Action Domain Acquisition), a framework for automatically constructing task-specific planning representations using task-general background knowledge from language models (LMs). Starting with a general-purpose hierarchical planner and a low-level goal-conditioned policy, Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks. On two language-guided interactive planning benchmarks (Mini Minecraft and ALFRED Household Tasks), Ada strongly outperforms other approaches that use LMs for sequential decision-making, offering more accurate plans and better generalization to complex tasks.",https://iclr.cc//virtual/2024/poster/17738,2024,ICLR,No,, Leftover Lunch: Advantage-based Offline Reinforcement Learning for Language Models,"Reinforcement Learning with Human Feedback (RLHF) is the most prominent method for Language Model (LM) alignment. However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions asrewards. Subsequently, by using LM’s value estimate, A-LoL only trains on positive advantage (leftover) data points, making it resilient to noise. Overall, A-LoL is an easy-to-implement, sample-efficient, and stable LM training recipe.We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than the baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data.",https://iclr.cc//virtual/2024/poster/18408,2024,ICLR,No,, Lemur: Harmonizing Natural Language and Code for Language Agents,"We introduce Lemur and Lemur-Chat, openly accessible language models optimizedfor both natural language and coding capabilities to serve as the backboneof versatile language agents. The evolution from language chat models tofunctional language agents demands that models not only master human interaction,reasoning, and planning but also ensure grounding in the relevant environments.This calls for a harmonious blend of language and coding capabilitiesin the models. Lemur and Lemur-Chat are proposed to address this necessity,demonstrating balanced proficiencies in both domains, unlike existingopen-source models that tend to specialize in either. Through meticulous pretrainingusing a code-intensive corpus and instruction fine-tuning on text and codedata, our models achieve state-of-the-art averaged performance across diversetext and coding benchmarks. Comprehensive experiments demonstrate Lemur’ssuperiority over existing open-source models and its proficiency across variousagent tasks involving human communication, tool usage, and interaction underfully- and partially- observable environments. The harmonization between naturaland programming languages enables Lemur-Chat to significantly narrow thegap with proprietary models on agent abilities, providing key insights into developingadvanced open-source agents adept at reasoning, planning, and operatingseamlessly across environments. Our model and code have been open-sourced athttps://github.com/OpenLemur/Lemur.",https://iclr.cc//virtual/2024/poster/18100,2024,ICLR,No,, Lemur: Integrating Large Language Models in Automated Program Verification,"The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that demands high-level abstract reasoning about program properties that is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of derivation rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure, which led to practical improvements on a set of synthetic and competition benchmarks.",https://iclr.cc//virtual/2024/poster/18684,2024,ICLR,No,, LILO: Learning Interpretable Libraries by Compressing and Documenting Code,"While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods—including the state-of-the-art library learning algorithm DreamCoder—LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.",https://iclr.cc//virtual/2024/poster/18550,2024,ICLR,No,, LitCab: Lightweight Language Model Calibration over Short- and Long-form Responses,"A model is considered well-calibrated when its probability estimate aligns with the actual likelihood of the output being correct. Calibrating language models (LMs) is crucial, as it plays a vital role in detecting and mitigating hallucinations of LMs as well as building more trustworthy models. However, standard calibration techniques may not be suited for LM calibration. For instance, post-processing methods such as temperature scaling do not reorder the candidate generations. On the other hand, training-based methods require fine-tuning the entire model, which is impractical for LMs of large scale. We present LitCab, a lightweight calibration mechanism consisting of a single linear layer that takes the input text representation and predicts a bias term, which is then added to the LM output logits. LitCab improves model calibration by only adding < 2% of the original model parameters. For evaluation, we construct CaT, a benchmark consisting of eight text generation tasks, covering responses ranging from short phrases to paragraphs. We test LitCab with Llama2-7B, where it improves calibration across all tasks, reducing the average ECE score by as large as 30%. We further conduct a comprehensive evaluation with multiple popular open-sourced LMs from GPT and LLaMA families, yielding the following key findings: (i) Larger models within the same family exhibit better calibration on tasks with short generation tasks, but not necessarily for longer ones. (ii) GPT-family models show superior calibration compared to LLaMA, Llama2, and Vicuna models, despite having much fewer parameters. (iii) Fine-tuning pretrained model (e.g., LLaMA) with samples of limited purpose (e.g., conversations) may lead to worse calibration, highlighting the importance of fine-tuning setups for calibrating LMs.",https://iclr.cc//virtual/2024/poster/18033,2024,ICLR,Yes,Language,Methodological LLaMA-Adapter: Efficient Fine-tuning of Large Language Models with Zero-initialized Attention,"With the rising tide of large language models (LLMs), there has been a growing interest in developing general-purpose instruction-following models, e.g., ChatGPT. To this end, we present LLaMA-Adapter, a lightweight adaption method for efficient instruction tuning of LLaMA. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning. Specifically, a zero-initialized attention mechanism is proposed. It adopts a learnable zero gating to adaptively inject the instructional cues into LLaMA within self-attention layers, contributing to a stable training process and superior final performance. In this way, LLaMA-Adapter can generate high-quality responses to diverse language instructions, comparable to Alpaca with fully fine-tuned 7B parameters. Besides language commands, by incorporating an image encoder, our approach can be simply extended to a multi-modal LLM for image-conditioned instruction following, which achieves superior multi-modal reasoning capacity on several popular benchmarks (MME, MMBench, LVLM-eHub). Furthermore, we also verify the proposed zero-initialized attention mechanism for fine-tuning other pre-trained models (ViT, RoBERTa, CLIP) on traditional vision and language tasks, demonstrating the effectiveness and generalizability of our approach. Code and models are released at https://github.com/OpenGVLab/LLaMA-Adapter.",https://iclr.cc//virtual/2024/poster/18277,2024,ICLR,No,, Llemma: An Open Language Model for Mathematics,"We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known openly released models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.",https://iclr.cc//virtual/2024/poster/19459,2024,ICLR,No,, LLM-Assisted Code Cleaning For Training Accurate Code Generators,"Natural language to code generation is an important application area of LLMs and has received wide attention from the community. The majority of relevant studies have exclusively concentrated on increasing the quantity and functional correctness of training sets while disregarding other stylistic elements of programs. More recently, data quality has garnered a lot of interest and multiple works have showcased its importance for improving performance. In this work, we investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system. We build a novel data-cleaning pipeline that uses these principles to transform existing programs by 1.) renaming variables, 2.) modularizing and decomposing complex code into smaller helper sub-functions, and 3.) inserting natural-language based planning annotations. We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B on our transformed programs improves the performance by up to \textbf{30\%} compared to fine-tuning on the original dataset. Additionally, we demonstrate improved performance from using a smaller amount of higher-quality data, finding that a model fine-tuned on the entire original dataset is outperformed by a model trained on one-eighth of our cleaned dataset. Even in comparison to closed-source models, our models outperform the much larger AlphaCode models.",https://iclr.cc//virtual/2024/poster/17888,2024,ICLR,No,, LLMs Meet VLMs: Boost Open Vocabulary Object Detection with Fine-grained Descriptors,"Inspired by the outstanding zero-shot capability of vision language models (VLMs) in image classification tasks, open-vocabulary object detection has attracted increasing interest by distilling the broad VLM knowledge into detector training. However, most existing open-vocabulary detectors learn by aligning region embeddings with categorical labels (e.g., bicycle) only, disregarding the capability of VLMs on aligning visual embeddings with fine-grained text descriptions of object parts (e.g., pedals and bells). This paper presents DVDet, a Descriptor-Enhanced Open Vocabulary Detector that introduces conditional context prompts and hierarchical textual descriptors that enable precise region-text alignment as well as open-vocabulary detection training in general. Specifically, the conditional context prompt transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training. In addition, we introduce large language models as an interactive and implicit knowledge repository which enables iterative mining and refining visually oriented textual descriptors for precise region-text alignment. Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.",https://iclr.cc//virtual/2024/poster/17561,2024,ICLR,No,, LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset,"Studying how people interact with large language models (LLMs) in real-world scenarios is increasingly important due to their widespread use in various applications. In this paper, we introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art LLMs. This dataset is collected from 210K unique IP addresses in the wild on our Vicuna demo and Chatbot Arena website. We offer an overview of the dataset's content, including its curation process, basic statistics, and topic distribution, highlighting its diversity, originality, and scale. We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions. We believe that this dataset will serve as a valuable resource for understanding and advancing LLM capabilities. The dataset is publicly available at https://huggingface.co/datasets/lmsys/lmsys-chat-1m.",https://iclr.cc//virtual/2024/poster/19219,2024,ICLR,Yes,Language,Benchmark Localizing and Editing Knowledge In Text-to-Image Generative Models,"Text-to-Image Diffusion Models such as Stable-Diffusion and Imagen have achieved unprecedented quality of photorealism with state-of-the-art FID scores on MS-COCO and other generation benchmarks. Given a caption, image generation requires fine-grained knowledge about attributes such as object structure, style, and viewpoint amongst others. Where does this information reside in text-to-image generative models? In our paper, we tackle this question and understand how knowledge corresponding to distinct visual attributes is stored in large-scale text-to-image diffusion models. We adapt Causal Mediation Analysis for text-to-image models and trace knowledge about distinct visual attributes to various (causal) components in the (i) UNet and (ii) text-encoder of the diffusion model. In particular, we show that unlike large-language models, knowledge about different attributes is not localized in isolated components, but is instead distributed amongst a set of components in the conditional UNet. These sets of components are often distinct for different visual attributes (e.g., style} / objects). Remarkably, we find that the text-encoder in public text-to-image models such as Stable-Diffusion contains {\it only} one causal state across different visual attributes, and this is the first self-attention layer corresponding to the last subject token of the attribute in the caption. This is in stark contrast to the causal states in other language models which are often the mid-MLP layers. Based on this observation of only one causal state in the text-encoder, we introduce a fast, data-free model editing method DiffQuickFix which can effectively edit concepts (remove or update knowledge) in text-to-image models. DiffQuickFix can edit (ablate) concepts in under a second with a closed-form update, providing a significant 1000x speedup and comparable editing performance to existing fine-tuning based editing methods.",https://iclr.cc//virtual/2024/poster/18667,2024,ICLR,No,, LoTa-Bench: Benchmarking Language-oriented Task Planners for Embodied Agents,"Large language models (LLMs) have recently received considerable attention as alternative solutions for task planning. However, comparing the performance of language-oriented task planners becomes difficult, and there exists a dearth of detailed exploration regarding the effects of various factors such as pre-trained model selection and prompt construction. To address this, we propose a benchmark system for automatically quantifying performance of task planning for home-service embodied agents. Task planners are tested on two pairs of datasets and simulators: 1) ALFRED and AI2-THOR, 2) an extension of Watch-And-Help and VirtualHome. Using the proposed benchmark system, we perform extensive experiments with LLMs and prompts, and explore several enhancements of the baseline planner. We expect that the proposed benchmark tool would accelerate the development of language-oriented task planners.",https://iclr.cc//virtual/2024/poster/19271,2024,ICLR,Yes,Language,Benchmark Making Retrieval-Augmented Language Models Robust to Irrelevant Context,"Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones.",https://iclr.cc//virtual/2024/poster/18397,2024,ICLR,No,, MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts,"Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive problem-solving skills in many tasks and domains, but their ability in mathematical reasoning in visual contexts has not been systematically studied. To bridge this gap, we present MathVista, a benchmark designed to combine challenges from diverse mathematical and visual tasks. It consists of 6,141 examples, derived from 28 existing multimodal datasets involving mathematics and 3 newly created datasets (i.e., IQTest, FunctionQA, and PaperQA). Completing these tasks requires fine-grained, deep visual understanding and compositional reasoning, which all state-of-the-art foundation models find challenging. With MathVista, we have conducted a comprehensive, quantitative evaluation of 12 prominent foundation models. The best-performing GPT-4V model achieves an overall accuracy of 49.9%, substantially outperforming Bard, the second-best performer, by 15.1%. Our in-depth analysis reveals that the superiority of GPT-4V is mainly attributed to its enhanced visual perception and mathematical reasoning. However, GPT-4V still falls short of human performance by 10.4%, as it often struggles to understand complex figures and perform rigorous reasoning. This significant gap underscores the critical role that MathVista will play in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks. We further explore the new ability of self-verification, the application of self-consistency, and the interactive chatbot capabilities of GPT-4V, highlighting its promising potential for future research. The project is available at https://mathvista.github.io/.",https://iclr.cc//virtual/2024/poster/18900,2024,ICLR,Yes,Multimodal, MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation,"Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from \underline{seen} training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC.",https://iclr.cc//virtual/2024/poster/19133,2024,ICLR,Yes,Image, MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework,"Recently, remarkable progress has been made on automated problem solving through societies of agents based on large language models (LLMs). Previous LLM-based multi-agent systems can already solve simple dialogue tasks. More complex tasks, however, face challenges through logic inconsistencies due to cascading hallucinations caused by naively chaining LLMs. Here we introduce MetaGPT, an innovative meta-programming framework incorporating efficient human workflows into LLM-based multi-agent collaborations. MetaGPT encodes Standardized Operating Procedures (SOPs) into prompt sequences for more streamlined workflows, thus allowing agents with human-like domain expertise to verify intermediate results and reduce errors. MetaGPT utilizes an assembly line paradigm to assign diverse roles to various agents, efficiently breaking down complex tasks into subtasks involving many agents working together. On collaborative software engineering benchmarks, MetaGPT generates more coherent solutions than previous chat-based multi-agent systems.",https://iclr.cc//virtual/2024/poster/18491,2024,ICLR,No,, MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models,"Large language models (LLMs) have pushed the limits of natural language understanding and exhibited excellent problem-solving ability. Despite the great success, most existing open-source LLMs (\eg, LLaMA-2) are still far away from satisfactory for solving mathematical problems due to the complex reasoning procedures. To bridge this gap, we propose \emph{MetaMath}, a finetuned language model that specializes in mathematical reasoning. Specifically, we start by bootstrapping mathematical questions by rewriting the question from multiple perspectives, which results in a new dataset called MetaMathQA. Then we finetune the LLaMA-2 models on MetaMathQA. Experimental results on two popular benchmarks (\ie, GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath outperforms a suite of open-source LLMs by a significant margin. Our MetaMath-7B model achieves $66.5\%$ on GSM8K and $19.8\%$ on MATH, exceeding the state-of-the-art models of the same size by $11.5\%$ and $8.7\%$. Particularly, MetaMath-70B achieves an accuracy of $82.3\%$ on GSM8K, slightly better than GPT-3.5-Turbo. We release the MetaMathQA dataset, the MetaMath models with different model sizes and the training code for public use.",https://iclr.cc//virtual/2024/poster/18796,2024,ICLR,No,, MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use,"Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving eight popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers -- we strongly recommend that tool developers choose an appropriate rewrite model for generating new descriptions based on the downstream LLM the tool will apply to.",https://iclr.cc//virtual/2024/poster/18657,2024,ICLR,Yes,Language,Benchmark MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback,"To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools.However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases.We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback.To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4.We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation.Our analysis of 20 open- and closed-source LLMs offers intriguing findings.(a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1--8% for each turn of tool use and 2--17% with natural language feedback.(b) Better single-turn performance does not guarantee better multi-turn performance.(c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities.We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.",https://iclr.cc//virtual/2024/poster/18006,2024,ICLR,Yes,Language,Benchmark MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations,"Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. However, most existing multimodal intent benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. In this paper, we introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 high-quality dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes, across text, video, and audio modalities. In addition to more than 9,300 in-scope samples, it also includes over 5,700 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world open scenarios, enhancing its practical applicability. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, powerful large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the advanced cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications.The full dataset and codes are available for use at https://github.com/thuiar/MIntRec2.0.",https://iclr.cc//virtual/2024/poster/17855,2024,ICLR,Yes,Multimodal, Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models,"Sparse Mixture-of-Experts (MoE) is a neural architecture design that adds learnable parameters to Large Language Models (LLMs) without increasing computational complexity (FLOPs). Instruction tuning is a technique for training LLMs to follow instructions. We advocate combining these two approaches, as we find that MoE models benefit more from instruction tuning than dense models. In particular, we conduct empirical studies across three experimental setups: (i) Direct finetuning on individual downstream tasks devoid of instruction tuning; (ii) Instruction tuning followed by in-context few-shot or zero-shot generalization on downstream tasks; and (iii) Instruction tuning supplemented by further finetuning on individual downstream tasks. In the first scenario, MoE models overall underperform dense models of identical computational capacity. This narrative, however, dramatically changes with the introduction of instruction tuning (in the second and third scenarios), used independently or in conjunction with task-specific finetuning. Our most powerful model, FLAN-MoE-32B, surpasses the performance of Flan-PaLM-62B on four benchmark tasks, while using only a third of the FLOPs. The advancements embodied by FLAN-MoE inspire a reevaluation of the design principles of large-scale, high-performance language models in the framework of task-agnostic learning.",https://iclr.cc//virtual/2024/poster/19384,2024,ICLR,No,, MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning,"Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks.In this paper, we address the limitation above by 1) introducing vision-language Model with **M**ulti-**M**odal **I**n-**C**ontext **L**earning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts.Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context.Our code, dataset, dataset tool, and model are available at https://github.com/PKUnlp-icler/MIC.",https://iclr.cc//virtual/2024/poster/19429,2024,ICLR,Yes,Multimodal, MUFFIN: Curating Multi-Faceted Instructions for Improving Instruction Following,"In the realm of large language models (LLMs), enhancing instruction-following capability often involves curating expansive training data. This is achieved through two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per task instruction, aiming for better instruction adherence. ii) Scaling Input-Free Tasks: Enlarging tasks, each composed of an (instruction, output) pair (without requiring a separate input anymore). However, LLMs under Scaling-Inputs tend to be overly sensitive to inputs, leading to misinterpretation or non-compliance with instructions. Conversely, Scaling Input-Free Tasks demands a substantial number of tasks but is less effective in instruction following when dealing with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme of instruction-following dataset curation. Specifically, we automatically Scale Tasks per Input by diversifying these tasks with various input facets. Experimental results across four zero-shot benchmarks, spanning both Scaling-Inputs and Scaling Input-Free Tasks schemes, reveal that LLMs, at various scales, trained on MUFFIN generally demonstrate superior instruction-following capabilities compared to those trained on the two aforementioned schemes.",https://iclr.cc//virtual/2024/poster/19563,2024,ICLR,No,, Multimodal Web Navigation with Instruction-Finetuned Foundation Models,"The progress of autonomous web navigation has been hindered by the dependence on billions of exploratory interactions via online reinforcement learning, and domain-specific model designs that make it difficult to leverage generalization from rich out-of-domain data.In this work, we study data-driven offline training for web agents with vision-language foundation models.We propose an instruction-following multimodal agent, WebGUM, that observes both webpage screenshots and HTML pages and outputs web navigation actions, such as click and type.WebGUM is trained by jointly finetuning an instruction-finetuned language model and a vision encoder with temporal and local perception on a large corpus of demonstrations.We empirically demonstrate this recipe improves the agent's ability of grounded multimodal perception, HTML comprehension, and multi-step reasoning, outperforming prior works by a significant margin. On the MiniWoB, we improve over the previous best offline methods by more than 45.8%, even outperforming online-finetuned SoTA, humans, and GPT-4-based agent. On the WebShop benchmark, our 3-billion-parameter model achieves superior performance to the existing SoTA, PaLM-540B.Furthermore, WebGUM exhibits strong positive transfer to the real-world planning tasks on the Mind2Web.We also collect 347K high-quality demonstrations using our trained models, 38 times larger than prior work, and make them available to promote future research in this direction.",https://iclr.cc//virtual/2024/poster/18215,2024,ICLR,No,, Multiscale Positive-Unlabeled Detection of AI-Generated Texts,"Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing at generating human-like texts, but they may impact the authenticity of texts. Previous works proposed methods to detect these AI-generated texts, including simple ML classifiers, pretrained-model-based zero-shot methods, and finetuned language classification models. However, mainstream detectors always fail on short texts, like SMSes, Tweets, and reviews. In this paper, a Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection without sacrificing long-texts. Firstly, we acknowledge the human-resemblance property of short machine texts, and rephrase AI text detection as a partial Positive-Unlabeled (PU) problem by regarding these short machine texts as partially ""unlabeled"". Then in this PU context, we propose the length-sensitive Multiscale PU Loss, where a recurrent model in abstraction is used to estimate positive priors of scale-variant corpora. Additionally, we introduce a Text Multiscaling module to enrich training corpora. Experiments show that our MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors. Language Models trained with MPU could outcompete existing detectors on various short-text and long-text detection benchmarks. The codes are available at https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt and https://github.com/YuchuanTian/AIGC_text_detector.",https://iclr.cc//virtual/2024/poster/19428,2024,ICLR,No,, MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning,"While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our data instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.",https://iclr.cc//virtual/2024/poster/18015,2024,ICLR,Yes,Language,Benchmark MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data,"Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.",https://iclr.cc//virtual/2024/poster/19310,2024,ICLR,Yes,Language,Methodological Negative Label Guided OOD Detection with Pretrained Vision-Language Models,"Out-of-distribution (OOD) detection aims at identifying samples from unknown classes, playing a crucial role in trustworthy models against errors on unexpected inputs. Extensive research has been dedicated to exploring OOD detection in the vision modality. {Vision-language models (VLMs) can leverage both textual and visual information for various multi-modal applications, whereas few OOD detection methods take into account information from the text modality. In this paper, we propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases. We design a novel scheme for the OOD score collaborated with negative labels.Theoretical analysis helps to understand the mechanism of negative labels. Extensive experiments demonstrate that our method NegLabel achieves state-of-the-art performance on various OOD detection benchmarks and generalizes well on multiple VLM architectures. Furthermore, our method NegLabel exhibits remarkable robustness against diverse domain shifts. The codes are available at https://github.com/tmlr-group/NegLabel.",https://iclr.cc//virtual/2024/poster/17453,2024,ICLR,No,, OctoPack: Instruction Tuning Code Large Language Models,"Finetuning large language models (LLMs) on instructions leads to vast performance improvements on natural language tasks. We apply instruction tuning using code, leveraging the natural structure of Git commits, which pair code changes with human instructions. We compile CommitPack: 4 terabytes of Git commits across 350 programming languages. We benchmark CommitPack against other natural and synthetic code instructions (xP3x, Self-Instruct, OASST) on the 16B parameter StarCoder model, and achieve state-of-the-art performance among models not trained on OpenAI outputs, on the HumanEval Python benchmark (46.2% pass@1). We further introduce HumanEvalPack, expanding the HumanEval benchmark to a total of 3 coding tasks (Code Repair, Code Explanation, Code Synthesis) across 6 languages (Python, JavaScript, Java, Go, C++, Rust). Our models, OctoCoder and OctoGeeX, achieve the best performance across HumanEvalPack among all permissive models, demonstrating CommitPack's benefits in generalizing to a wider set of languages and natural coding tasks. Code, models and data are freely available at https://github.com/bigcode-project/octopack.",https://iclr.cc//virtual/2024/poster/17875,2024,ICLR,Yes,Language,Technical On the generalization capacity of neural networks during generic multimodal reasoning,"The advent of the Transformer has led to the development of large language models (LLM), which appear to demonstrate human-like capabilities. To assess the generality of this class of models and a variety of other base neural network architectures to multimodal domains, we evaluated and compared their capacity for multimodal generalization. We introduce a multimodal question-answer benchmark to evaluate three specific types of out-of-distribution (OOD) generalization performance: distractor generalization (generalization in the presence of distractors), systematic compositional generalization (generalization to new task permutations), and productive compositional generalization (generalization to more complex tasks with deeper dependencies). While we found that most architectures faired poorly on most forms of generalization (e.g., RNNs and standard Transformers), models that leveraged cross-attention mechanisms between input domains, such as the Perceiver, fared better. Our positive results demonstrate that for multimodal distractor and systematic generalization, cross-attention is an important mechanism to integrate multiple sources of information. On the other hand, all architectures failed in productive generalization, suggesting fundamental limitations of existing architectures for specific types of multimodal OOD generalization. These results demonstrate the strengths and limitations of specific architectural components underlying modern neural models for multimodal reasoning. Finally, we provide *Generic COG* (gCOG), a configurable benchmark with several multimodal generalization splits, for future studies to explore.",https://iclr.cc//virtual/2024/poster/17366,2024,ICLR,Yes,Multimodal, OpenChat: Advancing Open-source Language Models with Mixed-Quality Data,"Nowadays, open-source large language models like LLaMA have emerged. Recent developments have incorporated supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to align these models with human goals. However, SFT methods treat all training data with mixed quality equally, while RLFT methods require high-quality pairwise or ranking-based preference data. In this study, we present a novel framework, named OpenChat, to advance open-source language models with mixed-quality data. Specifically, we consider the general SFT training data, consisting of a small amount of expert data mixed with a large proportion of sub-optimal data, without any preference labels. We propose the C(onditioned)-RLFT, which regards different data sources as coarse-grained reward labels and learns a class-conditioned policy to leverage complementary data quality information. Interestingly, the optimal policy in C-RLFT can be easily solved through single-stage, RL-free supervised learning, which is lightweight and avoids costly human preference labeling.Through extensive experiments on three standard benchmarks, our openchat-13b fine-tuned with C-RLFT achieves the highest average performance among all 13b open-source language models. Moreover, we use AGIEval to validate the model generalization performance, in which only openchat-13b surpasses the base model. Finally, we conduct a series of analyses to shed light on the effectiveness and robustness of OpenChat. Our code, data, and models are publicly available at https://github.com/imoneoi/openchat and https://huggingface.co/openchat.",https://iclr.cc//virtual/2024/poster/19263,2024,ICLR,No,, Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy,"The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models’ capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.",https://iclr.cc//virtual/2024/poster/19102,2024,ICLR,Yes,Multimodal, OWL: A Large Language Model for IT Operations,"With the rapid advancement of IT operations, managing and analyzing large data volumes efficiently for practical applications has become increasingly critical. Natural Language Processing (NLP) techniques have demonstrated remarkable capabilities in various tasks, including named entity recognition, machine translation, and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various domain-specific areas. However, there is a noticeable gap in the development of specialized Large Language Models (LLMs) tailored for IT operations. In this paper, we introduce the OWL, a large language model trained on our constructed Owl-Instruct with a wide range of IT-related information. Specifically, limited by the maximum input length, we propose the \textbf{H}omogeneous \textbf{M}arkov \textbf{C}ontext \textbf{E}xtension method (HMCE). The mixture-of-adapter strategy is leveraged to improve the parameter-efficient tuning across different domains or tasks.Further, we evaluate the performance of OWL on the Owl-Bench established by us and open IT-related benchmarks. OWL demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.",https://iclr.cc//virtual/2024/poster/18599,2024,ICLR,Yes,Language,Technical PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization,"Instruction tuning large language models (LLMs) remains a challenging task, owing to the complexity of hyperparameter selection and the difficulty involved in evaluating the tuned models. To determine the optimal hyperparameters, an automatic, robust, and reliable evaluation benchmark is essential. However, establishing such a benchmark is not a trivial task due to the challenges associated with evaluation accuracy and privacy protection. In response to these challenges, we introduce a judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets. It addresses vital subjective factors such as relative conciseness, clarity, adherence to instructions, comprehensiveness, and formality. To ensure the reliability of PandaLM, we collect a diverse human-annotated test dataset, where all contexts are generated by humans and labels are aligned with human preferences. Our findings reveal that PandaLM-7B offers a performance comparable to both GPT-3.5 and GPT-4. Impressively, PandaLM-70B surpasses their performance. PandaLM enables the evaluation of LLM to be fairer but with less cost, evidenced by significant improvements achieved by models tuned through PandaLM compared to their counterparts trained with default Alpaca's hyperparameters. In addition, PandaLM does not depend on API-based evaluations, thus avoiding potential data leakage.",https://iclr.cc//virtual/2024/poster/19427,2024,ICLR,Yes,Language,Benchmark Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement,"The ability to derive underlying principles from a handful of observations and then generalize to novel situations---known as inductive reasoning---is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through $\textit{iterative hypothesis refinement}$, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal $\textit{hypothesis proposers}$ (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling $\textit{inductive reasoners}$, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.",https://iclr.cc//virtual/2024/poster/18334,2024,ICLR,No,, Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks,"Large Language Models (LLMs) are highly capable of performing planning for long-horizon robotics tasks, yet existing methods require access to a pre-defined skill library (*e.g.* picking, placing, pulling, pushing, navigating). However, LLM planning does not address how to design or learn those behaviors, which remains challenging particularly in long-horizon settings. Furthermore, for many tasks of interest, the robot needs to be able to adjust its behavior in a fine-grained manner, requiring the agent to be capable of modifying *low-level* control actions. Can we instead use the internet-scale knowledge from LLMs for high-level policies, guiding reinforcement learning (RL) policies to efficiently solve robotic control tasks online without requiring a pre-determined set of skills? In this paper, we propose **Plan-Seq-Learn** (PSL): a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control for solving long-horizon robotics tasks from scratch. We demonstrate that PSL is capable of solving 20+ challenging single and multi-stage robotics tasks on four benchmarks at success rates of over 80% from raw visual input, out-performing language-based, classical, and end-to-end approaches. Video results and code at https://planseqlearn.github.io/",https://iclr.cc//virtual/2024/poster/18096,2024,ICLR,No,, Privacy-Preserving In-Context Learning for Large Language Models,"In-context learning (ICL) is an important capability of Large Language Models (LLMs), enabling these models to dynamically adapt based on specific, in-context exemplars, thereby improving accuracy and relevance.However, LLM's responses may leak the sensitive private information contained in in-context exemplars. To address this challenge, we propose Differentially Private In-context Learning (DP-ICL), a general paradigm for privatizing ICL tasks. The key idea for DP-ICL paradigm is generating differentially private responses through a noisy consensus among an ensemble of LLM's responses based on disjoint exemplar sets. Based on the general paradigm of DP-ICL, we instantiate several techniques showing how to privatize ICL for text classification and language generation. We experiment on four text classification benchmarks and two language generation tasks, and our empirical findings suggest that our DP-ICL achieves a strong utility-privacy tradeoff.",https://iclr.cc//virtual/2024/poster/17471,2024,ICLR,No,, Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation,"We study the problem of in-context learning (ICL) with large language models (LLMs) on private datasets. This scenario poses privacy risks, as LLMs may leak or regurgitate the private examples demonstrated in the prompt.We propose a novel algorithm that generates synthetic few-shot demonstrations from the private dataset with formal differential privacy (DP) guarantees, and show empirically that it can achieve effective ICL.We conduct extensive experiments on standard benchmarks and compare our algorithm with non-private ICL and zero-shot solutions. Our results demonstrate that our algorithm can achieve competitive performance with strong privacy levels.These results open up new possibilities for ICL with privacy protection for a broad range of applications.",https://iclr.cc//virtual/2024/poster/17812,2024,ICLR,No,, Prometheus: Inducing Fine-Grained Evaluation Capability in Language Models,"Recently, GPT-4 has become the de facto evaluator for long-form text generated by large language models (LLMs). However, for practitioners and researchers with large and custom evaluation tasks, GPT-4 is unreliable due to its closed-source nature, uncontrolled versioning, and prohibitive costs. In this work, we propose PROMETHEUS a fully open-source LLM that is on par with GPT-4’s evaluation capabilities when the appropriate reference materials (reference answer, score rubric) are accompanied. For this purpose, we construct a new dataset – FEEDBACK COLLECTION – that consists of 1K fine-grained score rubrics, 20K instructions, and 100K natural language feedback generated by GPT-4. Using the FEEDBACK COLLECTION, we train PROMETHEUS, a 13B evaluation-specific LLM that can assess any given response based on novel and unseen score rubrics and reference materials provided by the user. Our dataset’s versatility and diversity make our model generalize to challenging real-world criteria, such as prioritizing conciseness, child-readability, or varying levels of formality. We show that PROMETHEUS shows a stronger correlation with GPT-4 evaluation compared to ChatGPT on seven evaluation benchmarks (Two Feedback Collection testsets, MT Bench, Vicuna Bench, Flask Eval, MT Bench Human Judgment, and HHH Alignment), showing the efficacy of our model and dataset design. During human evaluation with hand-crafted score rubrics, PROMETHEUS shows a Pearson correlation of 0.897 with human evaluators, which is on par with GPT-4-0613 (0.882), and greatly outperforms ChatGPT (0.392). Remarkably, when assessing the quality of the generated feedback, PROMETHEUS demonstrates a win rate of 58.62% when compared to GPT-4 evaluation and a win rate of 79.57% when compared to ChatGPT evaluation. Our findings suggests that by adding reference materials and training on GPT-4 feedback, we can obtain effective open-source evaluator LMs.",https://iclr.cc//virtual/2024/poster/19321,2024,ICLR,Yes,Language,Technical Proving Test Set Contamination in Black-Box Language Models,"Large language models are trained on vast amounts of internet data, prompting concerns that they have memorized public benchmarks. Detecting this type of contamination is challenging because the pretraining data used by proprietary models are often not publicly accessible.We propose a procedure for detecting test set contamination of language models with exact false positive guarantees and without access to pretraining data or model weights. Our approach leverages the fact that when there is no data contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for language models to memorize example order means that a contaminated language model will find certain canonical orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples.We demonstrate that our procedure is sensitive enough to reliably detect contamination in challenging situations, including models as small as 1.4 billion parameters, on small test sets only 1000 examples, and datasets that appear only a few times in the pretraining corpus. Finally, we evaluate LLaMA-2 to apply our test in a realistic setting and find our results to be consistent with existing contamination evaluations.",https://iclr.cc//virtual/2024/poster/18904,2024,ICLR,No,, Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level Vision,"The rapid evolution of Multi-modality Large Language Models (MLLMs) has catalyzed a shift in computer vision from specialized models to general-purpose foundation models. Nevertheless, there is still an inadequacy in assessing the abilities of MLLMs on **low-level visual perception and understanding**. To address this gap, we present **Q-Bench**, a holistic benchmark crafted to systematically evaluate potential abilities of MLLMs on three realms: low-level visual perception, low-level visual description, and overall visual quality assessment. **_a)_** To evaluate the low-level **_perception_** ability, we construct the **LLVisionQA** dataset, consisting of 2,990 diverse-sourced images, each equipped with a human-asked question focusing on its low-level attributes. We then measure the correctness of MLLMs on answering these questions. **_b)_** To examine the **_description_** ability of MLLMs on low-level information, we propose the **LLDescribe** dataset consisting of long expert-labelled *golden* low-level text descriptions on 499 images, and a GPT-involved comparison pipeline between outputs of MLLMs and the *golden* descriptions. **_c)_** Besides these two tasks, we further measure their visual quality **_assessment_** ability to align with human opinion scores. Specifically, we design a softmax-based strategy that enables MLLMs to predict *quantifiable* quality scores, and evaluate them on various existing image quality assessment (IQA) datasets. Our evaluation across the three abilities confirms that MLLMs possess preliminary low-level visual skills. However, these skills are still unstable and relatively imprecise, indicating the need for specific enhancements on MLLMs towards these abilities. We hope that our benchmark can encourage the research community to delve deeper to discover and enhance these untapped potentials of MLLMs.",https://iclr.cc//virtual/2024/poster/19616,2024,ICLR,Yes,Image, Quantifying the Plausibility of Context Reliance in Neural Machine Translation,"Establishing whether language models can use contextual information in a human-plausible way is important to ensure their safe adoption in real-world settings. However, the questions of $\textit{when}$ and $\textit{which parts}$ of the context affect model generations are typically tackled separately, and current plausibility evaluations are practically limited to a handful of artificial benchmarks. To address this, we introduce $\textbf{P}$lausibility $\textbf{E}$valuation of $\textbf{Co}$ntext $\textbf{Re}$liance (PECoRe), an end-to-end interpretability framework designed to quantify context usage in language models' generations. Our approach leverages model internals to (i) contrastively identify context-sensitive target tokens in generated texts and (ii) link them to contextual cues justifying their prediction. We use PECoRe to quantify the plausibility of context-aware machine translation models, comparing model rationales with human annotations across several discourse-level phenomena. Finally, we apply our method to unannotated model translations to identify context-mediated predictions and highlight instances of (im)plausible context usage throughout generation.",https://iclr.cc//virtual/2024/poster/18449,2024,ICLR,No,, Query-Dependent Prompt Evaluation and Optimization with Offline Inverse RL,"In this study, we aim to enhance the arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization. We identify a previously overlooked objective of query dependency in such optimization and elucidate two ensuing challenges that impede the successful and economical design of prompt optimization techniques. One primary issue is the absence of an effective method to evaluate prompts during inference when the golden answer is unavailable. Concurrently, learning via interactions with the LLMs to navigate the expansive natural language prompting space proves to be resource-intensive.To address this, we introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data. Such data exists as by-products when diverse prompts are benchmarked on open-accessible datasets. With Prompt-OIRL, the query-dependent prompt optimization objective is achieved by first learning an offline reward model. This model can evaluate any query-prompt pairs without accessing LLMs. Subsequently, a best-of-N strategy is deployed to recommend the optimal prompt. Our experimental evaluations across various LLM scales and arithmetic reasoning datasets underscore both the efficacy and economic viability of the proposed approach.",https://iclr.cc//virtual/2024/poster/18797,2024,ICLR,No,, RA-DIT: Retrieval-Augmented Dual Instruction Tuning,"Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores, but are challenging to build. Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance. We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option by retrofitting any LLM with retrieval capabilities. Our approach operates in two distinct fine-tuning steps: (1) one updates a pre-trained LM to better use retrieved information, while (2) the other updates the retriever to return more relevant results, as preferred by the LM. By fine-tuning over tasks that require both knowledge utilization and contextual awareness, we demonstrate that each stage yields significant performance improvements, and using both leads to additional gains. Our best model, RA-DIT 65B, achieves state-of-the-art performance across a range of knowledge-intensive zero- and few-shot learning benchmarks, significantly outperforming existing in-context RALM approaches by up to +8.9% in 0-shot setting and +1.4% in 5-shot setting on average.",https://iclr.cc//virtual/2024/poster/19562,2024,ICLR,No,, RAPPER: Reinforced Rationale-Prompted Paradigm for Natural Language Explanation in Visual Question Answering,"Natural Language Explanation (NLE) in vision and language tasks aims to provide human-understandable explanations for the associated decision-making process. In practice, one might encounter explanations which lack informativeness or contradict visual-grounded facts, known as implausibility and hallucination problems, respectively. To tackle these challenging issues, we consider the task of visual question answering (VQA) and introduce Rapper, a two-stage Reinforced Rationale-Prompted Paradigm. By knowledge distillation, the former stage of Rapper infuses rationale-prompting via large language models (LLMs), encouraging the rationales supported by language-based facts. As for the latter stage, a unique Reinforcement Learning from NLE Feedback (RLNF) is introduced for injecting visual facts into NLE generation. Finally, quantitative and qualitative experiments on two VL-NLE benchmarks show that Rapper surpasses state-of-the-art VQA-NLE methods while providing plausible and faithful NLE.",https://iclr.cc//virtual/2024/poster/18320,2024,ICLR,No,, RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval,"Retrieval-augmented language models can better adapt to changes in world state and incorporate long-tail knowledge. However, most existing methods retrieve only short contiguous chunks from a retrieval corpus, limiting holistic understanding of the overall document context. We introduce the novel approach of recursively embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up. At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction. Controlled experiments show that retrieval with recursive summaries offers significant improvements over traditional retrieval-augmented LMs on several tasks. On question-answering tasks that involve complex, multi-step reasoning, we show state-of-the-art results; for example, by coupling RAPTOR retrieval with the use of GPT-4, we can improve the best performance on the QuALITY benchmark by 20\% in absolute accuracy.",https://iclr.cc//virtual/2024/poster/19034,2024,ICLR,No,, Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning,"Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.",https://iclr.cc//virtual/2024/poster/18404,2024,ICLR,No,, RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems,"Large Language Models (LLMs) have greatly advanced code auto-completion systems, with a potential for substantial productivity enhancements for developers. However, current benchmarks mainly focus on single-file tasks, leaving an assessment gap for more complex, real-world, multi-file programming scenarios. To fill this gap, we introduce RepoBench, a new benchmark specifically designed for evaluating repository-level code auto-completion systems. RepoBench consists of three interconnected evaluation tasks: RepoBench-R (Retrieval), RepoBench-C (Code Completion), and RepoBench-P (Pipeline). Each task respectively measures the system's ability to retrieve the most relevant code snippets from other files as cross-file context, predict the next line of code with cross-file and in-file context, and handle complex tasks that require a combination of both retrieval and next-line prediction. RepoBench aims to facilitate a more complete comparison of performance and encouraging continuous improvement in auto-completion systems. RepoBench is actively maintained with the latest code, serving as a live benchmark publicly available at https://github.com/Leolty/repobench.",https://iclr.cc//virtual/2024/poster/17776,2024,ICLR,Yes,Language,Benchmark Representation Deficiency in Masked Language Modeling,"Masked Language Modeling (MLM) has been one of the most prominent approaches for pretraining bidirectional text encoders due to its simplicity and effectiveness. One notable concern about MLM is that the special $\texttt{[MASK]}$ symbol causes a discrepancy between pretraining data and downstream data as it is present only in pretraining but not in fine-tuning. In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing $\texttt{[MASK]}$ tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without $\texttt{[MASK]}$ tokens. Motivated by the identified issue, we propose MAE-LM, which pretrains the Masked Autoencoder architecture with MLM where $\texttt{[MASK]}$ tokens are excluded from the encoder. Empirically, we show that MAE-LM improves the utilization of model dimensions for real token representations, and MAE-LM consistently outperforms MLM-pretrained models on the GLUE and SQuAD benchmarks.",https://iclr.cc//virtual/2024/poster/18345,2024,ICLR,No,, Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models,"Large Language Models (LLMs) have recently demonstrated a remarkable success across various tasks. However, efficiently serving LLMs has been a challenge due to its large memory bottleneck, specifically in small batch inference settings (e.g. mobile devices). Weight-only quantization can be a promising approach, but sub-4 bit quantization remains a challenge due to large-magnitude activation outliers. To mitigate the undesirable outlier effect, we first propose per-IC quantization, a simple yet effective method that creates quantization groups within each input channel (IC) rather than the conventional per-output channel (OC). Our method is motivated by the observation that activation outliers affect the input dimension of the weight matrix, so similarly grouping the weights in the IC direction can $\textit{isolate outliers to be within a group}$. We also find that activation outliers do not dictate quantization difficulty, and inherent weight sensitivities also exist. With per-IC quantization as a new outlier-friendly scheme, we then propose Adaptive Dimensions ($\textbf{AdaDim}$), a versatile quantization framework that can adapt to various weight sensitivity patterns. We demonstrate the effectiveness of AdaDim by augmenting prior methods such as Round-To-Nearest and GPTQ, showing significant improvements across various language modeling benchmarks for both base (up to $+4.7\%$ on MMLU) and instruction-tuned (up to $+10\%$ on HumanEval) LLMs.",https://iclr.cc//virtual/2024/poster/18921,2024,ICLR,No,, Safety-Tuned LLaMAs: Lessons From Improving the Safety of Large Language Models that Follow Instructions,"Training large language models to follow instructions makes them perform better on a wide range of tasks and generally become more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate harmful content.In this paper, we raise concerns over the safety of models that only emphasize helpfulness, not harmlessness, in their instruction-tuning.We show that several popular instruction-tuned models are highly unsafe. Moreover, we show that adding just 3\% safety examples (a few hundred demonstrations) when fine-tuning a model like LLaMA can substantially improve its safety. Our safety-tuning does not make models significantly less capable or helpful as measured by standard benchmarks. However, we do find exaggerated safety behaviours, where too much safety-tuning makes models refuse perfectly safe prompts if they superficially resemble unsafe ones. As a whole, our results illustrate trade-offs in training LLMs to be helpful and training them to be safe.",https://iclr.cc//virtual/2024/poster/18143,2024,ICLR,No,, SALMON: Self-Alignment with Instructable Reward Models,"Supervised Fine-Tuning (SFT) on response demonstrations combined with Reinforcement Learning from Human Feedback (RLHF) constitutes a powerful paradigm for aligning LLM-based AI agents. However, a significant limitation of such an approach is its dependency on high-quality human annotations, making its application to intricate tasks challenging due to difficulties in obtaining consistent response demonstrations and in-distribution response preferences. This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision, using only a small set of human-defined principles, yet achieving superior performance. Central to our approach is an instructable reward model. Trained on synthetic preference data, this model can generate reward scores based on arbitrary human-defined principles. By merely adjusting these principles during the RL training phase, we gain full control over the preferences with the instructable reward model, subsequently influencing the behavior of the RL-trained policy models, and reducing the reliance on the collection of online human preferences. Applying our method to the LLaMA-2-70b base language model, we developed an AI assistant named Dromedary-2. With only 6 exemplars for in-context learning and 31 human-defined principles, Dromedary-2 significantly surpasses the performance of several state-of-the-art AI systems, including LLaMA-2-Chat-70b, on various benchmark datasets. We have open-sourced the code and model weights to encourage further research into aligning LLM-based AI agents with enhanced supervision efficiency, improved controllability, and scalable oversight.",https://iclr.cc//virtual/2024/poster/17454,2024,ICLR,No,, Scalable Language Model with Generalized Continual Learning,"Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications. The code and models will be released to the public.",https://iclr.cc//virtual/2024/poster/17874,2024,ICLR,No,, SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos,"We study the problem of procedure planning in instructional videos, which aims to make a goal-oriented sequence of action steps given partial visual state observations. The motivation of this problem is to learn a structured and plannable state and action space. Recent works succeeded in sequence modeling of steps with only sequence-level annotations accessible during training, which overlooked the roles of states in the procedures. In this work, we point out that State CHangEs MAtter (SCHEMA) for procedure planning in instructional videos. We aim to establish a more structured state space by investigating the causal relations between steps and states in procedures. Specifically, we explicitly represent each step as state changes and track the state changes in procedures. For step representation, we leveraged the commonsense knowledge in large language models (LLMs) to describe the state changes of steps via our designed chain-of-thought prompting. For state changes tracking, we align visual state observations with language state descriptions via cross-modal contrastive learning, and explicitly model the intermediate states of the procedure using LLM-generated state descriptions. Experiments on CrossTask, COIN, and NIV benchmark datasets demonstrate that our proposed SCHEMA model achieves state-of-the-art performance and obtains explainable visualizations.",https://iclr.cc//virtual/2024/poster/18363,2024,ICLR,No,, Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective,"Large Language Models (LLMs) inherently encode a wealth of knowledge within their parameters through pre-training on extensive corpora. While prior research has delved into operations on these parameters to manipulate the underlying implicit knowledge — encompassing detection, editing, and merging — there remains an ambiguous understanding regarding their transferability across models with varying scales. In this paper, we seek to empirically investigate knowledge transfer from larger to smaller models through a parametric perspective. To achieve this, we employ sensitivity-based techniques to extract and align knowledge-specific parameters between different LLMs. Moreover, the LoRA module is used as the intermediary mechanism for injecting the extracted knowledge into smaller models. Evaluations across four benchmarks validate the efficacy of our proposed method. Our findings highlight the critical factors contributing to the process of parametric knowledge transfer, underscoring the transferability of model parameters across LLMs of different scales. Project website: https://maszhongming.github.io/ParaKnowTransfer.",https://iclr.cc//virtual/2024/poster/17899,2024,ICLR,No,, SEPT: Towards Efficient Scene Representation Learning for Motion Prediction,"Motion prediction is crucial for autonomous vehicles to operate safely in complex traffic environments. Extracting effective spatiotemporal relationships among traffic elements is key to accurate forecasting. Inspired by the successful practice of pretrained large language models, this paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful spatiotemporal understanding for complex traffic scenes. Specifically, our approach involves three masking-reconstruction modeling tasks on scene inputs including agents' trajectories and road network, pretraining the scene encoder to capture kinematics within trajectory, spatial structure of road network, and interactions among roads and agents. The pretrained encoder is then finetuned on the downstream forecasting task. Extensive experiments demonstrate that SEPT, without elaborate architectural design or manual feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks, outperforming previous methods on all main metrics by a large margin.",https://iclr.cc//virtual/2024/poster/18214,2024,ICLR,No,, Sign2GPT: Leveraging Large Language Models for Gloss-Free Sign Language Translation,"Automatic Sign Language Translation requires the integration of both computer vision and natural language processing to effectively bridge the communication gap between sign and spoken languages. However, the deficiency in large-scale training data to support sign language translation means we need to leverage resources from spoken language. We introduce, Sign2GPT, a novel framework for sign language translation that utilizes large-scale pretrained vision and language models via lightweight adapters for gloss-free sign language translation. The lightweight adapters are crucial for sign language translation, due to the constraints imposed by limited dataset sizes and the computational requirements when training with long sign videos.We also propose a novel pretraining strategy that directs our encoder to learn sign representations from automatically extracted pseudo-glosses without requiring gloss order information or annotations.We evaluate our approach on two public benchmark sign language translation datasets, namely RWTH-PHOENIX-Weather 2014T and CSL-Daily, and improve on state-of-the-art gloss-free translation performance with a significant margin.",https://iclr.cc//virtual/2024/poster/18847,2024,ICLR,No,, SmartPlay : A Benchmark for LLMs as Intelligent Agents,"Recent large language models (LLMs) have demonstrated great potential toward intelligent agents and next-gen automation, but there currently lacks a systematic benchmark for evaluating LLMs' abilities as agents. We introduce SmartPlay: both a challenging benchmark and a methodology for evaluating LLMs as agents. SmartPlay consists of 6 different games, including Rock-Paper-Scissors, Tower of Hanoi, Minecraft. Each game features a unique setting, providing up to 20 evaluation settings and infinite environment variations. Each game in SmartPlay uniquely challenges a subset of 9 important capabilities of an intelligent LLM agent, including reasoning with object dependencies, planning ahead, spatial reasoning, learning from history, and understanding randomness. The distinction between the set of capabilities each game test allows us to analyze each capability separately.SmartPlay serves not only as a rigorous testing ground for evaluating the overall performance of LLM agents but also as a road-map for identifying gaps in current methodologies. We release our benchmark at https://github.com/microsoft/SmartPlay",https://iclr.cc//virtual/2024/poster/18620,2024,ICLR,Yes,Language,Benchmark SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models,"Current speech large language models build upon discrete speech representations,which can be categorized into semantic tokens and acoustic tokens. However,existing speech tokens are not specifically designed for speech language modeling. To assess the suitability of speech tokens for building speech languagemodels, we established the first benchmark, SLMTokBench. Our results indicatethat neither semantic nor acoustic tokens are ideal for this purpose. Therefore, wepropose SpeechTokenizer, a unified speech tokenizer for speech large languagemodels. SpeechTokenizer adopts the Encoder-Decoder architecture with residualvector quantization (RVQ). Unifying semantic and acoustic tokens, SpeechTokenizer disentangles different aspects of speech information hierarchically acrossdifferent RVQ layers. Furthermore, We construct a Unified Speech LanguageModel (USLM) leveraging SpeechTokenizer. Experiments show that SpeechTokenizer performs comparably to EnCodec in speech reconstruction and demonstratesstrong performance on the SLMTokBench benchmark. Also, USLM outperformsVALL-E in zero-shot Text-to-Speech tasks. Code and models are available athttps://github.com/ZhangXInFD/SpeechTokenizer/.",https://iclr.cc//virtual/2024/poster/19270,2024,ICLR,Yes,Audio, Steve-Eye: Equipping LLM-based Embodied Agents with Visual Perception in Open Worlds,"Recent studies have presented compelling evidence that large language models (LLMs) can equip embodied agents with the self-driven capability to interact with the world, which marks an initial step toward versatile robotics. However, these efforts tend to overlook the visual richness of open worlds, rendering the entire interactive process akin to ``a blindfolded text-based game.'' Consequently, LLM-based agents frequently encounter challenges in intuitively comprehending their surroundings and producing responses that are easy to understand. In this paper, we propose Steve-Eye, an end-to-end trained large multimodal model to address this limitation. Steve-Eye integrates the LLM with a visual encoder to process visual-text inputs and generate multimodal feedback. We adopt a semi-automatic strategy to collect an extensive dataset comprising 850K open-world instruction pairs, enabling our model to encompass three essential functions for an agent: multimodal perception, foundational knowledge base, and skill prediction and planning. Lastly, we develop three open-world evaluation benchmarks and carry out experiments from a wide range of perspectives to validate our model's capability to strategically act and plan. The project’s website and code can be found at https://sites.google.com/view/steve-eye.",https://iclr.cc//virtual/2024/poster/18772,2024,ICLR,Yes,Multimodal, SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs,"Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6\% in exact match (EM) and 4.0\% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.",https://iclr.cc//virtual/2024/poster/17509,2024,ICLR,No,, Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control,"Building agents with large language models (LLMs) for computer control is a burgeoning research area, where the agent receives computer states and performs actions to complete complex tasks. Previous computer agents have demonstrated the benefits of in-context learning (ICL); however, their performance is hindered by several issues. First, the limited context length of LLMs and complex computer states restrict the number of exemplars, as a single webpage can consume the entire context. Second, the exemplars in current methods, such as high-level plans and multi-choice questions, cannot represent complete trajectories, leading to suboptimal performance in long-horizon tasks. Third, existing computer agents rely on task-specific exemplars and overlook the similarity among tasks, resulting in poor generalization to novel tasks. To address these challenges, we introduce Synapse, a computer agent featuring three key components: i) state abstraction, which filters out task-irrelevant information from raw states, allowing more exemplars within the limited context, ii) trajectory-as-exemplar prompting, which prompts the LLM with complete trajectories of the abstracted states and actions to improve multi-step decision-making, and iii) exemplar memory, which stores the embeddings of exemplars and retrieves them via similarity search for generalization to novel tasks. We evaluate Synapse on MiniWoB++, a standard task suite, and Mind2Web, a real-world website benchmark. In MiniWoB++, Synapse achieves a 99.2% average success rate (a 10% relative improvement) across 64 tasks using demonstrations from only 48 tasks. Notably, Synapse is the first ICL method to solve the book-flight task in MiniWoB++. Synapse also exhibits a 56% relative improvement in average step success rate over the previous state-of-the-art prompting scheme in Mind2Web.",https://iclr.cc//virtual/2024/poster/18701,2024,ICLR,No,, Tag2Text: Guiding Vision-Language Model via Image Tagging,"This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with a limited detector, our approach utilizes tags parsed from its paired text to learn an image tagger and meanwhile provides guidance to vision-language models. Given that, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. Strikingly, Tag2Text showcases the ability of a foundational image tagging model, with superior zero-shot performance even comparable to full supervision manner. Moreover, by leveraging tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance.",https://iclr.cc//virtual/2024/poster/17468,2024,ICLR,No,, Task Planning for Visual Room Rearrangement under Partial Observability,"This paper presents a novel hierarchical task planner under partial observabilitythat empowers an embodied agent to use visual input to efficiently plan a sequenceof actions for simultaneous object search and rearrangement in an untidy room,to achieve a desired tidy state. The paper introduces (i) a novel Search Networkthat utilizes commonsense knowledge from large language models to find unseenobjects, (ii) a Deep RL network trained with proxy reward, along with (iii) a novelgraph-based state representation to produce a scalable and effective planner thatinterleaves object search and rearrangement to minimize the number of steps takenand overall traversal of the agent, as well as to resolve blocked goal and swapcases, and (iv) a sample-efficient cluster-biased sampling for simultaneous trainingof the proxy reward network along with the Deep RL network. Furthermore,the paper presents new metrics and a benchmark dataset - RoPOR, to measurethe effectiveness of rearrangement planning. Experimental results show that ourmethod significantly outperforms the state-of-the-art rearrangement methods Weihset al. (2021a); Gadre et al. (2022); Sarch et al. (2022); Ghosh et al. (2022).",https://iclr.cc//virtual/2024/poster/18030,2024,ICLR,Yes,Image, Teaching Large Language Models to Self-Debug,"Large language models (LLMs) have achieved impressive performance on code generation. However, for complex programming tasks, generating the correct solution in one go becomes challenging, thus some prior works have designed program repair approaches to improve code generation performance. In this work, we propose self-debugging, which teaches a large language model to debug its predicted program. In particular, we demonstrate that self-debugging can teach the large language model to perform rubber duck debugging; i.e., without any human feedback on the code correctness or error messages, the model is able to identify its mistakes by leveraging code execution and explaining the generated code in natural language. Self-debugging achieves the state-of-the-art performance on several code generation benchmarks, including the Spider dataset for text-to-SQL generation, TransCoder for C++-to-Python translation, and MBPP for text-to-Python generation. On the Spider benchmark where there are no unit tests to verify the correctness of predictions, self-debugging with code explanation consistently improves the baseline by 2-3%, and improves the prediction accuracy on problems of the hardest level by 9%. On TransCoder and MBPP where unit tests are available, self-debugging improves the baseline accuracy by up to 12%. Meanwhile, by leveraging feedback messages and reusing failed predictions, self-debugging notably improves sample efficiency, and can match or outperform baseline models that generate more than 10$\times$ candidate programs.",https://iclr.cc//virtual/2024/poster/18880,2024,ICLR,No,, Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game,"While Large Language Models (LLMs) are increasingly being used in real-world applications, they remain vulnerable to *prompt injection attacks*: malicious third party prompts that subvert the intent of the system designer. To help researchers study this problem, we present a dataset of over 563,000 prompt injection attacks and 118,000 prompt-based ""defenses"" against prompt injection, all created by players of an online game called Tensor Trust. To the best of our knowledge, this is the first dataset that includes both human-generated attacks and defenses for instruction-following LLMs. The attacks in our dataset have easily interpretable structure, and shed light on the weaknesses of LLMs. We also use the dataset to create a benchmark for resistance to two types of prompt injection, which we refer to as *prompt extraction* and *prompt hijacking*. Our benchmark results show that many models are vulnerable to the attack strategies in the Tensor Trust dataset. Furthermore, we show that some attack strategies from the dataset generalize to deployed LLM-based applications, even though they have a very different set of constraints to the game. We release data and code at [tensortrust.ai/paper](https://tensortrust.ai/paper)",https://iclr.cc//virtual/2024/poster/18168,2024,ICLR,Yes,Language,Benchmark Text2Reward: Reward Shaping with Language Models for Reinforcement Learning,"Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation and shaping of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates shaped dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes or unshaped dense rewards with a constant function across timesteps, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at https://text-to-reward.github.io/",https://iclr.cc//virtual/2024/poster/17616,2024,ICLR,No,, The Consensus Game: Language Model Generation via Equilibrium Search,"When applied to question answering and other text generation tasks, language models (LMs) may be queried generatively (by sampling answers from their output distribution) or discriminatively (by using them to score or rank a set of candidate answers). These procedures sometimes yield very different predictions. How do we reconcile mutually incompatible scoring procedures to obtain coherent LM predictions? We introduce a new, a training-free, game-theoretic procedure for language model decoding. Our approach casts language model decoding as a regularized imperfect-information sequential signaling game—which we term the concensus game—in which a generator seeks to communicate an abstract correctness parameter using natural language sentences to a discriminator. We develop computational procedures for finding approximate equilibria of this game, resulting in a decoding algorithm we call equilibrium-ranking. Applied to a large number of tasks (including reading comprehension, commonsense reasoning, mathematical problem-solving, and assistive dialog), equilibrium-ranking consistently improves performance over existing LM decoding procedures. These improvements are sometimes substantial—on multiple benchmarks, we observe that applying equilibrium-ranking to LLaMA-7B outperforms the much larger LLaMA-65B and PaLM-540B models.",https://iclr.cc//virtual/2024/poster/17870,2024,ICLR,No,, The False Promise of Imitating Proprietary Language Models,"An emerging method to cheaply improve a weaker language model is to finetune it on outputs from a stronger model, such as a proprietary system like ChatGPT (e.g., Alpaca, Self-Instruct, and others). In this work, we critically analyze this approach of imitating language models. We first finetune a series of LMs that imitate ChatGPT using varying base model sizes (1.5B--13B), data sources, and imitation data amounts (0.3M--150M tokens). We then evaluate the models using crowd raters and canonical NLP benchmarks. Initially, we were surprised by the output quality of our imitation models---they appear far better at following instructions, and crowd workers rate their outputs as competitive with ChatGPT. However, when conducting more targeted automatic evaluations, we find that imitation models close little to none of the gap from the base LM to ChatGPT on tasks that are not heavily supported in the imitation data. We show that these performance discrepancies may slip past human raters because imitation models are adept at mimicking ChatGPT’s style but not its factuality. Overall, we conclude that while model imitation can be useful for training models to follow instructions and avoid toxic outputs, it falls short its full promise in many ways. In particular, there exists a substantial capabilities gap between open and closed LMs that we find cannot be bridged merely by adding more imitation data. Instead, we find that fine-tuning more capable base LMs has a significantly more substantial effect on closing this gap. In turn, we argue that the higher leverage action for improving open-source models is to tackle the difficult challenge of developing better base LMs, rather than taking the shortcut of imitating proprietary systems.",https://iclr.cc//virtual/2024/poster/18877,2024,ICLR,No,, TiC-CLIP: Continual Training of CLIP Models,"Keeping large foundation models up to date on latest data is inherently expensive. To avoid the prohibitive costs of constantly retraining, it is imperative to continually train these models. This problem is exacerbated by the lack of any large scale continual learning benchmarks or baselines. We introduce the first set of web-scale Time-Continual (TiC) benchmarks for training vision-language models: TiC-DataComp, TiC-YFCC, and TiC-Redcaps. TiC-DataComp, our largest dataset, contains over 12.7B timestamped image-text pairs spanning 9 years (2014-2022). We first use our benchmarks to curate various dynamic evaluations to measure temporal robustness of existing models. We show OpenAI's CLIP (trained on data up to 2020) loses $\approx 8\%$ zero-shot accuracy on our curated retrieval task from 2021-2022 compared with more recently trained models in OpenCLIP repository. We then study how to efficiently train models on time-continuous data. We demonstrate that a simple rehearsal-based approach that continues training from the last checkpoint and replays old data reduces compute by $2.5\times$ when compared to the standard practice of retraining from scratch. Code is available at https://github.com/apple/ml-tic-clip.",https://iclr.cc//virtual/2024/poster/18576,2024,ICLR,Yes,Multimodal, To the Cutoff... and Beyond? A Longitudinal Perspective on LLM Data Contamination,"Recent claims about the impressive abilities of large language models (LLMs) are often supported by evaluating publicly available benchmarks. Since LLMs train on wide swaths of the internet, this practice raises concerns of data contamination, i.e., evaluating on examples that are explicitly or implicitly included in the training data. Data contamination remains notoriously challenging to measure and mitigate, even with partial attempts like controlled experimentation of training data, canary strings, or embedding similarities. In this work, we conduct the first thorough longitudinal analysis of data contamination in LLMs by using the natural experiment of training cutoffs in GPT models to look at benchmarks released over time.Specifically, we consider two code/mathematical problem-solving datasets, Codeforces and Project Euler, and find statistically significant trends among LLM pass rate vs. GitHub popularity and release date that provide strong evidence of contamination. By open-sourcing our dataset, raw results, and evaluation framework, our work paves the way for rigorous analyses of data contamination in modern models. We conclude with a discussion of best practices and future steps for publicly releasing benchmark in the age of LLMs which train on webscale data.",https://iclr.cc//virtual/2024/poster/17911,2024,ICLR,No,, Towards LLM4QPE: Unsupervised Pretraining of Quantum Property Estimation and A Benchmark,"Estimating the properties of quantum systems such as quantum phase has been critical in addressing the essential quantum many-body problems in physics and chemistry. Deep learning models have been recently introduced to property estimation, surpassing conventional statistical approaches. However, these methods are tailored to the specific task and quantum data at hand. It remains an open and attractive question for devising a more universal task-agnostic pretraining model for quantum property estimation. In this paper, we propose LLM4QPE, a large language model style quantum task-agnostic pretraining and finetuning paradigm that 1) performs unsupervised pretraining on diverse quantum systems with different physical conditions; 2) uses the pretrained model for supervised finetuning and delivers high performance with limited training data, on downstream tasks. It mitigates the cost for quantum data collection and speeds up convergence. Extensive experiments show the promising efficacy of LLM4QPE in various tasks including classifying quantum phases of matter on Rydberg atom model and predicting two-body correlation function on anisotropic Heisenberg model.",https://iclr.cc//virtual/2024/poster/17517,2024,ICLR,Yes,Language,Methodological Towards Robust Multi-Modal Reasoning via Model Selection,"The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the ``brain'' of the agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning.To this end, we identify the key challenges therein and propose the $\textbf{\textit{M}}^\textbf{\textit{3}}$ framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: https://github.com/LINs-lab/M3.",https://iclr.cc//virtual/2024/poster/18902,2024,ICLR,Yes,Multimodal, Towards Understanding Factual Knowledge of Large Language Models,"Large language models (LLMs) have recently driven striking performance improvements across a range of natural language processing tasks. The factual knowledge acquired during pretraining and instruction tuning can be useful in various downstream tasks, such as question answering, and language generation. Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowledge, LLMs implicitly store facts in their parameters. Content generated by the LLMs can often exhibit inaccuracies or deviations from the truth, due to facts that can be incorrectly induced or become obsolete over time. To this end, we aim to explore the extent and scope of factual knowledge within LLMs by designing the benchmark Pinocchio. Pinocchio contains 20K diverse factual questions that span different sources, timelines, domains, regions, and languages. Furthermore, we investigate whether LLMs can compose multiple facts, update factual knowledge temporally, reason over multiple pieces of facts, identify subtle factual differences, and resist adversarial examples. Extensive experiments on different sizes and types of LLMs show that existing LLMs still lack factual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing trustworthy artificial intelligence. The dataset Pinocchio and our codes are publicly available at: https://github.com/THU-BPM/Pinocchio.",https://iclr.cc//virtual/2024/poster/19298,2024,ICLR,Yes,Language,Benchmark Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond,"Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on ID or text-based recommendation problems, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.",https://iclr.cc//virtual/2024/poster/17967,2024,ICLR,Yes,Multimodal, Training Socially Aligned Language Models on Simulated Social Interactions,"The goal of social alignment for AI systems is to make sure these models can conduct themselves appropriately following social values. Unlike humans who establish a consensus on value judgments through social interaction, current language models (LMs) are trained to rigidly recite the corpus in social isolation, which causes poor generalization in unfamiliar cases and the lack of robustness under adversarial attacks. In this work, we introduce a new training paradigm that enables LMs to learn from simulated social interactions. Compared with existing methods, our method is much more scalable and efficient, and shows superior performance in alignment benchmarks and human evaluation.",https://iclr.cc//virtual/2024/poster/18780,2024,ICLR,No,, Tuning LayerNorm in Attention: Towards Efficient Multi-Modal LLM Finetuning,"This paper introduces an efficient strategy to transform Large Language Models (LLMs) into Multi-Modal Large Language Models. By conceptualizing this transformation as a domain adaptation process, \ie, transitioning from text understanding to embracing multiple modalities, we intriguingly note that, within each attention block, tuning LayerNorm suffices to yield strong performance. Moreover, when benchmarked against other tuning approaches like full parameter finetuning or LoRA, its benefits on efficiency are substantial.For example, when compared to LoRA on a 13B model scale, performance can be enhanced by an average of over 20\% across five multi-modal tasks, and meanwhile, results in a significant reduction of trainable parameters by 41.9\% and a decrease in GPU memory usage by 17.6\%. On top of this LayerNorm strategy, we showcase that selectively tuning only with conversational data can improve efficiency further. Beyond these empirical outcomes, we provide a comprehensive analysis to explore the role of LayerNorm in adapting LLMs to the multi-modal domain and improving the expressive power of the model.",https://iclr.cc//virtual/2024/poster/18422,2024,ICLR,No,, UniAdapter: Unified Parameter-Efficient Transfer Learning for Cross-modal Modeling,"Large-scale vision-language pre-trained models have shown promising transferability to various downstream tasks. As the size of these foundation models and the number of downstream tasks grow, the standard full fine-tuning paradigm becomes unsustainable due to heavy computational and storage costs. This paper proposes UniAdapter, which unifies unimodal and multimodal adapters for parameter-efficient cross-modal adaptation on pre-trained vision-language models. Specifically, adapters are distributed to different modalities and their interactions, with the total number of tunable parameters reduced by partial weight sharing. The unified and knowledge-sharing design enables powerful cross-modal representations that can benefit various downstream tasks, requiring only 1.0%-2.0% tunable parameters of the pre-trained model. Extensive experiments on 7 cross-modal downstream benchmarks (including video-text retrieval, image-text retrieval, VideoQA, VQA and Caption) show that in most cases, UniAdapter not only outperforms the state-of-the-arts, but even beats the full fine-tuning strategy. Particularly, on the MSRVTT retrieval task, UniAdapter achieves 49.7% recall@1 with 2.2% model parameters, outperforming the latest competitors by 2.0%. The code and models are available at https://github.com/RERV/UniAdapter.",https://iclr.cc//virtual/2024/poster/18198,2024,ICLR,No,, Universal Jailbreak Backdoors from Poisoned Human Feedback,"Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF data to embed a jailbreak trigger into the model as a backdoor. The trigger then acts like a universal sudo command, enabling arbitrary harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.",https://iclr.cc//virtual/2024/poster/19013,2024,ICLR,Yes,Language,Technical UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition,"Large language models (LLMs) have demonstrated remarkable generalizability, such as understanding arbitrary entities and relations. Instruction tuning has proven effective for distilling LLMs into more cost-efficient models such as Alpaca and Vicuna. Yet such student models still trail the original LLMs by large margins in downstream applications. In this paper, we explore targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class such as open information extraction. Using named entity recognition (NER) for case study, we show how ChatGPT can be distilled into much smaller UniversalNER models for open NER. For evaluation, we assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains such as biomedicine, programming, social media, law, finance. Without using any direct supervision, UniversalNER attains remarkable NER accuracy across tens of thousands of entity types, outperforming general instruction-tuned models such as Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average. Remarkably, UniversalNER even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which uses supervised NER examples. We also conduct thorough ablation studies to assess the impact of various components in our distillation approach. We release the distillation recipe, data, and UniversalNER models to facilitate future research on targeted distillation.",https://iclr.cc//virtual/2024/poster/17704,2024,ICLR,Yes,Language,Methodological Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models,"Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of **6.16\%** label errors in **11** datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. Code is available at [https://github.com/Docta-ai/docta](https://github.com/Docta-ai/docta).",https://iclr.cc//virtual/2024/poster/19388,2024,ICLR,No,, Unveiling the Pitfalls of Knowledge Editing for Large Language Models,"As the cost associated with fine-tuning Large Language Models (LLMs) continues to rise, recent research efforts have pivoted towards developing methodologies to edit implicit knowledge embedded within LLMs. Yet, there's still a dark cloud lingering overhead -- will knowledge editing trigger butterfly effect? since it is still unclear whether knowledge editing might introduce side effects that pose potential risks or not. This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for LLMs. To achieve this, we introduce new benchmark datasets and propose innovative evaluation metrics. Our results underline two pivotal concerns: (1) Knowledge Conflict: Editing groups of facts that logically clash can magnify the inherent inconsistencies in LLMs—a facet neglected by previous methods. (2) Knowledge Distortion: Altering parameters with the aim of editing factual knowledge can irrevocably warp the innate knowledge structure of LLMs. Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences on LLMs, which warrant attention and efforts for future works. Code and data are available at https://github.com/zjunlp/PitfallsKnowledgeEditing.",https://iclr.cc//virtual/2024/poster/18188,2024,ICLR,Yes,Language,Methodological Vanishing Gradients in Reinforcement Finetuning of Language Models,"Pretrained language models are commonly aligned with human preferences and downstream tasks via reinforcement finetuning (RFT), which refers to maximizing a (possibly learned) reward function using policy gradient algorithms. This work identifies a fundamental optimization obstacle in RFT: we prove that the expected gradient for an input vanishes when its reward standard deviation under the model is small, even if the expected reward is far from optimal. Through experiments on an RFT benchmark and controlled environments, as well as a theoretical analysis, we then demonstrate that vanishing gradients due to small reward standard deviation are prevalent and detrimental, leading to extremely slow reward maximization. Lastly, we explore ways to overcome vanishing gradients in RFT. We find the common practice of an initial supervised finetuning (SFT) phase to be the most promising candidate, which sheds light on its importance in an RFT pipeline. Moreover, we show that a relatively small number of SFT optimization steps on as few as 1% of the input samples can suffice, indicating that the initial SFT phase need not be expensive in terms of compute and data labeling efforts. Overall, our results emphasize that being mindful for inputs whose expected gradient vanishes, as measured by the reward standard deviation, is crucial for successful execution of RFT.",https://iclr.cc//virtual/2024/poster/18959,2024,ICLR,No,, VeRA: Vector-based Random Matrix Adaptation,"Low-rank adapation (LoRA) is a popular method that reduces the number of trainable parameters when finetuning large language models, but still faces acute storage challenges when scaling to even larger models or deploying numerous per-user or per-task adapted models. In this work, we present Vector-based Random Matrix Adaptation (VeRA), which significantly reduces the number of trainable parameters compared to LoRA, yet maintains the same performance. It achieves this by using a single pair of low-rank matrices shared across all layers and learning small scaling vectors instead. We demonstrate its effectiveness on the GLUE and E2E benchmarks, image classification tasks, and show its application in instruction-tuning of 7B and 13B language models. Website: https://dkopi.github.io/vera",https://iclr.cc//virtual/2024/poster/18775,2024,ICLR,No,, ViLMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in Video-Language Models,"With the ever-increasing popularity of pretrained Video-Language Models (VidLMs), there is a pressing need to develop robust evaluation methodologies that delve deeper into their visio-linguistic capabilities. To address this challenge, we present ViLMA (Video Language Model Assessment), a task-agnostic benchmark that places the assessment of fine-grained capabilities of these models on a firm footing. Task-based evaluations, while valuable, fail to capture the complexities and specific temporal aspects of moving images that VidLMs need to process. Through carefully curated counterfactuals, ViLMA offers a controlled evaluation suite that sheds light on the true potential of these models, as well as their performance gaps compared to human-level understanding. ViLMA also includes proficiency tests, which assess basic capabilities deemed essential to solving the main counterfactual tests. We show that current VidLMs’ grounding abilities are no better than those of vision-language models which use static images. This is especially striking once the performance on proficiency tests is factored in. Our benchmark serves as a catalyst for future research on VidLMs, helping to highlight areas that still need to be explored.",https://iclr.cc//virtual/2024/poster/17922,2024,ICLR,Yes,Multimodal, Vision-by-Language for Training-Free Compositional Image Retrieval,"Given an image and a target modification (e.g an image of the Eiffel tower and the text “without people and at night-time”), Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database. While supervised approaches rely on annotating triplets that is costly (i.e. query image, textual modification, and target image), recent research sidesteps this need by using large-scale vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). However, state-of-the-art approaches in ZS-CIR still require training task-specific, customized models over large amounts of image-text pairs. In this work, we proposeto tackle CIR in a training-free manner via our Compositional Image Retrieval through Vision-by-Language (CIReVL), a simple, yet human-understandable and scalable pipeline that effectively recombines large-scale VLMs with large language models (LLMs). By captioning the reference image using a pre-trained generative VLM and asking a LLM to recompose the caption based on the textual target modification for subsequent retrieval via e.g. CLIP, we achieve modular language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part state-of-the-art performance - improving over supervised methods Moreover, the modularity of CIReVL offers simple scalability without re-training, allowing us to both investigate scaling laws and bottlenecks for ZS-CIR while easily scaling up to in parts more than double of previously reported results. Finally, we show that CIReVL makes CIR human-understandable by composing image and text in a modular fashion in the language domain, thereby making it intervenable, allowing to post-hoc re-align failure cases. Code will be released upon acceptance.",https://iclr.cc//virtual/2024/poster/19114,2024,ICLR,No,, Vision-Language Foundation Models as Effective Robot Imitators,"Recent progress in vision language foundation models has shown their ability to understand multimodal data and resolve complicated vision language tasks, including robotics manipulation. We seek a straightforward way of making use of existing vision-language models (VLMs) with simple fine-tuning on robotics data.To this end, we derive a simple and novel vision-language manipulation framework, dubbed RoboFlamingo, built upon the open-source VLMs, OpenFlamingo. Unlike prior works, RoboFlamingo utilizes pre-trained VLMs for single-step vision-language comprehension, models sequential history information with an explicit policy head, and is slightly fine-tuned by imitation learning only on language-conditioned manipulation datasets. Such a decomposition provides RoboFlamingo the flexibility for open-loop control and deployment on low-performance platforms. By exceeding the state-of-the-art performance with a large margin on the tested benchmark, we show RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control.Our extensive experimental results also reveal several interesting conclusions regarding the behavior of different pre-trained VLMs on manipulation tasks. We believe RoboFlamingo has the potential to be a cost-effective and easy-to-use solution for robotics manipulation, empowering everyone with the ability to fine-tune their own robotics policy. Our code will be made public upon acceptance.",https://iclr.cc//virtual/2024/poster/17943,2024,ICLR,No,, WebArena: A Realistic Web Environment for Building Autonomous Agents,"With advances in generative AI, there is now potential for autonomous agents to manage daily tasks via natural language commands. However, current agents are primarily created and tested in simplified synthetic environments, leading to a disconnect with real-world scenarios. In this paper, we build an environment for language-guided agents that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on the web, and create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and designed to emulate tasks that humans routinely perform on the internet. We experiment with several baseline agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 14.41%, significantly lower than the human performance of 78.24%. These results highlight the need for further development of robust agents, that current state-of-the-art large language models are far from perfect performance in these real-life tasks, and that \ours can be used to measure such progress.\footnote{Code, data, environment reproduction instructions, video demonstrations are available in the supplementary.}",https://iclr.cc//virtual/2024/poster/17826,2024,ICLR,Yes,Language,Benchmark What's In My Big Data?,"Large text corpora are the backbone of language models.However, we have a limited understanding of the content of these corpora, including general statistics, quality, social factors, and inclusion of evaluation data (contamination).In this work, we propose What's In My Big Data? (WIMBD), a platform and a set of sixteen analyses that allow us to reveal and compare the contents of large text corpora. WIMBD builds on two basic capabilities---count and search---*at scale*, which allows us to analyze more than 35 terabytes on a standard compute node. We apply WIMBD to ten different corpora used to train popular language models, including *C4*, *The Pile*, and *RedPajama*.Our analysis uncovers several surprising and previously undocumented findings about these corpora, including the high prevalence of duplicate, synthetic, and low-quality content, personally identifiable information, toxic language, and benchmark contamination. For instance, we find that about 50% of the documents in *RedPajama* and *LAION-2B-en* are duplicates. In addition, several datasets used for benchmarking models trained on such corpora are contaminated with respect to important benchmarks, including the Winograd Schema Challenge and parts of GLUE and SuperGLUE.We open-source WIMBD's code and artifacts to provide a standard set of evaluations for new text-based corpora and to encourage more analyses and transparency around them.",https://iclr.cc//virtual/2024/poster/18626,2024,ICLR,Not found,, "When Scaling Meets LLM Finetuning: The Effect of Data, Model and Finetuning Method","While large language models (LLMs) often adopt finetuning to unlock their capabilities for downstream applications, our understanding on the inductive biases (especially the scaling properties) of different finetuning methods is still limited. To fill this gap, we conduct systematic experiments studying whether and how different scaling factors, including LLM model size, pretraining data size, new finetuning parameter size and finetuning data size, affect the finetuning performance. We consider two types of finetuning – full-model tuning (FMT) and parameter efficient tuning (PET, including prompt tuning and LoRA), and explore their scaling behaviors in the data-limited regime where the LLM model size substantially outweighs the finetuning data size. Based on two sets of pretrained bilingual LLMs from 1B to 16B and experiments on bilingual machine translation and multilingual summarization benchmarks, we find that 1) LLM finetuning follows a powerbased multiplicative joint scaling law between finetuning data size and each other scaling factor; 2) LLM finetuning benefits more from LLM model scaling than pretraining data scaling, and PET parameter scaling is generally ineffective; and 3) the optimal finetuning method is highly task- and finetuning data-dependent. We hope our findings could shed light on understanding, selecting and developing LLM finetuning methods.",https://iclr.cc//virtual/2024/poster/19432,2024,ICLR,No,, WizardCoder: Empowering Code Large Language Models with Evol-Instruct,"Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated remarkable performance in various code-related tasks. However, different from their counterparts in the general language modeling field, the technique of instruction fine-tuning remains relatively under-researched in this domain. In this paper, we present Code Evol-Instruct, a novel approach that adapts the Evol-Instruct method to the realm of code, enhancing Code LLMs to create novel models, WizardCoder. Through comprehensive experiments on five prominent code generation benchmarks, namely HumanEval, HumanEval+, MBPP, DS-1000, and MultiPL-E, our models showcase outstanding performance. They consistently outperform all other open-source Code LLMs by a significant margin. Remarkably, WizardCoder 15B even surpasses the well-known closed-source LLMs, including Anthropic's Claude and Google's Bard, on the HumanEval and HumanEval+ benchmarks. Additionally, WizardCoder 34B not only achieves a HumanEval score comparable to GPT3.5 (ChatGPT) but also surpasses it on the HumanEval+ benchmark. Furthermore, our preliminary exploration highlights the pivotal role of instruction complexity in achieving exceptional coding performance.",https://iclr.cc//virtual/2024/poster/18519,2024,ICLR,No,, Entropy Rate Estimation for Markov Chains with Large State Space,"Entropy estimation is one of the prototypical problems in distribution property testing. To consistently estimate the Shannon entropy of a distribution on $S$ elements with independent samples, the optimal sample complexity scales sublinearly with $S$ as $\Theta(\frac{S}{\log S})$ as shown by Valiant and Valiant \cite{Valiant--Valiant2011}. Extending the theory and algorithms for entropy estimation to dependent data, this paper considers the problem of estimating the entropy rate of a stationary reversible Markov chain with $S$ states from a sample path of $n$ observations. We show that \begin{itemize} \item Provided the Markov chain mixes not too slowly, \textit{i.e.}, the relaxation time is at most $O(\frac{S}{\ln^3 S})$, consistent estimation is achievable when $n \gg \frac{S^2}{\log S}$. \item Provided the Markov chain has some slight dependency, \textit{i.e.}, the relaxation time is at least $1+\Omega(\frac{\ln^2 S}{\sqrt{S}})$, consistent estimation is impossible when $n \lesssim \frac{S^2}{\log S}$. \end{itemize} Under both assumptions, the optimal estimation accuracy is shown to be $\Theta(\frac{S^2}{n \log S})$. In comparison, the empirical entropy rate requires at least $\Omega(S^2)$ samples to be consistent, even when the Markov chain is memoryless. In addition to synthetic experiments, we also apply the estimators that achieve the optimal sample complexity to estimate the entropy rate of the English language in the Penn Treebank and the Google One Billion Words corpora, which provides a natural benchmark for language modeling and relates it directly to the widely used perplexity measure.",https://neurips.cc//virtual/2018/poster/11929,2018,NeurIPS,No,, Mesh-TensorFlow: Deep Learning for Supercomputers,"Batch-splitting (data-parallelism) is the dominant distributed Deep Neural Network (DNN) training strategy, due to its universal applicability and its amenability to Single-Program-Multiple-Data (SPMD) programming. However, batch-splitting suffers from problems including the inability to train very large models (due to memory constraints), high latency, and inefficiency at small batch sizes. All of these can be solved by more general distribution strategies (model-parallelism). Unfortunately, efficient model-parallel algorithms tend to be complicated to discover, describe, and to implement, particularly on large clusters. We introduce Mesh-TensorFlow, a language for specifying a general class of distributed tensor computations. Where data-parallelism can be viewed as splitting tensors and operations along the ""batch"" dimension, in Mesh-TensorFlow, the user can specify any tensor-dimensions to be split across any dimensions of a multi-dimensional mesh of processors. A Mesh-TensorFlow graph compiles into a SPMD program consisting of parallel operations coupled with collective communication primitives such as Allreduce. We use Mesh-TensorFlow to implement an efficient data-parallel, model-parallel version of the Transformer sequence-to-sequence model. Using TPU meshes of up to 512 cores, we train Transformer models with up to 5 billion parameters, surpassing SOTA results on WMT'14 English-to-French translation task and the one-billion-word Language modeling benchmark. Mesh-Tensorflow is available at https://github.com/tensorflow/mesh",https://neurips.cc//virtual/2018/poster/11985,2018,NeurIPS,No,, Deep Equilibrium Models,"We present a new approach to modeling sequential data: the deep equilibrium model (DEQ). Motivated by an observation that the hidden layers of many existing deep sequence models converge towards some fixed point, we propose the DEQ approach that directly finds these equilibrium points via root-finding. Such a method is equivalent to running an infinite depth (weight-tied) feedforward network, but has the notable advantage that we can analytically backpropagate through the equilibrium point using implicit differentiation. Using this approach, training and prediction in these networks require only constant memory, regardless of the effective “depth” of the network. We demonstrate how DEQs can be applied to two state-of-the-art deep sequence models: self-attention transformers and trellis networks. On large-scale language modeling tasks, such as the WikiText-103 benchmark, we show that DEQs 1) often improve performance over these state-of-the-art models (for similar parameter counts); 2) have similar computational requirements to existing models; and 3) vastly reduce memory consumption (often the bottleneck for training large sequence models), demonstrating an up-to 88% memory reduction in our experiments. The code is available at https://github.com/locuslab/deq.",https://neurips.cc//virtual/2019/poster/14487,2019,NeurIPS,No,, Mixtape: Breaking the Softmax Bottleneck Efficiently,"The softmax bottleneck has been shown to limit the expressiveness of neural language models. Mixture of Softmaxes (MoS) is an effective approach to address such a theoretical limitation, but are expensive compared to softmax in terms of both memory and time. We propose Mixtape, an output layer that breaks the softmax bottleneck more efficiently with three novel techniques---logit space vector gating, sigmoid tree decomposition, and gate sharing. On four benchmarks including language modeling and machine translation, the Mixtape layer substantially improves the efficiency over the MoS layer by 3.5x to 10.5x while obtaining similar performance. A network equipped with Mixtape is only 20% to 34% slower than a softmax-based network with 10-30K vocabulary sizes, and outperforms softmax in perplexity and translation quality.",https://neurips.cc//virtual/2019/poster/13702,2019,NeurIPS,No,, Neural Shuffle-Exchange Networks - Sequence Processing in O(n log n) Time,"A key requirement in sequence to sequence processing is the modeling of long range dependencies. To this end, a vast majority of the state-of-the-art models use attention mechanism which is of O(n^2) complexity that leads to slow execution for long sequences. We introduce a new Shuffle-Exchange neural network model for sequence to sequence tasks which have O(log n) depth and O(n log n) total complexity. We show that this model is powerful enough to infer efficient algorithms for common algorithmic benchmarks including sorting, addition and multiplication. We evaluate our architecture on the challenging LAMBADA question answering dataset and compare it with the state-of-the-art models which use attention. Our model achieves competitive accuracy and scales to sequences with more than a hundred thousand of elements. We are confident that the proposed model has the potential for building more efficient architectures for processing large interrelated data in language modeling, music generation and other application domains. ",https://neurips.cc//virtual/2019/poster/13772,2019,NeurIPS,No,, Unified Language Model Pre-training for Natural Language Understanding and Generation,"This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.",https://neurips.cc//virtual/2019/poster/14249,2019,NeurIPS,No,, Cross-lingual Retrieval for Iterative Self-Supervised Training,"Recent studies have demonstrated the cross-lingual alignment ability of multilingual pretrained language models. In this work, we found that the cross-lingual alignment can be further improved by training seq2seq models on sentence pairs mined using their own encoder outputs. We utilized these findings to develop a new approach --- cross-lingual retrieval for iterative self-supervised training (CRISS), where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time. Using this method, we achieved state-of-the-art unsupervised machine translation results on 9 language directions with an average improvement of 2.4 BLEU, and on the Tatoeba sentence retrieval task in the XTREME benchmark on 16 languages with an average improvement of 21.5% in absolute accuracy. Furthermore, CRISS also brings an additional 1.8 BLEU improvement on average compared to mBART, when finetuned on supervised machine translation downstream tasks. ",https://neurips.cc//virtual/2020/poster/18423,2020,NeurIPS,No,, MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers,"Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.",https://neurips.cc//virtual/2020/poster/17311,2020,NeurIPS,No,, Top-KAST: Top-K Always Sparse Training,"Sparse neural networks are becoming increasingly important as the field seeks to improve the performance of existing models by scaling them up, while simultaneously trying to reduce power consumption and computational footprint. Unfortunately, most existing methods for inducing performant sparse models still entail the instantiation of dense parameters, or dense gradients in the backward-pass, during training. For very large models this requirement can be prohibitive. In this work we propose Top-KAST, a method that preserves constant sparsity throughout training (in both the forward and backward-passes). We demonstrate the efficacy of our approach by showing that it performs comparably to or better than previous works when training models on the established ImageNet benchmark, whilst fully maintaining sparsity. In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling where the current best performing architectures tend to have tens of billions of parameters and scaling up does not yet seem to have saturated performance. Sparse versions of these architectures can be run with significantly fewer resources, making them more widely accessible and applicable. Furthermore, in addition to being effective, our approach is straightforward and can easily be implemented in a wide range of existing machine learning frameworks with only a few additional lines of code. We therefore hope that our contribution will help enable the broader community to explore the potential held by massive models, without incurring massive computational cost.",https://neurips.cc//virtual/2020/poster/18830,2020,NeurIPS,No,, Uncertainty-aware Self-training for Few-shot Text Classification,"Recent success of pre-trained language models crucially hinges on fine-tuning them on large amounts of labeled data for the downstream task, that are typically expensive to acquire or difficult to access for many applications. We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck by making use of large-scale unlabeled data for the target task. Standard self-training mechanism randomly samples instances from the unlabeled pool to generate pseudo-labels and augment labeled data. We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network leveraging recent advances in Bayesian deep learning. Specifically, we propose (i) acquisition functions to select instances from the unlabeled pool leveraging Monte Carlo (MC) Dropout, and (ii) learning mechanism leveraging model confidence for self-training. As an application, we focus on text classification with five benchmark datasets. We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation perform within 3% of fully supervised pre-trained language models fine-tuned on thousands of labels with an aggregate accuracy of 91% and improvement of up to 12% over baselines.",https://neurips.cc//virtual/2020/poster/17421,2020,NeurIPS,No,, Compacter: Efficient Low-Rank Hypercomplex Adapter Layers,"Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work has developed parameter-efficient fine-tuning methods, but these approaches either still require a relatively large number of parameters or underperform standard fine-tuning. In this work, we propose Compacter, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work. Compacter accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers.Specifically, Compacter inserts task-specific weight matrices into a pretrained model's weights, which are computed efficiently as a sum of Kronecker products between shared ``slow'' weights and ``fast'' rank-one matrices defined per Compacter layer. By only training 0.047% of a pretrained model's parameters, Compacter performs on par with standard fine-tuning on GLUE and outperforms standard fine-tuning on SuperGLUE and low-resource settings. Our code is publicly available at https://github.com/rabeehk/compacter. ",https://neurips.cc//virtual/2021/poster/27655,2021,NeurIPS,No,, Decrypting Cryptic Crosswords: Semantically Complex Wordplay Puzzles as a Target for NLP,"Cryptic crosswords, the dominant crossword variety in the UK, are a promising target for advancing NLP systems that seek to process semantically complex, highly compositional language. Cryptic clues read like fluent natural language but are adversarially composed of two parts: a definition and a wordplay cipher requiring character-level manipulations. Expert humans use creative intelligence to solve cryptics, flexibly combining linguistic, world, and domain knowledge. In this paper, we make two main contributions. First, we present a dataset of cryptic clues as a challenging new benchmark for NLP systems that seek to process compositional language in more creative, human-like ways. After showing that three non-neural approaches and T5, a state-of-the-art neural language model, do not achieve good performance, we make our second main contribution: a novel curriculum approach, in which the model is first fine-tuned on related tasks such as unscrambling words. We also introduce a challenging data split, examine the meta-linguistic capabilities of subword-tokenized models, and investigate model systematicity by perturbing the wordplay part of clues, showing that T5 exhibits behavior partially consistent with human solving strategies. Although our curricular approach considerably improves on the T5 baseline, our best-performing model still fails to generalize to the extent that humans can. Thus, cryptic crosswords remain an unsolved challenge for NLP systems and a potential source of future innovation.",https://neurips.cc//virtual/2021/poster/26791,2021,NeurIPS,Yes,Language,Methodological FLEX: Unifying Evaluation for Few-Shot NLP,"Few-shot NLP research is highly active, yet conducted in disjoint research threads with evaluation suites that lack challenging-yet-realistic testing setups and fail to employ careful experimental design. Consequently, the community does not know which techniques perform best or even if they outperform simple baselines. In response, we formulate the FLEX Principles, a set of requirements and best practices for unified, rigorous, valid, and cost-sensitive few-shot NLP evaluation. These principles include Sample Size Design, a novel approach to benchmark design that optimizes statistical accuracy and precision while keeping evaluation costs manageable. Following the principles, we release the FLEX benchmark, which includes four few-shot transfer settings, zero-shot evaluation, and a public leaderboard that covers diverse NLP tasks. In addition, we present UniFew, a prompt-based model for few-shot learning that unifies pretraining and finetuning prompt formats, eschewing complex machinery of recent prompt-based approaches in adapting downstream task formats to language model pretraining objectives. We demonstrate that despite simplicity, UniFew achieves results competitive with both popular meta-learning and prompt-based approaches.",https://neurips.cc//virtual/2021/poster/26580,2021,NeurIPS,Yes,Language,Methodological FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention,"We propose FMMformers, a class of efficient and flexible transformers inspired by the celebrated fast multipole method (FMM) for accelerating interacting particle simulation. FMM decomposes particle-particle interaction into near-field and far-field components and then performs direct and coarse-grained computation, respectively. Similarly, FMMformers decompose the attention into near-field and far-field attention, modeling the near-field attention by a banded matrix and the far-field attention by a low-rank matrix. Computing the attention matrix for FMMformers requires linear complexity in computational time and memory footprint with respect to the sequence length. In contrast, standard transformers suffer from quadratic complexity. We analyze and validate the advantage of FMMformers over the standard transformer on the Long Range Arena and language modeling benchmarks. FMMformers can even outperform the standard transformer in terms of accuracy by a significant margin. For instance, FMMformers achieve an average classification accuracy of $60.74\%$ over the five Long Range Arena tasks, which is significantly better than the standard transformer's average accuracy of $58.70\%$.",https://neurips.cc//virtual/2021/poster/27282,2021,NeurIPS,No,, GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph,"The representation learning on textual graph is to generate low-dimensional embeddings for the nodes based on the individual textual features and the neighbourhood information. Recent breakthroughs on pretrained language models and graph neural networks push forward the development of corresponding techniques. The existing works mainly rely on the cascaded model architecture: the textual features of nodes are independently encoded by language models at first; the textual embeddings are aggregated by graph neural networks afterwards. However, the above architecture is limited due to the independent modeling of textual features. In this work, we propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models. With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow, making each node's semantic accurately comprehended from the global perspective. In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph. Extensive evaluations are conducted on three large-scale benchmark datasets, where GraphFormers outperform the SOTA baselines with comparable running efficiency. The source code is released at https://github.com/microsoft/GraphFormers .",https://neurips.cc//virtual/2021/poster/28374,2021,NeurIPS,No,, Long-Short Transformer: Efficient Transformers for Language and Vision,"Transformers have achieved success in both language and vision domains. However, it is prohibitively expensive to scale them to long sequences such as long documents or high-resolution images, because self-attention mechanism has quadratic time and memory complexities with respect to the input sequence length. In this paper, we propose Long-Short Transformer (Transformer-LS), an efficient self-attention mechanism for modeling long sequences with linear complexity for both language and vision tasks. It aggregates a novel long-range attention with dynamic projection to model distant correlations and a short-term attention to capture fine-grained local correlations. We propose a dual normalization strategy to account for the scale mismatch between the two attention mechanisms. Transformer-LS can be applied to both autoregressive and bidirectional models without additional complexity. Our method outperforms the state-of-the-art models on multiple tasks in language and vision domains, including the Long Range Arena benchmark, autoregressive language modeling, and ImageNet classification. For instance, Transformer-LS achieves 0.97 test BPC on enwik8 using half the number of parameters than previous method, while being faster and is able to handle 3x as long sequences compared to its full-attention version on the same hardware. On ImageNet, it can obtain the state-of-the-art results (e.g., a moderate size of 55.8M model solely trained on 224x224 ImageNet-1K can obtain Top-1 accuracy 84.1%), while being more scalable on high-resolution images. The source code and models are released at https://github.com/NVIDIA/transformer-ls.",https://neurips.cc//virtual/2021/poster/26816,2021,NeurIPS,No,, Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis,"We describe a novel attribution method which is grounded in Sensitivity Analysis and uses Sobol indices. Beyond modeling the individual contributions of image regions, Sobol indices provide an efficient way to capture higher-order interactions between image regions and their contributions to a neural network's prediction through the lens of variance.We describe an approach that makes the computation of these indices efficient for high-dimensional problems by using perturbation masks coupled with efficient estimators to handle the high dimensionality of images.Importantly, we show that the proposed method leads to favorable scores on standard benchmarks for vision (and language models) while drastically reducing the computing time compared to other black-box methods -- even surpassing the accuracy of state-of-the-art white-box methods which require access to internal representations. Our code is freely available:github.com/fel-thomas/Sobol-Attribution-Method.",https://neurips.cc//virtual/2021/poster/26522,2021,NeurIPS,No,, Luna: Linear Unified Nested Attention,"The quadratic computational and memory complexities of the Transformer's attention mechanism have limited its scalability for modeling long sequences. In this paper, we propose Luna, a linear unified nested attention mechanism that approximates softmax attention with two nested linear attention functions, yielding only linear (as opposed to quadratic) time and space complexity. Specifically, with the first attention function, Luna packs the input sequence into a sequence of fixed length. Then, the packed sequence is unpacked using the second attention function. As compared to a more traditional attention mechanism, Luna introduces an additional sequence with a fixed length as input and an additional corresponding output, which allows Luna to perform attention operation linearly, while also storing adequate contextual information. We perform extensive evaluations on three benchmarks of sequence modeling tasks: long-context sequence modelling, neural machine translation and masked language modeling for large-scale pretraining. Competitive or even better experimental results demonstrate both the effectiveness and efficiency of Luna compared to a variety of strong baseline methods including the full-rank attention and other efficient sparse and dense attention methods. ",https://neurips.cc//virtual/2021/poster/28250,2021,NeurIPS,No,, Mind the Gap: Assessing Temporal Generalization in Neural Language Models,"Our world is open-ended, non-stationary, and constantly evolving; thus what we talk about and how we talk about it change over time. This inherent dynamic nature of language contrasts with the current static language modelling paradigm, which trains and evaluates models on utterances from overlapping time periods. Despite impressive recent progress, we demonstrate that Transformer-XL language models perform worse in the realistic setup of predicting future utterances from beyond their training period, and that model performance becomes increasingly worse with time. We find that, while increasing model size alone—a key driver behind recent progress—does not solve this problem, having models that continually update their knowledge with new information can indeed mitigate this performance degradation over time. Hence, given the compilation of ever-larger language modelling datasets, combined with the growing list of language-model-based NLP applications that require up-to-date factual knowledge about the world, we argue that now is the right time to rethink the static way in which we currently train and evaluate our language models, and develop adaptive language models that can remain up-to-date with respect to our ever-changing and non-stationary world. We publicly release our dynamic, streaming language modelling benchmarks for WMT and arXiv to facilitate language model evaluation that takes temporal dynamics into account.",https://neurips.cc//virtual/2021/poster/27433,2021,NeurIPS,Yes,Language,Methodological Multilingual Pre-training with Universal Dependency Learning,"The pre-trained language model (PrLM) demonstrates domination in downstream natural language processing tasks, in which multilingual PrLM takes advantage of language universality to alleviate the issue of limited resources for low-resource languages. Despite its successes, the performance of multilingual PrLM is still unsatisfactory, when multilingual PrLMs only focus on plain text and ignore obvious universal linguistic structure clues. Existing PrLMs have shown that monolingual linguistic structure knowledge may bring about better performance. Thus we propose a novel multilingual PrLM that supports both explicit universal dependency parsing and implicit language modeling. Syntax in terms of universal dependency parse serves as not only pre-training objective but also learned representation in our model, which brings unprecedented PrLM interpretability and convenience in downstream task use. Our model outperforms two popular multilingual PrLM, multilingual-BERT and XLM-R, on cross-lingual natural language understanding (NLU) benchmarks and linguistic structure parsing datasets, demonstrating the effectiveness and stronger cross-lingual modeling capabilities of our approach.",https://neurips.cc//virtual/2021/poster/28627,2021,NeurIPS,No,, Multimodal Few-Shot Learning with Frozen Language Models,"When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model presented with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of any number of interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.",https://neurips.cc//virtual/2021/poster/27148,2021,NeurIPS,No,, SalKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning,"Augmenting pre-trained language models with knowledge graphs (KGs) has achieved success on various commonsense reasoning tasks. However, for a given task instance, the KG, or certain parts of the KG, may not be useful. Although KG-augmented models often use attention to focus on specific KG components, the KG is still always used, and the attention mechanism is never explicitly taught which KG components should be used. Meanwhile, saliency methods can measure how much a KG feature (e.g., graph, node, path) influences the model to make the correct prediction, thus explaining which KG features are useful. This paper explores how saliency explanations can be used to improve KG-augmented models' performance. First, we propose to create coarse (Is the KG useful?) and fine (Which nodes/paths in the KG are useful?) saliency explanations. Second, to motivate saliency-based supervision, we analyze oracle KG-augmented models which directly use saliency explanations as extra inputs for guiding their attention. Third, we propose SalKG, a framework for KG-augmented models to learn from coarse and/or fine saliency explanations. Given saliency explanations created from a task's training set, SalKG jointly trains the model to predict the explanations, then solve the task by attending to KG features highlighted by the predicted explanations. On three popular commonsense QA benchmarks (CSQA, OBQA, CODAH) and a range of KG-augmented models, we show that SalKG can yield considerable performance gains --- up to 2.76% absolute improvement on CSQA.",https://neurips.cc//virtual/2021/poster/26869,2021,NeurIPS,No,, A Contrastive Framework for Neural Text Generation,"Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g., beam search) of neural language models often lead to degenerate solutions---the generated text is unnatural and contains undesirable repetitions. Existing approaches introduce stochasticity via sampling or modify training objectives to decrease the probabilities of certain tokens (e.g., unlikelihood training). However, they often lead to solutions that lack coherence. In this work, we show that an underlying reason for model degeneration is the anisotropic distribution of token representations. We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method---contrastive search---to encourage diversity while maintaining coherence in the generated text. Extensive experiments and analyses on three benchmarks from two languages demonstrate that our proposed approach outperforms state-of-the-art text generation methods as evaluated by both human and automatic metrics.",https://neurips.cc//virtual/2022/poster/55092,2022,NeurIPS,No,, AD-DROP: Attribution-Driven Dropout for Robust Language Model Fine-Tuning,"Fine-tuning large pre-trained language models on downstream tasks is apt to suffer from overfitting when limited training data is available. While dropout proves to be an effective antidote by randomly dropping a proportion of units, existing research has not examined its effect on the self-attention mechanism. In this paper, we investigate this problem through self-attention attribution and find that dropping attention positions with low attribution scores can accelerate training and increase the risk of overfitting. Motivated by this observation, we propose Attribution-Driven Dropout (AD-DROP), which randomly discards some high-attribution positions to encourage the model to make predictions by relying more on low-attribution positions to reduce overfitting. We also develop a cross-tuning strategy to alternate fine-tuning and AD-DROP to avoid dropping high-attribution positions excessively. Extensive experiments on various benchmarks show that AD-DROP yields consistent improvements over baselines. Analysis further confirms that AD-DROP serves as a strategic regularizer to prevent overfitting during fine-tuning.",https://neurips.cc//virtual/2022/poster/54620,2022,NeurIPS,No,, A Large Scale Search Dataset for Unbiased Learning to Rank,"The unbiased learning to rank (ULTR) problem has been greatly advanced by recent deep learning techniques and well-designed debias algorithms. However, promising results on the existing benchmark datasets may not be extended to the practical scenario due to some limitations of existing datasets. First, their semantic feature extractions are outdated while state-of-the-art large-scale pre-trained language models like BERT cannot be utilized due to the lack of original text. Second, display features are incomplete; thus in-depth study on ULTR is impossible such as the displayed abstract for analyzing the click necessary bias. Third, synthetic user feedback has been adopted by most existing datasets and real-world user feedback is greatly missing. To overcome these disadvantages, we introduce the Baidu-ULTR dataset. It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries(397,572 query document pairs). Baidu-ULTR is the first billion-level dataset for ULTR. Particularly, it offers: (1)the original semantic features and pre-trained language models of different sizes; (2)sufficient display information such as position, displayed height, and displayed abstract, enabling the comprehensive study of multiple displayed biases; and (3)rich user feedback on search result pages (SERPs) like dwelling time, allowing for user engagement optimization and promoting the exploration of multi-task learning in ULTR. Furthermore, we present the design principle of Baidu-ULTR and the performance of representative ULTR algorithms on Baidu-ULTR. The Baidu-ULTR dataset and corresponding baseline implementations are available at https://github.com/ChuXiaokai/baidu_ultr_dataset. The dataset homepage is available at https://searchscience.baidu.com/dataset.html.",https://neurips.cc//virtual/2022/poster/55768,2022,NeurIPS,Yes,Language,Benchmark A Multi-Task Benchmark for Korean Legal Language Understanding and Judgement Prediction,"The recent advances of deep learning have dramatically changed how machine learning, especially in the domain of natural language processing, can be applied to legal domain. However, this shift to the data-driven approaches calls for larger and more diverse datasets, which are nevertheless still small in number, especially in non-English languages. Here we present the first large-scale benchmark of Korean legal AI datasets, LBOX OPEN, that consists of one legal corpus, two classification tasks, two legal judgement prediction (LJP) tasks, and one summarization task. The legal corpus consists of 147k Korean precedents (259M tokens), of which 63k are sentenced in last 4 years and 96k are from the first and the second level courts in which factual issues are reviewed. The two classification tasks are case names (11.3k) and statutes (2.8k) prediction from the factual description of individual cases. The LJP tasks consist of (1) 10.5k criminal examples where the model is asked to predict fine amount, imprisonment with labor, and imprisonment without labor ranges for the given facts, and (2) 4.7k civil examples where the inputs are facts and claim for relief and outputs are the degrees of claim acceptance. The summarization task consists of the Supreme Court precedents and the corresponding summaries (20k). We also release realistic variants of the datasets by extending the domain (1) to infrequent case categories in case name (31k examples) and statute (17.7k) classification tasks, and (2) to long input sequences in the summarization task (51k). Finally, we release LCUBE, the first Korean legal language model trained on the legal corpus from this study. Given the uniqueness of the Law of South Korea and the diversity of the legal tasks covered in this work, we believe that LBOX OPEN contributes to the multilinguality of global legal research. LBOX OPEN and LCUBE will be publicly available.",https://neurips.cc//virtual/2022/poster/55740,2022,NeurIPS,Yes,Language,Benchmark An empirical analysis of compute-optimal large language model training,"We investigate the optimal model size and number of tokens for training a transformer language model under a given compute budget. We find that current large language models are significantly undertrained, a consequence of the recent focus on scaling language models whilst keeping the amount of training data constant. By training over 400 language models ranging from 70 million to over 16 billion parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and the number of training tokens should be scaled equally: for every doubling of model size the number of training tokens should also be doubled. We test this hypothesis by training a predicted compute-optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and 4$\times$ more data. Chinchilla uniformly and significantly outperformsGopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, a 7% improvement over Gopher. ",https://neurips.cc//virtual/2022/poster/53031,2022,NeurIPS,No,, Autoformalization with Large Language Models,"Autoformalization is the process of automatically translating from natural language mathematics to formal specifications and proofs. A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence.While the long-term goal of autoformalization seemed elusive for a long time, we show large language models provide new prospects towards this goal. We make the surprising observation that LLMs can correctly translate a significant portion ($25.3\%$) of mathematical competition problems perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness of this process by improving a previously introduced neural theorem prover via training on these autoformalized theorems. Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from~$29.6\%$ to~$35.2\%$.",https://neurips.cc//virtual/2022/poster/52916,2022,NeurIPS,No,, Autoregressive Search Engines: Generating Substrings as Document Identifiers,"Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code available in the supplementary materials. Pre-trained models will be made available.",https://neurips.cc//virtual/2022/poster/54916,2022,NeurIPS,No,, Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,"We explore how generating a chain of thought---a series of intermediate reasoning steps---significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.",https://neurips.cc//virtual/2022/poster/54087,2022,NeurIPS,No,, Characteristics of Harmful Text: Towards Rigorous Benchmarking of Language Models,"Large language models produce human-like text that drive a growing number of applications. However, recent literature and, increasingly, real world observations, have demonstrated that these models can generate language that is toxic, biased, untruthful or otherwise harmful. Though work to evaluate language model harms is under way, translating foresight about which harms may arise into rigorous benchmarks is not straightforward. To facilitate this translation, we outline six ways of characterizing harmful text which merit explicit consideration when designing new benchmarks. We then use these characteristics as a lens to identify trends and gaps in existing benchmarks. Finally, we apply them in a case study of the Perspective API, a toxicity classifier that is widely used in harm benchmarks. Our characteristics provide one piece of the bridge that translates between foresight and effective evaluation.",https://neurips.cc//virtual/2022/poster/55750,2022,NeurIPS,No,, CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks,"Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating ""catastrophic forgetting"", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.",https://neurips.cc//virtual/2022/poster/55711,2022,NeurIPS,Yes,Multimodal, CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning,"Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model from natural language problem descriptions and ground-truth programs only. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus results in poor performance when solving complex unseen coding tasks. We propose “CodeRL” to address the limitations, a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.",https://neurips.cc//virtual/2022/poster/53512,2022,NeurIPS,No,, Differentially Private Model Compression,"Recent papers have shown that large pre-trained language models (LLMs) such as BERT, GPT-2 can be fine-tuned on private data to achieve performance comparable to non-private models for many downstream Natural Language Processing (NLP) tasks while simultaneously guaranteeing differential privacy. The inference cost of these models -- which consist of hundreds of millions of parameters -- however, can be prohibitively large. Hence, often in practice, LLMs are compressed before they are deployed in specific applications. In this paper, we initiate the study of differentially private model compression and propose frameworks for achieving 50% sparsity levels while maintaining nearly full performance. We demonstrate these ideas on standard GLUE benchmarks using BERT models, setting benchmarks for future research on this topic.",https://neurips.cc//virtual/2022/poster/54965,2022,NeurIPS,Yes,Language,Methodological Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning,"Few-shot in-context learning (ICL) enables pre-trained language models to perform a previously-unseen task without any gradient-based training by feeding a small number of training examples as part of the input. ICL incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made. Parameter-efficient fine-tuning (PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task. In this paper, we rigorously compare few-shot ICL and PEFT and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs. Along the way, we introduce a new PEFT method called (IA)^3 that scales activations by learned vectors, attaining stronger performance while only introducing a relatively tiny amount of new parameters. We also propose a simple recipe based on the T0 model called T-Few that can be applied to new tasks without task-specific tuning or modifications. We validate the effectiveness of T-Few on completely unseen tasks by applying it to the RAFT benchmark, attaining super-human performance for the first time and outperforming the state-of-the-art by 6% absolute. All of the code used in our experiments will be publicly available.",https://neurips.cc//virtual/2022/poster/54470,2022,NeurIPS,No,, Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models,"Traditional knowledge distillation (KD) methods manually design student architectures to compress large models given pre-specified computational cost. This requires several trials to find viable students, and repeating the process with change in computational budget. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Existing NAS methods train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Additionally, many of these works are task-specific requiring task labels for SuperLM training. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (e.g., K=3 can generate typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark demonstrate AutoDistil to outperform state-of-the-art KD and NAS methods with upto 3x reduction in computational cost and negligible loss in task performance. Code and model checkpoints are available at https://github.com/microsoft/autodistil.",https://neurips.cc//virtual/2022/poster/53671,2022,NeurIPS,No,, Fine-Tuning Pre-Trained Language Models Effectively by Optimizing Subnetworks Adaptively,"Large-scale pre-trained language models have achieved impressive results on a wide range of downstream tasks recently. However, fine-tuning an extremely large-scale pre-trained language model on limited target datasets is often plagued by overfitting and representation degradation. In this paper, we propose a Dynamic Parameter Selection (DPS) algorithm for the large-scale pre-trained models during fine-tuning, which adaptively selects a more promising subnetwork to perform staging updates based on gradients of back-propagation. Experiments on the GLUE benchmark show that DPS outperforms previous fine-tuning methods in terms of overall performance and stability, and consistently achieves better results with variable pre-trained language models. In addition, DPS brings a large magnitude of improvement in out-of-domain transferring experiments and low-resource scenarios, which shows that it can maintain stable general contextual features and reduce the representation collapse. We release our code at \url{https://github.com/ZhangHaojie077/DPS}.",https://neurips.cc//virtual/2022/poster/54017,2022,NeurIPS,No,, Flamingo: a Visual Language Model for Few-Shot Learning,"Building models that can be rapidly adapted to novel tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. We propose key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of our models, exploring and measuring their ability to rapidly adapt to a variety of image and video tasks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or an event, and close-ended tasks such as multiple-choice visual question-answering. For tasks lying anywhere on this spectrum, a single Flamingo model can achieve a new state of the art with few-shot learning, simply by prompting the model with task-specific examples. On numerous benchmarks, Flamingo outperforms models fine-tuned on thousands of times more task-specific data.",https://neurips.cc//virtual/2022/poster/54165,2022,NeurIPS,No,, Foundation Posteriors for Approximate Probabilistic Inference,"Probabilistic programs provide an expressive representation language for generative models. Given a probabilistic program, we are interested in the task of posterior inference: estimating a latent variable given a set of observed variables. Existing techniques for inference in probabilistic programs often require choosing many hyper-parameters, are computationally expensive, and/or only work for restricted classes of programs. Here we formulate inference as masked language modeling: given a program, we generate a supervised dataset of variables and assignments, and randomly mask a subset of the assignments. We then train a neural network to unmask the random values, defining an approximate posterior distribution. By optimizing a single neural network across a range of programs we amortize the cost of training, yielding a ""foundation"" posterior able to do zero-shot inference for new programs. The foundation posterior can also be fine-tuned for a particular program and dataset by optimizing a variational inference objective. We show the efficacy of the approach, zero-shot and fine-tuned, on a benchmark of STAN programs.",https://neurips.cc//virtual/2022/poster/54118,2022,NeurIPS,No,, Generating Training Data with Language Models: Towards Zero-Shot Language Understanding,"Pretrained language models (PLMs) have demonstrated remarkable performance in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are well known for their superior text generation capabilities; bidirectional PLMs (e.g., BERT) have been the prominent choice for natural language understanding (NLU) tasks. While both types of models have achieved promising few-shot learning performance, their potential for zero-shot learning has been underexplored. In this paper, we present a simple approach that uses both types of PLMs for fully zero-shot learning of NLU tasks without requiring any task-specific data: A unidirectional PLM generates class-conditioned texts guided by prompts, which are used as the training data for fine-tuning a bidirectional PLM. With quality training data selected based on the generation probability and regularization techniques (label smoothing and temporal ensembling) applied to the fine-tuning stage for better generalization and stability, our approach demonstrates strong performance across seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and achieving even comparable results to strong few-shot approaches using 32 training samples per class.",https://neurips.cc//virtual/2022/poster/52982,2022,NeurIPS,No,, Large Language Models are Zero-Shot Reasoners,"Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding ``Let's think step by step'' before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large-scale InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.",https://neurips.cc//virtual/2022/poster/54287,2022,NeurIPS,No,, LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model,"Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying.",https://neurips.cc//virtual/2022/poster/55147,2022,NeurIPS,No,, Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering,"When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io.",https://neurips.cc//virtual/2022/poster/54469,2022,NeurIPS,Yes,Multimodal, NaturalProver: Grounded Mathematical Proof Generation with Language Models,"Theorem proving in natural mathematical language – the mixture of symbolic and natural language used by humans – plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.",https://neurips.cc//virtual/2022/poster/53914,2022,NeurIPS,No,, On the Representation Collapse of Sparse Mixture of Experts,"Sparse mixture of experts provides larger model capacity while requiring a constant computational overhead. It employs the routing mechanism to distribute input tokens to the best-matched experts according to their hidden representations. However, learning such a routing mechanism encourages token clustering around expert centroids, implying a trend toward representation collapse. In this work, we propose to estimate the routing scores between tokens and experts on a low-dimensional hypersphere. We conduct extensive experiments on cross-lingual language model pre-training and fine-tuning on downstream tasks. Experimental results across seven multilingual benchmarks show that our method achieves consistent gains. We also present a comprehensive analysis on the representation and routing behaviors of our models. Our method alleviates the representation collapse issue and achieves more consistent routing than the baseline mixture-of-experts methods.",https://neurips.cc//virtual/2022/poster/53300,2022,NeurIPS,No,, PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding,"We are now witnessing significant progress of deep learning methods in a variety of tasks (or datasets) of proteins. However, there is a lack of a standard benchmark to evaluate the performance of different methods, which hinders the progress of deep learning in this field. In this paper, we propose such a benchmark called PEER, a comprehensive and multi-task benchmark for Protein sEquence undERstanding. PEER provides a set of diverse protein understanding tasks including protein function prediction, protein localization prediction, protein structure prediction, protein-protein interaction prediction, and protein-ligand interaction prediction. We evaluate different types of sequence-based methods for each task including traditional feature engineering approaches, different sequence encoding methods as well as large-scale pre-trained protein language models. In addition, we also investigate the performance of these methods under the multi-task learning setting. Experimental results show that large-scale pre-trained protein language models achieve the best performance for most individual tasks, and jointly training multiple tasks further boosts the performance. The datasets and source codes of this benchmark will be open-sourced soon.",https://neurips.cc//virtual/2022/poster/55752,2022,NeurIPS,Yes,Language,Benchmark Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding,"We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g., T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment.",https://neurips.cc//virtual/2022/poster/55018,2022,NeurIPS,Yes,Multimodal, Relation-Constrained Decoding for Text Generation,"The dominant paradigm for neural text generation nowadays is seq2seq learning with large-scale pretrained language models. However, it is usually difficult to manually constrain the generation process of these models. Prior studies have introduced Lexically Constrained Decoding (LCD) to ensure the presence of pre-specified words or phrases in the output. However, simply applying lexical constraints has no guarantee of the grammatical or semantic relations between words. Thus, more elaborate constraints are needed. To this end, we first propose a new constrained decoding scenario named Relation-Constrained Decoding (RCD), which requires the model's output to contain several given word pairs with respect to the given relations between them. For this scenario, we present a novel plug-and-play decoding algorithm named RElation-guided probability Surgery and bEam ALlocation (RESEAL), which can handle different categories of relations, e.g., syntactical relations or factual relations. Moreover, RESEAL can adaptively ""reseal"" the relations to form a high-quality sentence, which can be applied to the inference stage of any autoregressive text generation model. To evaluate our method, we first construct an RCD benchmark based on dependency relations from treebanks with annotated dependencies. Experimental results demonstrate that our approach can achieve better preservation of the input dependency relations compared to previous methods. To further illustrate the effectiveness of RESEAL, we apply our method to three downstream tasks: sentence summarization, fact-based text editing, and data-to-text generation. We observe an improvement in generation quality. The source code is available at https://github.com/CasparSwift/RESEAL. ",https://neurips.cc//virtual/2022/poster/54627,2022,NeurIPS,Yes,Language,Methodological Revisiting Neural Scaling Laws in Language and Vision,"The remarkable progress in deep learning in recent years is largely driven by improvements in scale, where bigger models are trained on larger datasets for longer schedules. To predict the benefit of scale empirically, we argue for a more rigorous methodology based on the extrapolation loss, instead of reporting the best-fitting (interpolating) parameters. We then present a recipe for estimating scaling law parameters reliably from learning curves. We demonstrate that it extrapolates more accurately than previous methods in a wide range of architecture families across several domains, including image classification, neural machine translation (NMT) and language modeling, in addition to tasks from the BIG-Bench evaluation benchmark. Finally, we release a benchmark dataset comprising of 90 evaluation tasks to facilitate research in this domain. ",https://neurips.cc//virtual/2022/poster/53499,2022,NeurIPS,Yes,Language,Methodological Robustness Analysis of Video-Language Models Against Visual and Language Perturbations,"Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are more robust when text is perturbed versus when video is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.",https://neurips.cc//virtual/2022/poster/55743,2022,NeurIPS,Yes,Multimodal, Second Thoughts are Best: Learning to Re-Align With Human Values from Text Edits,"We present Second Thoughts, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thoughts not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.",https://neurips.cc//virtual/2022/poster/53809,2022,NeurIPS,No,, Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data,"Self-supervised learning techniques are celebrating immense success in natural language processing (NLP) by enabling models to learn from broad language data at unprecedented scales. Here, we aim to leverage the success of these techniques for mental state decoding, where researchers aim to identify specific mental states (e.g., the experience of anger or joy) from brain activity. To this end, we devise a set of novel self-supervised learning frameworks for neuroimaging data inspired by prominent learning frameworks in NLP. At their core, these frameworks learn the dynamics of brain activity by modeling sequences of activity akin to how sequences of text are modeled in NLP. We evaluate the frameworks by pre-training models on a broad neuroimaging dataset spanning functional Magnetic Resonance Imaging data from 11,980 experimental runs of 1,726 individuals across 34 datasets, and subsequently adapting the pre-trained models to benchmark mental state decoding datasets. The pre-trained models transfer well, generally outperforming baseline models trained from scratch, while models trained in a learning framework based on causal language modeling clearly outperform the others.",https://neurips.cc//virtual/2022/poster/54130,2022,NeurIPS,No,, TGEA 2.0: A Large-Scale Diagnostically Annotated Dataset with Benchmark Tasks for Text Generation of Pretrained Language Models,"In order to diagnostically analyze and improve the capability of pretrained language models (PLMs) in text generation, we propose TGEA 2.0, to date the largest dataset built on machine-authored texts by PLMs with fine-grained semantic annotations on a wide variety of pathological generation errors. We collect 170K nominal, phrasal and sentential prompts from 6M natural sentences in 3 domains. These prompts are fed into 4 generative PLMs with their best decoding strategy to generate paragraphs. 195,629 sentences are extracted from these generated paragraphs for manual annotation, where 36K erroneous sentences are detected, 42K erroneous spans are located and categorized into an error type defined in a two-level error taxonomy. We define a \textbf{Mi}nimal \textbf{S}et of \textbf{E}rror-related \textbf{W}ords (MiSEW) for each erroneous span, which not only provides error-associated words but also rationalizes the reasoning behind the error. Quality control with a pre-annotation and feedback loop is performed before and during the entire annotation process. With the diagnostically annotated dataset, we propose 5 diagnosis benchmark tasks (i.e., erroneous text detection, MiSEW extraction, erroneous span location and correction together with error type classification) and 2 pathology mitigation benchmark tasks (pairwise comparison and word prediction). Experiment results on these benchmark tasks demonstrate that TGEA 2.0 is a challenging dataset that could facilitate further research on automatic diagnosis and pathology mitigation over machine texts. The dataset will be publicly available at https://github.com/tjunlp-lab/TGEA/.",https://neurips.cc//virtual/2022/poster/55660,2022,NeurIPS,Yes,Language,Benchmark "This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish","The availability of compute and data to train larger and larger language models increases the demand for robust methods of benchmarking the true progress of LM training. Recent years witnessed significant progress in standardized benchmarking for English. Benchmarks such as GLUE, SuperGLUE, or KILT have become a de facto standard tools to compare large language models. Following the trend to replicate GLUE for other languages, the KLEJ benchmark\ (klej is the word for glue in Polish) has been released for Polish. In this paper, we evaluate the progress in benchmarking for low-resourced languages. We note that only a handful of languages have such comprehensive benchmarks. We also note the gap in the number of tasks being evaluated by benchmarks for resource-rich English/Chinese and the rest of the world.In this paper, we introduce LEPISZCZE (lepiszcze is the Polish word for glew, the Middle English predecessor of glue), a new, comprehensive benchmark for Polish NLP with a large variety of tasks and high-quality operationalization of the benchmark.We design LEPISZCZE with flexibility in mind. Including new models, datasets, and tasks is as simple as possible while still offering data versioning and model tracking. In the first run of the benchmark, we test 13 experiments (task and dataset pairs) based on the five most recent LMs for Polish. We use five datasets from the Polish benchmark and add eight novel datasets. As the paper's main contribution, apart from LEPISZCZE, we provide insights and experiences learned while creating the benchmark for Polish as the blueprint to design similar benchmarks for other low-resourced languages.",https://neurips.cc//virtual/2022/poster/55618,2022,NeurIPS,Yes,Language,Benchmark Towards Efficient Post-training Quantization of Pre-trained Language Models,"Network quantization has gained increasing attention with the rapid growth of large pre-trained language models~(PLMs). However, most existing quantization methods for PLMs follow quantization-aware training~(QAT) that requires end-to-end training with full access to the entire dataset. Therefore, they suffer from slow training, large memory overhead, and data accessibility issues. In this paper, we study post-training quantization~(PTQ) of PLMs, and propose module-wise quantization error minimization~(MREM), an efficient solution to mitigate these issues. By partitioning the PLM into multiple modules, we minimize the reconstruction error incurred by quantization for each module. In addition, we design a new model parallel training strategy such that each module can be trained locally on separate computing devices without waiting for preceding modules, which brings nearly the theoretical training speed-up (e.g., $4\times$ on $4$ GPUs). Experiments on GLUE and SQuAD benchmarks show that our proposed PTQ solution not only performs close to QAT, but also enjoys significant reductions in training time, memory overhead, and data consumption.",https://neurips.cc//virtual/2022/poster/53407,2022,NeurIPS,No,, Towards Improving Faithfulness in Abstractive Summarization,"Despite the success achieved in neural abstractive summarization based on pre-trained language models, one unresolved issue is that the generated summaries are not always faithful to the input document.There are two possible causes of the unfaithfulness problem: (1) the summarization model fails to understand or capture the gist of the input text, and (2) the model over-relies on the language model to generate fluent but inadequate words.In this work, we propose a Faithfulness Enhanced Summarization model (FES), which is designed for addressing these two problems and improving faithfulness in abstractive summarization.For the first problem, we propose to use question-answering (QA) to examine whether the encoder fully grasps the input document and can answer the questions on the key information in the input. The QA attention on the proper input words can also be used to stipulate how the decoder should attend to the source.For the second problem, we introduce a max-margin loss defined on the difference between the language and the summarization model, aiming to prevent the overconfidence of the language model.Extensive experiments on two benchmark summarization datasets, CNN/DM and XSum, demonstrate that our model significantly outperforms strong baselines.The evaluation of factual consistency also shows that our model generates more faithful summaries than baselines.",https://neurips.cc//virtual/2022/poster/54121,2022,NeurIPS,No,, WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents,"Most existing benchmarks for grounding language in interactive environments either lack realistic linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. We develop WebShop – a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. In this environment, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase a product given an instruction. WebShop provides several challenges including understanding compositional instructions, query (re-)formulation, dealing with noisy text in webpages, and performing strategic exploration. We collect over 1,600 human trajectories to first validate the benchmark, then train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which significantly outperforms rule heuristics but is far lower than expert human performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show our agent trained on WebShop exhibits non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of our benchmark for developing practical web agents that can operate in the wild.",https://neurips.cc//virtual/2022/poster/52872,2022,NeurIPS,Yes,Language,Benchmark WinoGAViL: Gamified Association Benchmark to Challenge Vision-and-Language Models,"While vision-and-language models perform well on tasks such as visual question answering, they struggle when it comes to basic human commonsense reasoning skills. In this work, we introduce WinoGAViL: an online game of vision-and-language associations (e.g., between werewolves and a full moon), used as a dynamic evaluation benchmark. Inspired by the popular card game Codenames, a spymaster gives a textual cue related to several visual candidates, and another player tries to identify them. Human players are rewarded for creating associations that are challenging for a rival AI model but still solvable by other human players. We use the game to collect 3.5K instances, finding that they are intuitive for humans (>90% Jaccard index) but challenging for state-of-the-art AI models, where the best model (ViLT) achieves a score of 52%, succeeding mostly where the cue is visually salient. Our analysis as well as the feedback we collect from players indicate that the collected associations require diverse reasoning skills, including general knowledge, common sense, abstraction, and more. We release the dataset, the code and the interactive game, allowing future data collection that can be used to develop models with better association abilities.",https://neurips.cc//virtual/2022/poster/55689,2022,NeurIPS,Yes,Multimodal, A Comprehensive Study on Text-attributed Graphs: Benchmarking and Rethinking,"Text-attributed graphs (TAGs) are prevalent in various real-world scenarios, where each node is associated with a text description. The cornerstone of representation learning on TAGs lies in the seamless integration of textual semantics within individual nodes and the topological connections across nodes. Recent advancements in pre-trained language models (PLMs) and graph neural networks (GNNs) have facilitated effective learning on TAGs, garnering increased research interest. However, the absence of meaningful benchmark datasets and standardized evaluation procedures for TAGs has impeded progress in this field. In this paper, we propose CS-TAG, a comprehensive and diverse collection of challenging benchmark datasets for TAGs. The CS-TAG datasets are notably large in scale and encompass a wide range of domains, spanning from citation networks to purchase graphs. In addition to building the datasets, we conduct extensive benchmark experiments over CS-TAG with various learning paradigms, including PLMs, GNNs, PLM-GNN co-training methods, and the proposed novel topological pre-training of language models. In a nutshell, we provide an overview of the CS-TAG datasets, standardized evaluation procedures, and present baseline experiments. The entire CS-TAG project is publicly accessible at \url{https://github.com/sktsherlock/TAG-Benchmark}.",https://neurips.cc//virtual/2023/poster/73479,2023,NeurIPS,Yes,Language,Benchmark Align Your Prompts: Test-Time Prompting with Distribution Alignment for Zero-Shot Generalization,"The promising zero-shot generalization of vision-language models such as CLIP has led to their adoption using prompt learning for numerous downstream tasks. Previous works have shown test-time prompt tuning using entropy minimization to adapt text prompts for unseen domains. While effective, this overlooks the key cause for performance degradation to unseen domains -- distribution shift. In this work, we explicitly handle this problem by aligning the out-of-distribution (OOD) test sample statistics to those of the source data using prompt tuning. We use a single test sample to adapt multi-modal prompts at test time by minimizing the feature distribution shift to bridge the gap in the test domain. Evaluating against the domain generalization benchmark, our method improves zero-shot top-1 accuracy beyond existing prompt-learning techniques, with a 3.08% improvement over the baseline MaPLe. In cross-dataset generalization with unseen categories across 10 datasets, our method improves consistently across all datasets compared to the existing state-of-the-art. Our source code and models are available at [https://jameelhassan.github.io/promptalign](https://jameelhassan.github.io/promptalign)",https://neurips.cc//virtual/2023/poster/72406,2023,NeurIPS,No,, AmadeusGPT: a natural language interface for interactive animal behavioral analysis,"The process of quantifying and analyzing animal behavior involves translating the naturally occurring descriptive language of their actions into machine-readable code. Yet, codifying behavior analysis is often challenging without deep understanding of animal behavior and technical machine learning knowledge. To limit this gap, we introduce AmadeusGPT: a natural language interface that turns natural language descriptions of behaviors into machine-executable code. Large-language models (LLMs) such as GPT3.5 and GPT4 allow for interactive language-based queries that are potentially well suited for making interactive behavior analysis. However, the comprehension capability of these LLMs is limited by the context window size, which prevents it from remembering distant conversations. To overcome the context window limitation, we implement a novel dual-memory mechanism to allow communication between short-term and long-term memory using symbols as context pointers for retrieval and saving. Concretely, users directly use language-based definitions of behavior and our augmented GPT develops code based on the core AmadeusGPT API, which contains machine learning, computer vision, spatio-temporal reasoning, and visualization modules. Users then can interactively refine results, and seamlessly add new behavioral modules as needed. We used the MABe 2022 behavior challenge tasks to benchmark AmadeusGPT and show excellent performance. Note, an end-user would not need to write any code to achieve this. Thus, collectively AmadeusGPT presents a novel way to merge deep biological knowledge, large-language models, and core computer vision modules into a more naturally intelligent system. Code and demos can be found at: https://github.com/AdaptiveMotorControlLab/AmadeusGPT",https://neurips.cc//virtual/2023/poster/72610,2023,NeurIPS,No,, An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement,"As societal awareness of climate change grows, corporate climate policy engagements are attracting attention.We propose a dataset to estimate corporate climate policy engagement from various PDF-formatted documents.Our dataset comes from LobbyMap (a platform operated by global think tank InfluenceMap) that provides engagement categories and stances on the documents.To convert the LobbyMap data into the structured dataset, we developed a pipeline using text extraction and OCR.Our contributions are: (i) Building an NLP dataset including 10K documents on corporate climate policy engagement. (ii) Analyzing the properties and challenges of the dataset. (iii) Providing experiments for the dataset using pre-trained language models.The results show that while Longformer outperforms baselines and other pre-trained models, there is still room for significant improvement.We hope our work begins to bridge research on NLP and climate change.",https://neurips.cc//virtual/2023/poster/73645,2023,NeurIPS,No,, Are Diffusion Models Vision-And-Language Reasoners?,"Text-conditioned image generation models have recently shown immense qualitative success using denoising diffusion processes. However, unlike discriminative vision-and-language models, it is a non-trivial task to subject these diffusion-based generative models to automatic fine-grained quantitative evaluation of high-level phenomena such as compositionality.Towards this goal, we perform two innovations. First, we transform diffusion-based models (in our case, Stable Diffusion) for any image-text matching (ITM) task using a novel method called DiffusionITM.Second, we introduce the Generative-Discriminative Evaluation Benchmark (GDBench) benchmark with 7 complex vision-and-language tasks, bias evaluation and detailed analysis.We find that Stable Diffusion + DiffusionITM is competitive on many tasks and outperforms CLIP on compositional tasks like like CLEVR and Winoground.We further boost its compositional performance with a transfer setup by fine-tuning on MS-COCO while retaining generative capabilities. We also measure the stereotypical bias in diffusion models, and find that Stable Diffusion 2.1 is, for the most part, less biased than Stable Diffusion 1.5.Overall, our results point in an exciting direction bringing discriminative and generative model evaluation closer. We will release code and benchmark setup soon.",https://neurips.cc//virtual/2023/poster/70890,2023,NeurIPS,Yes,Multimodal, Augmenting Language Models with Long-Term Memory,"Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents.",https://neurips.cc//virtual/2023/poster/72461,2023,NeurIPS,No,, AVIS: Autonomous Visual Information Seeking with Large Language Model Agent,"In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs via tree search, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as ""What event is commemorated by the building depicted in this image?"", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-based visual question answering benchmarks such as Infoseek and OK-VQA.",https://neurips.cc//virtual/2023/poster/72718,2023,NeurIPS,No,, Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks,"Neural network based computer vision systems are typically built on a backbone, a pretrained or randomly initialized feature extractor. Several years ago, the default option was an ImageNet-trained convolutional neural network. However, the recent past has seen the emergence of countless backbones pretrained using various algorithms and datasets. While this abundance of choice has led to performance increases for a range of systems, it is difficult for practitioners to make informed decisions about which backbone to choose. Battle of the Backbones (BoB) makes this choice easier by benchmarking a diverse suite of pretrained models, including vision-language models, those trained via self-supervised learning, and the Stable Diffusion backbone, across a diverse set of computer vision tasks ranging from classification to object detection to OOD generalization and more. Furthermore, BoB sheds light on promising directions for the research community to advance computer vision by illuminating strengths and weakness of existing approaches through a comprehensive analysis conducted on more than 1500 training runs. While vision transformers (ViTs) and self-supervised learning (SSL) are increasingly popular, we find that convolutional neural networks pretrained in a supervised fashion on large training sets still perform best on most tasks among the models we consider. Moreover, in apples-to-apples comparisons on the same architectures and similarly sized pretraining datasets, we find that SSL backbones are highly competitive, indicating that future works should perform SSL pretraining with advanced architectures and larger pretraining datasets. We release the raw results of our experiments along with code that allows researchers to put their own backbones through the gauntlet here: https://github.com/hsouri/Battle-of-the-Backbones.",https://neurips.cc//virtual/2023/poster/73713,2023,NeurIPS,Yes,Image, BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and Semantic Parsing,"Recent work has shown that generation from a prompted or fine-tuned language model can perform well at semantic parsing when the output is constrained to be a valid semantic representation. We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing, that includes context-free grammars for seven semantic parsing datasets and two syntactic parsing datasets with varied output meaning representations, as well as a constrained decoding interface to generate only valid outputs covered by these grammars. We provide low, medium, and high resource splits for each dataset, allowing accurate comparison of various language models under different data regimes. Our benchmark supports evaluation of language models using prompt-based learning as well as fine-tuning. We benchmark seven language models, including two GPT-3 variants available only through an API. Our experiments show that encoder-decoder pretrained language models can achieve similar performance or even surpass state-of-the-art methods for both syntactic and semantic parsing when the model output is constrained to be valid.",https://neurips.cc//virtual/2023/poster/73488,2023,NeurIPS,Yes,Language,Benchmark Benchmarking Large Language Models on CMExam - A comprehensive Chinese Medical Exam Dataset,"Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam, sourced from the Chinese National Medical Licensing Examination. CMExam consists of 60K+ multiple-choice questions for standardized and objective evaluations, as well as solution explanations for model reasoning evaluation in an open-ended manner. For in-depth analyses of LLMs, we invited medical professionals to label five additional question-wise annotations, including disease groups, clinical departments, medical disciplines, areas of competency, and question difficulty levels. Alongside the dataset, we further conducted thorough experiments with representative LLMs and QA algorithms on CMExam. The results show that GPT-4 had the best accuracy of 61.6% and a weighted F1 score of 0.617. These results highlight a great disparity when compared to human accuracy, which stood at 71.6%. For explanation tasks, while LLMs could generate relevant reasoning and demonstrate improved performance after finetuning, they fall short of a desired standard, indicating ample room for improvement. To the best of our knowledge, CMExam is the first Chinese medical exam dataset to provide comprehensive medical annotations. The experiments and findings of LLM evaluation also provide valuable insights into the challenges and potential solutions in developing Chinese medical QA systems and LLM evaluation pipelines.",https://neurips.cc//virtual/2023/poster/73638,2023,NeurIPS,Yes,Language,Benchmark Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models,"Various adaptation methods, such as LoRA, prompts, and adapters, have been proposed to enhance the performance of pre-trained vision-language models in specific domains. As test samples in real-world applications usually differ from adaptation data, the robustness of these adaptation methods against distribution shifts are essential. In this study, we assess the robustness of 11 widely-used adaptation methods across 4 vision-language datasets under multimodal corruptions. Concretely, we introduce 7 benchmark datasets, including 96 visual and 87 textual corruptions, to investigate the robustness of different adaptation methods, the impact of available adaptation examples, and the influence of trainable parameter size during adaptation. Our analysis reveals that: 1) Adaptation methods are more sensitive to text corruptions than visual corruptions. 2) Full fine-tuning does not consistently provide the highest robustness; instead, adapters can achieve better robustness with comparable clean performance. 3) Contrary to expectations, our findings indicate that increasing the number of adaptation data and parameters does not guarantee enhanced robustness; instead, it results in even lower robustness. We hope this study could benefit future research in the development of robust multimodal adaptation methods. The benchmark, code, and dataset used in this study can be accessed at https://adarobustness.github.io.",https://neurips.cc//virtual/2023/poster/73702,2023,NeurIPS,Yes,Multimodal, BERT Lost Patience Won't Be Robust to Adversarial Slowdown,"In this paper, we systematically evaluate the robustness of multi-exit language models against adversarial slowdown. To audit their robustness, we design a slowdown attack that generates natural adversarial text bypassing early-exit points. We use the resulting WAFFLE attack as a vehicle to conduct a comprehensive evaluation of three multi-exit mechanisms with the GLUE benchmark against adversarial slowdown. We then show our attack significantly reduces the computational savings provided by the three methods in both white-box and black-box settings. The more complex a mechanism is, the more vulnerable it is to adversarial slowdown. We also perform a linguistic analysis of the perturbed text inputs, identifying common perturbation patterns that our attack generates, and comparing them with standard adversarial text attacks. Moreover, we show that adversarial training is ineffective in defeating our slowdown attack, but input sanitization with a conversational model, e.g., ChatGPT, can remove perturbations effectively. This result suggests that future work is needed for developing efficient yet robust multi-exit models. Our code is available at: https://github.com/ztcoalson/WAFFLE",https://neurips.cc//virtual/2023/poster/71547,2023,NeurIPS,No,, Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift,"Bayesian deep learning (BDL) is a promising approach to achieve well-calibrated predictions on distribution-shifted data. Nevertheless, there exists no large-scale survey that evaluates recent SOTA methods on diverse, realistic, and challenging benchmark tasks in a systematic manner. To provide a clear picture of the current state of BDL research, we evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks, with a focus on generalization capability and calibration under distribution shift. We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures. In particular, we investigate a signed version of the expected calibration error that reveals whether the methods are over- or underconfident, providing further insight into the behavior of the methods. Further, we provide the first systematic evaluation of BDL for fine-tuning large pre-trained models, where training from scratch is prohibitively expensive. Finally, given the recent success of Deep Ensembles, we extend popular single-mode posterior approximations to multiple modes by the use of ensembles. While we find that ensembling single-mode approximations generally improves the generalization capability and calibration of the models by a significant margin, we also identify a failure mode of ensembles when finetuning large transformer-based language models. In this setting, variational inference based approaches such as last-layer Bayes By Backprop outperform other methods in terms of accuracy by a large margin, while modern approximate inference algorithms such as SWAG achieve the best calibration.",https://neurips.cc//virtual/2023/poster/70688,2023,NeurIPS,No,, BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory Information,"Automated reasoning with unstructured natural text is a key requirement for many potential applications of NLP and for developing robust AI systems. Recently, Language Models (LMs) have demonstrated complex reasoning capacities even without any finetuning. However, existing evaluation for automated reasoning assumes access to a consistent and coherent set of information over which models reason. When reasoning in the real-world, the available information is frequently inconsistent or contradictory, and therefore models need to be equipped with a strategy to resolve such conflicts when they arise. One widely-applicable way of resolving conflicts is to impose preferences over information sources (e.g., based on source credibility or information recency) and adopt the source with higher preference. In this paper, we formulate the problem of reasoning with contradictory information guided by preferences over sources as the classical problem of defeasible reasoning, and develop a dataset called BoardgameQA for measuring the reasoning capacity of LMs in this setting. BoardgameQA also incorporates reasoning with implicit background knowledge, to better reflect reasoning problems in downstream applications. We benchmark various LMs on BoardgameQA and the results reveal a significant gap in the reasoning capacity of state-of-the-art LMs on this problem, showing that reasoning with conflicting information does not surface out-of-the-box in LMs. While performance can be improved with finetuning, it nevertheless remains poor.",https://neurips.cc//virtual/2023/poster/73665,2023,NeurIPS,Yes,Language,Benchmark Can Language Models Solve Graph Problems in Natural Language?,"Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question.",https://neurips.cc//virtual/2023/poster/71520,2023,NeurIPS,Yes,Language,Benchmark Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs,"Text-to-SQL parsing, which aims at converting natural language instructions into executable SQLs, has gained increasing attention in recent years. In particular, GPT-4 and Claude-2 have shown impressive results in this task. However, most of the prevalent benchmarks, i.e., Spider, and WikiSQL, focus on database schema with few rows of database contents leaving the gap between academic study and real-world applications. To mitigate this gap, we present BIRD, a BIg benchmark for laRge-scale Database grounded in text-to-SQL tasks, containing 12,751 pairs of text-to-SQL data and 95 databases with a total size of 33.4 GB, spanning 37 professional domains. Our emphasis on database values highlights the new challenges of dirty database contents, external knowledge between NL questions and database contents, and SQL efficiency, particularly in the context of massive databases. To solve these problems, text-to-SQL models must feature database value comprehension in addition to semantic parsing. The experimental results demonstrate the significance of database values in generating accurate text-to-SQLs for big databases. Furthermore, even the most popular and effective text-to-SQL models, i.e. GPT-4, only achieve 54.89% in execution accuracy, which is still far from the human result of 92.96%, proving that challenges still stand. We also provide an efficiency analysis to offer insights into generating text-to-efficient-SQLs that are beneficial to industries. We believe that BIRD will contribute to advancing real-world applications of text-to-SQL research.The leaderboard and source code are available: https://bird-bench.github.io/.",https://neurips.cc//virtual/2023/poster/73529,2023,NeurIPS,Yes,Language,Benchmark CARE-MI: Chinese Benchmark for Misinformation Evaluation in Maternity and Infant Care,"The recent advances in natural language processing (NLP), have led to a new trend of applying large language models (LLMs) to real-world scenarios. While the latest LLMs are astonishingly fluent when interacting with humans, they suffer from the misinformation problem by unintentionally generating factually false statements. This can lead to harmful consequences, especially when produced within sensitive contexts, such as healthcare. Yet few previous works have focused on evaluating misinformation in the long-form (LF) generation of LLMs, especially for knowledge-intensive topics. Moreover, although LLMs have been shown to perform well in different languages, misinformation evaluation has been mostly conducted in English. To this end, we present a benchmark, CARE-MI, for evaluating LLM misinformation in: 1) a sensitive topic, specifically the maternity and infant care domain; and 2) a language other than English, namely Chinese. Most importantly, we provide an innovative paradigm for building LF generation evaluation benchmarks that can be transferred to other knowledge-intensive domains and low-resourced languages. Our proposed benchmark fills the gap between the extensive usage of LLMs and the lack of datasets for assessing the misinformation generated by these models. It contains 1,612 expert-checked questions, accompanied with human-selected references. Using our benchmark, we conduct extensive experiments and found that current Chinese LLMs are far from perfect in the topic of maternity and infant care. In an effort to minimize the reliance on human resources for performance evaluation, we offer off-the-shelf judgment models for automatically assessing the LF output of LLMs given benchmark questions. Moreover, we compare potential solutions for LF generation evaluation and provide insights for building better automated metrics.",https://neurips.cc//virtual/2023/poster/73657,2023,NeurIPS,Yes,Language,Benchmark C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models,"New NLP benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context. C-Eval comprises multiple-choice questions across four difficulty levels: middle school, high school, college, and professional. The questions span 52 diverse disciplines, ranging from humanities to science and engineering. C-Eval is accompanied by C-Eval Hard, a subset of very challenging subjects in C-Eval that requires advanced reasoning abilities to solve. We conduct a comprehensive evaluation of the most advanced LLMs on C-Eval, including both English- and Chinese-oriented models. Results indicate that only GPT-4 could achieve an average accuracy of over 60%, suggesting that there is still significant room for improvement for current LLMs. We anticipate C-Eval will help analyze important strengths and shortcomings of foundation models, and foster their development and growth for Chinese users.",https://neurips.cc//virtual/2023/poster/73516,2023,NeurIPS,Yes,Language,Benchmark CLIP4HOI: Towards Adapting CLIP for Practical Zero-Shot HOI Detection,"Zero-shot Human-Object Interaction (HOI) detection aims to identify both seen and unseen HOI categories. A strong zero-shot HOI detector is supposed to be not only capable of discriminating novel interactions but also robust to positional distribution discrepancy between seen and unseen categories when locating human-object pairs. However, top-performing zero-shot HOI detectors rely on seen and predefined unseen categories to distill knowledge from CLIP and jointly locate human-object pairs without considering the potential positional distribution discrepancy, leading to impaired transferability. In this paper, we introduce CLIP4HOI, a novel framework for zero-shot HOI detection. CLIP4HOI is developed on the vision-language model CLIP and ameliorates the above issues in the following two aspects. First, to avoid the model from overfitting to the joint positional distribution of seen human-object pairs, we seek to tackle the problem of zero-shot HOI detection in a disentangled two-stage paradigm. To be specific, humans and objects are independently identified and all feasible human-object pairs are processed by Human-Object interactor for pairwise proposal generation. Second, to facilitate better transferability, the CLIP model is elaborately adapted into a fine-grained HOI classifier for proposal discrimination, avoiding data-sensitive knowledge distillation. Finally, experiments on prevalent benchmarks show that our CLIP4HOI outperforms previous approaches on both rare and unseen categories, and sets a series of state-of-the-art records under a variety of zero-shot settings.",https://neurips.cc//virtual/2023/poster/70485,2023,NeurIPS,No,, Cola: A Benchmark for Compositional Text-to-image Retrieval,"Compositional reasoning is a hallmark of human visual intelligence. Yet, despite the size of large vision-language models, they struggle to represent simple compositions by combining objects with their attributes. To measure this lack of compositional capability, we design Cola, a text-to-image retrieval benchmark to Compose Objects Localized with Attributes. To solve Cola, a model must retrieve images with the correct configuration of attributes and objects and avoid choosing a distractor image with the same objects and attributes but in the wrong configuration. Cola contains about 1.2k composed queries of 168 objects and 197 attributes on around 30K images. Our human evaluation finds that Cola is 83.33% accurate, similar to contemporary compositionality benchmarks. Using Cola as a testbed, we explore empirical modeling designs to adapt pre-trained vision-language models to reason compositionally. We explore 6 adaptation strategies on 2 seminal vision-language models, using compositionality-centric test benchmarks - Cola and CREPE. We find the optimal adaptation strategy is to train a multi-modal attention layer that jointly attends over the frozen pre-trained image and language features. Surprisingly, training multimodal layers on CLIP performs better than tuning a larger FLAVA model with already pre-trained multimodal layers. Furthermore, our adaptation strategy improves CLIP and FLAVA to comparable levels, suggesting that training multimodal layers using contrastive attribute-object data is key, as opposed to using them pre-trained. Lastly, we show that Cola is harder than a closely related contemporary benchmark, CREPE, since simpler fine-tuning strategies without multimodal layers suffice on CREPE, but not on Cola. However, we still see a significant gap between our best adaptation and human accuracy, suggesting considerable room for further research. Project page: https://cs-people.bu.edu/array/research/cola/",https://neurips.cc//virtual/2023/poster/73493,2023,NeurIPS,Yes,Multimodal, CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion,"Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.",https://neurips.cc//virtual/2023/poster/73423,2023,NeurIPS,Yes,Other, Data Selection for Language Models via Importance Resampling,"Selecting a suitable pretraining dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution given unlabeled target samples. Due to the scale and dimensionality of the raw text data, existing methods use simple heuristics or require human experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. We propose Data Selection with Importance Resampling (DSIR), an efficient and scalable framework that estimates importance weights in a reduced feature space for tractability and selects data with importance resampling according to these weights. We instantiate the DSIR framework with hashed n-gram features for efficiency, enabling the selection of 100M documents from the full Pile dataset in 4.5 hours. To measure whether hashed n-gram features preserve the aspects of the data that are relevant to the target, we define KL reduction, a data metric that measures the proximity between the selected pretraining data and the target on some feature space. Across 8 data selection methods (including expert selection), KL reduction on hashed n-gram features highly correlates with average downstream accuracy (r=0.82). When selecting data for continued pretraining on a specific domain, DSIR performs comparably to expert curation across 8 target distributions. When pretraining general-domain models (target is Wikipedia and books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark.",https://neurips.cc//virtual/2023/poster/70154,2023,NeurIPS,No,, DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models,"Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance – where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives – including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.",https://neurips.cc//virtual/2023/poster/73486,2023,NeurIPS,Yes,Language,Benchmark Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks,"Pre-trained language models (PLMs) have demonstrated remarkable performance as few-shot learners. However, their security risks under such settings are largely unexplored. In this work, we conduct a pilot study showing that PLMs as few-shot learners are highly vulnerable to backdoor attacks while existing defenses are inadequate due to the unique challenges of few-shot scenarios. To address such challenges, we advocate MDP, a novel lightweight, pluggable, and effective defense for PLMs as few-shot learners. Specifically, MDP leverages the gap between the masking-sensitivity of poisoned and clean samples: with reference to the limited few-shot data as distributional anchors, it compares the representations of given samples under varying masking and identifies poisoned samples as ones with significant variations. We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness. The empirical evaluation using benchmark datasets and representative attacks validates the efficacy of MDP. The code of MDP is publicly available.",https://neurips.cc//virtual/2023/poster/72193,2023,NeurIPS,No,, Demo2Code: From Summarizing Demonstrations to Synthesizing Code via Extended Chain-of-Thought,"Language instructions and demonstrations are two natural ways for users to teach robots personalized tasks. Recent progress in Large Language Models (LLMs) has shown impressive performance in translating language instructions into code for robotic tasks. However, translating demonstrations into task code continues to be a challenge due to the length and complexity of both demonstrations and code, making learning a direct mapping intractable. This paper presents Demo2Code, a novel framework that generates robot task code from demonstrations via an extended chain-of-thought and defines a common latent specification to connect the two. Our framework employs a robust two-stage process: (1) a recursive summarization technique that condenses demonstrations into concise specifications, and (2) a code synthesis approach that expands each function recursively from the generated specifications. We conduct extensive evaluation on various robot task benchmarks, including a novel game benchmark Robotouille, designed to simulate diverse cooking tasks in a kitchen environment.",https://neurips.cc//virtual/2023/poster/70881,2023,NeurIPS,Yes,Language,Methodological DesCo: Learning Object Recognition with Rich Language Descriptions,"Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. ""a photo of a cat"") and thus improve the models' adaptability to novel objects and domains. Recent studies have attempted to query these models with complex language expressions that include specifications of fine-grained details, such as colors, shapes, and relations. However, simply incorporating language descriptions into queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, a state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenge, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.",https://neurips.cc//virtual/2023/poster/72079,2023,NeurIPS,No,, DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction,"There is currently a significant gap between the performance of fine-tuned models and prompting approaches using Large Language Models (LLMs) on the challenging task of text-to-SQL, as evaluated on datasets such as Spider. To improve the performance of LLMs in the reasoning process, we study how decomposing the task into smaller sub-tasks can be effective. In particular, we show that breaking down the generation problem into sub-problems and feeding the solutions of those sub-problems into LLMs can be an effective approach for significantly improving their performance. Our experiments with three LLMs show that this approach consistently improves their simple few-shot performance by roughly 10%, pushing the accuracy of LLMs towards SOTA or surpassing it. On the holdout test set of Spider, the SOTA, in terms of execution accuracy, was 79.9 and the new SOTA at the time of this writing using our approach is 85.3. Our approach with in-context learning beats many heavily fine-tuned models by at least 5%. Additionally, when evaluated on the BIRD benchmark, our approach achieved an execution accuracy of 55.9%, setting a new SOTA on its holdout test set.",https://neurips.cc//virtual/2023/poster/70430,2023,NeurIPS,No,, Diplomat: A Dialogue Dataset for Situated PragMATic Reasoning,"The ability to discern and comprehend pragmatic meanings is a cornerstone of social and emotional intelligence, referred to as pragmatic reasoning. Despite the strides made in the development of Large Language Models (LLMs), such as ChatGPT, these models grapple with capturing the nuanced and ambiguous facets of language, falling short of the aspiration to build human-like conversational agents. In this work, we introduce a novel benchmark, the **DiPlomat**, which delves into the fundamental components of conversational pragmatic reasoning, encompassing situational context reasoning, open-world knowledge acquisition, and unified figurative language understanding. We start by collecting a new human-annotated dialogue dataset, composed of 4,177 multi-turn dialogues and a vocabulary of 48,900 words. Along with the dataset, two tasks are proposed to evaluate machines' pragmatic reasoning capabilities, namely, Pragmatic Reasoning and Identification(PIR) and Conversational Question Answering (CQA). Furthermore, we probe into a zero-shot natural language inference task, where the significance of context in pragmatic reasoning is underscored. Experimental findings illustrate the existing limitations of current prevailing LLMs in the realm of pragmatic reasoning, shedding light on the pressing need for further research to facilitate the emergence of emotional intelligence within human-like conversational agents.",https://neurips.cc//virtual/2023/poster/73411,2023,NeurIPS,Yes,Language,Benchmark Don’t Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner,"Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.",https://neurips.cc//virtual/2023/poster/70285,2023,NeurIPS,No,, Egocentric Planning for Scalable Embodied Task Achievement,"Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07\% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It can naturally scale to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks.",https://neurips.cc//virtual/2023/poster/70126,2023,NeurIPS,No,, EgoSchema: A Diagnostic Benchmark for Very Long-form Video Language Understanding,"We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that EgoSchema, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code will all be open-sourced under the Ego4D license at http://egoschema.github.io.",https://neurips.cc//virtual/2023/poster/73630,2023,NeurIPS,Yes,Video, EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought,"Embodied AI is a crucial frontier in robotics, capable of planning and executing action sequences for robots to accomplish long-horizon tasks in physical environments.In this work, we introduce EmbodiedGPT, an end-to-end multi-modal foundation model for embodied AI, empowering embodied agents with multi-modal understanding and execution capabilities. To achieve this, we have made the following efforts: (i) We craft a large-scale embodied planning dataset, termed EgoCOT. The dataset consists of carefully selected videos from the Ego4D dataset, along with corresponding high-quality language instructions. Specifically, we generate a sequence of sub-goals with the ""Chain of Thoughts"" mode for effective embodied planning.(ii) We introduce an efficient training approach to EmbodiedGPT for high-quality plan generation, by adapting a 7B large language model (LLM) to the EgoCOT dataset via prefix tuning. (iii) We introduce a paradigm for extracting task-related features from LLM-generated planning queries to form a closed loop between high-level planning and low-level control.Extensive experiments show the effectiveness of EmbodiedGPT on embodied tasks, including embodied planning, embodied control, visual captioning, and visual question answering.Notably, EmbodiedGPT significantly enhances the success rate of the embodied control task by extracting more effective features. It has achieved a remarkable 1.6 times increase in success rate on the Franka Kitchen benchmark and a 1.3 times increase on the Meta-World benchmark, compared to the BLIP-2 baseline fine-tuned with the Ego4D dataset.",https://neurips.cc//virtual/2023/poster/72127,2023,NeurIPS,Yes,Multimodal, EvoPrompting: Language Models for Code-Level Neural Architecture Search,"Given the recent impressive accomplishments of language models (LMs) for code generation, we explore the use of LMs as general adaptive mutation and crossover operators for an evolutionary neural architecture search (NAS) algorithm.While NAS still proves too difficult a task for LMs to succeed at solely through prompting, we find that the combination of evolutionary prompt engineering with soft prompt-tuning, a method we term EvoPrompting, consistently finds diverse and high performing models. We first demonstrate that EvoPrompting is effective on the computationally efficient MNIST-1D dataset, where EvoPrompting produces convolutional architecture variants that outperform both those designed by human experts and naive few-shot prompting in terms of accuracy and model size. We then apply our method to searching for graph neural networks on the CLRS Algorithmic Reasoning Benchmark, where EvoPrompting is able to design *novel* architectures that outperform current state-of-the-art models on 21 out of 30 algorithmic reasoning tasks while maintaining similar model size. EvoPrompting is successful at designing accurate and efficient neural network architectures across a variety of machine learning tasks, while also being general enough for easy adaptation to other tasks beyond neural network design.",https://neurips.cc//virtual/2023/poster/70729,2023,NeurIPS,No,, Exposing Attention Glitches with Flip-Flop Language Modeling,"Why do large language models sometimes output factual inaccuracies and exhibit erroneous reasoning? The brittleness of these models, particularly when executing long chains of reasoning, currently seems to be an inevitable price to pay for their advanced capabilities of coherently synthesizing knowledge, pragmatics, and abstract thought. Towards making sense of this fundamentally unsolved problem, this work identifies and analyzes the phenomenon of _attention glitches_, in which the Transformer architecture's inductive biases intermittently fail to capture robust reasoning. To isolate the issue, we introduce _flip-flop language modeling_ (FFLM), a parametric family of synthetic benchmarks designed to probe the extrapolative behavior of neural language models. This simple generative task requires a model to copy binary symbols over long-range dependencies, ignoring the tokens in between. We find that Transformer FFLMs suffer from a long tail of sporadic reasoning errors, some of which we can eliminate using various regularization techniques. Our preliminary mechanistic analyses show why the remaining errors may be very difficult to diagnose and resolve. We hypothesize that attention glitches account for (some of) the closed-domain hallucinations in natural LLMs.",https://neurips.cc//virtual/2023/poster/71426,2023,NeurIPS,Yes,Language,Benchmark Fast Rank-1 Lattice Targeted Sampling for Black-box Optimization,"Black-box optimization has gained great attention for its success in recent applications. However, scaling up to high-dimensional problems with good query efficiency remains challenging. This paper proposes a novel Rank-1 Lattice Targeted Sampling (RLTS) technique to address this issue. Our RLTS benefits from random rank-1 lattice Quasi-Monte Carlo, which enables us to perform fast local exact Gaussian processes (GP) training and inference with $O(n \log n)$ complexity w.r.t. $n$ batch samples. Furthermore, we developed a fast coordinate searching method with $O(n \log n)$ time complexity for fast targeted sampling. The fast computation enables us to plug our RLTS into the sampling phase of stochastic optimization methods. This improves the query efficiency while scaling up to higher dimensional problems than Bayesian optimization. Moreover, to construct rank-1 lattices efficiently, we proposed a closed-form construction. Extensive experiments on challenging benchmark test functions and black-box prompt fine-tuning for large language models demonstrate the query efficiency of our RLTS technique.",https://neurips.cc//virtual/2023/poster/71924,2023,NeurIPS,No,, FELM: Benchmarking Factuality Evaluation of Large Language Models,"Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as FELM. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g. information from Wikipedia), FELM focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on FELM, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.",https://neurips.cc//virtual/2023/poster/73491,2023,NeurIPS,Yes,Language,Benchmark FIND: A Function Description Benchmark for Evaluating Interpretability Methods,"Labeling neural network submodules with human-legible descriptions is useful for many downstream tasks: such descriptions can surface failures, guide interventions, and perhaps even explain important model behaviors. To date, most mechanistic descriptions of trained networks have involved small models, narrowly delimited phenomena, and large amounts of human labor. Labeling all human-interpretable sub-computations in models of increasing size and complexity will almost certainly require tools that can generate and validate descriptions automatically. Recently, techniques that use learned models in-the-loop for labeling have begun to gain traction, but methods for evaluating their efficacy are limited and ad-hoc. How should we validate and compare open-ended labeling tools? This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating the building blocks of automated interpretability methods. FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate. The functions are procedurally constructed across textual and numeric domains, and involve a range of real-world complexities, including noise, composition, approximation, and bias. We evaluate methods that use pretrained language models (LMs) to produce code-based and natural language descriptions of function behavior. Additionally, we introduce a new interactive method in which an Automated Interpretability Agent (AIA) generates function descriptions. We find that an AIA, built with an off-the-shelf LM augmented with black-box access to functions, can sometimes infer function structure—acting as a scientist by forming hypotheses, proposing experiments, and updating descriptions in light of new data. However, FIND also reveals that LM-based descriptions capture global function behavior while missing local details. These results suggest that FIND will be useful for characterizing the performance of more sophisticated interpretability methods before they are applied to real-world models.",https://neurips.cc//virtual/2023/poster/73478,2023,NeurIPS,Yes,Language,Benchmark Fine-Grained Visual Prompting,"Vision-Language Models (VLMs), such as CLIP, have demonstrated impressive zero-shot transfer capabilities in image-level visual perception. However, these models have shown limited performance in instance-level tasks that demand precise localization and recognition. Previous works have suggested that incorporating visual prompts, such as colorful boxes or circles, can improve the ability of models to recognize objects of interest. Nonetheless, compared to language prompting, visual prompting designs are rarely explored. Existing approaches, which employ coarse visual cues such as colorful boxes or circles, often result in sub-optimal performance due to the inclusion of irrelevant and noisy pixels. In this paper, we carefully study the visual prompting designs by exploring more fine-grained markings, such as segmentation masks and their variations. In addition, we introduce a new zero-shot framework that leverages pixel-level annotations acquired from a generalist segmentation model for fine-grained visual prompting. Consequently, our investigation reveals that a straightforward application of blur outside the target mask, referred to as the Blur Reverse Mask, exhibits exceptional effectiveness. This proposed prompting strategy leverages the precise mask annotations to reduce focus on weakly related regions while retaining spatial coherence between the target and the surrounding background. Our **F**ine-**G**rained **V**isual **P**rompting (**FGVP**) demonstrates superior performance in zero-shot comprehension of referring expressions on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks. It outperforms prior methods by an average margin of 3.0\% to 4.6\%, with a maximum improvement of 12.5\% on the RefCOCO+ testA subset. The part detection experiments conducted on the PACO dataset further validate the preponderance of FGVP over existing visual prompting techniques. Code is available at https://github.com/ylingfeng/FGVP.",https://neurips.cc//virtual/2023/poster/70615,2023,NeurIPS,No,, Glance and Focus: Memory Prompting for Multi-Event Video Question Answering,"Video Question Answering (VideoQA) has emerged as a vital tool to evaluate agents’ ability to understand human daily behaviors. Despite the recent success of large vision language models in many multi-modal tasks, complex situation reasoning over videos involving multiple human-object interaction events still remains challenging. In contrast, humans can easily tackle it by using a series of episode memories as anchors to quickly locate question-related key moments for reasoning. To mimic this effective reasoning strategy, we propose the Glance- Focus model. One simple way is to apply an action detection model to predict a set of actions as key memories. However, these actions within a closed set vocabulary are hard to generalize to various video domains. Instead of that, we train an Encoder-Decoder to generate a set of dynamic event memories at the glancing stage. Apart from using supervised bipartite matching to obtain the event memories, we further design an unsupervised memory generation method to get rid of dependence on event annotations. Next, at the focusing stage, these event memories act as a bridge to establish the correlation between the questions with high-level event concepts and low-level lengthy video content. Given the question, the model first focuses on the generated key event memory, then focuses on the most relevant moment for reasoning through our designed multi-level cross- attention mechanism. We conduct extensive experiments on four Multi-Event VideoQA benchmarks including STAR, EgoTaskQA, AGQA, and NExT-QA. Our proposed model achieves state-of-the-art results, surpassing current large models in various challenging reasoning tasks. The code and models are available at https://github.com/ByZ0e/Glance-Focus.",https://neurips.cc//virtual/2023/poster/72076,2023,NeurIPS,No,, Goal Driven Discovery of Distributional Differences via Language Descriptions,"Exploring large corpora can generate useful discoveries but is time-consuming for humans. We formulate a new task, D5, that automatically discovers differences between two large corpora in a goal-driven way. The task input is a problem comprising a user-specified research goal (“*comparing the side effects of drug A and drug*”) and a corpus pair (two large collections of patients' self-reported reactions after taking each drug). The output is a goal-related description (discovery) of how these corpora differ (patients taking drug A “*mention feelings of paranoia*” more often). We build a D5 system, and to quantitatively evaluate its performance, we 1) build a diagnostic benchmark, SynD5, to test whether it can recover known differences between two synthetic corpora, and 2) contribute a meta-dataset, OpenD5, aggregating 675 open-ended problems ranging across business, social sciences, humanities, machine learning, and health. With both synthetic and real datasets, we confirm that language models can leverage the user-specified goals to propose more relevant candidate discoveries, and they sometimes produce discoveries previously unknown to the authors, including demographic differences in discussion topics, political stances in speech, insights in commercial reviews, and error patterns in NLP models. Finally, we discuss the limitations of the current D5 system, which discovers correlation rather than causation and has the potential to reinforce societal biases when misused; therefore, practitioners should treat the outputs of our system with caution.",https://neurips.cc//virtual/2023/poster/71738,2023,NeurIPS,Yes,Language,Methodological GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction,"This paper aims to efficiently enable Large Language Models (LLMs) to use multi-modal tools.The advanced proprietary LLMs, such as ChatGPT and GPT-4, have shown great potential for tool usage through sophisticated prompt engineering.Nevertheless, these models typically rely on prohibitive computational costs and publicly inaccessible data.To address these challenges, we propose the GPT4Tools based on self-instruct to enable open-source LLMs, such as LLaMA and OPT, to use tools.It generates an instruction-following dataset by prompting an advanced teacher with various multi-modal contexts.By using the Low-Rank Adaptation (LoRA) optimization, our approach facilitates the open-source LLMs to solve a range of visual problems, including visual comprehension and image generation.Moreover, we provide a benchmark to evaluate the ability of LLMs to use tools, which is performed in both zero-shot and fine-tuning ways.Extensive experiments demonstrate the effectiveness of our method on various language models, which not only significantly improves the accuracy of invoking seen tools, but also enables the zero-shot capacity for unseen tools.",https://neurips.cc//virtual/2023/poster/71060,2023,NeurIPS,Yes,Language,Methodological GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph,"Adapter-style efficient transfer learning (ETL) has shown excellent performance in the tuning of vision-language models (VLMs) under the low-data regime, where only a few additional parameters are introduced to excavate the task-specific knowledge based on the general and powerful representation of VLMs. However, most adapter-style works face two limitations: (i) modeling task-specific knowledge with a single modality only; and (ii) overlooking the exploitation of the inter-class relationships in downstream tasks, thereby leading to sub-optimal solutions. To mitigate that, we propose an effective adapter-style tuning strategy, dubbed GraphAdapter, which performs the textual adapter by explicitly modeling the dual-modality structure knowledge (i.e., the correlation of different semantics/classes in textual and visual modalities) with a dual knowledge graph. In particular, the dual knowledge graph is established with two sub-graphs, i.e., a textual knowledge sub-graph, and a visual knowledge sub-graph, where the nodes and edges represent the semantics/classes and their correlations in two modalities, respectively. This enables the textual feature of each prompt to leverage the task-specific structure knowledge from both textual and visual modalities, yielding a more effective classifier for downstream tasks. Extensive experimental results on 11 benchmark datasets reveal that our GraphAdapter significantly outperforms the previous adapter-based methods.",https://neurips.cc//virtual/2023/poster/71275,2023,NeurIPS,No,, Hierarchically Gated Recurrent Neural Network for Sequence Modeling,"Transformers have surpassed RNNs in popularity due to their superior abilities in parallel training and long-term dependency modeling.Recently, there has been a renewed interest in using linear RNNs for efficient sequence modeling.These linear RNNs often employ gating mechanisms in the output of the linear recurrence layer while ignoring the significance of using forget gates within the recurrence. In this paper, we propose a gated linear RNN model dubbed Hierarchically Gated Recurrent Neural Network (HGRN), which includes forget gates that are lower bounded by a learnable value. The lower bound increases monotonically when moving up layers. This allows the upper layers to model long-term dependencies and the lower layers to model more local, short-term dependencies. Experiments on language modeling, image classification, and long-range arena benchmarks showcase the efficiency and effectiveness of our proposed model. The source code is available at https://github.com/OpenNLPLab/HGRN.",https://neurips.cc//virtual/2023/poster/71783,2023,NeurIPS,No,, How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources,"In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied by limited evaluation, making it difficult to compare models across the board and determine the utility of various resources. We provide a large set of instruction-tuned models from 6.7B to 65B parameters in size, trained on 12 instruction datasets ranging from manually curated (e.g., OpenAssistant) to synthetic and distilled (e.g., Alpaca) and systematically evaluate them on their factual knowledge, reasoning, multilinguality, coding, safety, and open-ended instruction following abilities through a collection of automatic, model-based, and human-based metrics. We further introduce Tülu, our best performing instruction-tuned model suite finetuned on a combination of high-quality open resources.Our experiments show that different instruction-tuning datasets can uncover or enhance specific skills, while no single dataset (or combination) provides the best performance across all evaluations. Interestingly, we find that model and human preference-based evaluations fail to reflect differences in model capabilities exposed by benchmark-based evaluations, suggesting the need for the type of systemic evaluation performed in this work. Our evaluations show that the best model in any given evaluation reaches on average 87% of ChatGPT performance, and 73% of GPT-4 performance, suggesting that further investment in building better base models and instruction-tuning data is required to close the gap. We release our instruction-tuned models, including a fully finetuned 65B Tülu, along with our code, data, and evaluation framework to facilitate future research.",https://neurips.cc//virtual/2023/poster/73425,2023,NeurIPS,No,, How hard are computer vision datasets? Calibrating dataset difficulty to viewing time,"Humans outperform object recognizers despite the fact that models perform well on current datasets, including those explicitly designed to challenge machines with debiased images or distribution shift. This problem persists, in part, because we have no guidance on the absolute difficulty of an image or dataset making it hard to objectively assess progress toward human-level performance, to cover the range of human abilities, and to increase the challenge posed by a dataset. We develop a dataset difficulty metric MVT, Minimum Viewing Time, that addresses these three problems. Subjects view an image that flashes on screen and then classify the object in the image. Images that require brief flashes to recognize are easy, those which require seconds of viewing are hard. We compute the ImageNet and ObjectNet image difficulty distribution, which we find significantly undersamples hard images. Nearly 90% of current benchmark performance is derived from images that are easy for humans. Rather than hoping that we will make harder datasets, we can for the first time objectively guide dataset difficulty during development. We can also subset recognition performance as a function of difficulty: model performance drops precipitously while human performance remains stable. Difficulty provides a new lens through which to view model performance, one which uncovers new scaling laws: vision-language models stand out as being the most robust and human-like while all other techniques scale poorly. We release tools to automatically compute MVT, along with image sets which are tagged by difficulty. Objective image difficulty has practical applications – one can measure how hard a test set is before deploying a real-world system – and scientific applications such as discovering the neural correlates of image difficulty and enabling new object recognition techniques that eliminate the benchmark-vs- real-world performance gap.",https://neurips.cc//virtual/2023/poster/73596,2023,NeurIPS,No,, HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution,"Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers or fixed k-mers to aggregate meaningful DNA units, losing single nucleotide resolution (i.e. DNA ""characters"") where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyena’s new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level – an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data.1 On the GenomicBenchmarks, HyenaDNA surpasses SotA on 7 of 8 datasets on average by +10 accuracy points. Code at https://github.com/HazyResearch/hyena-dna.",https://neurips.cc//virtual/2023/poster/70142,2023,NeurIPS,No,, HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models,"Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as output transcription. The proposed benchmark contains a novel dataset, ""HyPoradise"" (HP), encompassing more than 316,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt design can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new paradigm for ASR error correction with LLMs.",https://neurips.cc//virtual/2023/poster/73533,2023,NeurIPS,Yes,Audio, ImageNet-Hard: The Hardest Images Remaining from a Study of the Power of Zoom and Spatial Biases in Image Classification,"Image classifiers are information-discarding machines, by design. Yet, how these models discard information remains mysterious. We hypothesize that one way for image classifiers to reach high accuracy is to first zoom to the most discriminative region in the image and then extract features from there to predict image labels, discarding the rest of the image. Studying six popular networks ranging from AlexNet to CLIP, we find that proper framing of the input image can lead to the correct classification of 98.91% of ImageNet images. Furthermore, we uncover positional biases in various datasets, especially a strong center bias in two popular datasets: ImageNet-A and ObjectNet. Finally, leveraging our insights into the potential of zooming, we propose a test-time augmentation (TTA) technique that improves classification accuracy by forcing models to explicitly perform zoom-in operations before making predictions.Our method is more interpretable, accurate, and faster than MEMO, a state-of-the-art (SOTA) TTA method. We introduce ImageNet-Hard, a new benchmark that challenges SOTA classifiers including large vision-language models even when optimal zooming is allowed.",https://neurips.cc//virtual/2023/poster/73660,2023,NeurIPS,Yes,Image, Im-Promptu: In-Context Composition from Image Prompts,"Large language models are few-shot learners that can solve diverse tasks from a handful of demonstrations. This implicit understanding of tasks suggests that the attention mechanisms over word tokens may play a role in analogical reasoning. In this work, we investigate whether analogical reasoning can enable in-context composition over composable elements of visual stimuli. First, we introduce a suite of three benchmarks to test the generalization properties of a visual in-context learner. We formalize the notion of an analogy-based in-context learner and use it to design a meta-learning framework called Im-Promptu. Whereas the requisite token granularity for language is well established, the appropriate compositional granularity for enabling in-context generalization in visual stimuli is usually unspecified. To this end, we use Im-Promptu to train multiple agents with different levels of compositionality, including vector representations, patch representations, and object slots. Our experiments reveal tradeoffs between extrapolation abilities and the degree of compositionality, with non-compositional representations extending learned composition rules to unseen domains but performing poorly on combinatorial tasks. Patch-based representations require patches to contain entire objects for robust extrapolation. At the same time, object-centric tokenizers coupled with a cross-attention module generate consistent and high-fidelity solutions, with these inductive biases being particularly crucial for compositional generalization. Lastly, we demonstrate a use case of Im-Promptu as an intuitive programming interface for image generation.",https://neurips.cc//virtual/2023/poster/72917,2023,NeurIPS,Yes,Image, Improving multimodal datasets with image captioning,"Massive web datasets play a key role in the success of large vision-language models like CLIP and Flamingo. However, the raw web data is noisy, and existing filtering methods to reduce noise often come at the expense of data diversity. Our work focuses on caption quality as one major source of noise, and studies how generated captions can increase the utility of web-scraped datapoints with nondescript text. Through exploring different mixing strategies for raw and generated captions, we outperform the best filtering method proposed by the DataComp benchmark by 2% on ImageNet and 4% on average across 38 tasks, given a candidate pool of 128M image-text pairs. Our best approach is also 2x better at Flickr and MS-COCO retrieval. We then analyze what makes synthetic captions an effective source of text supervision. In experimenting with different image captioning models, we also demonstrate that the performance of a model on standard image captioning benchmarks (e.g., NoCaps CIDEr) is not a reliable indicator of the utility of the captions it generates for multimodal training. Finally, our experiments with using generated captions at DataComp's large scale (1.28B image-text pairs) offer insights into the limitations of synthetic text, as well as the importance of image curation with increasing training data quantity. The synthetic captions used in our experiments are now available on HuggingFace.",https://neurips.cc//virtual/2023/poster/73574,2023,NeurIPS,No,, Inference-Time Intervention: Eliciting Truthful Answers from a Language Model,"We introduce Inference-Time Intervention (ITI), a technique designed to enhance the ""truthfulness"" of large language models (LLMs). ITI operates by shifting model activations during inference, following a learned set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from $32.5\%$ to $65.1\%$. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.",https://neurips.cc//virtual/2023/poster/71200,2023,NeurIPS,No,, InterCode: Standardizing and Benchmarking Interactive Coding with Execution Feedback,"Humans write code in a fundamentally interactive manner and rely on constant execution feedback to correct errors, resolve ambiguities, and decompose tasks. While LLMs have recently exhibited promising coding capabilities, current coding benchmarks mostly consider a static instruction-to-code sequence transduction process, which has the potential for error propagation and a disconnect between the generated code and its final execution environment. To address this gap, we introduce InterCode, a lightweight, flexible, and easy-to-use framework of interactive coding as a standard reinforcement learning (RL) environment, with code as actions and execution feedback as observations. Our framework is language and platform agnostic, uses self-contained Docker environments to provide safe and reproducible execution, and is compatible out-of-the-box with traditional seq2seq coding methods, while enabling the development of new methods for interactive code generation. We use InterCode to create three interactive code environments with Bash, SQL, and Python as action spaces, leveraging data from the static NL2Bash, Spider, and MBPP datasets. We demonstrate InterCode’s viability as a testbed by evaluating multiple state-of-the-art LLMs configured with different prompting strategies such as ReAct and Plan & Solve. Our results showcase the benefits of interactive code generation and demonstrate that InterCode can serve as a challenging benchmark for advancing code understanding and generation capabilities. InterCode is designed to be easily extensible and can even be used to create new tasks such as Capture the Flag, a popular coding puzzle that is inherently multi-step and involves multiple programming languages.",https://neurips.cc//virtual/2023/poster/73513,2023,NeurIPS,Yes,Language,Benchmark Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation,"Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus – a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.",https://neurips.cc//virtual/2023/poster/72990,2023,NeurIPS,Yes,Language,Methodological JourneyDB: A Benchmark for Generative Image Understanding,"While recent advancements in vision-language models have had a transformative impact on multi-modal comprehension, the extent to which these models possess the ability to comprehend generated images remains uncertain. Synthetic images, in comparison to real data, encompass a higher level of diversity in terms of both content and style, thereby presenting significant challenges for the models to fully grasp. In light of this challenge, we introduce a comprehensive dataset, referred to as JourneyDB, that caters to the domain of generative images within the context of multi-modal visual understanding. Our meticulously curated dataset comprises 4 million distinct and high-quality generated images, each paired with the corresponding text prompts that were employed in their creation. Furthermore, we additionally introduce an external subset with results of another 22 text-to-image generative models, which makes JourneyDB a comprehensive benchmark for evaluating the comprehension of generated images. On our dataset, we have devised four benchmarks to assess the performance of generated image comprehension in relation to both content and style interpretation. These benchmarks encompass prompt inversion, style retrieval, image captioning, and visual question answering. Lastly, we evaluate the performance of state-of-the-art multi-modal models when applied to the JourneyDB dataset, providing a comprehensive analysis of their strengths and limitations in comprehending generated content. We anticipate that the proposed dataset and benchmarks will facilitate further research in the field of generative content understanding. The dataset is publicly available at https://journeydb.github.io.",https://neurips.cc//virtual/2023/poster/73428,2023,NeurIPS,Yes,Image, Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena,"Evaluating large language model (LLM) based chat assistants is challenging due to their broad capabilities and the inadequacy of existing benchmarks in measuring human preferences.To address this, we explore using strong LLMs as judges to evaluate these models on more open-ended questions.We examine the usage and limitations of LLM-as-a-judge, including position, verbosity, and self-enhancement biases, as well as limited reasoning ability, and propose solutions to mitigate some of them.We then verify the agreement between LLM judges and human preferences by introducing two benchmarks: MT-bench, a multi-turn question set; and Chatbot Arena, a crowdsourced battle platform.Our results reveal that strong LLM judges like GPT-4 can match both controlled and crowdsourced human preferences well, achieving over 80\% agreement, the same level of agreement between humans.Hence, LLM-as-a-judge is a scalable and explainable way to approximate human preferences, which are otherwise very expensive to obtain.Additionally, we show our benchmark and traditional benchmarks complement each other by evaluating several variants of LLaMA and Vicuna.The MT-bench questions, 3K expert votes, and 30K conversations with human preferences are publicly available at https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge.",https://neurips.cc//virtual/2023/poster/73434,2023,NeurIPS,Yes,Language,Benchmark Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks,"Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy.Previous studies have focused on building task-specific small Language Models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required.Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales obtained from LLMs with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE, StrategyQA, and OpenbookQA.Notably, our method makes the 250M T5 models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks.",https://neurips.cc//virtual/2023/poster/70015,2023,NeurIPS,No,, "LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark","Large language models have emerged as a promising approach towards achieving general-purpose AI agents. The thriving open-source LLM community has greatly accelerated the development of agents that support human-machine dialogue interaction through natural language processing. However, human interaction with the world extends beyond only text as a modality, and other modalities such as vision are also crucial. Recent works on multi-modal large language models, such as GPT-4V and Bard, have demonstrated their effectiveness in handling visual modalities. However, the transparency of these works is limited and insufficient to support academic research. To the best of our knowledge, we present one of the very first open-source endeavors in the field, LAMM, encompassing a Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark. Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs, with a specific focus on facilitating AI agents capable of bridging the gap between ideas and execution, thereby enabling seamless human-AI interaction. Our main contribution is three-fold: 1) We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We outline the detailed methodology of constructing multi-modal instruction tuning datasets and benchmarks for MLLMs, enabling rapid scaling and extension of MLLM research to diverse domains, tasks, and modalities. 3) We provide a primary but potential MLLM training framework optimized for modality extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Our baseline model is trained within 24 A100 GPU hours, framework supports training with V100 and RTX3090 is available thanks to the open-source society. Codes and data are now available at https://openlamm.github.io.",https://neurips.cc//virtual/2023/poster/73519,2023,NeurIPS,Yes,Multimodal, LANCE: Stress-testing Visual Models by Generating Language-guided Counterfactual Images,"We propose an automated algorithm to stress-test a trained visual model by generating language-guided counterfactual test images (LANCE). Our method leverages recent progress in large language modeling and text-based image editing to augment an IID test set with a suite of diverse, realistic, and challenging test images without altering model weights. We benchmark the performance of a diverse set of pre-trained models on our generated data and observe significant and consistent performance drops. We further analyze model sensitivity across different types of edits, and demonstrate its applicability at surfacing previously unknown class-level model biases in ImageNet. Code is available at https://github.com/virajprabhu/lance.",https://neurips.cc//virtual/2023/poster/72474,2023,NeurIPS,No,, Language-based Action Concept Spaces Improve Video Self-Supervised Learning,"Recent contrastive language image pre-training has led to learning highly transferable and robust image representations. However, adapting these models to video domain with minimal supervision remains an open problem. We explore a simple step in that direction, using language tied self-supervised learning to adapt an image CLIP model to the video domain. A backbone modified for temporal modeling is trained under self-distillation settings with train objectives operating in an action concept space. Feature vectors of various action concepts extracted from a language encoder using relevant textual prompts construct this space. A large language model aware of actions and their attributes generates the relevant textual prompts.We introduce two train objectives, concept distillation and concept alignment, that retain generality of original representations while enforcing relations between actions and their attributes. Our approach improves zero-shot and linear probing performance on three action recognition benchmarks.",https://neurips.cc//virtual/2023/poster/70436,2023,NeurIPS,No,, Language Model Alignment with Elastic Reset,"Finetuning language models with reinforcement learning (RL), e.g. from human feedback (HF), is a prominent method for alignment. But optimizing against a reward model can improve on reward while degrading performance in other areas, a phenomenon known as reward hacking, alignment tax, or language drift. First, we argue that commonly-used test metrics are insufficient and instead measure how different algorithms tradeoff between reward and drift. The standard method modified the reward with a Kullback-Lieber (KL) penalty between the online and initial model. We propose Elastic Reset, a new algorithm that achieves higher reward with less drift without explicitly modifying the training objective. We periodically reset the online model to an exponentially moving average (EMA) of itself, then reset the EMA model to the initial model. Through the use of an EMA, our model recovers quickly after resets and achieves higher reward with less drift in the same number of steps. We demonstrate that fine-tuning language models with Elastic Reset leads to state-of-the-art performance on a small scale pivot-translation benchmark, outperforms all baselines in a medium-scale RLHF-like IMDB mock sentiment task and leads to a more performant and more aligned technical QA chatbot with LLaMA-7B. Code available https://github.com/mnoukhov/elastic-reset",https://neurips.cc//virtual/2023/poster/72738,2023,NeurIPS,No,, Language Models can Solve Computer Tasks,"Agents capable of carrying out general tasks on a computer can improve efficiency and productivity by automating repetitive tasks and assisting in complex problem-solving. Ideally, such agents should be able to solve new computer tasks presented to them through natural language commands. However, previous approaches to this problem require large amounts of expert demonstrations and task-specific reward functions, both of which are impractical for new tasks. In this work, we show that a pre-trained large language model (LLM) agent can execute computer tasks guided by natural language using a simple prompting scheme where the agent \textbf{R}ecursively \textbf{C}riticizes and \textbf{I}mproves its output (RCI). The RCI approach significantly outperforms existing LLM methods for automating computer tasks and surpasses supervised learning (SL) and reinforcement learning (RL) approaches on the MiniWoB++ benchmark. We compare multiple LLMs and find that RCI with the InstructGPT-3+RLHF LLM is state-of-the-art on MiniWoB++, using only a handful of demonstrations per task rather than tens of thousands, and without a task-specific reward function. Furthermore, we demonstrate RCI prompting's effectiveness in enhancing LLMs' reasoning abilities on a suite of natural language reasoning tasks, outperforming chain of thought (CoT) prompting with external feedback. We find that RCI combined with CoT performs better than either separately. Our code can be found here: https://github.com/posgnu/rci-agent.",https://neurips.cc//virtual/2023/poster/71929,2023,NeurIPS,No,, Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect using the Only Connect Wall Dataset,"The quest for human imitative AI has been an enduring topic in AI research since inception. The technical evolution and emerging capabilities of the latest cohort of large language models (LLMs) have reinvigorated the subject beyond academia to cultural zeitgeist. While recent NLP evaluation benchmark tasks test some aspects of human-imitative behaviour (e.g., BIG-bench's `human-like behavior' tasks), few, if not none, examine *creative problem solving* abilities. Creative problem solving in humans is a well-studied topic in cognitive neuroscience with standardized tests that predominantly use ability to associate (heterogeneous) connections among clue words as a metric for creativity. Exposure to misleading stimuli --- distractors dubbed *red herrings* --- impede human performance in such tasks via the *fixation effect* and Einstellung paradigm. In cognitive neuroscience studies, such fixations are experimentally induced by pre-exposing participants to orthographically similar incorrect words to subsequent word-fragments or clues. The popular British quiz show Only Connect's *Connecting Wall* segment essentially mimics Mednick's Remote Associates Test (RAT) formulation with built-in, deliberate red herrings, that makes it an ideal proxy dataset to explore and study fixation effect and Einstellung paradigm from cognitive neuroscience in LLMs. In addition to presenting the novel Only Connect Wall (OCW) dataset, we also report results from our evaluation of selected pre-trained language models and LLMs (including OpenAI's GPT series) on creative problem solving tasks like grouping clue words by heterogeneous connections, and identifying correct open knowledge domain connections in respective groups. We synthetically generate two additional datasets: OCW-Randomized, OCW-WordNet to further analyze our red-herrings hypothesis in language models.The code and link to the dataset is available at [url](https://github.com/TaatiTeam/OCW).",https://neurips.cc//virtual/2023/poster/73547,2023,NeurIPS,Yes,Language,Methodological LeanDojo: Theorem Proving with Retrieval-Augmented Language Models,"Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection—a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): an LLM-based prover augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 98,734 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.",https://neurips.cc//virtual/2023/poster/73510,2023,NeurIPS,Yes,Language,Technical Learning Mask-aware CLIP Representations for Zero-Shot Segmentation,"Recently, pre-trained vision-language models have been increasingly used to tackle the challenging zero-shot segmentation task. Typical solutions follow the paradigm of first generating mask proposals and then adopting CLIP to classify them. To maintain the CLIP's zero-shot transferability, previous practices favour to freeze CLIP during training. However, in the paper, we reveal that CLIP is insensitive to different mask proposals and tends to produce similar predictions for various mask proposals of the same image. This insensitivity results in numerous false positives when classifying mask proposals. This issue mainly relates to the fact that CLIP is trained with image-level supervision. To alleviate this issue, we propose a simple yet effective method, named Mask-aware Fine-tuning (MAFT). Specifically, Image-Proposals CLIP Encoder (IP-CLIP Encoder) is proposed to handle arbitrary numbers of image and mask proposals simultaneously. Then, *mask-aware loss* and *self-distillation loss* are designed to fine-tune IP-CLIP Encoder, ensuring CLIP is responsive to different mask proposals while not sacrificing transferability. In this way, mask-aware representations can be easily learned to make the true positives stand out. Notably, our solution can seamlessly plug into most existing methods without introducing any new parameters during the fine-tuning process. We conduct extensive experiments on the popular zero-shot benchmarks. With MAFT, the performance of the state-of-the-art methods is promoted by a large margin: 50.4\% (+ 8.2\%) on COCO, 81.8\% (+ 3.2\%) on Pascal-VOC, and 8.7\% (+4.3\%) on ADE20K in terms of mIoU for unseen classes. Codes will be provided for reproducibility. Code is available at https://github.com/jiaosiyu1999/MAFT.git .",https://neurips.cc//virtual/2023/poster/72034,2023,NeurIPS,No,, LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models,"The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning—which distinguish between its many forms—correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.",https://neurips.cc//virtual/2023/poster/73565,2023,NeurIPS,Yes,Language,Benchmark Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning,"There is a growing interest in applying pre-trained large language models (LLMs) to planning problems. However, methods that use LLMs directly as planners are currently impractical due to several factors, including limited correctness of plans, strong reliance on feedback from interactions with simulators or even the actual environment, and the inefficiency in utilizing human feedback. In this work, we introduce a novel alternative paradigm that constructs an explicit world (domain) model in planning domain definition language (PDDL) and then uses it to plan with sound domain-independent planners. To address the fact that LLMs may not generate a fully functional PDDL model initially, we employ LLMs as an interface between PDDL and sources of corrective feedback, such as PDDL validators and humans. For users who lack a background in PDDL, we show that LLMs can translate PDDL into natural language and effectively encode corrective feedback back to the underlying domain model. Our framework not only enjoys the correctness guarantee offered by the external planners but also reduces human involvement by allowing users to correct domain models at the beginning, rather than inspecting and correcting (through interactive prompting) every generated plan as in previous work. On two IPC domains and a Household domain that is more complicated than commonly used benchmarks such as ALFWorld, we demonstrate that GPT-4 can be leveraged to produce high-quality PDDL models for over 40 actions, and the corrected PDDL models are then used to successfully solve 48 challenging planning tasks. Resources, including the source code, are released at: https://guansuns.github.io/pages/llm-dm.",https://neurips.cc//virtual/2023/poster/69907,2023,NeurIPS,No,, Likelihood-Based Diffusion Language Models,"Despite a growing interest in diffusion-based language models, existing work has not shown that these models can attain nontrivial likelihoods on standard language modeling benchmarks. In this work, we take the first steps towards closing the likelihood gap between autoregressive and diffusion-based language models, with the goal of building and releasing a diffusion model which outperforms a small but widely-known autoregressive model. We pursue this goal through algorithmic improvements, scaling laws, and increased compute. On the algorithmic front, we introduce several methodological improvements for the maximum-likelihood training of diffusion language models. We then study scaling laws for our diffusion models and find compute-optimal training regimes which differ substantially from autoregressive models. Using our methods and scaling analysis, we train and release Plaid 1B, a large diffusion language model which outperforms GPT-2 124M in likelihood on benchmark datasets and generates fluent samples in unconditional and zero-shot control settings.",https://neurips.cc//virtual/2023/poster/70985,2023,NeurIPS,No,, Localized Symbolic Knowledge Distillation for Visual Commonsense Models,"Instruction following vision-language (VL) models offer a flexibleinterface that supports a broad range of multimodal tasks in a zero-shot fashion.However, interfaces that operate on full images do not directly enable the user to“point to"" and access specific regions within images. This capability is importantnot only to support reference-grounded VL benchmarks, but also, for practicalapplications that require precise within-image reasoning. We build LocalizedVisual Commonsense model which allows users to specify (multiple) regions-as-input. We train our model by sampling localized commonsense knowledgefrom a large language model (LLM): specifically, we prompt a LLM to collectcommonsense knowledge given a global literal image description and a localliteral region description automatically generated by a set of VL models. Thispipeline is scalable and fully automatic, as no aligned or human-authored imageand text pairs are required. With a separately trained critic model that selectshigh quality examples, we find that training on the localized commonsense corpusexpanded solely from images can successfully distill existing VL models to supporta reference-as-input interface. Empirical results and human evaluations in zero-shotsettings demonstrate that our distillation method results in more precise VL modelsof reasoning compared to a baseline of passing a generated referring expression.",https://neurips.cc//virtual/2023/poster/71475,2023,NeurIPS,No,, LOVM: Language-Only Vision Model Selection,"Pre-trained multi-modal vision-language models (VLMs) are becoming increasingly popular due to their exceptional performance on downstream vision applications, particularly in the few- and zero-shot settings. However, selecting the best-performing VLM for some downstream applications is non-trivial, as it is dataset and task-dependent. Meanwhile, the exhaustive evaluation of all available VLMs on a novel application is not only time and computationally demanding but also necessitates the collection of a labeled dataset for evaluation. As the number of open-source VLM variants increases, there is a need for an efficient model selection strategy that does not require access to a curated evaluation dataset. This paper proposes a novel task and benchmark for efficiently evaluating VLMs' zero-shot performance on downstream applications without access to the downstream task dataset. Specifically, we introduce a new task LOVM: **L**anguage-**O**nly **V**ision **M**odel Selection , where methods are expected to perform both model selection and performance prediction based solely on a text description of the desired downstream application. We then introduced an extensive LOVM benchmark consisting of ground-truth evaluations of 35 pre-trained VLMs and 23 datasets, where methods are expected to rank the pre-trained VLMs and predict their zero-shot performance.",https://neurips.cc//virtual/2023/poster/73618,2023,NeurIPS,Yes,Language,Benchmark LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching,"Obtaining large pre-trained models that can be fine-tuned to new tasks with limited annotated samples has remained an open challenge for medical imaging data. While pre-trained networks on ImageNet and vision-language foundation models trained on web-scale data are the prevailing approaches, their effectiveness on medical tasks is limited due to the significant domain shift between natural and medical images. To bridge this gap, we introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets. We have collected approximately 1.3 million medical images from 55 publicly available datasets, covering a large number of organs and modalities such as CT, MRI, X-ray, and Ultrasound. We benchmark several state-of-the-art self-supervised algorithms on this dataset and propose a novel self-supervised contrastive learning algorithm using a graph-matching formulation. The proposed approach makes three contributions: (i) it integrates prior pair-wise image similarity metrics based on local and global information; (ii) it captures the structural constraints of feature embeddings through a loss function constructed through a combinatorial graph-matching objective, and (iii) it can be trained efficiently end-to-end using modern gradient-estimation techniques for black-box solvers. We thoroughly evaluate the proposed LVM-Med on 15 downstream medical tasks ranging from segmentation and classification to object detection, and both for the in and out-of-distribution settings. LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models. For challenging tasks such as Brain Tumor Classification or Diabetic Retinopathy Grading, LVM-Med improves previous vision-language models trained on 1 billion masks by 6-7% while using only a ResNet-50.",https://neurips.cc//virtual/2023/poster/70022,2023,NeurIPS,No,, "M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models","Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at \url{https://github.com/DAMO-NLP-SG/M3Exam}.",https://neurips.cc//virtual/2023/poster/73506,2023,NeurIPS,Yes,Language,Benchmark Make Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning,"Parameter-efficient fine-tuning (PEFT) of pre-trained language models (PLMs) has emerged as a highly successful approach, with training only a small number of parameters without sacrificing performance and becoming the de-facto learning paradigm with the increasing size of PLMs. However, existing PEFT methods are not memory-efficient, because they still require caching most of the intermediate activations for the gradient calculation, akin to fine-tuning. One effective way to reduce the activation memory is to apply a reversible model, so the intermediate activations are not necessary to be cached and can be recomputed. Nevertheless, modifying a PLM to its reversible variant is not straightforward, since the reversible model has a distinct architecture from the currently released PLMs. In this paper, we first investigate what is a key factor for the success of existing PEFT methods, and realize that it's essential to preserve the PLM's starting point when initializing a PEFT method. With this finding, we propose memory-efficient fine-tuning (MEFT) that inserts adapters into a PLM, preserving the PLM's starting point and making it reversible without additional pre-training. We evaluate MEFT on the GLUE benchmark and five question-answering tasks with various backbones, BERT, RoBERTa, BART and OPT. MEFT significantly reduces the activation memory up to 84% of full fine-tuning with a negligible amount of trainable parameters. Moreover, MEFT achieves the same score on GLUE and a comparable score on the question-answering tasks as full fine-tuning. A similar finding is also observed for the image classification task.",https://neurips.cc//virtual/2023/poster/72073,2023,NeurIPS,No,, Making Scalable Meta Learning Practical,"Despite its flexibility to learn diverse inductive biases in machine learning programs, meta learning (i.e.,\ learning to learn) has long been recognized to suffer from poor scalability due to its tremendous compute/memory costs, training instability, and a lack of efficient distributed training support. In this work, we focus on making scalable meta learning practical by introducing SAMA, which combines advances in both implicit differentiation algorithms and systems. Specifically, SAMA is designed to flexibly support a broad range of adaptive optimizers in the base level of meta learning programs, while reducing computational burden by avoiding explicit computation of second-order gradient information, and exploiting efficient distributed training techniques implemented for first-order gradients. Evaluated on multiple large-scale meta learning benchmarks, SAMA showcases up to 1.7/4.8x increase in throughput and 2.0/3.8x decrease in memory consumption respectively on single-/multi-GPU setups compared to other baseline meta learning algorithms. Furthermore, we show that SAMA-based data optimization leads to consistent improvements in text classification accuracy with BERT and RoBERTa large language models, and achieves state-of-the-art results in both small- and large-scale data pruning on image classification tasks, demonstrating the practical applicability of scalable meta learning across language and vision domains.",https://neurips.cc//virtual/2023/poster/71350,2023,NeurIPS,No,, MARBLE: Music Audio Representation Benchmark for Universal Evaluation,"In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 18 tasks on 12 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published to promote future music AI research.",https://neurips.cc//virtual/2023/poster/73709,2023,NeurIPS,Yes,Audio, Mathematical Capabilities of ChatGPT,"We investigate the mathematical capabilities of two iterations of ChatGPT (released 9-January-2023 and 30-January-2023) and of GPT-4 by testing them on publicly available datasets, as well as hand-crafted ones, using a novel methodology. In contrast to formal mathematics, where large databases of formal proofs are available (e.g., mathlib, the Lean Mathematical Library), current datasets of natural-language mathematics used to benchmark language models either cover only elementary mathematics or are very small. We address this by publicly releasing two new datasets: GHOSTS and miniGHOSTS. These are the first natural-language datasets curated by working researchers in mathematics that (1) aim to cover graduate-level mathematics, (2) provide a holistic overview of the mathematical capabilities of language models, and (3) distinguish multiple dimensions of mathematical reasoning. These datasets test on 1636 human expert evaluations whether ChatGPT and GPT-4 can be helpful assistants to professional mathematicians by emulating use cases that arise in the daily professional activities of mathematicians. We benchmark the models on a range of fine-grained performance metrics. For advanced mathematics, this is the most detailed evaluation effort to date. We find that ChatGPT and GPT-4 can be used most successfully as mathematical assistants for querying facts, acting as mathematical search engines and knowledge base interfaces. GPT-4 can additionally be used for undergraduate-level mathematics but fails on graduate-level difficulty. Contrary to many positive reports in the media about GPT-4 and ChatGPT's exam-solving abilities (a potential case of selection bias), their overall mathematical performance is well below the level of a graduate student. Hence, if you aim to use ChatGPT to pass a graduate-level math exam, you would be better off copying from your average peer!",https://neurips.cc//virtual/2023/poster/73421,2023,NeurIPS,Yes,Language,Benchmark Meta-in-context learning in large language models,"Large language models have shown tremendous performance in a variety of tasks. In-context learning -- the ability to improve at a task after being provided with a number of demonstrations -- is seen as one of the main contributors to their success. In the present paper, we demonstrate that the in-context learning abilities of large language models can be recursively improved via in-context learning itself. We coin this phenomenon meta-in-context learning. Looking at two idealized domains, a one-dimensional regression task and a two-armed bandit task, we show that meta-in-context learning adaptively reshapes a large language model's priors over expected tasks. Furthermore, we find that meta-in-context learning modifies the in-context learning strategies of such models. Finally, we broaden the scope of our investigation to encompass two diverse benchmarks: one focusing on real-world regression problems and the other encompassing multiple NLP tasks. In both cases, we observe competitive performance comparable to that of traditional learning algorithms. Taken together, our work improves our understanding of in-context learning and paves the way toward adapting large language models to the environment they are applied purely through meta-in-context learning rather than traditional finetuning.",https://neurips.cc//virtual/2023/poster/70239,2023,NeurIPS,No,, OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents,"Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train on the dataset vision and language models of 9 and 80 billion parameters, IDEFICS-9B and IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.",https://neurips.cc//virtual/2023/poster/73589,2023,NeurIPS,No,, On the Exploitability of Instruction Tuning,"Instruction tuning is an effective technique to align large language models (LLMs) with human intent. In this work, we investigate how an adversary can exploit instruction tuning by injecting specific instruction-following examples into the training data that intentionally changes the model's behavior. For example, an adversary can achieve content injection by injecting training examples that mention target content and eliciting such behavior from downstream models. To achieve this goal, we propose \textit{AutoPoison}, an automated data poisoning pipeline. It naturally and coherently incorporates versatile attack goals into poisoned data with the help of an oracle LLM. We showcase two example attacks: content injection and over-refusal attacks, each aiming to induce a specific exploitable behavior. We quantify and benchmark the strength and the stealthiness of our data poisoning scheme. Our results show that AutoPoison allows an adversary to change a model's behavior by poisoning only a small fraction of data while maintaining a high level of stealthiness in the poisoned examples. We hope our work sheds light on how data quality affects the behavior of instruction-tuned models and raises awareness of the importance of data quality for responsible deployments of LLMs.",https://neurips.cc//virtual/2023/poster/72871,2023,NeurIPS,No,, OpenAGI: When LLM Meets Domain Experts,"Human Intelligence (HI) excels at combining basic skills to solve complex tasks. This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents, enabling them to harness expert models for complex task-solving towards Artificial General Intelligence (AGI). Large Language Models (LLMs) show promising learning and reasoning abilities, and can effectively use external models, tools, plugins, or APIs to tackle complex problems. In this work, we introduce OpenAGI, an open-source AGI research and development platform designed for solving multi-step, real-world tasks. Specifically, OpenAGI uses a dual strategy, integrating standard benchmark tasks for benchmarking and evaluation, and open-ended tasks including more expandable models, tools, plugins, or APIs for creative problem-solving. Tasks are presented as natural language queries to the LLM, which then selects and executes appropriate models. We also propose a Reinforcement Learning from Task Feedback (RLTF) mechanism that uses task results to improve the LLM's task-solving ability, which creates a self-improving AI feedback loop. While we acknowledge that AGI is a broad and multifaceted research challenge with no singularly defined solution path, the integration of LLMs with domain-specific expert models, inspired by mirroring the blend of general and specialized intelligence in humans, offers a promising approach towards AGI. We are open-sourcing the OpenAGI project's code, dataset, benchmarks, evaluation methods, and the UI demo to foster community involvement in AGI advancement: https://github.com/agiresearch/OpenAGI.",https://neurips.cc//virtual/2023/poster/73509,2023,NeurIPS,Yes,Language,Methodological OpenAssistant Conversations - Democratizing Large Language Model Alignment,"Aligning large language models (LLMs) with human preferences has proven to drastically improve usability and has driven rapid adoption as demonstrated by ChatGPT.Alignment techniques such as supervised fine-tuning (\textit{SFT}) and reinforcement learning from human feedback (\textit{RLHF}) greatly reduce the required skill and domain knowledge to effectively harness the capabilities of LLMs, increasing their accessibility and utility across various domains.However, state-of-the-art alignment techniques like \textit{RLHF} rely on high-quality human feedback data, which is expensive to create and often remains proprietary.In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations, a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 complete and fully annotated conversation trees.The corpus is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers.Models trained on OpenAssistant Conversations show consistent improvements on standard benchmarks over respective base models.We release our code\footnote{\git} and data\footnote{\data} under a fully permissive licence.",https://neurips.cc//virtual/2023/poster/73573,2023,NeurIPS,No,, OV-PARTS: Towards Open-Vocabulary Part Segmentation,"Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/kellyiss/OV_PARTS.",https://neurips.cc//virtual/2023/poster/73650,2023,NeurIPS,Yes,Image, Paxion: Patching Action Knowledge in Video-Language Foundation Models,"Action knowledge involves the understanding of textual, visual, and temporal aspects of actions. We introduce the **Action Dynamics Benchmark (ActionBench)** containing two carefully designed probing tasks: Action Antonym and Video Reversal, which targets multimodal alignment capabilities and temporal understanding skills of the model, respectively. Despite recent video-language models’ (VidLM) impressive performance on various benchmark tasks, our diagnostic tasks reveal their surprising deficiency (near-random performance) in action knowledge, suggesting that current models rely on object recognition abilities as a shortcut for action understanding. To remedy this, we propose a novel framework, **Paxion**, along with a new **Discriminative Video Dynamics Modeling (DVDM)** objective. The Paxion framework utilizes a **Knowledge Patcher** network to encode new action knowledge and a **Knowledge Fuser** component to integrate the Patcher into frozen VidLMs without compromising their existing capabilities. Due to limitations of the widely-used Video-Text Contrastive (VTC) loss for learning action knowledge, we introduce the DVDM objective to train the Knowledge Patcher. DVDM forces the model to encode the correlation between the action text and the correct ordering of video frames. Our extensive analyses show that Paxion and DVDM together effectively fill the gap in action knowledge understanding (~50% → 80%), while maintaining or improving performance on a wide spectrum of both object- and action-centric downstream tasks.",https://neurips.cc//virtual/2023/poster/71132,2023,NeurIPS,Yes,Multimodal, "PIXIU: A Comprehensive Benchmark, Instruction Dataset and Large Language Model for Finance","Although large language models (LLMs) have shown great performance in natural language processing (NLP) in the financial domain, there are no publicly available financially tailored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 128K data samples to support the fine-tuning, and an evaluation benchmark with 8 tasks and 15 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including six financial NLP tasks and two financial prediction tasks. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.",https://neurips.cc//virtual/2023/poster/73431,2023,NeurIPS,Yes,Language,Benchmark PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change,"Generating plans of action, and reasoning about change have long been considered a core competence of intelligent agents. It is thus no surprise that evaluating the planning and reasoning capabilities of large language models (LLMs) has become a hot topic of research. Most claims about LLM planning capabilities are however based on common sense tasks–where it becomes hard to tell whether LLMs are planning or merely retrieving from their vast world knowledge. There is a strong need for systematic and extensible planning benchmarks with sufficient diversity to evaluate whether LLMs have innate planning capabilities. Motivated by this, we propose PlanBench, an extensible benchmark suite based on the kinds of domains used in the automated planning community, especially in the International Planning Competition, to test the capabilities of LLMs in planning or reasoning about actions and change. PlanBench provides sufficient diversity in both the task domains and the specific planning capabilities. Our studies also show that on many critical capabilities–including plan generation–LLM performance falls quite short, even with the SOTA models. PlanBench can thus function as a useful marker of progress of LLMs in planning and reasoning.",https://neurips.cc//virtual/2023/poster/73553,2023,NeurIPS,Yes,Language,Benchmark PointGPT: Auto-regressively Generative Pre-training from Point Clouds,"Large language models (LLMs) based on the generative pre-training transformer (GPT) have demonstrated remarkable effectiveness across a diverse range of downstream tasks. Inspired by the advancements of the GPT, we present PointGPT, a novel approach that extends the concept of GPT to point clouds, addressing the challenges associated with disorder properties, low information density, and task gaps. Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models. Our method partitions the input point cloud into multiple point patches and arranges them in an ordered sequence based on their spatial proximity. Then, an extractor-generator based transformer decode, with a dual masking strategy, learns latent representations conditioned on the preceding point patches, aiming to predict the next one in an auto-regressive manner. To explore scalability and enhance performance, a larger pre-training dataset is collected. Additionally, a subsequent post-pre-training stage is introduced, incorporating a labeled hybrid dataset. Our scalable approach allows for learning high-capacity models that generalize well, achieving state-of-the-art performance on various downstream tasks. In particular, our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models. Furthermore, our method also attains new state-of-the-art accuracies on all four few-shot learning benchmarks. Codes are available at https://github.com/CGuangyan-BIT/PointGPT.",https://neurips.cc//virtual/2023/poster/70295,2023,NeurIPS,No,, Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision,"Recent AI-assistant agents, such as ChatGPT, predominantly rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback (RLHF) to align the output of large language models (LLMs) with human intentions, ensuring they are helpful, ethical, and reliable. However, this dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision and the related issues on quality, reliability, diversity, self-consistency, and undesirable biases. To address these challenges, we propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision. Our approach encompasses four stages: first, we use an LLM to generate synthetic prompts, and a topic-guided method to augment the prompt diversity; second, we use a small set of human-written principles for AI models to follow, and guide the LLM through in-context learning from demonstrations (of principles application) to produce helpful, ethical, and reliable responses to user's queries; third, we fine-tune the original LLM with the high-quality self-aligned responses so that the resulting model can generate desirable responses for each query directly without the principle set and the demonstrations anymore; and finally, we offer a refinement step to address the issues of overly-brief or indirect responses. Applying SELF-ALIGN to the LLaMA-65b base language model, we develop an AI assistant named Dromedary. With fewer than 300 lines of human annotations (including < 200 seed prompts, 16 generic principles, and 5 exemplars for in-context learning). Dromedary significantly surpasses the performance of several state-of-the-art AI systems, including Text-Davinci-003 and Alpaca, on benchmark datasets with various settings.",https://neurips.cc//virtual/2023/poster/70433,2023,NeurIPS,No,, QLoRA: Efficient Finetuning of Quantized LLMs,"We present QLoRA, an efficient finetuning approach that reduces memory usage enough to finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit finetuning task performance. QLoRA backpropagates gradients through a frozen, 4-bit quantized pretrained language model into Low Rank Adapters~(LoRA). Our best model family, which we name Guanaco, outperforms all previous openly released models on the Vicuna benchmark, reaching 99.3% of the performance level of ChatGPT while only requiring 24 hours of finetuning on a single GPU. QLoRA introduces a number of innovations to save memory without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that is information-theoretically optimal for normally distributed weights (b) Double Quantization to reduce the average memory footprint by quantizing the quantization constants, and (c) Paged Optimziers to manage memory spikes. We use QLoRA to finetune more than 1,000 models, providing a detailed analysis of instruction following and chatbot performance across 8 instruction datasets, multiple model types (LLaMA, T5), and model scales that would be infeasible to run with regular finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA finetuning on a small, high-quality dataset leads to state-of-the-art results, even when using smaller models than the previous SoTA. We provide a detailed analysis of chatbot performance based on both human and GPT-4 evaluations, showing that GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Furthermore, we find that current chatbot benchmarks are not trustworthy to accurately evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates where Guanaco fails compared to ChatGPT. We release all of our models and code, including CUDA kernels for 4-bit training.",https://neurips.cc//virtual/2023/poster/71815,2023,NeurIPS,No,, RaLEs: a Benchmark for Radiology Language Evaluations,"The radiology report is the main form of communication between radiologists and other clinicians. Prior work in natural language processing in radiology reports has shown the value of developing methods tailored for individual tasks such as identifying reports with critical results or disease detection. Meanwhile, English and biomedical natural language understanding benchmarks such as the General Language Understanding and Evaluation as well as Biomedical Language Understanding and Reasoning Benchmark have motivated the development of models that can be easily adapted to address many tasks in those domains. Here, we characterize the radiology report as a distinct domain and introduce RaLEs, the Radiology Language Evaluations, as a benchmark for natural language understanding and generation in radiology. RaLEs is comprised of seven natural language understanding and generation evaluations including the extraction of anatomical and disease entities and their relations, procedure selection, and report summarization. We characterize the performance of models designed for the general, biomedical, clinical and radiology domains across these tasks. We find that advances in the general and biomedical domains do not necessarily translate to radiology, and that improved models from the general domain can perform comparably to smaller clinical-specific models. The limited performance of existing pre-trained models on RaLEs highlights the opportunity to improve domain-specific self-supervised models for natural language processing in radiology. We propose RaLEs as a benchmark to promote and track the development of such domain-specific radiology language models.",https://neurips.cc//virtual/2023/poster/73601,2023,NeurIPS,Yes,Language,Benchmark RealTime QA: What's the Answer Right Now?,"We introduce RealTime QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). RealTime QA inquires about the current world, and QA systems need to answer questions about novel events or information. It therefore challenges static, conventional assumptions in open-domain QA datasets and pursues instantaneous applications. We build strong baseline models upon large pretrained language models, including GPT-3 and T5. Our benchmark is an ongoing effort, and this paper presents real-time evaluation results over the past year. Our experimental results show that GPT-3 can often properly update its generation results, based on newly-retrieved documents, highlighting the importance of up-to-date information retrieval. Nonetheless, we find that GPT-3 tends to return outdated answers when retrieved documents do not provide sufficient information to find an answer. This suggests an important avenue for future research: can an open-domain QA system identify such unanswerable cases and communicate with the user or even the retrieval module to modify the retrieval results? We hope that RealTime QA will spur progress in instantaneous applications of question answering and beyond.",https://neurips.cc//virtual/2023/poster/73639,2023,NeurIPS,Yes,Language,Benchmark Reflexion: language agents with verbal reinforcement learning,"Large language models (LLMs) have been increasingly used to interact with external environments (e.g., games, compilers, APIs) as goal-driven agents. However, it remains challenging for these language agents to quickly and efficiently learn from trial-and-error as traditional reinforcement learning methods require extensive training samples and expensive model fine-tuning. We propose \emph{Reflexion}, a novel framework to reinforce language agents not by updating weights, but instead through linguistic feedback. Concretely, Reflexion agents verbally reflect on task feedback signals, then maintain their own reflective text in an episodic memory buffer to induce better decision-making in subsequent trials. Reflexion is flexible enough to incorporate various types (scalar values or free-form language) and sources (external or internally simulated) of feedback signals, and obtains significant improvements over a baseline agent across diverse tasks (sequential decision-making, coding, language reasoning). For example, Reflexion achieves a 91\% pass@1 accuracy on the HumanEval coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80\%. We also conduct ablation and analysis studies using different feedback signals, feedback incorporation methods, and agent types, and provide insights into how they affect performance. We release all code, demos, and datasets at \url{https://github.com/noahshinn024/reflexion}.",https://neurips.cc//virtual/2023/poster/70114,2023,NeurIPS,No,, "Revisiting Out-of-distribution Robustness in NLP: Benchmarks, Analysis, and LLMs Evaluations","This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP. We find that the distribution shift settings in previous studies commonly lack adequate challenges, hindering the accurate evaluation of OOD robustness. To address these issues, we propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts. Then we introduceBOSS, a Benchmark suite for Out-of-distribution robustneSS evaluation covering 5 tasks and 20 datasets. Based on BOSS, we conduct a series of experiments on pretrained language models for analysis and evaluation of OOD robustness. First, for vanilla fine-tuning, we examine the relationship between in-distribution (ID) and OOD performance. We identify three typical types that unveil the inner learningmechanism, which could potentially facilitate the forecasting of OOD robustness, correlating with the advancements on ID datasets. Then, we evaluate 5 classic methods on BOSS and find that, despite exhibiting some effectiveness in specific cases, they do not offer significant improvement compared to vanilla fine-tuning. Further, we evaluate 5 LLMs with various adaptation paradigms and find that when sufficient ID data is available, fine-tuning domain-specific models outperform LLMs on ID examples significantly. However, in the case of OOD instances, prioritizing LLMs with in-context learning yields better results. We identify that both fine-tuned small models and LLMs face challenges in effectively addressing downstream tasks. The code is public at https://github.com/lifan-yuan/OOD_NLP.",https://neurips.cc//virtual/2023/poster/73407,2023,NeurIPS,Yes,Language,Benchmark Scalable 3D Captioning with Pretrained Models,"We introduce Cap3D, an automatic approach for generating descriptive text for 3D objects. This approach utilizes pretrained models from image captioning, image-text alignment, and LLM to consolidate captions from multiple views of a 3D asset, completely side-stepping the time-consuming and costly process of manual annotation. We apply Cap3D to the recently introduced large-scale 3D dataset, Objaverse, resulting in 660k 3D-text pairs. Our evaluation, conducted using 41k human annotations from the same dataset, demonstrates that Cap3D surpasses human-authored descriptions in terms of quality, cost, and speed. Through effective prompt engineering, Cap3D rivals human performance in generating geometric descriptions on 17k collected annotations from the ABO dataset. Finally, we finetune Text-to-3D models on Cap3D and human captions, and show Cap3D outperforms; and benchmark the SOTA including Point·E, Shape·E, and DreamFusion.",https://neurips.cc//virtual/2023/poster/73490,2023,NeurIPS,No,, Scientific Document Retrieval using Multi-level Aspect-based Queries,"In scientific research, the ability to effectively retrieve relevant documents based on complex, multifaceted queries is critical. Existing evaluation datasets for this task are limited, primarily due to the high costs and effort required to annotate resources that effectively represent complex queries. To address this, we propose a novel task, $\textbf{S}$cientific $\textbf{Do}$cument $\textbf{R}$etrieval using $\textbf{M}$ulti-level $\textbf{A}$spect-based qu$\textbf{E}$ries (DORIS-MAE), which is designed to handle the complex nature of user queries in scientific research. We developed a benchmark dataset within the field of computer science, consisting of 100 human-authored complex query cases. For each complex query, we assembled a collection of 100 relevant documents and produced annotated relevance scores for ranking them. Recognizing the significant labor of expert annotation, we also introduce Anno-GPT, a scalable framework for evaluating the viability of Large Language Models (LLMs) such as ChatGPT-3.5 for expert-level dataset annotation tasks. The application of Anno-GPT to annotate the DORIS-MAE dataset resulted in a 500x reduction in cost, without compromising quality. Furthermore, due to the multi-tiered structure of these complex queries, our DORIS-MAE dataset can be extended to over 4,000 sub-query test cases without requiring additional annotation. We evaluated 17 recent retrieval methods on DORIS-MAE, observing notable performance drops compared to traditional datasets. This highlights DORIS-MAE's challenges and the need for better approaches to handle complex, multifaceted queries in scientific research. Our dataset and codebase are available at https://github.com/Real-Doris-Mae/Doris-Mae-Dataset .",https://neurips.cc//virtual/2023/poster/73559,2023,NeurIPS,Yes,Language,Methodological S-CLIP: Semi-supervised Vision-Language Learning using Few Specialist Captions,"Vision-language models, such as contrastive language-image pre-training (CLIP), have demonstrated impressive results in natural image domains. However, these models often struggle when applied to specialized domains like remote sensing, and adapting to such domains is challenging due to the limited number of image-text pairs available for training. To address this, we propose S-CLIP, a semi-supervised learning method for training CLIP that utilizes additional unpaired images. S-CLIP employs two pseudo-labeling strategies specifically designed for contrastive learning and the language modality. The caption-level pseudo-label is given by a combination of captions of paired images, obtained by solving an optimal transport problem between unpaired and paired images. The keyword-level pseudo-label is given by a keyword in the caption of the nearest paired image, trained through partial label learning that assumes a candidate set of labels for supervision instead of the exact one. By combining these objectives, S-CLIP significantly enhances the training of CLIP using only a few image-text pairs, as demonstrated in various specialist domains, including remote sensing, fashion, scientific figures, and comics. For instance, S-CLIP improves CLIP by 10% for zero-shot classification and 4% for image-text retrieval on the remote sensing benchmark, matching the performance of supervised CLIP while using three times fewer image-text pairs.",https://neurips.cc//virtual/2023/poster/71829,2023,NeurIPS,No,, Self-Chained Image-Language Model for Video Localization and Question Answering,"Recent studies have shown promising results on utilizing large pre-trained image-language models for video question answering. While these image-language models can efficiently bootstrap the representation learning of video-language models, they typically concatenate uniformly sampled video frames as visual inputs without explicit language-aware, temporal modeling. When only a portion of a video input is relevant to the language query, such uniform frame sampling can often lead to missing important visual cues. Although humans often find a video moment to focus on and rewind the moment to answer questions, training a query-aware video moment localizer often requires expensive annotations and high computational costs. To address this issue, we propose Self-Chained Video Localization-Answering (SeViLA), a novel framework that leverages a single image-language model (BLIP- 2) to tackle both temporal keyframe localization and question answering on videos. SeViLA framework consists of two modules: Localizer and Answerer, where both are parameter-efficiently fine-tuned from BLIP-2. We propose two ways of chaining these modules for cascaded inference and self-refinement. First, in the forward chain, the Localizer finds multiple language-aware keyframes in a video, which the Answerer uses to predict the answer. Second, in the reverse chain, the Answerer generates keyframe pseudo-labels to refine the Localizer, alleviating the need for expensive video moment localization annotations. Our SeViLA framework outperforms several strong baselines/previous works on five challenging video question answering and event prediction benchmarks, and achieves the state-of-the-art in both fine-tuning (NExT-QA and STAR) and zero-shot (NExT-QA, STAR, How2QA, and VLEP) settings. We show a comprehensive analysis of our framework, including the impact of Localizer, comparisons of Localizer with other temporal localization models, pre-training/self-refinement of Localizer, and varying the number of keyframes.",https://neurips.cc//virtual/2023/poster/71124,2023,NeurIPS,No,, Self-Evaluation Guided Beam Search for Reasoning,"Breaking down a problem into intermediate steps has demonstrated impressive performance in Large Language Model (LLM) reasoning. However, the growth of the reasoning chain introduces uncertainty and error accumulation, making it challenging to elicit accurate final results. To tackle this challenge of uncertainty in multi-step reasoning, we introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of LLMs. We propose a decoding algorithm integrating the self-evaluation guidance via stochastic beam search. The self-evaluation guidance serves as a better-calibrated automatic criterion, facilitating an efficient search in the reasoning space and resulting in superior prediction quality. Stochastic beam search balances exploitation and exploration of the search space with temperature-controlled randomness. Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34$%, $9.56$%, and $5.46$% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively. Experiment results with Llama-2 on arithmetic reasoning demonstrate the efficiency of our method in outperforming the baseline methods with comparable computational budgets. Further analysis in multi-step reasoning finds our self-evaluation guidance pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at [https://guideddecoding.github.io/](https://guideddecoding.github.io/).",https://neurips.cc//virtual/2023/poster/72456,2023,NeurIPS,No,, Setting the Trap: Capturing and Defeating Backdoors in Pretrained Language Models through Honeypots,"In the field of natural language processing, the prevalent approach involves fine-tuning pretrained language models (PLMs) using local samples. Recent research has exposed the susceptibility of PLMs to backdoor attacks, wherein the adversaries can embed malicious prediction behaviors by manipulating a few training samples. In this study, our objective is to develop a backdoor-resistant tuning procedure that yields a backdoor-free model, no matter whether the fine-tuning dataset contains poisoned samples. To this end, we propose and integrate an \emph{honeypot module} into the original PLM, specifically designed to absorb backdoor information exclusively. Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features while carrying minimal information about the original tasks. Consequently, we can impose penalties on the information acquired by the honeypot module to inhibit backdoor creation during the fine-tuning process of the stem network. Comprehensive experiments conducted on benchmark datasets substantiate the effectiveness and robustness of our defensive strategy. Notably, these results indicate a substantial reduction in the attack success rate ranging from 10\% to 40\% when compared to prior state-of-the-art methods.",https://neurips.cc//virtual/2023/poster/72945,2023,NeurIPS,No,, SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models,"Computer end users have spent billions of hours completing daily tasks like tabular data processing and project timeline scheduling. Most of these tasks are repetitive and error-prone, yet most end users lack the skill to automate these burdensome works. With the advent of large language models (LLMs), directing software with natural language user requests become a reachable goal. In this work, we propose a SheetCopilot agent that takes natural language task and control spreadsheet to fulfill the requirements. We propose a set of atomic actions as an abstraction of spreadsheet software functionalities. We further design a state machine-based task planning framework for LLMs to robustly interact with spreadsheets. We curate a representative dataset containing 221 spreadsheet control tasks and establish a fully automated evaluation pipeline for rigorously benchmarking the ability of LLMs in software control tasks. Our SheetCopilot correctly completes 44.3\% of tasks for a single generation, outperforming the strong code generation baseline by a wide margin. Our project page: https://sheetcopilot.github.io/.",https://neurips.cc//virtual/2023/poster/70193,2023,NeurIPS,Yes,Language,Technical Simple and Controllable Music Generation,"We tackle the task of conditional music generation. We introduce MusicGen, a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens. Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns, which eliminates the need for cascading several models, e.g., hierarchically or upsampling. Following this approach, we demonstrate how MusicGen can generate high-quality samples, both mono and stereo, while being conditioned on textual description or melodic features, allowing better controls over the generated output. We conduct extensive empirical evaluation, considering both automatic and human studies, showing the proposed approach is superior to the evaluated baselines on a standard text-to-music benchmark. Through ablation studies, we shed light over the importance of each of the components comprising MusicGen. Music samples, code, and models are available at https://github.com/facebookresearch/audiocraft",https://neurips.cc//virtual/2023/poster/70671,2023,NeurIPS,No,, SituatedGen: Incorporating Geographical and Temporal Contexts into Generative Commonsense Reasoning,"Recently, commonsense reasoning in text generation has attracted much attention. Generative commonsense reasoning is the task that requires machines, given a group of keywords, to compose a single coherent sentence with commonsense plausibility. While existing datasets targeting generative commonsense reasoning focus on everyday scenarios, it is unclear how well machines reason under specific geographical and temporal contexts. We formalize this challenging task as SituatedGen, where machines with commonsense should generate a pair of contrastive sentences given a group of keywords including geographical or temporal entities. We introduce a corresponding English dataset consisting of 8,268 contrastive sentence pairs, which are built upon several existing commonsense reasoning benchmarks with minimal manual labor. Experiments show that state-of-the-art generative language models struggle to generate sentences with commonsense plausibility and still lag far behind human performance. Our dataset is publicly available at https://github.com/yunx-z/situated_gen.",https://neurips.cc//virtual/2023/poster/73417,2023,NeurIPS,Yes,Language,Methodological SpecTr: Fast Speculative Decoding via Optimal Transport,"Autoregressive sampling from large language models has led to state-of-the-art results in several natural language tasks.However, autoregressive sampling generates tokens one at a time making it slow, and even prohibitive in certain tasks. One way to speed up sampling is *speculative decoding*: use a small model to sample a *draft* (block or sequence of tokens), and then score all tokens in the draft by the large language model in parallel. A subset of the tokens in the draft are accepted (and the rest rejected) based on a statistical method to guarantee that the final output follows the distribution of the large model. In this work, we provide a principled understanding of speculative decoding through the lens of optimal transport (OT) with *membership cost*. This framework can be viewed as an extension of the well-known *maximal-coupling* problem. This new formulation enables us to generalize the speculative decoding method to allow for a set of $k$ candidates at the token-level, which leads to an improved optimal membership cost. We show that the optimal draft selection algorithm (transport plan) can be computed via linear programming, whose best-known runtime is exponential in $k$. We then propose a valid draft selection algorithm whose acceptance probability is $(1-1/e)$-optimal multiplicatively. Moreover, it can be computed in time almost linear with size of domain of a single token.Using this new draft selection algorithm, we develop a new autoregressive sampling algorithm called *SpecTr*, which provides speedup in decoding while ensuring that there is no quality degradation in the decoded output.We experimentally demonstrate that for state-of-the-art large language models, the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.",https://neurips.cc//virtual/2023/poster/71597,2023,NeurIPS,No,, SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents,"Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken con- versation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. Our dataset, code, and leaderboard are available at https://spokenwoz.github.io/SpokenWOZ-github.io/.",https://neurips.cc//virtual/2023/poster/73427,2023,NeurIPS,Yes,Audio, SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality,"In the last year alone, a surge of new benchmarks to measure $\textit{compositional}$ understanding of vision-language models have permeated the machine learning ecosystem.Given an image, these benchmarks probe a model's ability to identify its associated caption amongst a set of compositional distractors.Surprisingly, we find significant biases in $\textit{all}$ these benchmarks rendering them hackable. This hackability is so dire that blind models with no access to the image outperform state-of-the-art vision-language models.To remedy this rampant vulnerability, we introduce $\textit{SugarCrepe}$, a new benchmark for vision-language compositionality evaluation.We employ large language models, instead of rule-based templates used in previous benchmarks, to generate fluent and sensical hard negatives, and utilize an adversarial refinement mechanism to maximally reduce biases. We re-evaluate state-of-the-art models and recently proposed compositionality inducing strategies, and find that their improvements were hugely overestimated, suggesting that more innovation is needed in this important direction.We release $\textit{SugarCrepe}$ and the code for evaluation at: https://github.com/RAIVNLab/sugar-crepe.",https://neurips.cc//virtual/2023/poster/73628,2023,NeurIPS,Yes,Multimodal, SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks,"We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition, designed to excel in action planning for complex interactive reasoning tasks. SwiftSage integrates the strengths of behavior cloning and prompting large language models (LLMs) to enhance task completion performance. The framework comprises two primary modules: the Swift module, representing fast and intuitive thinking, and the Sage module, emulating deliberate thought processes. The Swift module is a small encoder-decoder LM fine-tuned on the oracle agent's action trajectories, while the Sage module employs LLMs such as GPT-4 for subgoal planning and grounding. We develop a heuristic method to harmoniously integrate the two modules, resulting in a more efficient and robust problem-solving process. In 30 tasks from the ScienceWorld benchmark, SwiftSage significantly outperforms other methods such as SayCan, ReAct, and Reflexion, demonstrating its effectiveness in solving complex interactive tasks.",https://neurips.cc//virtual/2023/poster/71636,2023,NeurIPS,No,, T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation,"Despite the stunning ability to generate high-quality images by recent text-to-image models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation and explore the potential and limitations of multimodal LLMs for evaluation. We introduce a new approach, Generative mOdel finetuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach. Project page is available at https://karine-h.github.io/T2I-CompBench/.",https://neurips.cc//virtual/2023/poster/73424,2023,NeurIPS,Yes,Image, TART: A plug-and-play Transformer module for task-agnostic reasoning,"Large language models (LLMs) exhibit in-context learning abilities which enable the same model to perform several tasks without any task-specific training. In contrast, traditional adaptation approaches, such as fine-tuning, modify the underlying models for each specific task. In-context learning, however, consistently underperforms task-specific tuning approaches even when presented with the same examples. While most existing approaches (e.g., prompt engineering) focus on the LLM's learned representations to patch this performance gap, our experiments actually reveal that LLM representations contain sufficient information to make good predictions. As such, we focus on the LLM's reasoning abilities and demonstrate that this performance gap exists due to their inability to perform simple probabilistic reasoning tasks. This raises an intriguing question: Are LLMs actually capable of learning how to reason in a task-agnostic manner? We answer this in the affirmative and, as a proof of concept, propose TART which generically improves an LLM's reasoning abilities using a synthetically trained reasoning module. TART trains this Transformer-based reasoning module in a task-agnostic manner using only synthetic logistic regression tasks and composes it with an arbitrary real-world pre-trained model without any additional training. With a single inference module, TART improves performance across different model families (GPT-Neo, Pythia, Bloom), model sizes (100M - 6B), tasks (14 NLP classification tasks), and even across different modalities (audio and vision). On the RAFT Benchmark, TART improves GPT-Neo (125M)'s performance such that it outperforms Bloom (176B), and is within $4$% of GPT-3.",https://neurips.cc//virtual/2023/poster/71232,2023,NeurIPS,No,, Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models,"Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space: By adding the fine-tuned weights of different tasks, the model's performance can be improved on these tasks, while negating them leads to task forgetting. Yet, our understanding of the effectiveness of task arithmetic and its underlying principles remains limited. We present a comprehensive study of task arithmetic in vision-language models and show that weight disentanglement is the crucial factor that makes it effective. This property arises during pre-training and manifests when distinct directions in weight space govern separate, localized regions in function space associated with the tasks. Notably, we show that fine-tuning models in their tangent space by linearizing them amplifies weight disentanglement. This leads to substantial performance improvements across multiple task arithmetic benchmarks and diverse models. Building on these findings, we provide theoretical and empirical analyses of the neural tangent kernel (NTK) of these models and establish a compelling link between task arithmetic and the spatial localization of the NTK eigenfunctions. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to edit pre-trained models through the NTK linearization.",https://neurips.cc//virtual/2023/poster/73073,2023,NeurIPS,No,, Textually Pretrained Speech Language Models,"Speech language models (SpeechLMs) process and generate acoustic data only, without textual supervision. In this work, we propose TWIST, a method for training SpeechLMs using a warm-start from a pretrained textual language models. We show using both automatic and human evaluations that TWIST outperforms a cold-start SpeechLM across the board. We empirically analyze the effect of different model design choices such as the speech tokenizer, the pretrained textual model, and the dataset size. We find that model and dataset scale both play an important role in constructing better-performing SpeechLMs. Based on our observations, we present the largest (to the best of our knowledge) SpeechLM both in terms of number of parameters and training data. We additionally introduce two spoken versions of the StoryCloze textual benchmark to further improve model evaluation and advance future research in the field. We make speech samples, code and models publicly available.",https://neurips.cc//virtual/2023/poster/71490,2023,NeurIPS,No,, ToolQA: A Dataset for LLM Question Answering with External Tools,"Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks, but they still suffer from challenges such as hallucination and weak numerical reasoning. To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities. However, current evaluation methods do not distinguish between questions that can be answered using LLMs' internal knowledge and those that require external information through tool use. To address this issue, we introduce a new dataset called ToolQA, which is designed to faithfully evaluate LLMs' ability to use external tools for question answering. Our development of ToolQA involved a scalable, automated process for dataset curation, along with 13 specialized tools designed for interaction with external knowledge in order to answer questions. Importantly, we strive to minimize the overlap between our benchmark data and LLMs' pre-training data, enabling a more precise evaluation of LLMs' tool-use reasoning abilities. We conducted an in-depth diagnosis of existing tool-use LLMs to highlight their strengths, weaknesses, and potential improvements. Our findings set a new benchmark for evaluating LLMs and suggest new directions for future advancements. Our data and code are freely available for the broader scientific community on GitHub.",https://neurips.cc//virtual/2023/poster/73466,2023,NeurIPS,Yes,Language,Benchmark Tuning Multi-mode Token-level Prompt Alignment across Modalities,"Advancements in prompt tuning of vision-language models have underscored their potential in enhancing open-world visual concept comprehension. However, prior works only primarily focus on single-mode (only one prompt for each modality) and holistic level (image or sentence) semantic alignment, which fails to capture the sample diversity, leading to sub-optimal prompt discovery. To address the limitation, we propose a multi-mode token-level tuning framework that leverages the optimal transportation to learn and align a set of prompt tokens across modalities. Specifically, we rely on two essential factors: 1) multi-mode prompts discovery, which guarantees diverse semantic representations, and 2) token-level alignment, which helps explore fine-grained similarity. Consequently, the similarity can be calculated as a hierarchical transportation problem between the modality-specific sets. Extensive experiments on popular image recognition benchmarks show the superior generalization and few-shot abilities of our approach. The qualitative analysis demonstrates that the learned prompt tokens have the ability to capture diverse visual concepts.",https://neurips.cc//virtual/2023/poster/72564,2023,NeurIPS,No,, Understanding Social Reasoning in Language Models with Language Models,"As Large Language Models (LLMs) become increasingly integrated into our everyday lives, understanding their ability to comprehend human mental states becomes critical for ensuring effective interactions. However, despite the recent attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the degree to which these models can align with human ToM remains a nuanced topic of exploration. This is primarily due to two distinct challenges: (1) the presence of inconsistent results from previous evaluations, and (2) concerns surrounding the validity of existing evaluation methodologies. To address these challenges, we present a novel framework for procedurally generating evaluations with LLMs by populating causal templates. Using our framework, we create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations. We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations. Using BigToM, we evaluate the social reasoning capabilities of a variety of LLMs and compare model performances with human performance. Our results suggest that GPT4 has ToM capabilities that mirror human inference patterns, though less reliable, while other LLMs struggle.",https://neurips.cc//virtual/2023/poster/73680,2023,NeurIPS,Yes,Language,Benchmark Unsupervised Protein-Ligand Binding Energy Prediction via Neural Euler's Rotation Equation,"Protein-ligand binding prediction is a fundamental problem in AI-driven drug discovery. Previous work focused on supervised learning methods for small molecules where binding affinity data is abundant, but it is hard to apply the same strategy to other ligand classes like antibodies where labelled data is limited. In this paper, we explore unsupervised approaches and reformulate binding energy prediction as a generative modeling task. Specifically, we train an energy-based model on a set of unlabelled protein-ligand complexes using SE(3) denoising score matching (DSM) and interpret its log-likelihood as binding affinity. Our key contribution is a new equivariant rotation prediction network called Neural Euler's Rotation Equations (NERE) for SE(3) DSM. It predicts a rotation by modeling the force and torque between protein and ligand atoms, where the force is defined as the gradient of an energy function with respect to atom coordinates. Using two protein-ligand and antibody-antigen binding affinity prediction benchmarks, we show that NERE outperforms all unsupervised baselines (physics-based potentials and protein language models) in both cases and surpasses supervised baselines in the antibody case.",https://neurips.cc//virtual/2023/poster/72875,2023,NeurIPS,No,, UP-DP: Unsupervised Prompt Learning for Data Pre-Selection with Vision-Language Models,"In this study, we investigate the task of data pre-selection, which aims to select instances for labeling from an unlabeled dataset through a single pass, thereby optimizing performance for undefined downstream tasks with a limited annotation budget. Previous approaches to data pre-selection relied solely on visual features extracted from foundation models, such as CLIP and BLIP-2, but largely ignored the powerfulness of text features. In this work, we argue that, with proper design, the joint feature space of both vision and text can yield a better representation for data pre-selection. To this end, we introduce UP-DP, a simple yet effective unsupervised prompt learning approach that adapts vision-language models, like BLIP-2, for data pre-selection. Specifically, with the BLIP-2 parameters frozen, we train text prompts to extract the joint features with improved representation, ensuring a diverse cluster structure that covers the entire dataset. We extensively compare our method with the state-of-the-art using seven benchmark datasets in different settings, achieving up to a performance gain of 20\%. Interestingly, the prompts learned from one dataset demonstrate significant generalizability and can be applied directly to enhance the feature extraction of BLIP-2 from other datasets. To the best of our knowledge, UP-DP is the first work to incorporate unsupervised prompt learning in a vision-language model for data pre-selection.",https://neurips.cc//virtual/2023/poster/71462,2023,NeurIPS,No,, VAST: A Vision-Audio-Subtitle-Text Omni-Modality Foundation Model and Dataset,"Vision and text have been fully explored in contemporary video-text foundational models, while other modalities such as audio and subtitles in videos have not received sufficient attention. In this paper, we resort to establish connections between multi-modality video tracks, including Vision, Audio, and Subtitle, and Text by exploring an automatically generated large-scale omni-modality video caption dataset called VAST-27M. Specifically, we first collect 27 million open-domain video clips and separately train a vision and an audio captioner to generate vision and audio captions. Then, we employ an off-the-shelf Large Language Model (LLM) to integrate the generated captions, together with subtitles and instructional prompts into omni-modality captions. Based on the proposed VAST-27M dataset, we train an omni-modality video-text foundational model named VAST, which can perceive and process vision, audio, and subtitle modalities from video, and better support various tasks including vision-text, audio-text, and multi-modal video-text tasks (retrieval, captioning and QA). Extensive experiments have been conducted to demonstrate the effectiveness of our proposed VAST-27M corpus and VAST foundation model. VAST achieves 22 new state-of-the-art results on various cross-modality benchmarks.",https://neurips.cc//virtual/2023/poster/70259,2023,NeurIPS,No,, VidChapters-7M: Video Chapters at Scale,"Segmenting untrimmed videos into chapters enables users to quickly navigate to the information of their interest. This important topic has been understudied due to the lack of publicly released datasets. To address this issue, we present VidChapters-7M, a dataset of 817K user-chaptered videos including 7M chapters in total. VidChapters-7M is automatically created from videos online in a scalable manner by scraping user-annotated chapters and hence without any additional manual annotation. We introduce the following three tasks based on this data. First, the video chapter generation task consists of temporally segmenting the video and generating a chapter title for each segment. To further dissect the problem, we also define two variants of this task: video chapter generation given ground-truth boundaries, which requires generating a chapter title given an annotated video segment, and video chapter grounding, which requires temporally localizing a chapter given its annotated title. We benchmark both simple baselines as well as state-of-the-art video-language models on these three tasks. We also show that pretraining on VidChapters-7M transfers well to dense video captioning tasks, largely improving the state of the art on the YouCook2 and ViTT benchmarks. Finally, our experiments reveal that downstream performance scales well with the size of the pretraining dataset.",https://neurips.cc//virtual/2023/poster/73545,2023,NeurIPS,Yes,Video, VisIT-Bench: A Dynamic Benchmark for Evaluating Instruction-Following Vision-and-Language Models,"We introduce VisIT-Bench (Visual InsTruction Benchmark), a benchmark for evaluating instruction-following vision-language models for real-world use. Our starting point is curating 70 ""instruction families"" that we envision instruction tuned vision-language models should be able to address. Extending beyond evaluations like VQAv2 and COCO, tasks range from basic recognition to game playing and creative generation. Following curation, our dataset comprises 592 test queries, each with a human-authored instruction-conditioned caption. These descriptions surface instruction-specific factors, e.g., for an instruction asking about the accessibility of a storefront for wheelchair users, the instruction-conditioned caption describes ramps/potential obstacles. These descriptions enable 1) collecting human-verified reference outputs for each instance; and 2) automatic evaluation of candidate multimodal generations using a text-only LLM, aligning with human judgment. We quantify quality gaps between models and references using both human and automatic evaluations; e.g., the top-performing instruction-following model wins against the GPT-4 reference in just 27% of the comparison. VisIT-Bench is dynamic to participate, practitioners simply submit their model's response on the project website; Data, code and leaderboard is available at https://visit-bench.github.io/.",https://neurips.cc//virtual/2023/poster/73556,2023,NeurIPS,Yes,Multimodal, VisoGender: A dataset for benchmarking gender bias in image-text pronoun resolution,"We introduce VisoGender, a novel dataset for benchmarking gender bias in vision-language models. We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas, where each image is associated with a caption containing a pronoun relationship of subjects and objects in the scene. VisoGender is balanced by gender representation in professional roles, supporting bias evaluation in two ways: i) resolution bias, where we evaluate the difference between pronoun resolution accuracies for image subjects with gender presentations perceived as masculine versus feminine by human annotators and ii) retrieval bias, where we compare ratios of professionals perceived to have masculine and feminine gender presentations retrieved for a gender-neutral search query. We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes. While the direction and magnitude of gender bias depends on the task and the model being evaluated, captioning models are generally less biased than Vision-Language Encoders.",https://neurips.cc//virtual/2023/poster/73666,2023,NeurIPS,Yes,Multimodal, Visual Instruction Tuning,"Instruction tuning large language models (LLMs) using machine-generated instruction-following data has been shown to improve zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. We present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and an LLM for general-purpose visual and language understanding. To facilitate future research on visual instruction following, we construct two evaluation benchmarks with diverse and challenging application-oriented tasks. Our experiments show that LLaVA demonstrates impressive multimodal chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model, and code publicly available.",https://neurips.cc//virtual/2023/poster/70080,2023,NeurIPS,Yes,Multimodal, Vocabulary-free Image Classification,"Recent advances in large vision-language models have revolutionized the image classification paradigm. Despite showing impressive zero-shot capabilities, a pre-defined set of categories, a.k.a. the vocabulary, is assumed at test time for composing the textual prompts. However, such assumption can be impractical when the semantic context is unknown and evolving. We thus formalize a novel task, termed as Vocabulary-free Image Classification (VIC), where we aim to assign to an input image a class that resides in an unconstrained language-induced semantic space, without the prerequisite of a known vocabulary. VIC is a challenging task as the semantic space is extremely large, containing millions of concepts, with hard-to-discriminate fine-grained categories. In this work, we first empirically verify that representing this semantic space by means of an external vision-language database is the most effective way to obtain semantically relevant content for classifying the image. We then propose Category Search from External Databases (CaSED), a method that exploits a pre-trained vision-language model and an external vision-language database to address VIC in a training-free manner. CaSED first extracts a set of candidate categories from captions retrieved from the database based on their semantic similarity to the image, and then assigns to the image the best matching candidate category according to the same vision-language model. Experiments on benchmark datasets validate that CaSED outperforms other complex vision-language frameworks, while being efficient with much fewer parameters, paving the way for future research in this direction.",https://neurips.cc//virtual/2023/poster/72064,2023,NeurIPS,No,, What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation,"While semantic segmentation has seen tremendous improvements in the past, there are still significant labeling efforts necessary and the problem of limited generalization to classes that have not been present during training. To address this problem, zero-shot semantic segmentation makes use of large self-supervised vision-language models, allowing zero-shot transfer to unseen classes. In this work, we build a benchmark for Multi-domain Evaluation of Zero-Shot Semantic Segmentation (MESS), which allows a holistic analysis of performance across a wide range of domain-specific datasets such as medicine, engineering, earth monitoring, biology, and agriculture. To do this, we reviewed 120 datasets, developed a taxonomy, and classified the datasets according to the developed taxonomy. We select a representative subset consisting of 22 datasets and propose it as the MESS benchmark. We evaluate eight recently published models on the proposed MESS benchmark and analyze characteristics for the performance of zero-shot transfer models. The toolkit is available at https://github.com/blumenstiel/MESS.",https://neurips.cc//virtual/2023/poster/73669,2023,NeurIPS,Yes,Image, What can Large Language Models do in chemistry? A comprehensive benchmark on eight tasks,"Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper, rather than pursuing state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain. We identify three key chemistry-related capabilities including understanding, reasoning and explaining to explore in LLMs and establish a benchmark containing eight chemistry tasks. Our analysis draws on widely recognized datasets facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4,GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. Our investigation found that GPT-4 outperformed other models and LLMs exhibit different competitive levels in eight chemistry tasks. In addition to the key findings from the comprehensive benchmark analysis, our work provides insights into the limitation of current LLMs and the impact of in-context learning settings on LLMs’ performance across various chemistry tasks. The code and datasets used in this study are available at https://github.com/ChemFoundationModels/ChemLLMBench.",https://neurips.cc//virtual/2023/poster/73716,2023,NeurIPS,Yes,Language,Benchmark Zero-shot Visual Relation Detection via Composite Visual Cues from Large Language Models,"Pretrained vision-language models, such as CLIP, have demonstrated strong generalization capabilities, making them promising tools in the realm of zero-shot visual recognition. Visual relation detection (VRD) is a typical task that identifies relationship (or interaction) types between object pairs within an image. However, naively utilizing CLIP with prevalent class-based prompts for zero-shot VRD has several weaknesses, e.g., it struggles to distinguish between different fine-grained relation types and it neglects essential spatial information of two objects. To this end, we propose a novel method for zero-shot VRD: RECODE, which solves RElation detection via COmposite DEscription prompts. Specifically, RECODE first decomposes each predicate category into subject, object, and spatial components. Then, it leverages large language models (LLMs) to generate description-based prompts (or visual cues) for each component. Different visual cues enhance the discriminability of similar relation categories from different perspectives, which significantly boosts performance in VRD. To dynamically fuse different cues, we further introduce a chain-of-thought method that prompts LLMs to generate reasonable weights for different visual cues. Extensive experiments on four VRD benchmarks have demonstrated the effectiveness and interpretability of RECODE.",https://neurips.cc//virtual/2023/poster/70046,2023,NeurIPS,No,, $\texttt{ConflictBank}$: A Benchmark for Evaluating the Influence of Knowledge Conflicts in LLMs,"Large language models (LLMs) have achievedimpressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. While a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge, a comprehensive assessment of knowledge conflict in LLMs is still missing. Motivated by this research gap, we firstly propose ConflictBank, the largest benchmark with 7.45M claim-evidence pairs and 553k QA pairs, addressing conflicts from misinformation, temporal discrepancies, and semantic divergences.Using ConflictBank, we conduct the thorough and controlled experiments for a comprehensive understanding of LLM behavior in knowledge conflicts, focusing on three key aspects: (i) conflicts encountered in retrieved knowledge, (ii) conflicts within the models' encoded knowledge, and (iii) the interplay between these conflict forms.Our investigation delves into four model families and twelve LLM instances and provides insights into conflict types, model sizes, and the impact at different stages.We believe that knowledge conflicts represent a critical bottleneck to achieving trustworthy artificial intelligence and hope our work will offer valuable guidance for future model training and development.Resources are available at https://github.com/zhaochen0110/conflictbank.",https://neurips.cc//virtual/2024/poster/97447,2024,NeurIPS,Yes,Language,Benchmark $\texttt{Model-GLUE}$: Democratized LLM Scaling for A Large Model Zoo in the Wild,"As Large Language Models (LLMs) excel across tasks and specialized domains, scaling LLMs based on existing models has gained significant attention, which is challenged by potential performance drop when combining disparate models. Various techniques have been proposed to aggregate pre-trained LLMs, including model merging, Mixture-of-Experts, and stacking. Despite their merits, a comprehensive comparison and synergistic application of them to a diverse model zoo is yet to be adequately addressed.In light of this research gap, this paper introduces $\texttt{Model-GLUE}$, a holistic LLM scaling guideline. First, our work starts with a benchmarking of existing LLM scaling techniques, especially selective merging, and variants of mixture. Utilizing the insights from the benchmark results, we formulate a strategy for the selection and aggregation of a heterogeneous model zoo characterizing different architectures and initialization.Our methodology involves clustering mergeable models, selecting a merging strategy, and integrating model clusters through model-level mixture. Finally, evidenced by our experiments on a diverse Llama-2-based model zoo, $\texttt{Model-GLUE}$ shows an average performance enhancement of 5.61\%, achieved without additional training.Codes are available at https://github.com/Model-GLUE/Model-GLUE.",https://neurips.cc//virtual/2024/poster/97737,2024,NeurIPS,Yes,Language,Methodological A Careful Examination of Large Language Model Performance on Grade School Arithmetic,"Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning.However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability.To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark,the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more.When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 8%, with several families of models showing evidence of systematic overfitting across almost all model sizes.Further analysis suggests a positive relationship (Spearman's r^2=0.36) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that some models may have partially memorized GSM8k.Nevertheless, many models, especially those on the frontier, show minimal signs of overfitting, and all models broadly demonstrate generalization to novel math problems guaranteed to not be in their training data.",https://neurips.cc//virtual/2024/poster/97687,2024,NeurIPS,Yes,Language,Benchmark Accelerating Pre-training of Multimodal LLMs via Chain-of-Sight,"This paper introduces Chain-of-Sight, a vision-language bridge module that accelerates the pre-training of Multimodal Large Language Models (MLLMs). Our approach employs a sequence of visual resamplers that capture visual details at various spacial scales.This architecture not only leverages global and local visual contexts effectively, but also facilitates the flexible extension of visual tokens through a compound token scaling strategy, allowing up to a 16x increase in the token count post pre-training.Consequently, Chain-of-Sight requires significantly fewer visual tokens in the pre-training phase compared to the fine-tuning phase. This intentional reduction of visual tokens during pre-training notably accelerates the pre-training process, cutting down the wall-clock training time by $\sim$73\%.Empirical results on a series of vision-language benchmarks reveal that the pre-train acceleration through Chain-of-Sight is achieved without sacrificing performance, matching or surpassing the standard pipeline of utilizing all visual tokens throughout the entire training process. Further scaling up the number of visual tokens for pre-training leads to stronger performances, competitive to existing approaches in a series of benchmarks.",https://neurips.cc//virtual/2024/poster/95674,2024,NeurIPS,No,, Accuracy is Not All You Need,"When Large Language Models (LLMs) are compressed using techniques such as quantization, the predominant way to demonstrate the validity of such techniques is by measuring the model's accuracy on various benchmarks. If the accuracies of the baseline model and the compressed model are close, it is assumed that there was negligible degradation in quality. However, even when the accuracy of baseline and compressed model are similar, we observe the phenomenon of flips, wherein answers change from correct to incorrect and vice versa in proportion. We conduct a detailed study of metrics across multiple compression techniques, models and datasets, demonstrating that the behavior of compressed models as visible to end-users is often significantly different from the baseline model, even when accuracy is similar. We further evaluate compressed models qualitatively and quantitatively using MT-Bench and show that compressed models exhibiting high flips are worse than baseline models in this free-form generative task. Thus, we argue that accuracy and perplexity are necessary but not sufficient for evaluating compressed models, since these metrics hide large underlying changes that have not been observed by previous work. Hence, compression techniques should also be evaluated using distance metrics. We propose two such distance metrics, KL-Divergence and flips, and show that they are well correlated.",https://neurips.cc//virtual/2024/poster/95234,2024,NeurIPS,No,, ACES: Generating a Diversity of Challenging Programming Puzzles with Autotelic Generative Models,"The ability to invent novel and interesting problems is a remarkable feature of human intelligence that drives innovation, art, and science. We propose a method that aims to automate this process by harnessing the power of state-of-the-art generative models to produce a diversity of challenging yet solvable problems, here in the context of Python programming puzzles. Inspired by the intrinsically motivated literature, Autotelic CodE Search (ACES) jointly optimizes for the diversity and difficulty of generated problems. We represent problems in a space of LLM-generated semantic descriptors describing the programming skills required to solve them (e.g. string manipulation, dynamic programming, etc.) and measure their difficulty empirically as a linearly decreasing function of the success rate of \textit{Llama-3-70B}, a state-of-the-art LLM problem solver. ACES iteratively prompts a large language model to generate difficult problems achieving a diversity of target semantic descriptors (goal-directed exploration) using previously generated problems as in-context examples. ACES generates problems that are more diverse and more challenging than problems produced by baseline methods and three times more challenging than problems found in existing Python programming benchmarks on average across 11 state-of-the-art code LLMs.",https://neurips.cc//virtual/2024/poster/95626,2024,NeurIPS,No,, AdaNeg: Adaptive Negative Proxy Guided OOD Detection with Vision-Language Models,"Recent research has shown that pre-trained vision-language models are effective at identifying out-of-distribution (OOD) samples by using negative labels as guidance. However, employing consistent negative labels across different OOD datasets often results in semantic misalignments, as these text labels may not accurately reflect the actual space of OOD images. To overcome this issue, we introduce \textit{adaptive negative proxies}, which are dynamically generated during testing by exploring actual OOD images, to align more closely with the underlying OOD label space and enhance the efficacy of negative proxy guidance. Specifically, our approach utilizes a feature memory bank to selectively cache discriminative features from test images, representing the targeted OOD distribution. This facilitates the creation of proxies that can better align with specific OOD datasets. While task-adaptive proxies average features to reflect the unique characteristics of each dataset, the sample-adaptive proxies weight features based on their similarity to individual test samples, exploring detailed sample-level nuances. The final score for identifying OOD samples integrates static negative labels with our proposed adaptive proxies, effectively combining textual and visual knowledge for enhanced performance. Our method is training-free and annotation-free, and it maintains fast testing speed. Extensive experiments across various benchmarks demonstrate the effectiveness of our approach, abbreviated as AdaNeg. Notably, on the large-scale ImageNet benchmark, our AdaNeg significantly outperforms existing methods, with a 2.45\% increase in AUROC and a 6.48\% reduction in FPR95. Codes are available at \url{https://github.com/YBZh/OpenOOD-VLM}.",https://neurips.cc//virtual/2024/poster/93203,2024,NeurIPS,No,, Adaptable Logical Control for Large Language Models,"Despite the success of Large Language Models (LLMs) on various tasks following human instructions, controlling model generation to follow strict constraints at inference time poses a persistent challenge. In this paper, we introduce Ctrl-G, a neuro-symbolic framework that enables tractable and adaptable control of LLM generation to follow logical constraints reliably. Ctrl-G combines any production-ready LLM with a Hidden Markov Model (HMM), guiding LLM outputs to adhere to logical constraints represented as deterministic finite automata. We show that Ctrl-G, when a TULU2-7B model is coupled with a 2B-parameter HMM, outperforms GPT4 in text editing: on the task of generating text insertions/continuations following logical constraints, our approach achieves over 30% higher satisfaction rate in human evaluation. When applied to medium-size language models (e.g., GPT2-large), Ctrl-G also beats its counterparts on standard benchmarks by large margins. Additionally, as a proof-of-concept study, we use Ctrl-G to assist LLM reasoning on the GSM benchmark, foreshadowing the application of Ctrl-G, as well as other constrained generation approaches, beyond traditional language generation tasks.",https://neurips.cc//virtual/2024/poster/96610,2024,NeurIPS,No,, Adaptive Layer Sparsity for Large Language Models via Activation Correlation Assessment,"Large Language Models (LLMs) have revolutionized the field of natural language processing with their impressive capabilities. However, their enormous size presents challenges for deploying them in real-world applications. Traditional compression techniques, like pruning, often lead to suboptimal performance due to their uniform pruning ratios and lack of consideration for the varying importance of features across different layers. To address these limitations, we present a novel Adaptive Layer Sparsity (ALS) approach to optimize LLMs. Our approach consists of two key steps. Firstly, we estimate the correlation matrix between intermediate layers by leveraging the concept of information orthogonality. This novel perspective allows for a precise measurement of the importance of each layer across the model. Secondly, we employ a linear optimization algorithm to develop an adaptive sparse allocation strategy based on evaluating the correlation matrix. This strategy enables us to selectively prune features in intermediate layers, achieving fine-grained optimization of the LLM model. Considering the varying importance across different layers, we can significantly reduce the model size without sacrificing performance. We conduct extensive experiments on publicly available language processing datasets, including the LLaMA-V1|V2|V3 family and OPT, covering various benchmarks. Our experimental results validate the effectiveness of our ALS method, showcasing its superiority over previous approaches. The performance gains demonstrate its potential for enhancing LLMs' efficiency and resource utilization. Notably, our approach surpasses the state-of-the-art models Wanda and SparseGPT, showcasing its ability to excel even under high sparsity levels. Codes at: https://github.com/lliai/ALS.",https://neurips.cc//virtual/2024/poster/95693,2024,NeurIPS,No,, AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents,"Evaluating large language models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities. To address these challenges, we introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents. AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit that features easy assessment of agents for multi-faceted analysis through interactive visualization. This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront. Ultimately, AgentBoard serves as a significant step towards demystifying agent behaviors and accelerating the development of stronger LLM agents.",https://neurips.cc//virtual/2024/poster/97853,2024,NeurIPS,Yes,Language,Benchmark A Hitchhiker's Guide to Fine-Grained Face Forgery Detection Using Common Sense Reasoning,"Explainability in artificial intelligence is crucial for restoring trust, particularly in areas like face forgery detection, where viewers often struggle to distinguish between real and fabricated content. Vision and Large Language Models (VLLM) bridge computer vision and natural language, offering numerous applications driven by strong common-sense reasoning. Despite their success in various tasks, the potential of vision and language remains underexplored in face forgery detection, where they hold promise for enhancing explainability by leveraging the intrinsic reasoning capabilities of language to analyse fine-grained manipulation areas. For that reason, few works have recently started to frame the problem of deepfake detection as a Visual Question Answering (VQA) task, nevertheless omitting the realistic and informative open-ended multi-label setting. With the rapid advances in the field of VLLM, an exponential rise of investigations in that direction is expected. As such, there is a need for a clear experimental methodology that converts face forgery detection to a Visual Question Answering (VQA) task to systematically and fairly evaluate different VLLM architectures. Previous evaluation studies in deepfake detection have mostly focused on the simpler binary task, overlooking evaluation protocols for multi-label fine-grained detection and text-generative models. We propose a multi-staged approach that diverges from the traditional binary evaluation protocol and conducts a comprehensive evaluation study to compare the capabilities of several VLLMs in this context. In the first stage, we assess the models' performance on the binary task and their sensitivity to given instructions using several prompts. In the second stage, we delve deeper into fine-grained detection by identifying areas of manipulation in a multiple-choice VQA setting. In the third stage, we convert the fine-grained detection to an open-ended question and compare several matching strategies for the multi-label classification task. Finally, we qualitatively evaluate the fine-grained responses of the VLLMs included in the benchmark. We apply our benchmark to several popular models, providing a detailed comparison of binary, multiple-choice, and open-ended VQA evaluation across seven datasets. \url{https://nickyfot.github.io/hitchhickersguide.github.io/}",https://neurips.cc//virtual/2024/poster/97603,2024,NeurIPS,Yes,Multimodal, Algorithmic progress in language models,"We investigate the rate at which algorithms for pre-training language models have improved since the advent of deep learning. Using a dataset of over 200 language model evaluations on Wikitext and Penn Treebank spanning 2012-2023, we find that the compute required to reach a set performance threshold has halved approximately every 8 months, with a 90\% confidence interval of around 2 to 22 months, substantially faster than hardware gains per Moore's Law. We estimate augmented scaling laws, which enable us to quantify algorithmic progress and determine the relative contributions of scaling models versus innovations in training algorithms. Despite the rapid pace of algorithmic progress and the development of new architectures such as the transformer, our analysis reveals that the increase in compute made an even larger contribution to overall performance improvements over this time period. Though limited by noisy benchmark data, our analysis quantifies the rapid progress in language modeling, shedding light on the relative contributions from compute and algorithms.",https://neurips.cc//virtual/2024/poster/96565,2024,NeurIPS,No,, ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation,"Large Language Models (LLMs) can elicit unintended and even harmful content when misaligned with human values, posing severe risks to users and society. To mitigate these risks, current evaluation benchmarks predominantly employ expert-designed contextual scenarios to assess how well LLMs align with human values. However, the labor-intensive nature of these benchmarks limits their test scope, hindering their ability to generalize to the extensive variety of open-world use cases and identify rare but crucial long-tail risks. Additionally, these static tests fail to adapt to the rapid evolution of LLMs, making it hard to evaluate timely alignment issues. To address these challenges, we propose ALI-Agent, an evaluation framework that leverages the autonomous abilities of LLM-powered agents to conduct in-depth and adaptive alignment assessments. ALI-Agent operates through two principal stages: Emulation and Refinement. During the Emulation stage, ALI-Agent automates the generation of realistic test scenarios. In the Refinement stage, it iteratively refines the scenarios to probe long-tail risks. Specifically, ALI-Agent incorporates a memory module to guide test scenario generation, a tool-using module to reduce human labor in tasks such as evaluating feedback from target LLMs, and an action module to refine tests. Extensive experiments across three aspects of human values--stereotypes, morality, and legality--demonstrate that ALI-Agent, as a general evaluation framework, effectively identifies model misalignment. Systematic analysis also validates that the generated test scenarios represent meaningful use cases, as well as integrate enhanced measures to probe long-tail risks.",https://neurips.cc//virtual/2024/poster/95655,2024,NeurIPS,No,, Aligning Diffusion Behaviors with Q-functions for Efficient Continuous Control,"Drawing upon recent advances in language model alignment, we formulate offline Reinforcement Learning as a two-stage optimization problem: First pretraining expressive generative policies on reward-free behavior datasets, then finetuning these policies to align with task-specific annotations like Q-values. This strategy allows us to leverage abundant and diverse behavior data to enhance generalization and enable rapid adaptation to downstream tasks using minimal annotations. In particular, we introduce Efficient Diffusion Alignment (EDA) for solving continuous control problems. EDA utilizes diffusion models for behavior modeling. However, unlike previous approaches, we represent diffusion policies as the derivative of a scalar neural network with respect to action inputs. This representation is critical because it enables direct density calculation for diffusion models, making them compatible with existing LLM alignment theories. During policy fine-tuning, we extend preference-based alignment methods like Direct Preference Optimization (DPO) to align diffusion behaviors with continuous Q-functions. Our evaluation on the D4RL benchmark shows that EDA exceeds all baseline methods in overall performance. Notably, EDA maintains about 95\% of performance and still outperforms several baselines given only 1\% of Q-labelled data during fine-tuning.",https://neurips.cc//virtual/2024/poster/94822,2024,NeurIPS,No,, Aligning to Thousands of Preferences via System Message Generalization,"Although humans inherently have diverse values, current large language model (LLM) alignment methods often assume that aligning LLMs with the general public’s preferences is optimal. A major challenge in adopting a more individualized approach to LLM alignment is its lack of scalability, as it involves repeatedly acquiring preference data and training new reward models and LLMs for each individual’s preferences. To address these challenges, we propose a new paradigm where users specify what they value most within the system message, steering the LLM’s generation behavior to better align with the user’s intentions. However, a naive application of such an approach is non-trivial since LLMs are typically trained on a uniform system message (e.g., “You are a helpful assistant”), which limitstheir ability to generalize to diverse, unseen system messages. To improve this generalization, we create Multifaceted Collection, augmenting 66k user instructions into 197k system messages through hierarchical user value combinations. Using this dataset, we train a 7B LLM called Janus and test it on 921 prompts from 5 benchmarks (AlpacaEval 2.0, FLASK, Koala, MT-Bench, and Self-Instruct)by adding system messages that reflect unseen user values. JANUS achieves tie+win rate of 75.2%, 72.4%, and 66.4% against Mistral 7B Instruct v0.2, GPT-3.5 Turbo, and GPT-4, respectively. Unexpectedly, on three benchmarks focused on response helpfulness (AlpacaEval 2.0, MT-Bench, Arena Hard Auto v0.1), JANUS also outperforms LLaMA 3 8B Instruct by a +4.0%p, +0.1%p, +3.0%p margin, underscoring that training with a vast array of system messages could also enhance alignment to the general public’s preference as well. Our code, dataset, benchmark, and models are available at https://lklab.kaist.ac.kr/Janus/.",https://neurips.cc//virtual/2024/poster/93423,2024,NeurIPS,No,, Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms,"Modern vision models are trained on very large noisy datasets. While these models acquire strong capabilities, they may not follow the user's intent to output the desired results in certain aspects, e.g., visual aesthetic, preferred style, and responsibility. In this paper, we target the realm of visual aesthetics and aim to align vision models with human aesthetic standards in a retrieval system. Advanced retrieval systems usually adopt a cascade of aesthetic models as re-rankers or filters, which are limited to low-level features like saturation and perform poorly when stylistic, cultural or knowledge contexts are involved. We find that utilizing the reasoning ability of large language models (LLMs) to rephrase the search query and extend the aesthetic expectations can make up for this shortcoming. Based on the above findings, we propose a preference-based reinforcement learning method that fine-tunes the vision models to distill the knowledge from both LLMs reasoning and the aesthetic models to better align the vision models with human aesthetics. Meanwhile, with rare benchmarks designed for evaluating retrieval systems, we leverage large multi-modality model (LMM) to evaluate the aesthetic performance with their strong abilities. As aesthetic assessment is one of the most subjective tasks, to validate the robustness of LMM, we further propose a novel dataset named HPIR to benchmark the alignment with human aesthetics. Experiments demonstrate that our method significantly enhances the aesthetic behaviors of the vision models, under several metrics. We believe the proposed algorithm can be a general practice for aligning vision models with human values.",https://neurips.cc//virtual/2024/poster/93151,2024,NeurIPS,Yes,Image, Alignment at Pre-training! Towards Native Alignment for Arabic LLMs,"The alignment of large language models (LLMs) is critical for developing effective and safe language models. Traditional approaches focus on aligning models during the instruction tuning or reinforcement learning stages, referred to in this paper as `\textit{post alignment}'. We argue that alignment during the pre-training phase, which we term 'native alignment', warrants investigation. Native alignment aims to prevent unaligned content from the beginning, rather than relying on post-hoc processing. This approach leverages extensively aligned pre-training data to enhance the effectiveness and usability of pre-trained models. Our study specifically explores the application of native alignment in the context of Arabic LLMs. We conduct comprehensive experiments and ablation studies to evaluate the impact of native alignment on model performance and alignment stability. Additionally, we release open-source Arabic LLMs that demonstrate state-of-the-art performance on various benchmarks, providing significant benefits to the Arabic LLM community.",https://neurips.cc//virtual/2024/poster/93121,2024,NeurIPS,No,, Alignment for Honesty,"Recent research has made significant strides in aligning large language models (LLMs) with helpfulness and harmlessness. In this paper, we argue for the importance of alignment for \emph{honesty}, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning an LLM's knowledge boundaries, which demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. We address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source all relevant resources to facilitate future research at \url{https://github.com/GAIR-NLP/alignment-for-honesty}.",https://neurips.cc//virtual/2024/poster/96547,2024,NeurIPS,Yes,Language,Methodological Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization,"Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnection between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.",https://neurips.cc//virtual/2024/poster/95118,2024,NeurIPS,No,, ALPINE: Unveiling The Planning Capability of Autoregressive Learning in Language Models,"Planning is a crucial element of both human intelligence and contemporary large language models (LLMs). In this paper, we initiate a theoretical investigation into the emergence of planning capabilities in Transformer-based LLMs via their next-word prediction mechanisms. We model planning as a network path-finding task, where the objective is to generate a valid path from a specified source node to a designated target node. Our mathematical characterization shows that Transformer architectures can execute path-finding by embedding the adjacency and reachability matrices within their weights. Furthermore, our theoretical analysis of gradient-based learning dynamics reveals that LLMs can learn both the adjacency and a limited form of the reachability matrices. These theoretical insights are then validated through experiments, which demonstrate that Transformer architectures indeed learn the adjacency and an incomplete reachability matrices, consistent with our theoretical predictions. When applying our methodology to the real-world planning benchmark Blocksworld, our observations remain consistent. Additionally, our analyses uncover a fundamental limitation of current Transformer architectures in path-finding: these architectures cannot identify reachability relationships through transitivity, which leads to failures in generating paths when concatenation is required. These findings provide new insights into how the internal mechanisms of autoregressive learning facilitate intelligent planning and deepen our understanding of how future LLMs might achieve more advanced and general planning-and-reasoning capabilities across diverse applications.",https://neurips.cc//virtual/2024/poster/94843,2024,NeurIPS,No,, ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models,"The impressive performance of Large Language Models (LLMs) across various natural language processing tasks comes at the cost of vast computational resources and storage requirements. One-shot pruning techniques offer a way to alleviate these burdens by removing redundant weights without the need for retraining. Yet, the massive scale of LLMs often forces current pruning approaches to rely on heuristics instead of optimization-based techniques, potentially resulting in suboptimal compression. In this paper, we introduce ALPS, an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned conjugate gradient-based post-processing step. Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency. ALPS substantially outperforms state-of-the-art methods in terms of the pruning objective and perplexity reduction, particularly for highly sparse models. On the LLaMA3-8B model with 70\% sparsity, ALPS achieves a 29\% reduction in test perplexity on the WikiText dataset and a 8\% improvement in zero-shot benchmark performance compared to existing methods. Our code is available at https://github.com/mazumder-lab/ALPS.",https://neurips.cc//virtual/2024/poster/96911,2024,NeurIPS,No,, AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries,"Practical semantic parsers are expected to understand user utterances and map them to executable programs, even when these are ambiguous. We introduce a new benchmark, AMBROSIA, which we hope will inform and inspire the development of text-to-SQL parsers capable of recognizing and interpreting ambiguous requests. Our dataset contains questions showcasing three different types of ambiguity (scope ambiguity, attachment ambiguity, and vagueness), their interpretations, and corresponding SQL queries. In each case, the ambiguity persists even when the database context is provided. This is achieved through a novel approach that involves controlled generation of databases from scratch. We benchmark various LLMs on AMBROSIA, revealing that even the most advanced models struggle to identify and interpret ambiguity in questions.",https://neurips.cc//virtual/2024/poster/97762,2024,NeurIPS,Yes,Language,Benchmark "Amortizing intractable inference in diffusion models for vision, language, and control","Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors in downstream tasks poses an intractable posterior inference problem. This paper studies *amortized* sampling of the posterior over data, $\mathbf{x}\sim p^{\rm post}(\mathbf{x})\propto p(\mathbf{x})r(\mathbf{x})$, in a model that consists of a diffusion generative model prior $p(\mathbf{x})$ and a black-box constraint or likelihood function $r(\mathbf{x})$. We state and prove the asymptotic correctness of a data-free learning objective, *relative trajectory balance*, for training a diffusion model that samples from this posterior, a problem that existing methods solve only approximately or in restricted cases. Relative trajectory balance arises from the generative flow network perspective on diffusion models, which allows the use of deep reinforcement learning techniques to improve mode coverage. Experiments illustrate the broad potential of unbiased inference of arbitrary posteriors under diffusion priors: in vision (classifier guidance), language (infilling under a discrete diffusion LLM), and multimodal data (text-to-image generation). Beyond generative modeling, we apply relative trajectory balance to the problem of continuous control with a score-based behavior prior, achieving state-of-the-art results on benchmarks in offline reinforcement learning. Code is available at [this link](https://github.com/GFNOrg/diffusion-finetuning).",https://neurips.cc//virtual/2024/poster/94137,2024,NeurIPS,No,, A Polar coordinate system represents syntax in large language models,"Originally formalized with symbolic representations, syntactic trees may also be effectively represented in the activations of large language models (LLMs). Indeed, a ''Structural Probe'' can find a subspace of neural activations, where syntactically-related words are relatively close to one-another. However, this syntactic code remains incomplete: the distance between the Structural Probe word embeddings can represent the \emph{existence} but not the type and direction of syntactic relations. Here, we hypothesize that syntactic relations are, in fact, coded by the relative direction between nearby embeddings. To test this hypothesis, we introduce a ''Polar Probe'' trained to read syntactic relations from both the distance and the direction between word embeddings. Our approach reveals three main findings. First, our Polar Probe successfully recovers the type and direction of syntactic relations, and substantially outperforms the Structural Probe by nearly two folds. Second, we confirm that this polar coordinate system exists in a low-dimensional subspace of the intermediate layers of many LLMs and becomes increasingly precise in the latest frontier models. Third, we demonstrate with a new benchmark that similar syntactic relations are coded similarly across the nested levels of syntactic trees. Overall, this work shows that LLMs spontaneously learn a geometry of neural activations that explicitly represents the main symbolic structures of linguistic theory.",https://neurips.cc//virtual/2024/poster/93109,2024,NeurIPS,Yes,Language,Methodological Approximating mutual information of high-dimensional variables using learned representations,"Mutual information (MI) is a general measure of statistical dependence with widespread application across the sciences. However, estimating MI between multi-dimensional variables is challenging because the number of samples necessary to converge to an accurate estimate scales unfavorably with dimensionality. In practice, existing techniques can reliably estimate MI in up to tens of dimensions, but fail in higher dimensions, where sufficient sample sizes are infeasible. Here, we explore the idea that underlying low-dimensional structure in high-dimensional data can be exploited to faithfully approximate MI in high-dimensional settings with realistic sample sizes. We develop a method that we call latent MI (LMI) approximation, which applies a nonparametric MI estimator to low-dimensional representations learned by a simple, theoretically-motivated model architecture. Using several benchmarks, we show that unlike existing techniques, LMI can approximate MI well for variables with $> 10^3$ dimensions if their dependence structure is captured by low-dimensional representations. Finally, we showcase LMI on two open problems in biology. First, we approximate MI between protein language model (pLM) representations of interacting proteins, and find that pLMs encode non-trivial information about protein-protein interactions. Second, we quantify cell fate information contained in single-cell RNA-seq (scRNA-seq) measurements of hematopoietic stem cells, and find a sharp transition during neutrophil differentiation when fate information captured by scRNA-seq increases dramatically. An implementation of LMI is available at *latentmi.readthedocs.io.*",https://neurips.cc//virtual/2024/poster/95842,2024,NeurIPS,No,, Are Large Language Models Good Statisticians?,"Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g. LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g. GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential. Our source code and data are available at https://statqa.github.io/.",https://neurips.cc//virtual/2024/poster/97546,2024,NeurIPS,Yes,Language,Benchmark Are We on the Right Way for Evaluating Large Vision-Language Models?,"Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities. However, we dig into current evaluation works and identify two primary issues: 1) Visual content is unnecessary for many samples. The answers can be directly inferred from the questions and options, or the world knowledge embedded in LLMs. This phenomenon is prevalent across current benchmarks. For instance, GeminiPro achieves 42.7% on the MMMU benchmark without any visual input, and outperforms the random choice baseline across six benchmarks near 24% on average. 2) Unintentional data leakage exists in LLM and LVLM training. LLM and LVLM could still answer some visual-necessary questions without visual content, indicating the memorizing of these samples within large-scale training data. For example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its LLM backbone with 17.9%. Both problems lead to misjudgments of actual multi-modal gains and potentially misguide the study of LVLM. To this end, we present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans. MMStar benchmarks 6 core capabilities and 18 detailed axes, aiming to evaluate LVLMs' multi-modal capacities with carefully balanced and purified samples. These samples are first roughly selected from current benchmarks with an automated pipeline, human review is then involved to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities. Moreover, two metrics are developed to measure data leakage and actual performance gain in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to investigate their data leakage and actual multi-modal gain.",https://neurips.cc//virtual/2024/poster/94237,2024,NeurIPS,Yes,Multimodal, A SARS-CoV-2 Interaction Dataset and VHH Sequence Corpus for Antibody Language Models,"Antibodies are crucial proteins produced by the immune system to eliminate harmful foreign substances and have become pivotal therapeutic agents for treating human diseases.To accelerate the discovery of antibody therapeutics, there is growing interest in constructing language models using antibody sequences.However, the applicability of pre-trained language models for antibody discovery has not been thoroughly evaluated due to the scarcity of labeled datasets.To overcome these limitations, we introduce AVIDa-SARS-CoV-2, a dataset featuring the antigen-variable domain of heavy chain of heavy chain antibody (VHH) interactions obtained from two alpacas immunized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins.AVIDa-SARS-CoV-2 includes binary labels indicating the binding or non-binding of diverse VHH sequences to 12 SARS-CoV-2 mutants, such as the Delta and Omicron variants.Furthermore, we release VHHCorpus-2M, a pre-training dataset for antibody language models, containing over two million VHH sequences.We report benchmark results for predicting SARS-CoV-2-VHH binding using VHHBERT pre-trained on VHHCorpus-2M and existing general protein and antibody-specific pre-trained language models.These results confirm that AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction, thereby facilitating the development of AI-driven antibody discovery.The datasets are available at https://datasets.cognanous.com.",https://neurips.cc//virtual/2024/poster/97722,2024,NeurIPS,Yes,Language,Benchmark AsEP: Benchmarking Deep Learning Methods for Antibody-specific Epitope Prediction,"Epitope identification is vital for antibody design yet challenging due to the inherent variability in antibodies. While many deep learning methods have been developed for general protein binding site prediction tasks, whether they work for epitope prediction remains an understudied research question. The challenge is also heightened by the lack of a consistent evaluation pipeline with sufficient dataset size and epitope diversity. We introduce a filtered antibody-antigen complex structure dataset, AsEP (Antibody-specific Epitope Prediction). AsEP is the largest of its kind and provides clustered epitope groups, allowing the community to develop and test novel epitope prediction methods and evaluate their generalisability. AsEP comes with an easy-to-use interface in Python and pre-built graph representations of each antibody-antigen complex while also supporting customizable embedding methods. Using this new dataset, we benchmark several representative general protein-binding site prediction methods and find that their performances fall short of expectations for epitope prediction. To address this, we propose a novel method, WALLE, which leverages both unstructured modeling from protein language models and structural modeling from graph neural networks. WALLE demonstrate up to 3-10X performance improvement over the baseline methods. Our empirical findings suggest that epitope prediction benefits from combining sequential features provided by language models with geometrical information from graph representations. This provides a guideline for future epitope prediction method design. In addition, we reformulate the task as bipartite link prediction, allowing convenient model performance attribution and interpretability. We open source our data and code at https://github.com/biochunan/AsEP-dataset.",https://neurips.cc//virtual/2024/poster/97702,2024,NeurIPS,Yes,Multimodal, A Sober Look at the Robustness of CLIPs to Spurious Features,"Large vision language models, such as CLIP, demonstrate impressive robustness to spurious features than single-modal models trained on ImageNet. However, existing test datasets are typically curated based on ImageNet-trained models, which aim to capture the spurious features inherited in ImageNet. Benchmarking CLIP models based on the ImageNet-oriented spurious features may not be sufficient to reflect the extent to which CLIP models are robust to spurious correlations within CLIP training data, e.g., LAION. To this end, we craft a new challenging dataset named CounterAnimal designed to reveal the reliance of CLIP models on realistic spurious features. Specifically, we split animal photos into groups according to the backgrounds, and then identify a pair of groups for each class where a CLIP model shows high-performance drops across the two groups. Our evaluations show that the spurious features captured by CounterAnimal are generically learned by CLIP models with different backbones and pre-train data, yet have limited influence for ImageNet models. We provide theoretical insights that the CLIP objective cannot offer additional robustness. Furthermore, we also re-evaluate strategies such as scaling up parameters and high-quality pre-trained data. We find that they still help mitigate the spurious features, providing a promising path for future developments.",https://neurips.cc//virtual/2024/poster/93146,2024,NeurIPS,Yes,Image, AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents,"Recent advances in large language models (LLMs) have empowered AI agents capable of performing various sequential decision-making tasks. However, effectively guiding LLMs to perform well in unfamiliar domains like web navigation, where they lack sufficient knowledge, has proven to be difficult with the demonstration-based in-context learning paradigm. In this paper, we introduce a novel framework, called AutoGuide, which addresses this limitation by automatically generating context-aware guidelines from offline experiences. Importantly, each context-aware guideline is expressed in concise natural language and follows a conditional structure, clearly describing the context where it is applicable. As a result, our guidelines facilitate the provision of relevant knowledge for the agent's current decision-making process, overcoming the limitations of the conventional demonstration-based learning paradigm. Our evaluation demonstrates that AutoGuide significantly outperforms competitive baselines in complex benchmark domains, including real-world web navigation.",https://neurips.cc//virtual/2024/poster/93759,2024,NeurIPS,No,, AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning,"Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.",https://neurips.cc//virtual/2024/poster/95273,2024,NeurIPS,No,, Automated Multi-level Preference for MLLMs,"Current multimodal Large Language Models (MLLMs) suffer from ''hallucination'', occasionally generating responses that are not grounded in the input images. To tackle this challenge, one promising path is to utilize reinforcement learning from human feedback (RLHF), which steers MLLMs towards learning superior responses while avoiding inferior ones. We rethink the common practice of using binary preferences (*i.e.*, superior, inferior), and find that adopting multi-level preferences (*e.g.*, superior, medium, inferior) is better for two benefits: 1) It narrows the gap between adjacent levels, thereby encouraging MLLMs to discern subtle differences. 2) It further integrates cross-level comparisons (beyond adjacent-level comparisons), thus providing a broader range of comparisons with hallucination examples. To verify our viewpoint, we present the Automated Multi-level Preference (**AMP**) framework for MLLMs. To facilitate this framework, we first develop an automated dataset generation pipeline that provides high-quality multi-level preference datasets without any human annotators. Furthermore, we design the Multi-level Direct Preference Optimization (MDPO) algorithm to robustly conduct complex multi-level preference learning. Additionally, we propose a new hallucination benchmark, MRHal-Bench. Extensive experiments across public hallucination and general benchmarks, as well as our MRHal-Bench, demonstrate the effectiveness of our proposed method. Code is available at https://github.com/takomc/amp.",https://neurips.cc//virtual/2024/poster/93122,2024,NeurIPS,Yes,Multimodal, Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models,"Large language models (LLMs) have achieved impressive performance across various natural language benchmarks, prompting a continual need to curate more difficult datasets for larger LLMs, which is costly and time-consuming. In this paper, we propose to automate dataset updating and provide systematical analysis regarding its effectiveness in dealing with benchmark leakage issue, difficulty control, and stability. Thus, once current benchmark has been mastered or leaked, we can update it for timely and reliable evaluation. There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, preserving stylistic and contextual essence, and 2) extending strategy that further expands existing samples at varying cognitive levels by adapting Bloom’s taxonomy of educational objectives. Extensive experiments on updated MMLU and BIG-Bench demonstrate the stability of the proposed strategies and find that the mimicking strategy can effectively alleviate issues of overestimation from benchmark leakage. In cases where the efficient mimicking strategy fails, our extending strategy still shows promising results. Additionally, by controlling the difficulty, we can better discern the models’ performance and enable fine-grained analysis — neither too difficult nor too easy an exam can fairly judge students’ learning status. To the best of our knowledge, we are the first to automate updating benchmarks for reliable and timely evaluation. Our demo leaderboard can be found at https://yingjiahao14.github.io/Automating-DatasetUpdates/.",https://neurips.cc//virtual/2024/poster/97784,2024,NeurIPS,No,, Autonomous Agents for Collaborative Task under Information Asymmetry,"Large Language Model Multi-Agent Systems (LLM-MAS) have greatly progressed in solving complex tasks. It communicates among agents within the system to collaboratively solve tasks, under the premise of shared information. However, when agents' collaborations are leveraged to perform multi-person tasks, a new challenge arises due to information asymmetry, since each agent can only access the information of its human user. Previous MAS struggle to complete tasks under this condition. To address this, we propose a new MAS paradigm termed iAgents, which denotes Informative Multi-Agent Systems. In iAgents, the human social network is mirrored in the agent network, where agents proactively exchange human information necessary for task resolution, thereby overcoming information asymmetry. iAgents employs a novel agent reasoning mechanism, InfoNav, to navigate agents' communication towards effective information exchange. Together with InfoNav, iAgents organizes human information in a mixed memory to provide agents with accurate and comprehensive information for exchange. Additionally, we introduce InformativeBench, the first benchmark tailored for evaluating LLM agents' task-solving ability under information asymmetry. Experimental results show that iAgents can collaborate within a social network of 140 individuals and 588 relationships, autonomously communicate over 30 turns, and retrieve information from nearly 70,000 messages to complete tasks within 3 minutes.",https://neurips.cc//virtual/2024/poster/93728,2024,NeurIPS,Yes,Language,Methodological AutoSurvey: Large Language Models Can Automatically Write Surveys,"This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.",https://neurips.cc//virtual/2024/poster/95990,2024,NeurIPS,No,, BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-Haystack,"In recent years, the input context sizes of large language models (LLMs) have increased dramatically. However, existing evaluation methods have not kept pace, failing to comprehensively assess the efficiency of models in handling long contexts. To bridge this gap, we introduce the BABILong benchmark, designed to test language models' ability to reason across facts distributed in extremely long documents. BABILong includes a diverse set of 20 reasoning tasks, including fact chaining, simple induction, deduction, counting, and handling lists/sets. These tasks are challenging on their own, and even more demanding when the required facts are scattered across long natural text. Our evaluations show that popular LLMs effectively utilize only 10-20% of the context and their performance declines sharply with increased reasoning complexity. Among alternatives to in-context reasoning, Retrieval-Augmented Generation methods achieve a modest 60% accuracy on single-fact question answering, independent of context length. Among context extension methods, the highest performance is demonstrated by recurrent memory transformers after fine-tuning, enabling the processing of lengths up to 50 million tokens. The BABILong benchmark is extendable to any length to support the evaluation of new upcoming models with increased capabilities, and we provide splits up to 10 million token lengths.",https://neurips.cc//virtual/2024/poster/97462,2024,NeurIPS,Yes,Language,Benchmark BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models,"This work presents BAdam, an optimization method that leverages the block coordinate descent (BCD) framework with Adam's update rule. BAdam offers a memory efficient approach to the full parameter finetuning of large language models. We conduct a theoretical convergence analysis for BAdam in the deterministic case. Experimentally, we apply BAdam to finetune the Llama 3-8B and Llama 3-70B models using a single RTX3090-24GB GPU and 4 A100-80GB GPUs, respectively. The results confirm BAdam's efficiency in terms of memory usage, running time, and optimization capability. Furthermore, the downstream performance evaluation based on MT-bench and math benchmarks shows that BAdam outperforms existing memory efficient baselines such as LoRA. It also demonstrates that BAdam can achieve comparable or even superior performance compared to Adam. Finally, the ablation study using SGD's update rule illustrates the suitability of BCD for finetuning LLMs. Our code can be easily integrated into any PyTorch-based codebase and is available at https://github.com/Ledzy/BAdam.",https://neurips.cc//virtual/2024/poster/96897,2024,NeurIPS,No,, Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs,"Although Large Language Models (LLMs) have demonstrated significant capabilities in executing complex tasks in a zero-shot manner, they are susceptible to jailbreak attacks and can be manipulated to produce harmful outputs. Recently, a growing body of research has categorized jailbreak attacks into token-level and prompt-level attacks. However, previous work primarily overlooks the diverse key factors of jailbreak attacks, with most studies concentrating on LLM vulnerabilities and lacking exploration of defense-enhanced LLMs. To address these issues, we introduced JailTrickBench to evaluate the impact of various attack settings on LLM performance and provide a baseline for jailbreak attacks, encouraging the adoption of a standardized evaluation framework. Specifically, we evaluate the eight key factors of implementing jailbreak attacks on LLMs from both target-level and attack-level perspectives. We further conduct seven representative jailbreak attacks on six defense methods across two widely used datasets, encompassing approximately 354 experiments with about 55,000 GPU hours on A800-80G. Our experimental results highlight the need for standardized benchmarking to evaluate these attacks on defense-enhanced LLMs. Our code is available at https://github.com/usail-hkust/JailTrickBench.",https://neurips.cc//virtual/2024/poster/97431,2024,NeurIPS,Yes,Language,Benchmark BEACON: Benchmark for Comprehensive RNA Tasks and Language Models,"RNA plays a pivotal role in translating genetic instructions into functional outcomes, underscoring its importance in biological processes and disease mechanisms. Despite the emergence of numerous deep learning approaches for RNA, particularly universal RNA language models, there remains a significant lack of standardized benchmarks to assess the effectiveness of these methods. In this study, we introduce the first comprehensive RNA benchmark BEACON **BE**nchm**A**rk for **CO**mprehensive R**N**A Task and Language Models).First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications, enabling a comprehensive assessment of the performance of methods on various RNA understanding tasks. Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models. Third, we investigate the vital RNA language model components from the tokenizer and positional encoding aspects. Notably, our findings emphasize the superiority of single nucleotide tokenization and the effectiveness of Attention with Linear Biases (ALiBi) over traditional positional encoding methods. Based on these insights, a simple yet strong baseline called BEACON-B is proposed, which can achieve outstanding performance with limited data and computational resources. The datasets and source code of our benchmark are available at https://github.com/terry-r123/RNABenchmark.",https://neurips.cc//virtual/2024/poster/97501,2024,NeurIPS,Yes,Language,Benchmark "Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs","Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subsets of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale LLaMA-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks._Code and checkpoints: https://github.com/ahans30/goldfish-loss_",https://neurips.cc//virtual/2024/poster/96066,2024,NeurIPS,No,, Benchmarking Complex Instruction-Following with Multiple Constraints Composition,"Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.",https://neurips.cc//virtual/2024/poster/97675,2024,NeurIPS,Yes,Language,Benchmark Benchmarking LLMs via Uncertainty Quantification,"The proliferation of open-source Large Language Models (LLMs) from various institutions has highlighted the urgent need for comprehensive evaluation methods. However, current evaluation platforms, such as the widely recognized HuggingFace open LLM leaderboard, neglect a crucial aspect -- uncertainty, which is vital for thoroughly assessing LLMs. To bridge this gap, we introduce a new benchmarking approach for LLMs that integrates uncertainty quantification. Our examination involves nine LLMs (LLM series) spanning five representative natural language processing tasks. Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs. These results underscore the significance of incorporating uncertainty in the evaluation of LLMs. Our implementation is available at https://github.com/smartyfh/LLM-Uncertainty-Bench.",https://neurips.cc//virtual/2024/poster/97746,2024,NeurIPS,Yes,Language,Benchmark Beyond Aesthetics: Cultural Competence in Text-to-Image Models,"Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of *cultural competence*. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for underspecified prompts. Our methodology is extendable to other cultural regions and concepts and can facilitate the development of T2I models that better cater to the global population.",https://neurips.cc//virtual/2024/poster/97855,2024,NeurIPS,Yes,Multimodal, Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models,"We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy user$\leftrightarrow$agent interaction. The interaction is a conversation between the user and agent, where multiple tasks are introduced and then undertaken concurrently. We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents. Results from both proprietary and open-source Large-Language Models show that LLMs in general perform well on single-task interactions, but they struggle on the same tasks when they are interleaved. Notably, short-context LLMs supplemented with an LTM system perform as well as or better than those with larger contexts. Our benchmark suggests that there are other challenges for LLMs responding to more natural interactions that contemporary benchmarks have heretofore not been able to capture.",https://neurips.cc//virtual/2024/poster/97463,2024,NeurIPS,Yes,Language,Benchmark Biologically Inspired Learning Model for Instructed Vision,"As part of the effort to understand how the brain learns, ongoing research seeks to combine biological knowledge with current artificial intelligence (AI) modeling in an attempt to find an efficient biologically plausible learning scheme. Current models often use a cortical-like combination of bottom-up (BU) and top-down (TD) processing, where the TD part carries feedback signals for learning. However, in the visual cortex, the TD pathway plays a second major role in visual attention, by guiding the visual process toward locations and tasks of interest. A biological model should therefore integrate both learning and visual guidance. We introduce a model that uses a cortical-like combination of BU and TD processing that naturally integrates the two major functions of the TD stream. This integration is achieved through an appropriate connectivity pattern between the BU and TD streams, a novel processing cycle that uses the TD stream twice, and a 'Counter-Hebb' learning mechanism that operates across both streams. We show that the 'Counter-Hebb' mechanism can provide an exact backpropagation synaptic modification. Additionally, our model can effectively guide the visual stream to perform a task of interest, achieving competitive performance on standard multi-task learning benchmarks compared to AI models. The successful combination of learning and visual guidance could provide a new view on combining BU and TD processing in human vision and suggests possible directions for both biologically plausible models and artificial instructed models, such as vision-language models (VLMs).",https://neurips.cc//virtual/2024/poster/94152,2024,NeurIPS,No,, BIOSCAN-5M: A Multimodal Dataset for Insect Biodiversity,"As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, this paper presents the BIOSCAN-5M Insect dataset to the machine learning community and establish several benchmark tasks. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens, and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, geographical, and size information. We propose three benchmark experiments to demonstrate the impact of the multi-modal data types on the classification and clustering accuracy. First, we pretrain a masked language model on the DNA barcode sequences of the BIOSCAN-5M dataset, and demonstrate the impact of using this large reference library on species- and genus-level classification performance. Second, we propose a zero-shot transfer learning task applied to images and DNA barcodes to cluster feature embeddings obtained from self-supervised learning, to investigate whether meaningful clusters can be derived from these representation embeddings. Third, we benchmark multi-modality by performing contrastive learning on DNA barcodes, image data, and taxonomic information. This yields a general shared embedding space enabling taxonomic classification using multiple types of information and modalities. The code repository of the BIOSCAN-5M Insect dataset is available at https://github.com/bioscan-ml/BIOSCAN-5M.",https://neurips.cc//virtual/2024/poster/97824,2024,NeurIPS,Yes,Multimodal, BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages,"Large language models (LLMs) often lack culture-specific everyday knowledge, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are usually limited to a single language or online sources like Wikipedia, which may not reflect the daily habits, customs, and lifestyles of different regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play or the sports they practice in school is not always explicitly written online. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. The benchmark comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We evaluate LLMs in two formats: short-answer questions, and multiple-choice questions. We show that LLMs perform better in cultures that are more present online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format.Furthermore, we find that LLMs perform better in their local languages for mid-to-high-resource languages. Interestingly, for languages deemed to be low-resource, LLMs provide better answers in English. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.",https://neurips.cc//virtual/2024/poster/97510,2024,NeurIPS,Yes,Language,Benchmark Boosting the Potential of Large Language Models with an Intelligent Information Assistant,"The emergence of Large Language Models (LLMs) has significantly advanced natural language processing, but these models often generate factually incorrect information, known as ""hallucination."" Initial retrieval-augmented generation (RAG) methods like the ""Retrieve-Read"" framework was inadequate for complex reasoning tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning (SFT) methods improved performance but required frequent retraining and risked altering foundational LLM capabilities. To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG), integrating an intelligent information assistant within LLMs. This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification. Using a two-phase training approach—Curriculum Assistant Learning and Reinforced Preference Optimization—AssistRAG enhances information retrieval and decision-making. Experiments show AssistRAG significantly outperforms benchmarks, especially benefiting less advanced LLMs, by providing superior reasoning capabilities and accurate responses.",https://neurips.cc//virtual/2024/poster/93615,2024,NeurIPS,No,, Boosting Weakly Supervised Referring Image Segmentation via Progressive Comprehension,"This paper explores the weakly-supervised referring image segmentation (WRIS) problem, and focuses on a challenging setup where target localization is learned directly from image-text pairs. We note that the input text description typically already contains detailed information on how to localize the target object, and we also observe that humans often follow a step-by-step comprehension process (\ie, progressively utilizing target-related attributes and relations as cues) to identify the target object. Hence, we propose a novel Progressive Comprehension Network (PCNet) to leverage target-related textual cues from the input description for progressively localizing the target object.Specifically, we first use a Large Language Model (LLM) to decompose the input text description into short phrases. These short phrases are taken as target-related cues and fed into a Conditional Referring Module (CRM) in multiple stages, to allow updating the referring text embedding and enhance the response map for target localization in a multi-stage manner.Based on the CRM, we then propose a Region-aware Shrinking (RaS) loss to constrain the visual localization to be conducted progressively in a coarse-to-fine manner across different stages.Finally, we introduce an Instance-aware Disambiguation (IaD) loss to suppress instance localization ambiguity by differentiating overlapping response maps generated by different referring texts on the same image. Extensive experiments show that our method outperforms SOTA methods on three common benchmarks.",https://neurips.cc//virtual/2024/poster/95475,2024,NeurIPS,No,, Bridge-IF: Learning Inverse Protein Folding with Markov Bridges,"Inverse protein folding is a fundamental task in computational protein design, which aims to design protein sequences that fold into the desired backbone structures. While the development of machine learning algorithms for this task has seen significant success, the prevailing approaches, which predominantly employ a discriminative formulation, frequently encounter the error accumulation issue and often fail to capture the extensive variety of plausible sequences. To fill these gaps, we propose Bridge-IF, a generative diffusion bridge model for inverse folding, which is designed to learn the probabilistic dependency between the distributions of backbone structures and protein sequences. Specifically, we harness an expressive structure encoder to propose a discrete, informative prior derived from structures, and establish a Markov bridge to connect this prior with native sequences. During the inference stage, Bridge-IF progressively refines the prior sequence, culminating in a more plausible design. Moreover, we introduce a reparameterization perspective on Markov bridge models, from which we derive a simplified loss function that facilitates more effective training. We also modulate protein language models (PLMs) with structural conditions to precisely approximate the Markov bridge process, thereby significantly enhancing generation performance while maintaining parameter-efficient training. Extensive experiments on well-established benchmarks demonstrate that Bridge-IF predominantly surpasses existing baselines in sequence recovery and excels in the design of plausible proteins with high foldability. The code is available at https://github.com/violet-sto/Bridge-IF.",https://neurips.cc//virtual/2024/poster/95261,2024,NeurIPS,No,, CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset,"Machine learning models are increasingly being deployed in real-world contexts. However, systematic studies on their transferability to specific and critical applications are underrepresented in the research literature. An important example is visual anomaly detection (VAD) for robotic power line inspection. While existing VAD methods perform well in controlled environments, real-world scenarios present diverse and unexpected anomalies that current datasets fail to capture. To address this gap, we introduce CableInspect-AD, a high-quality, publicly available dataset created and annotated by domain experts from Hydro-Québec, a Canadian public utility. This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels. To address the challenges of collecting diverse anomalous and nominal examples for setting a detection threshold, we propose an enhancement to the celebrated PatchCore algorithm. This enhancement enables its use in scenarios with limited labeled data. We also present a comprehensive evaluation protocol based on cross-validation to assess models' performances. We evaluate our Enhanced-PatchCore for few-shot and many-shot detection, and Vision-Language Models for zero-shot detection. While promising, these models struggle to detect all anomalies, highlighting the dataset's value as a challenging benchmark for the broader research community. Project page: https://mila-iqia.github.io/cableinspect-ad/.",https://neurips.cc//virtual/2024/poster/97600,2024,NeurIPS,Yes,Image, Cal-DPO: Calibrated Direct Preference Optimization for Language Model Alignment,"We study the problem of aligning large language models (LLMs) with human preference data. Contrastive preference optimization has shown promising results in aligning LLMs with available preference data by optimizing the implicit reward associated with the policy. However, the contrastive objective focuses mainly on the relative values of implicit rewards associated with two responses while ignoringtheir actual values, resulting in suboptimal alignment with human preferences. To address this limitation, we propose calibrated direct preference optimization (Cal-DPO), a simple yet effective algorithm. We show that substantial improvement in alignment with the given preferences can be achieved simply by calibrating the implicit reward to ensure that the learned implicit rewards are comparable inscale to the ground-truth rewards. We demonstrate the theoretical advantages of Cal-DPO over existing approaches. The results of our experiments on a variety of standard benchmarks show that Cal-DPO remarkably improves off-the-shelf methods.",https://neurips.cc//virtual/2024/poster/96611,2024,NeurIPS,No,, Calibrated Self-Rewarding Vision Language Models,"Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning. Despite these advancements, LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image, indicating a misalignment between image and text pairs. This misalignment arises because the model tends to prioritize textual information over visual input, even when both the language model and visual representations are of high quality. Existing methods leverage additional models or human annotations to curate preference data and enhance modality alignment through preference optimization. These approaches are resource-intensive and may not effectively reflect the target LVLM's preferences, making the curated preferences easily distinguishable. Our work addresses these challenges by proposing the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning. In the reward modeling, we employ a step-wise strategy and incorporate visual constraints into the self-rewarding process to place greater emphasis on visual input. Empirical results demonstrate that CSR significantly enhances performance and reduces hallucinations across twelve benchmarks and tasks, achieving substantial improvements over existing methods by 7.62\%. Our empirical results are further supported by rigorous theoretical analysis, under mild assumptions, verifying the effectiveness of introducing visual constraints into the self-rewarding paradigm. Additionally, CSR shows compatibility with different vision-language models and the ability to incrementally improve performance through iterative fine-tuning.",https://neurips.cc//virtual/2024/poster/93685,2024,NeurIPS,No,, "Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs","We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures—self-supervised, strongly supervised, or combinations thereof—based on experiments with over 15 vision models. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks. To further improve visual grounding, we propose spatial vision aggregator (SVA), a dynamic and spatially-aware connector that integrates vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of distribution balancing. Collectively, Cambrian-1 not only achieves state-of-the-art performances but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.",https://neurips.cc//virtual/2024/poster/94880,2024,NeurIPS,Yes,Multimodal, "Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models","The need to analyze graphs is ubiquitous across various fields, from social networks to biological research and recommendation systems. Therefore, enabling the ability of large language models (LLMs) to process graphs is an important step toward more advanced general intelligence. However, current LLM benchmarks on graph analysis require models to directly reason over the prompts describing graphtopology, and are thus limited to small graphs with only a few dozens of nodes. In contrast, human experts typically write programs based on popular libraries for task solving, and can thus handle graphs with different scales. To this end, a question naturally arises: can LLMs analyze graphs like professionals? In this paper, we introduce ProGraph, a manually crafted benchmark containing 3 categories of graph tasks. The benchmark expects solutions based on programming instead of directly reasoning over raw inputs. Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy. To bridge this gap, we propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries. By augmenting closed-source LLMs with document retrieval and fine-tuning open-source ones on the codes, we show 11-32% absolute improvements in their accuracies. Our results underscore that the capabilities of LLMs in handling structured data are still under-explored, and show the effectiveness of LLM4Graph in enhancing LLMs’ proficiency of graph analysis. The benchmark, datasets and enhanced open-sourcemodels are available at https://github.com/BUPT-GAMMA/ProGraph.",https://neurips.cc//virtual/2024/poster/97519,2024,NeurIPS,Yes,Language,Benchmark Can LLMs Solve Molecule Puzzles? A Multimodal Benchmark for Molecular Structure Elucidation,"Large Language Models (LLMs) have shown significant problem-solving capabilities across predictive and generative tasks in chemistry. However, their proficiency in multi-step chemical reasoning remains underexplored. We introduce a new challenge: molecular structure elucidation, which involves deducing a molecule’s structure from various types of spectral data. Solving such a molecular puzzle, akin to solving crossword puzzles, poses reasoning challenges that require integrating clues from diverse sources and engaging in iterative hypothesis testing. To address this challenging problem with LLMs, we present \textbf{MolPuzzle}, a benchmark comprising 217 instances of structure elucidation, which feature over 23,000 QA samples presented in a sequential puzzle-solving process, involving three interlinked sub-tasks: molecule understanding, spectrum interpretation, and molecule construction. Our evaluation of 12 LLMs reveals that the best-performing LLM, GPT-4o, performs significantly worse than humans, with only a small portion (1.4\%) of its answers exactly matching the ground truth. However, it performs nearly perfectly in the first subtask of molecule understanding, achieving accuracy close to 100\%. This discrepancy highlights the potential of developing advanced LLMs with improved chemical reasoning capabilities in the other two sub-tasks. Our MolPuzzle dataset and evaluation code are available at this \href{https://github.com/KehanGuo2/MolPuzzle}{link}.",https://neurips.cc//virtual/2024/poster/97472,2024,NeurIPS,Yes,Multimodal, CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models,"Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In this paper, we introduce CARES and aim to comprehensively evaluate the Trustworthiness of Med-LVLMs across the medical domain. We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness. CARES comprises about 41K question-answer pairs in both closed and open-ended formats, covering 16 medical image modalities and 27 anatomical regions. Our analysis reveals that the models consistently exhibit concerns regarding trustworthiness, often displaying factual inaccuracies and failing to maintain fairness across different demographic groups. Furthermore, they are vulnerable to attacks and demonstrate a lack of privacy awareness. We publicly release our benchmark and code in https://github.com/richard-peng-xia/CARES.",https://neurips.cc//virtual/2024/poster/97614,2024,NeurIPS,Yes,Multimodal, Chain-of-Thought Reasoning Without Prompting,"In enhancing the reasoning capabilities of large language models (LLMs), prior research primarily focuses on specific prompting techniques such as few-shot or zero-shot chain-of-thought (CoT) prompting. These methods, while effective, often involve manually intensive prompt engineering. Our study takes a novel approach by asking: Can LLMs reason effectively without any prompting? Our findings reveal that, intriguingly, CoT reasoning paths can be elicited from pre-trained LLMs by simply altering the \textit{decoding} process. Rather than conventional greedy decoding, we investigate the top-$k$ alternative tokens, uncovering that CoT paths are frequently inherent in these sequences. This approach not only bypasses the confounders of prompting but also allows us to assess the LLMs' \textit{intrinsic} reasoning abilities. Moreover, we observe that the presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer. This confidence metric effectively differentiates between CoT and non-CoT paths. Extensive empirical studies on various reasoning benchmarks show that the proposed CoT-decoding effectively elicits reasoning capabilities from language models, which were previously obscured by standard greedy decoding.",https://neurips.cc//virtual/2024/poster/96654,2024,NeurIPS,No,, CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs,"Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an overly optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions deteriorates performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from scientific papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope that CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project website: https://charxiv.github.io/",https://neurips.cc//virtual/2024/poster/97598,2024,NeurIPS,Yes,Image, Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers,"Recent advancements in 3D Large Language Models (LLMs) have demonstrated promising capabilities for 3D scene understanding. However, previous methods exhibit deficiencies in general referencing and grounding capabilities for intricate scene comprehension. In this paper, we introduce the use of object identifiers and object-centric representations to interact with scenes at the object level. Specifically, we decompose the input 3D scene into a set of object proposals, each assigned a unique identifier token, which enables efficient object referencing and grounding during user-assistant interactions. Given the scarcity of scene-language data, we model the scene embeddings as a sequence of explicit object-level embeddings, derived from semantic-rich 2D or 3D representations. By employing object identifiers, we transform diverse 3D scene-language tasks into a unified question-answering format, facilitating joint training without the need for additional task-specific heads. With minimal fine-tuning on all downstream tasks, our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.",https://neurips.cc//virtual/2024/poster/93362,2024,NeurIPS,No,, CiteME: Can Language Models Accurately Cite Scientific Claims?,"Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.",https://neurips.cc//virtual/2024/poster/97683,2024,NeurIPS,Yes,Language,Benchmark ClashEval: Quantifying the tug-of-war between an LLM’s internal prior and external evidence,"Retrieval augmented generation (RAG) is frequently used to mitigate hallucinations and provide up-to-date knowledge for large language models (LLMs). However, given that document retrieval is an imprecise task and sometimes results in erroneous or even harmful content being presented in context, this raises the question of how LLMs handle retrieved information: If the provided content is incorrect, does the model know to ignore it, or does it recapitulate the error? Conversely, when the model's initial response is incorrect, does it always know to use the retrieved information to correct itself, or does it insist on its wrong prior response? To answer this, we curate a dataset of over 1200 questions across six domains (e.g., drug dosages, Olympic records, locations) along with content relevant to answering each question. We further apply precise perturbations to the answers in the content that range from subtle to blatant errors.We benchmark six top-performing LLMs, including GPT-4o, on this dataset and find that LLMs are susceptible to adopting incorrect retrieved content, overriding their own correct prior knowledge over 60\% of the time. However, the more unrealistic the retrieved content is (i.e. more deviated from truth), the less likely the model is to adopt it. Also, the less confident a model is in its initial response (via measuring token probabilities), the more likely it is to adopt the information in the retrieved content. We exploit this finding and demonstrate simple methods for improving model accuracy where there is conflicting retrieved content. Our results highlight a difficult task and benchmark for LLMs -- namely, their ability to correctly discern when it is wrong in light of correct retrieved content and to reject cases when the provided content is incorrect. Our dataset, called ClashEval, and evaluations are open-sourced to allow for future benchmarking on top-performing models at https://github.com/kevinwu23/StanfordClashEval.",https://neurips.cc//virtual/2024/poster/97658,2024,NeurIPS,Yes,Language,Benchmark CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses,"The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing the values embedded in LLMs' generated responses can help expose their misalignment, but this relies on reference-free value evaluators, e.g. fine-tuned LLMs or closed-source models like GPT-4. Nevertheless, two key challenges emerge in open-ended value evaluation: the evaluator should adapt to changing human value definitions with minimal annotation, against their own bias (adaptability); and remain robust across varying value expressions and scenarios (generalizability). To handle these challenges, we introduce CLAVE, a novel framework that integrates two complementary LLMs: a large model to extract high-level value concepts from diverse responses, leveraging its extensive knowledge and generalizability, and a small model fine-tuned on these concepts to adapt to human value annotations. This dual-model framework enables adaptation to any value system using <100 human-labeled samples per value type. We also present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the performance of 15+ popular LLM evaluators and fully analyze their strengths and weaknesses. Our findings reveal that CLAVE combining a large prompt-based model and a small fine-tuned one serves as an optimal balance in value evaluation.",https://neurips.cc//virtual/2024/poster/97747,2024,NeurIPS,Yes,Language,Methodological ClevrSkills: Compositional Language And Visual Reasoning in Robotics,"Robotics tasks are highly compositional by nature. For example, to perform a high-level task like cleaning the table a robot must employ low-level capabilities of moving the effectors to the objects on the table, pick them up and then move them off the table one-by-one, while re-evaluating the consequently dynamic scenario in the process. Given that large vision language models (VLMs) have shown progress on many tasks that require high level, human-like reasoning, we ask the question: if the models are taught the requisite low-level capabilities, can they compose them in novel ways to achieve interesting high-level tasks like cleaning the table without having to be explicitly taught so? To this end, we present ClevrSkills - a benchmark suite for compositional reasoning in robotics. ClevrSkills is an environment suite developed on top of the ManiSkill2 simulator and an accompanying dataset. The dataset contains trajectories generated on a range of robotics tasks with language and visual annotations as well as multi-modal prompts as task specification. The suite includes a curriculum of tasks with three levels of compositional understanding, starting with simple tasks requiring basic motor skills. We benchmark multiple different VLM baselines on ClevrSkills and show that even after being pre-trained on large numbers of tasks, these models fail on compositional reasoning in robotics tasks.",https://neurips.cc//virtual/2024/poster/97843,2024,NeurIPS,Yes,Multimodal, CLIPCEIL: Domain Generalization through CLIP via Channel rEfinement and Image-text aLignment,"Domain generalization (DG) is a fundamental yet challenging topic in machine learning. Recently, the remarkable zero-shot capabilities of the large pre-trained vision-language model (e.g., CLIP) have made it popular for various downstream tasks. However, the effectiveness of this capacity often degrades when there are shifts in data distribution during testing compared to the training data. In this paper, we propose a novel method, known as CLIPCEIL, a model that utilizes Channel rEfinement and Image-text aLignment to facilitate the CLIP to the inaccessible $\textit{out-of-distribution}$ test datasets that exhibit domain shifts. Specifically, we refine the feature channels in the visual domain to ensure they contain domain-invariant and class-relevant features by using a lightweight adapter. This is achieved by minimizing the inter-domain variance while maximizing the inter-class variance. In the meantime, we ensure the image-text alignment by aligning text embeddings of the class descriptions and their corresponding image embedding while further removing the domain-specific features. Moreover, our model integrates multi-scale CLIP features by utilizing a self-attention fusion module, technically implemented through one Transformer layer. Extensive experiments on five widely used benchmark datasets demonstrate that CLIPCEIL outperforms the existing state-of-the-art methods. The source code is available at \url{https://github.com/yuxi120407/CLIPCEIL}.",https://neurips.cc//virtual/2024/poster/95489,2024,NeurIPS,No,, CLIPLoss and Norm-Based Data Selection Methods for Multimodal Contrastive Learning,"Data selection has emerged as a core issue for large-scale visual-language model pretaining (e.g., CLIP), particularly with noisy web-curated datasets. Three main data selection approaches are: (1) leveraging external non-CLIP models to aid data selection, (2) training new CLIP-style embedding models that are more effective at selecting high-quality data than the original OpenAI CLIP model, and (3) designing better metrics or strategies universally applicable to any CLIP embedding without requiring specific model properties (e.g., CLIPScore is one popular metric). While the first two approaches have been extensively studied, the third remains under-explored. In this paper, we advance the third approach by proposing two new methods. Firstly, instead of classical CLIP scores that only consider the alignment between two modalities from a single sample, we introduce $\textbf{negCLIPLoss}$, a method inspired by CLIP training loss that adds the alignment between one sample and its contrastive pairs as an extra normalization term to CLIPScore for better quality measurement. Secondly, when downstream tasks are known, we propose a new norm-based metric, $\textbf{NormSim}$, to measure the similarity between pretraining data and target data. We test our methods on the data selection benchmark, DataComp [Gadre et al., 2023]. Compared to the best baseline using only OpenAI's CLIP-L/14, our methods achieve a 5.3\% improvement on ImageNet-1k and a 2.8\% improvement on 38 downstream evaluation tasks. Moreover, both $\textbf{negCLIPLoss}$ and $\textbf{NormSim}$ are compatible with existing techniques. By combining our methods with the current best methods DFN [Fang et al., 2023] and HYPE [Kim et al., 2024], we can boost average performance on downstream tasks by 0.9\%, achieving a new state-of-the-art on the DataComp-medium benchmark.",https://neurips.cc//virtual/2024/poster/93467,2024,NeurIPS,No,, CogVLM: Visual Expert for Pretrained Language Models,"We introduce CogVLM, a powerful open-source visual language foundation model. Different from the popular \emph{shallow alignment} method which maps image features into the input space of language model, CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers. As a result, CogVLM enables a deep fusion of vision language features without sacrificing any performance on NLP tasks. CogVLM-17B achieves state-of-the-art performance on 17 classic cross-modal benchmarks, including 1) image captioning datasets: NoCaps, Flicker30k, 2) VQA datasets: OKVQA, TextVQA, OCRVQA, ScienceQA, 3) LVLM benchmarks: MM-Vet, MMBench, SEED-Bench, LLaVABench, POPE, MMMU, MathVista, 4) visual grounding datasets: RefCOCO, RefCOCO+, RefCOCOg, Visual7W. Codes and checkpoints are available at Github.",https://neurips.cc//virtual/2024/poster/96510,2024,NeurIPS,No,, CoIN: A Benchmark of Continual Instruction Tuning for Multimodel Large Language Models,"Instruction tuning demonstrates impressive performance in adapting Multimodal Large Language Models (MLLMs) to follow task instructions and improve generalization ability. By extending tuning across diverse tasks, MLLMs can further enhance their understanding of world knowledge and instruction intent. However, continual instruction tuning has been largely overlooked and there are no public benchmarks available. In this paper, we present CoIN, a comprehensive benchmark tailored for assessing the behavior of existing MLLMs under continual instruction tuning. CoIN comprises 10 meticulously crafted datasets spanning 8 tasks, ensuring diversity and serving as a robust evaluation framework to assess crucial aspects of continual instruction tuning, such as task order, instruction diversity and volume. Additionally, apart from traditional evaluation, we design another LLM-based metric to assess the knowledge preserved within MLLMs for reasoning. Following an in-depth evaluation of several MLLMs, we demonstrate that they still suffer catastrophic forgetting, and the failure in instruction alignment assumes the main responsibility, instead of reasoning knowledge forgetting. To this end, we introduce MoELoRA which is effective in retaining the previous instruction alignment.",https://neurips.cc//virtual/2024/poster/97786,2024,NeurIPS,Yes,Language,Benchmark ConMe: Rethinking Evaluation of Compositional Reasoning for Modern VLMs,"Compositional Reasoning (CR) entails grasping the significance of attributes, relations, and word order. Recent Vision-Language Models (VLMs), comprising a visual encoder and a Large Language Model (LLM) decoder, have demonstrated remarkable proficiency in such reasoning tasks. This prompts a crucial question: have VLMs effectively tackled the CR challenge? We conjecture that existing CR benchmarks may not adequately push the boundaries of modern VLMs due to the reliance on an LLM only negative text generation pipeline. Consequently, the negatives produced either appear as outliers from the natural language distribution learned by VLMs' LLM decoders or as improbable within the corresponding image context. To address these limitations, we introduce ConMe\footnote{ConMe is an abbreviation for Confuse Me.} -- a compositional reasoning benchmark and a novel data generation pipeline leveraging VLMs to produce `hard CR Q&A'. Through a new concept of VLMs conversing with each other to collaboratively expose their weaknesses, our pipeline autonomously generates, evaluates, and selects challenging compositional reasoning questions, establishing a robust CR benchmark, also subsequently validated manually. Our benchmark provokes a noteworthy, up to 33%, decrease in CR performance compared to preceding benchmarks, reinstating the CR challenge even for state-of-the-art VLMs.",https://neurips.cc//virtual/2024/poster/97716,2024,NeurIPS,Yes,Multimodal, ConStat: Performance-Based Contamination Detection in Large Language Models,"Public benchmarks play an essential role in the evaluation of large language models. However, data contamination can lead to inflated performance, rendering them unreliable for model comparison. It is therefore crucial to detect contamination and estimate its impact on measured performance. Unfortunately, existing detection methods can be easily evaded and fail to quantify contamination. To overcome these limitations, we propose a novel definition of *contamination as artificially inflated and non-generalizing benchmark performance* instead of the inclusion of benchmark samples in the training data. This perspective enables us to detect *any* model with inflated performance, i.e., performance that does not generalize to rephrased samples, synthetic samples from the same distribution, or different benchmarks for the same task. Based on this insight, we develop ConStat, a statistical method that reliably detects and quantifies contamination by comparing performance between a primary and reference benchmark relative to a set of reference models. We demonstrate the effectiveness of ConStat in an extensive evaluation of diverse model architectures, benchmarks, and contamination scenarios and find high levels of contamination in multiple popular models including Mistral, Llama, Yi, and the top-3 Open LLM Leaderboard models.",https://neurips.cc//virtual/2024/poster/96266,2024,NeurIPS,No,, Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge,"We introduce Constrained Human-AI Cooperation (CHAIC), an inclusive embodied social intelligence challenge designed to test social perception and cooperation in embodied agents. In CHAIC, the goal is for an embodied agent equipped with egocentric observations to assist a human who may be operating under physical constraints—e.g., unable to reach high places or confined to a wheelchair—in performing common household or outdoor tasks as efficiently as possible. To achieve this, a successful helper must: (1) infer the human's intents and constraints by following the human and observing their behaviors (social perception), and (2) make a cooperative plan tailored to the human partner to solve the task as quickly as possible, working together as a team (cooperative planning). To benchmark this challenge, we create four new agents with real physical constraints and eight long-horizon tasks featuring both indoor and outdoor scenes with various constraints, emergency events, and potential risks. We benchmark planning- and learning-based baselines on the challenge and introduce a new method that leverages large language models and behavior modeling. Empirical evaluations demonstrate the effectiveness of our benchmark in enabling systematic assessment of key aspects of machine social intelligence. Our benchmark and code are publicly available at https://github.com/UMass-Foundation-Model/CHAIC.",https://neurips.cc//virtual/2024/poster/97865,2024,NeurIPS,Yes,Image, ConvBench: A Multi-Turn Conversation Evaluation Benchmark with Hierarchical Ablation Capability for Large Vision-Language Models,"Multi-turn visual conversation is an important ability of real-world AI assistants. However, the related evaluation benchmark is missed. This paper presents ConvBench, a multi-turn conversation benchmark with hierarchical capabilities ablation evaluation for Large Vision-Language Models (LVLMs). ConvBench comprises 577 curated multi-turn conversations, encompassing 215 tasks. These tasks are broad and open-ended, which resemble real-world user behaviors. ConvBench progressively examines the LVLMs' perception, reasoning, and creativity capabilities in each conversation and can decouple these capabilities in evaluations and thus perform reliable error attribution. Besides, considering the diversity of open-ended questions, we introduce an efficient and reliable automatic evaluation framework. Experimental results reveal that ConvBench is a significant challenge for current LVLMs, even for GPT4V, which achieves only a 39.51% score. Besides, we have some insightful findings, such as the weak perception of LVLMs inhibits authentic strengths in reasoning and creation. We believe our design of hierarchical capabilities, decoupling capabilities evaluation, and multi-turn conversation can blaze a new trail in LVLMs evaluation. Code and benchmark are released at https://github.com/shirlyliu64/ConvBench.",https://neurips.cc//virtual/2024/poster/97705,2024,NeurIPS,Yes,Language,Benchmark "Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation","There is a growing interest in using Large Language Models (LLMs) in multi-agent systems to tackle interactive real-world tasks that require effective collaboration and assessing complex situations. Yet, we have a limited understanding of LLMs' communication and decision-making abilities in multi-agent setups. The fundamental task of negotiation spans many key features of communication, such as cooperation, competition, and manipulation potentials. Thus, we propose using scorable negotiation to evaluate LLMs. We create a testbed of complex multi-agent, multi-issue, and semantically rich negotiation games. To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities while integrating them in a dynamic and multi-turn setup. We propose metrics to rigorously quantify agents' performance and alignment with the assigned role. We provide procedures to create new games and increase games' difficulty to have an evolving benchmark. Importantly, we evaluate critical safety aspects such as the interaction dynamics between agents influenced by greedy and adversarial players. Our benchmark is highly challenging; GPT-3.5 and small models mostly fail, and GPT-4 and SoTA large models (e.g., Llama-3 70b) still underperform in reaching agreement in non-cooperative and more difficult games.",https://neurips.cc//virtual/2024/poster/97850,2024,NeurIPS,Yes,Language,Benchmark Cost-efficient Knowledge-based Question Answering with Large Language Models,"Knowledge-based question answering (KBQA) is widely used in many scenarios that necessitate domain knowledge. Large language models (LLMs) bring opportunities to KBQA, while their costs are significantly higher and absence of domain-specific knowledge during pre-training. We are motivated to combine LLMs and prior small models on knowledge graphs (KGMs) for both inferential accuracy and cost saving. However, it remains challenging since accuracy and cost are not readily combined in the optimization as two distinct metrics. It is also laborious for model selection since different models excel in diverse knowledge. To this end, we propose Coke, a novel cost-efficient strategy for KBQA with LLMs, modeled as a tailored multi-armed bandit problem to minimize calls to LLMs within limited budgets. We first formulate the accuracy expectation with a cluster-level Thompson Sampling for either KGMs or LLMs. A context-aware policy is optimized to further distinguish the expert model subject to the question semantics. The overall decision is bounded by the cost regret according to historical expenditure on failures. Extensive experiments showcase the superior performance of Coke, which moves the Pareto frontier with up to 20.89% saving of GPT-4 fees while achieving a 2.74% higher accuracy on the benchmark datasets.",https://neurips.cc//virtual/2024/poster/93534,2024,NeurIPS,No,, Cracking the Code of Juxtaposition: Can AI Models Understand the Humorous Contradictions,"Recent advancements in large vision language models have demonstrated remarkable proficiency across a wide range of tasks. Yet, these models still struggle with understanding the nuances of human humor through juxtaposition, particularly when it involves nonlinear narratives that underpin many jokes and humor cues. This paper investigates this challenge by focusing on comics with contradictory narratives, where each comic consists of two panels that create a humorous contradiction. We introduce the YesBut benchmark, which comprises tasks of varying difficulty aimed at assessing AI's capabilities in recognizing and interpreting these comics, ranging from literal content comprehension to deep narrative reasoning. Through extensive experimentation and analysis of recent commercial or open-sourced large vision language models, we assess their capability to comprehend the complex interplay of the narrative humor inherent in these comics. Our results show that even the state-of-the-art models still struggle with this task. Our findings offer insights into the current limitations and potential improvements for AI in understanding human creative expressions.",https://neurips.cc//virtual/2024/poster/94508,2024,NeurIPS,Yes,Image, CRAG - Comprehensive RAG Benchmark,"Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)’s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve $\le 34\%$ accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracted thousands of participants and submissions. We commit to maintaining CRAG to serve research communities in advancing RAG solutions and general QA solutions. CRAG is available at https://github.com/facebookresearch/CRAG/.",https://neurips.cc//virtual/2024/poster/97703,2024,NeurIPS,Yes,Language,Benchmark CriticEval: Evaluating Large-scale Language Model as Critic,"Critique ability, i.e., the capability of Large Language Models (LLMs) to identify and rectify flaws in responses, is crucial for their applications in self-improvement and scalable oversight. While numerous studies have been proposed to evaluate critique ability of LLMs, their comprehensiveness and reliability are still limited. To overcome this problem, we introduce CriticEval, a novel benchmark designed to comprehensively and reliably evaluate critique ability of LLMs. Specifically, to ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios. It evaluates both scalar-valued and textual critiques, targeting responses of varying quality. To ensure the reliability, a large number of critiques are annotated to serve as references, enabling GPT-4 to evaluate textual critiques reliably. Extensive evaluations of open-source and closed-source LLMs first validate the reliability of evaluation in CriticEval. Then, experimental results demonstrate the promising potential of open-source LLMs, the effectiveness of critique datasets and several intriguing relationships between the critique ability and some critical factors, including task types, response qualities and critique dimensions.",https://neurips.cc//virtual/2024/poster/94609,2024,NeurIPS,Yes,Language,Benchmark Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias,"Large language models (LLMs) are increasingly essential in processing natural languages, yet their application is frequently compromised by biases and inaccuracies originating in their training data.In this study, we introduce \textbf{Cross-Care}, the first benchmark framework dedicated to assessing biases and real world knowledge in LLMs, specifically focusing on the representation of disease prevalence across diverse demographic groups.We systematically evaluate how demographic biases embedded in pre-training corpora like $ThePile$ influence the outputs of LLMs.We expose and quantify discrepancies by juxtaposing these biases against actual disease prevalences in various U.S. demographic groups.Our results highlight substantial misalignment between LLM representation of disease prevalence and real disease prevalence rates across demographic subgroups, indicating a pronounced risk of bias propagation and a lack of real-world grounding for medical applications of LLMs.Furthermore, we observe that various alignment methods minimally resolve inconsistencies in the models' representation of disease prevalence across different languages.For further exploration and analysis, we make all data and a data visualization tool available at: \url{www.crosscare.net}.",https://neurips.cc//virtual/2024/poster/97819,2024,NeurIPS,Yes,Language,Benchmark CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence,"Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.",https://neurips.cc//virtual/2024/poster/97556,2024,NeurIPS,Yes,Language,Benchmark CulturePark: Boosting Cross-cultural Understanding in Large Language Models,"Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures.Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media.However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale.Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures.It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs.We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education.Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on $41$ datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework.Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive data in model training. Code is released at https://github.com/Scarelette/CulturePark.",https://neurips.cc//virtual/2024/poster/94498,2024,NeurIPS,Yes,Language,Methodological CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts,"Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of efficiently improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixture-of-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with neglectable additional activated parameters during inference.CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage, with auxiliary losses to ensure a balanced loading of experts.CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks within each model size group, all while training exclusively on open-sourced datasets.",https://neurips.cc//virtual/2024/poster/94037,2024,NeurIPS,No,, Customizing Language Models with Instance-wise LoRA for Sequential Recommendation,"Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches are eager to apply LLMs to sequential recommendation. A common paradigm is converting user behavior sequences into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform application of LoRA across diverse user behaviors is insufficient to capture individual variability, resulting in negative transfer between disparate sequences.To address these challenges, we propose Instance-wise LoRA (iLoRA). We innovatively treat the sequential recommendation task as a form of multi-task learning, integrating LoRA with the Mixture of Experts (MoE) framework. This approach encourages different experts to capture various aspects of user behavior. Additionally, we introduce a sequence representation guided gate function that generates customized expert participation weights for each user sequence, which allows dynamic parameter adjustment for instance-wise recommendations. In sequential recommendation, iLoRA achieves an average relative improvement of 11.4\% over basic LoRA in the hit ratio metric, with less than a 1\% relative increase in trainable parameters.Extensive experiments on three benchmark datasets demonstrate the effectiveness of iLoRA, highlighting its superior performance compared to existing methods in mitigating negative transfer and improving recommendation accuracy.Our data and code are available at https://github.com/AkaliKong/iLoRA.",https://neurips.cc//virtual/2024/poster/93987,2024,NeurIPS,No,, CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark,"Visual Question Answering~(VQA) is an important task in multimodal AI, which requires models to understand and reason on knowledge present in visual and textual data. However, most of the current VQA datasets and models are primarily focused on English and a few major world languages, with images that are Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, some datasets extend the text to other languages, either via translation or some other approaches, but usually keep the same images, resulting in narrow cultural representation. To address these limitations, we create CVQA, a new Culturally-diverse Multilingual Visual Question Answering benchmark dataset, designed to cover a rich set of languages and regions, where we engage native speakers and cultural experts in the data collection process. CVQA includes culturally-driven images and questions from across 28 countries in four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and we show that the dataset is challenging for the current state-of-the-art models. This benchmark will serve as a probing evaluation suite for assessing the cultural bias of multimodal models and hopefully encourage more research efforts towards increasing cultural awareness and linguistic diversity in this field.",https://neurips.cc//virtual/2024/poster/97798,2024,NeurIPS,Yes,Multimodal, DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation,"Data analysis is a crucial analytical process essential for deriving insights from real-world databases. As shown in Figure 1, the need for data analysis typically arises from specific application scenarios, and requires diverse reasoning skills including mathematical reasoning, logical reasoning, and strategic reasoning. Existing work often focus on simple factual retrieval or arithmetic resolutions and thus are insufficient for addressing complex real-world queries. This work aims to propose new resources and benchmarks on this crucial yet challenging and under-explored task. Due to the prohibitively high cost of collecting expert annotations, we use large language models (LLMs) enhanced by code generation to automatically generate high-quality data analysis, which will later be refined by human annotators. We construct the **DACO dataset**, containing (1) 440 databases (of tabular data) collected from real-world scenarios, (2) ~2k automatically generated query-answer pairs that can serve as weak supervision for model training, and (3) a concentrated but high-quality test set with human refined annotations that serves as our main evaluation benchmark. Experiments show that while LLMs like GPT-4 exhibit promising data analysis capabilities, they are still evaluated as less helpful than human-written analysis on 58.1% cases. Leveraging our weak supervision data, we experiment with various fine-tuning methods, including supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). Our trained model outperforms existing baselines for table question answering, and RLHF further boosts the helpfulness of generated analysis on 58.5% cases.Data and code are released at https://github.com/shirley-wu/daco.",https://neurips.cc//virtual/2024/poster/97721,2024,NeurIPS,Yes,Other, DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph,"The current paradigm of evaluating Large Language Models (LLMs) through static benchmarks comes with significant limitations, such as vulnerability to data contamination and a lack of adaptability to the evolving capabilities of LLMs. Therefore, evaluation methods that can adapt and generate evaluation data with controlled complexity are urgently needed. In this work, we introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity. Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data. Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks. We further use a code-augmented LLM to ensure the label correctness of newly generated data. We apply our DARG framework to diverse reasoning tasks in four domains with 15 state-of-the-art LLMs. Experimental results show that almost all LLMs experience a performance decrease with increased complexity and certain LLMs exhibit significant drops. Additionally, we find that LLMs exhibit more biases when being evaluated via the data generated by DARG with higher complexity levels. These observations provide useful insights into how to dynamically and adaptively evaluate LLMs.",https://neurips.cc//virtual/2024/poster/96593,2024,NeurIPS,Yes,Language,Methodological DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA,"Recent advances in self-supervised models for natural language, vision, and protein sequences have inspired the development of large genomic DNA language models (DNALMs). These models aim to learn generalizable representations of diverse DNA elements, potentially enabling various genomic prediction, interpretation and design tasks. Despite their potential, existing benchmarks do not adequately assess the capabilities of DNALMs on key downstream applications involving an important class of non-coding DNA elements critical for regulating gene activity. In this study, we introduce DART-Eval, a suite of representative benchmarks specifically focused on regulatory DNA to evaluate model performance across zero-shot, probed, and fine-tuned scenarios against contemporary ab initio models as baselines. Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants. We find that current DNALMs exhibit inconsistent performance and do not offer compelling gains over alternative baseline models for most tasks, while requiring significantly more computational resources. We discuss potentially promising modeling, data curation, and evaluation strategies for the next generation of DNALMs. Our code is available at https://github.com/kundajelab/DART-Eval",https://neurips.cc//virtual/2024/poster/97497,2024,NeurIPS,Yes,Language,Benchmark DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving,"Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries.Hypothesizing that difficult queries are crucial to learning complex reasoning, we propose *Difficulty-Aware Rejection Tuning* (`DART`), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples.Utilizing `DART`, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4.We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called `DART-Math`.In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, `DART-Math` outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving. Our datasets, models and code are publicly available at https://github.com/hkust-nlp/dart-math.",https://neurips.cc//virtual/2024/poster/92959,2024,NeurIPS,Yes,Language,Methodological DataComp-LM: In search of the next generation of training sets for language models,"We introduce DataComp for Language Models, a testbed for controlled dataset experiments with the goal of improving language models.As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations.Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing atmodel scales ranging from 412M to 7B parameters.As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set.The resulting dataset, DCLM-Baseline, enables training a 7B parameter language model from scratch to 63% 5-shot accuracy on MMLU with 2T training tokens.Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6 percentage point improvement on MMLU while being trained with half the compute.Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation. We release the \dclm benchmark, framework, models, and datasets at https://www.datacomp.ai/dclm/",https://neurips.cc//virtual/2024/poster/97814,2024,NeurIPS,Yes,Language,Benchmark Data-Efficient Learning with Neural Programs,"Many computational tasks can be naturally expressed as a composition of a DNN followed by a program written in a traditional programming language or an API call to an LLM. We call such composites ""neural programs"" and focus on the problem of learning the DNN parameters when the training data consist of end-to-end input-output labels for the composite. When the program is written in a differentiable logic programming language, techniques from neurosymbolic learning are applicable, but in general, the learning for neural programs requires estimating the gradients of black-box components. We present an algorithm for learning neural programs, called ISED, that only relies on input-output samples of black-box components. For evaluation, we introduce new benchmarks that involve calls to modern LLMs such as GPT-4 and also consider benchmarks from the neurosymbolic learning literature. Our evaluation shows that for the latter benchmarks, ISED has comparable performance to state-of-the-art neurosymbolic frameworks. For the former, we use adaptations of prior work on gradient approximations of black-box components as a baseline, and show that ISED achieves comparable accuracy but in a more data- and sample-efficient manner.",https://neurips.cc//virtual/2024/poster/95230,2024,NeurIPS,Yes,Language,Methodological Dataset Decomposition: Faster LLM Training with Variable Sequence Length Curriculum,"Large language models (LLMs) are commonly trained on datasets consisting of fixed-length token sequences. These datasets are created by randomly concatenating documents of various lengths and then chunking them into sequences of a predetermined target length (concat-and-chunk). Recent attention implementations mask cross-document attention, reducing the effective length of a chunk of tokens. Additionally, training on long sequences becomes computationally prohibitive due to the quadratic cost of attention. In this study, we introduce dataset decomposition, a novel variable sequence length training technique, to tackle these challenges. We decompose a dataset into a union of buckets, each containing sequences of the same size extracted from a unique document. During training, we use variable sequence length and batch-size, sampling simultaneously from all buckets with a curriculum. In contrast to the concat-and-chunk baseline, which incurs a fixed attention cost at every step of training, our proposed method incurs a computational cost proportional to the actual document lengths at each step, resulting in significant savings in training time. We train an 8k context-length 1B model at the same cost as a 2k context-length model trained with the baseline approach. Experiments on a web-scale corpus demonstrate that our approach significantly enhances performance on standard language evaluations and long-context benchmarks, reaching target accuracy with up to 6x faster training compared to the baseline. Our method not only enables efficient pretraining on long sequences but also scales effectively with dataset size. Lastly, we shed light on a critical yet less studied aspect of training large language models: the distribution and curriculum of sequence lengths, which results in a non-negligible difference in performance.",https://neurips.cc//virtual/2024/poster/93454,2024,NeurIPS,No,, "Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle","In this paper, we introduce DeAR (_Decompose-Analyze-Rethink_), a framework that iteratively builds a reasoning tree to tackle intricate problems within a single large language model (LLM). Unlike approaches that extend or search for rationales, DeAR is featured by 1) adopting a tree-based question decomposition manner to plan the organization of rationales, which mimics the logical planning inherentin human cognition; 2) globally updating the rationales at each reasoning step through natural language feedback. Specifically, the _Decompose_ stage decomposes the question into simpler sub-questions, storing them as new nodes; the _Analyze_ stage generates and self-checks rationales for sub-questions at each node evel; and the _Rethink_ stage updates parent-node rationales based on feedback from their child nodes. By generating and updating the reasoning process from a more global perspective, DeAR constructs more adaptive and accurate logical structures for complex problems, facilitating timely error correction compared to rationale-extension and search-based approaches such as Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT). We conduct extensive experiments on three reasoning benchmarks, including ScienceQA, StrategyQA, and GSM8K, which cover a variety of reasoning tasks, demonstrating that our approach significantly reduces logical errors and enhances performance across various LLMs. Furthermore, we validate that DeAR is an efficient method that achieves a superior trade-off between accuracy and reasoning time compared to ToT and GoT.",https://neurips.cc//virtual/2024/poster/95441,2024,NeurIPS,No,, Decomposed Prompt Decision Transformer for Efficient Unseen Task Generalization,"Multi-task offline reinforcement learning aims to develop a unified policy for diverse tasks without requiring real-time interaction with the environment. Recent work explores sequence modeling, leveraging the scalability of the transformer architecture as a foundation for multi-task learning. Given the variations in task content and complexity, formulating policies becomes a challenging endeavor, requiring careful parameter sharing and adept management of conflicting gradients to extract rich cross-task knowledge from multiple tasks and transfer it to unseen tasks. In this paper, we propose the Decomposed Prompt Decision Transformer (DPDT) that adopts a two-stage paradigm to efficiently learn prompts for unseen tasks in a parameter-efficient manner. We incorporate parameters from pre-trained language models (PLMs) to initialize DPDT, thereby providing rich prior knowledge encoded in language models. During the decomposed prompt tuning phase, we learn both cross-task and task-specific prompts on training tasks to achieve prompt decomposition. In the test time adaptation phase, the cross-task prompt, serving as a good initialization, were further optimized on unseen tasks through test time adaptation, enhancing the model's performance on these tasks. Empirical evaluation on a series of Meta-RL benchmarks demonstrates the superiority of our approach. The project is available at https://github.com/ruthless-man/DPDT.",https://neurips.cc//virtual/2024/poster/95819,2024,NeurIPS,No,, DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs,"Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computation and memory costs, as it has to handle a large number of additional tokens in its input layer. This paper presents a new architecture *DeepStack* for LMMs. Considering $N$ layers in the language and vision transformer of LMMs, we stack the visual tokens into $N$ groups and feed each group to its aligned transformer layer from bottom to top. Surprisingly, this simple method greatly enhances the power of LMMs to model interactions among visual tokens across layers but with minimal additional cost. We apply *DeepStack* to both language and vision transformer in LMMs, and validate the effectiveness of *DeepStack* LMMs with extensive empirical results. Using the same context length, our DeepStack 7B and 13B parameters surpass their counterparts by 2.7 and 2.9 on average across 9 benchmarks, respectively. Using only one-fifth of the context length, DeepStack rivals closely to the counterparts that use the full context length. These gains are particularly pronounced on high-resolution tasks, *e.g.*, 4.2, 11.0, and 4.0 improvements on TextVQA, DocVQA, and InfoVQA compared to LLaVA-1.5-7B, respectively. We further apply *DeepStack* to vision transformer layers, which brings us a similar amount of improvements, 3.8 on average compared with LLaVA-1.5-7B.",https://neurips.cc//virtual/2024/poster/94201,2024,NeurIPS,No,, DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution,"Multimodal Large Language Models (MLLMs) have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data.These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks, whose feasibility has been recently verified~\cite{rt-2,rt-x}.However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs usually incorporates storing billions of parameters and performing tremendous computation, imposing significant hardware demands.In our paper, we seek to address this challenge by leveraging an intriguing observation: relatively easier situations make up the bulk of the procedure of controlling robots to fulfill diverse tasks, and they generally require far smaller models to obtain the correct robotic actions.Motivated by this observation, we propose a \emph{DynamicEarly-Exit for Robotic MLLM} (DeeR) framework that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to cease processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (\emph{i.e.}, power consumption), as well as peak computational consumption (\emph{i.e.}, latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance.Moreover, we design a tailored training method for integrating temporal information on top of such multi-exit architectures to predict actions reasonably. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs by 5.2-6.5x and GPU memory by 2x without compromising performance.Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.",https://neurips.cc//virtual/2024/poster/95242,2024,NeurIPS,No,, Dense Connector for MLLMs,"*Do we fully leverage the potential of visual encoder in Multimodal Large Language Models (MLLMs)?* The recent outstanding performance of MLLMs in multimodal understanding has garnered broad attention from both academia and industry. In the current MLLM rat race, the focus seems to be predominantly on the linguistic side. We witness the rise of larger and higher-quality instruction datasets, as well as the involvement of larger-sized LLMs. Yet, scant attention has been directed towards the visual signals utilized by MLLMs, often assumed to be the final high-level features extracted by a frozen visual encoder. In this paper, we introduce the **Dense Connector** - a simple, effective, and plug-and-play vision-language connector that significantly enhances existing MLLMs by leveraging multi-layer visual features, with minimal additional computational overhead. Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens. Furthermore, our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well. Experimental results across various vision encoders, image resolutions, training dataset scales, varying sizes of LLMs (2.7B→70B), and diverse architectures of MLLMs (e.g., LLaVA-v1.5, LLaVA-NeXT and Mini-Gemini) validate the versatility and scalability of our approach, achieving state-of-the-art performance across 19 image and video benchmarks. We hope that this work will provide valuable experience and serve as a basic module for future MLLM development. Code is available at https://github.com/HJYao00/DenseConnector.",https://neurips.cc//virtual/2024/poster/95751,2024,NeurIPS,No,, DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception,"Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The code and dataset are available at https://huggingface.co/datasets/BAAI/DenseFusion-1M.",https://neurips.cc//virtual/2024/poster/97564,2024,NeurIPS,Yes,Multimodal, DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning,"Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that our work will spark new thoughts in the field of AI-generated text detection, ensuring safe application of LLMs and enhancing compliance.",https://neurips.cc//virtual/2024/poster/94405,2024,NeurIPS,No,, DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios,"Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating advanced prompt usages, human revisions like word substitutions, and writing errors. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors. We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios, evolving with advanced attack methods, thus providing more stressful evaluation to drive the development of more efficient detectors\footnote{Data and code are publicly available at: https://github.com/NLP2CT/DetectRL.",https://neurips.cc//virtual/2024/poster/97633,2024,NeurIPS,Yes,Language,Benchmark DevBench: A multimodal developmental benchmark for language learning,"How (dis)similar are the learning trajectories of vision–language models and children? Recent modeling work has attempted to understand the gap between models’ and humans’ data efficiency by constructing models trained on less data, especially multimodal naturalistic data. However, such models are often evaluated on adult-level benchmarks, with limited breadth in language abilities tested, and without direct comparison to behavioral data. We introduce DevBench, a multimodal benchmark comprising seven language evaluation tasks spanning the domains of lexical, syntactic, and semantic ability, with behavioral data from both children and adults. We evaluate a set of vision–language models on these tasks, comparing models and humans on their response patterns, not their absolute performance. Across tasks, models exhibit variation in their closeness to human response patterns, and models that perform better on a task also more closely resemble human behavioral responses. We also examine the developmental trajectory of OpenCLIP over training, finding that greater training results in closer approximations to adult response patterns. DevBench thus provides a benchmark for comparing models to human language development. These comparisons highlight ways in which model and human language learning processes diverge, providing insight into entry points for improving language models.",https://neurips.cc//virtual/2024/poster/97423,2024,NeurIPS,Yes,Language,Benchmark Discovering Sparsity Allocation for Layer-wise Pruning of Large Language Models,"In this paper, we present DSA, the first automated framework for discovering sparsity allocation schemes for layer-wise pruning in Large Language Models (LLMs). LLMs have become increasingly powerful, but their large parameter counts make them computationally expensive. Existing pruning methods for compressing LLMs primarily focus on evaluating redundancies and removing element-wise weights. However, these methods fail to allocate adaptive layer-wise sparsities, leading to performance degradation in challenging tasks. We observe that per-layer importance statistics can serve as allocation indications, but their effectiveness depends on the allocation function between layers. To address this issue, we develop an expression discovery framework to explore potential allocation strategies. Our allocation functions involve two steps: reducing element-wise metrics to per-layer importance scores, and modelling layer importance to sparsity ratios. To search for the most effective allocation function, we construct a search space consisting of pre-process, reduction, transform, and post-process operations. We leverage an evolutionary algorithm to perform crossover and mutation on superior candidates within the population, guided by performance evaluation. Finally, we seamlessly integrate our discovered functions into various uniform methods, resulting in significant performance improvements. We conduct extensive experiments on multiple challenging tasks such as arithmetic, knowledge reasoning, and multimodal benchmarks spanning GSM8K, MMLU, SQA, and VQA, demonstrating that our DSA method achieves significant performance gains on the LLaMA-1|2|3, Mistral, and OPT models. Notably, the LLaMA-1|2|3 model pruned by our DSA reaches 4.73\%|6.18\%|10.65\% gain over the state-of-the-art techniques (e.g., Wanda and SparseGPT).",https://neurips.cc//virtual/2024/poster/93422,2024,NeurIPS,No,, Discovery of the Hidden World with Large Language Models,"Revealing the underlying causal mechanisms in the real world is the key to the development of science. Despite the progress in the past decades, traditional causal discovery approaches (CDs) mainly rely on high-quality measured variables, usually given by human experts, to find causal relations. The lack of well-defined high-level variables in many real-world applications has already been a longstanding roadblock to a broader application of CDs. To this end, this paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap. LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data. Therefore, it is natural to employ LLMs to assist with proposing useful high-level factors and crafting their measurements. Meanwhile, COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors. We show that LLMs and CDs are mutually beneficial and the constructed feedback provably also helps with the factor proposal. We construct and curate several synthetic and real-world benchmarks including analysis of human reviews and diagnosis of neuropathic and brain tumors, to comprehensively evaluate COAT. Extensive empirical results confirm the effectiveness and reliability of COAT with significant improvements.",https://neurips.cc//virtual/2024/poster/93175,2024,NeurIPS,Yes,Language,Methodological Distributional Preference Alignment of LLMs via Optimal Transport,"Current LLM alignment techniques use pairwise human preferences at a sample level, and as such, they do not imply an alignment on the distributional level. We propose in this paper Alignment via Optimal Transport (AOT), a novel method for distributional preference alignment of LLMs. AOT aligns LLMs on unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. We introduce a convex relaxation of this first-order stochastic dominance and cast it as an optimal transport problem with a smooth and convex cost. Thanks to the one-dimensional nature of the resulting optimal transport problem and the convexity of the cost, it has a closed-form solution via sorting on empirical measures. We fine-tune LLMs with this AOT objective, which enables alignment by penalizing the violation of the stochastic dominance of the reward distribution of the positive samples on the reward distribution of the negative samples. We analyze the sample complexity of AOT by considering the dual of the OT problem and show that it converges at the parametric rate. Empirically, we show on a diverse set of alignment datasets and LLMs that AOT leads to state-of-the-art models in the 7B family of models when evaluated with Open LLM Benchmarks and AlpacaEval. Code for $\mathsf{AOT}$ is available in the Hugging Face TRL library \url{https://ibm.biz/AOT_TRL}.",https://neurips.cc//virtual/2024/poster/96822,2024,NeurIPS,No,, Does Video-Text Pretraining Help Open-Vocabulary Online Action Detection?,"Video understanding relies on accurate action detection for temporal analysis. However, existing mainstream methods have limitations in real-world applications due to their offline and closed-set evaluation approaches, as well as their dependence on manual annotations. To address these challenges and enable real-time action understanding in open-world scenarios, we propose OV-OAD, a zero-shot online action detector that leverages vision-language models and learns solely from text supervision. By introducing an object-centered decoder unit into a Transformer-based model, we aggregate frames with similar semantics using video-text correspondence. Extensive experiments on four action detection benchmarks demonstrate that OV-OAD outperforms other advanced zero-shot methods. Specifically, it achieves 37.5\% mean average precision on THUMOS’14 and 73.8\% calibrated average precision on TVSeries. This research establishes a robust baseline for zero-shot transfer in online action detection, enabling scalable solutions for open-world temporal understanding. The code will be available for download at \url{https://github.com/OpenGVLab/OV-OAD}.",https://neurips.cc//virtual/2024/poster/95303,2024,NeurIPS,No,, DTGB: A Comprehensive Benchmark for Dynamic Text-Attributed Graphs,"Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios, where each node and edge are associated with text descriptions, and both the graph structure and text descriptions evolve over time. Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs, which hinders the potential advancement in many research fields. To address this gap, we introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs from diverse domains, with nodes and edges enriched by dynamically changing text attributes and categories. To facilitate the use of DTGB, we design standardized evaluation procedures based on four real-world use cases: future link prediction, destination node retrieval, edge classification, and textual relation generation. These tasks require models to understand both dynamic graph structures and natural language, highlighting the unique challenges posed by DyTAGs. Moreover, we conduct extensive benchmark experiments on DTGB, evaluating 7 popular dynamic graph learning algorithms and their variants of adapting to text attributes with LLM embeddings, along with 6 powerful large language models (LLMs). Our results show the limitations of existing models in handling DyTAGs. Our analysis also demonstrates the utility of DTGB in investigating the incorporation of structural and textual dynamics. The proposed DTGB fosters research on DyTAGs and their broad applications. It offers a comprehensive benchmark for evaluating and advancing models to handle the interplay between dynamic graph structures and natural language. The dataset and source code are available at https://github.com/zjs123/DTGB.",https://neurips.cc//virtual/2024/poster/97873,2024,NeurIPS,Yes,Language,Benchmark Dual-Personalizing Adapter for Federated Foundation Models,"Recently, foundation models, particularly large language models (LLMs), have demonstrated an impressive ability to adapt to various tasks by fine-tuning diverse instruction data. Notably, federated foundation models (FedFM) emerge as a privacy preservation method to fine-tune models collaboratively under federated learning (FL) settings by leveraging many distributed datasets with non-IID data. To alleviate communication and computation overhead, parameter-efficient methods are introduced for efficiency, and some research adapted personalization methods to FedFM for better user preferences alignment. However, a critical gap in existing research is the neglect of test-time distribution shifts in real-world applications, and conventional methods for test-time distribution shifts in personalized FL are less effective for FedFM due to their failure to adapt to complex distribution shift scenarios and the requirement to train all parameters. To bridge this gap, we refine the setting in FedFM, termed test-time personalization, which aims to learn personalized federated foundation models on clients while effectively handling test-time distribution shifts simultaneously. To address challenges in this setting, we explore a simple yet effective solution, a Federated Dual-Personalizing Adapter (FedDPA) architecture. By co-working with a foundation model, a global adapter and a local adapter jointly tackle the test-time distribution shifts and client-specific personalization. Additionally, we introduce an instance-wise dynamic weighting mechanism that dynamically integrates the global and local adapters for each test instance during inference, facilitating effective test-time personalization. The effectiveness of the proposed method has been evaluated on benchmark datasets across different NLP tasks.",https://neurips.cc//virtual/2024/poster/93668,2024,NeurIPS,No,, Dual Prototype Evolving for Test-Time Generalization of Vision-Language Models,"Test-time adaptation, which enables models to generalize to diverse data with unlabeled test samples, holds significant value in real-world scenarios. Recently, researchers have applied this setting to advanced pre-trained vision-language models (VLMs), developing approaches such as test-time prompt tuning to further extend their practical applicability. However, these methods typically focus solely on adapting VLMs from a single modality and fail to accumulate task-specific knowledge as more samples are processed. To address this, we introduce Dual Prototype Evolving (DPE), a novel test-time adaptation approach for VLMs that effectively accumulates task-specific knowledge from multi-modalities. Specifically, we create and evolve two sets of prototypes—textual and visual—to progressively capture more accurate multi-modal representations for target classes during test time. Moreover, to promote consistent multi-modal representations, we introduce and optimize learnable residuals for each test sample to align the prototypes from both modalities. Extensive experimental results on 15 benchmark datasets demonstrate that our proposed DPE consistently outperforms previous state-of-the-art methods while also exhibiting competitive computational efficiency.",https://neurips.cc//virtual/2024/poster/93929,2024,NeurIPS,No,, Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning Zero-Shot Models,"Fine-tuning foundation models often compromises their robustness to distribution shifts. To remedy this, most robust fine-tuning methods aim to preserve the pre-trained features. However, not all pre-trained features are robust and those methods are largely indifferent to which ones to preserve. We propose dual risk minimization (DRM), which combines empirical risk minimization with worst-case risk minimization, to better preserve the core features of downstream tasks. In particular, we utilize core-feature descriptions generated by LLMs to induce core-based zero-shot predictions which then serve as proxies to estimate the worst-case risk. DRM balances two crucial aspects of model robustness: expected performance and worst-case performance, establishing a new state of the art on various real-world benchmarks. DRM significantly improves the out-of-distribution performance of CLIP ViT-L/14@336 on ImageNet (75.9$\to$77.1), WILDS-iWildCam (47.1$\to$51.8), and WILDS-FMoW (50.7$\to$53.1); opening up new avenues for robust fine-tuning. Our code is available at https://github.com/vaynexie/DRM.",https://neurips.cc//virtual/2024/poster/93578,2024,NeurIPS,No,, EAGLE: Efficient Adaptive Geometry-based Learning in Cross-view Understanding,"Unsupervised Domain Adaptation has been an efficient approach to transferring the semantic segmentation model across data distributions. Meanwhile, the recent Open-vocabulary Semantic Scene understanding based on large-scale vision language models is effective in open-set settings because it can learn diverse concepts and categories. However, these prior methods fail to generalize across different camera views due to the lack of cross-view geometric modeling. At present, there are limited studies analyzing cross-view learning. To address this problem, we introduce a novel Unsupervised Cross-view Adaptation Learning approach to modeling the geometric structural change across views in Semantic Scene Understanding. First, we introduce a novel Cross-view Geometric Constraint on Unpaired Data to model structural changes in images and segmentation masks across cameras. Second, we present a new Geodesic Flow-based Correlation Metric to efficiently measure the geometric structural changes across camera views. Third, we introduce a novel view-condition prompting mechanism to enhance the view-information modeling of the open-vocabulary segmentation network in cross-view adaptation learning. The experiments on different cross-view adaptation benchmarks have shown the effectiveness of our approach in cross-view modeling, demonstrating that we achieve State-of-the-Art (SOTA) performance compared to prior unsupervised domain adaptation and open-vocabulary semantic segmentation methods.",https://neurips.cc//virtual/2024/poster/96249,2024,NeurIPS,No,, EAI: Emotional Decision-Making of LLMs in Strategic Games and Ethical Dilemmas,"One of the urgent tasks of artificial intelligence is to assess the safety and alignment of large language models (LLMs) with human behavior. Conventional verification only in pure natural language processing benchmarks can be insufficient. Since emotions often influence human decisions, this paper examines LLM alignment in complex strategic and ethical environments, providing an in-depth analysis of the drawbacks of our psychology and the emotional impact on decision-making in humans and LLMs. We introduce the novel EAI framework for integrating emotion modeling into LLMs to examine the emotional impact on ethics and LLM-based decision-making in various strategic games, including bargaining and repeated games. Our experimental study with various LLMs demonstrated that emotions can significantly alter the ethical decision-making landscape of LLMs, highlighting the need for robust mechanisms to ensure consistent ethical standards. Our game-theoretic analysis revealed that LLMs are susceptible to emotional biases influenced by model size, alignment strategies, and primary pretraining language. Notably, these biases often diverge from typical human emotional responses, occasionally leading to unexpected drops in cooperation rates, even under positive emotional influence. Such behavior complicates the alignment of multiagent systems, emphasizing the need for benchmarks that can rigorously evaluate the degree of emotional alignment. Our framework provides a foundational basis for developing such benchmarks.",https://neurips.cc//virtual/2024/poster/96364,2024,NeurIPS,Yes,Language,Methodological Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization,"Despite the abundance of datasets available for assessing large language models (LLMs), the scarcity of continuous and reliable difficulty labels for individual data points, in most cases, curtails their capacity to benchmark model generalization performance across different levels of complexity. Addressing this limitation, we present Easy2Hard, an innovative collection of 6 benchmark datasets featuring standardized difficulty labels spanning a wide range of domains, such as mathematics and programming problems, chess puzzles, and reasoning questions, providing a much-needed tool for those in demand of a dataset with varying degrees of difficulty for LLM assessment. We estimate the difficulty of individual problems by leveraging the performance data of many human subjects and LLMs on prominent leaderboards. Harnessing the rich human performance data, we employ widely recognized difficulty ranking systems, including the Item Response Theory (IRT) and Glicko-2 models, to uniformly assign difficulty scores to problems. The Easy2Hard datasets distinguish themselves from previous collections by incorporating a significantly higher proportion of challenging problems, presenting a novel and demanding test for state-of-the-art LLMs. Through extensive experiments conducted with six state-of-the-art LLMs on the Easy2Hard datasets, we offer valuable insights into their performance and generalization capabilities across varying degrees of difficulty, setting the stage for future research in LLM generalization.",https://neurips.cc//virtual/2024/poster/97554,2024,NeurIPS,Yes,Language,Benchmark EffiBench: Benchmarking the Efficiency of Automatically Generated Code,"Code generation models have increasingly become integral to aiding software development. Although current research has thoroughly examined the correctness of the code produced by code generation models, a vital aspect that plays a pivotal role in greencomputing and sustainability efforts — the efficiency of the generated code — has often been neglected. This paper presents Effibench, a benchmark with 1,000 efficiency-critical coding problems to assess the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution, which obtains the SOTA efficiency on the LeetCode solution leaderboard. With EffiBench, we empirically examine the ability of 42 large language models (35 open-source and 7 closed-source) to generate efficient code. Our evaluation results demonstrate that the efficiency of the code generated by LLMs is generally worse than the efficiency of human-written canonical solutions. For example, GPT-4 generated code has an average \textbf{3.12} times execution time that of the human-written canonical solutions. In the most extreme cases, the execution time and total memory usage of GPT-4 code are \textbf{13.89} and \textbf{43.92} times that of the canonical solutions. The source code of EffiBench is released on https://github.com/huangd1999/EffiBench. We also provide the LeaderBoard in https://huggingface.co/spaces/EffiBench/effibench-leaderboard.",https://neurips.cc//virtual/2024/poster/97864,2024,NeurIPS,Yes,Language,Benchmark Efficient Large Multi-modal Models via Visual Context Compression,"While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in multi-modal LLMs (MLLMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experimentsshow that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy on the GQA benchmark, indicating significant redundancy in visual context. Addressing this, we introduce Visual Context Compressor, which reduces the number of visual tokens to enhance training and inference efficiency without sacrificing performance. To minimize information loss caused by the compression on visual tokens while maintaining training efficiency, we develop LLaVolta as a light and staged training scheme that incorporates stage-wise visual context compression to progressively compress the visual tokens from heavily to lightly compression during training, yielding no loss of information when testing. Extensive experiments demonstrate that our approach enhances the performance of MLLMs in both image-language and video-language understanding, while also significantly cutting training costs and improving inference efficiency.",https://neurips.cc//virtual/2024/poster/96558,2024,NeurIPS,No,, Efficient multi-prompt evaluation of LLMs,"Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs’ abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry; for example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Moreover, we show how PromptEval can be useful in LLM-as-a-judge and best prompt identification applications.",https://neurips.cc//virtual/2024/poster/93925,2024,NeurIPS,No,, EffiLearner: Enhancing Efficiency of Generated Code via Self-Optimization,"Large language models (LLMs) have shown remarkable progress in code generation, but their generated code often suffers from inefficiency, resulting in longer execution times and higher memory consumption. To address this issue, we propose EffiLearner, a self-optimization framework that utilizes execution overhead profiles to improve the efficiency of LLM-generated code. EffiLearner first generates code using an LLM, then executes it locally to capture execution time and memory usage profiles. These profiles are fed back to the LLM, which then revises the code to reduce overhead. To evaluate the effectiveness of EffiLearner, we conduct extensive experiments on EffiBench and two commonly used code generation benchmarks with 16 open-source and 6 closed-source models. Our evaluation results demonstrate that through iterative self-optimization, EffiLearner significantly enhances the efficiency of LLM-generated code. For example, the execution time (ET) of StarCoder2-15B for the EffiBench decreases from 0.93 (s) to 0.12 (s) which reduces 87.1\% execution time requirement compared with the initial code. The total memory usage (TMU) of StarCoder2-15B also decreases from 22.02 (Mb*s) to 2.03 (Mb*s), which decreases 90.8\% total memory consumption during the execution process.",https://neurips.cc//virtual/2024/poster/95648,2024,NeurIPS,No,, EHRNoteQA: An LLM Benchmark for Real-World Clinical Practice Using Discharge Summaries,"Discharge summaries in Electronic Health Records (EHRs) are crucial for clinical decision-making, but their length and complexity make information extraction challenging, especially when dealing with accumulated summaries across multiple patient admissions. Large Language Models (LLMs) show promise in addressing this challenge by efficiently analyzing vast and complex data. Existing benchmarks, however, fall short in properly evaluating LLMs' capabilities in this context, as they typically focus on single-note information or limited topics, failing to reflect the real-world inquiries required by clinicians. To bridge this gap, we introduce EHRNoteQA, a novel benchmark built on the MIMIC-IV EHR, comprising 962 different QA pairs each linked to distinct patients' discharge summaries. Every QA pair is initially generated using GPT-4 and then manually reviewed and refined by three clinicians to ensure clinical relevance. EHRNoteQA includes questions that require information across multiple discharge summaries and covers eight diverse topics, mirroring the complexity and diversity of real clinical inquiries. We offer EHRNoteQA in two formats: open-ended and multi-choice question answering, and propose a reliable evaluation method for each. We evaluate 27 LLMs using EHRNoteQA and examine various factors affecting the model performance (e.g., the length and number of discharge summaries). Furthermore, to validate EHRNoteQA as a reliable proxy for expert evaluations in clinical practice, we measure the correlation between the LLM performance on EHRNoteQA, and the LLM performance manually evaluated by clinicians. Results show that LLM performance on EHRNoteQA have higher correlation with clinician-evaluated performance (Spearman: 0.78, Kendall: 0.62) compared to other benchmarks, demonstrating its practical relevance in evaluating LLMs in clinical settings. EHRNoteQA will be publicly available to support further research and improve LLM evaluation in clinical practice. EHRNoteQA is publicly available under PhysioNet credential access at https://doi.org/10.13026/acga-ht95, and the code is available at https://github.com/ji-youn-kim/EHRNoteQA.",https://neurips.cc//virtual/2024/poster/97643,2024,NeurIPS,Yes,Language,Benchmark Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making,"We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics that break down evaluation into error types, such as hallucination errors, affordance errors, and various types of planning errors. Overall, our benchmark offers a comprehensive assessment of LLMs’ performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems and providing insights into the effective and selective use of LLMs in embodied decision making.",https://neurips.cc//virtual/2024/poster/97552,2024,NeurIPS,Yes,Language,Benchmark Empowering and Assessing the Utility of Large Language Models in Crop Science,"Large language models (LLMs) have demonstrated remarkable efficacy across knowledge-intensive tasks. Nevertheless, their untapped potential in crop science presents an opportunity for advancement. To narrow this gap, we introduce CROP, which includes a novel instruction tuning dataset specifically designed to enhance LLMs’ professional capabilities in the crop science sector, along with a benchmark that serves as a comprehensive evaluation of LLMs’ understanding of the domain knowledge. The CROP dataset is curated through a task-oriented and LLM-human integrated pipeline, comprising 210,038 single-turn and 1,871 multi-turn dialogues related to crop science scenarios. The CROP benchmark includes 5,045 multiple-choice questions covering three difficulty levels. Our experiments based on the CROP benchmark demonstrate notable enhancements in crop science-related tasks when LLMs are fine-tuned with the CROP dataset. To the best of our knowledge, CROP dataset is the first-ever instruction tuning dataset in the crop science domain. We anticipate that CROP will accelerate the adoption of LLMs in the domain of crop science, ultimately contributing to global food production.",https://neurips.cc//virtual/2024/poster/97570,2024,NeurIPS,Yes,Language,Methodological Enhancing Domain Adaptation through Prompt Gradient Alignment,"Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a domain-invariant feature extractor, which may hinder the model from learning sufficiently discriminative features. To tackle this, a line of works based on prompt learning leverages the power of large-scale pre-trained vision-language models to learn both domain-invariant and specific features through a set of domain-agnostic and domain-specific learnable prompts. Those studies typically enforce invariant constraints on representation, output, or prompt space to learn such prompts. Differently, we cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss. Under this new framework, we propose aligning per-objective gradients to foster consensus between them. Additionally, to prevent potential overfitting when fine-tuning this deep learning architecture, we penalize the norm of these gradients. To achieve these goals, we devise a practical gradient update procedure that can work under both single-source and multi-source UDA. Empirically, our method consistently surpasses other vision language model adaptation methods by a large margin on a wide range of benchmarks. The implementation is available at https://github.com/VietHoang1512/PGA.",https://neurips.cc//virtual/2024/poster/96889,2024,NeurIPS,No,, Enhancing In-Context Learning Performance with just SVD-Based Weight Pruning: A Theoretical Perspective,"Pre-trained large language models (LLMs) based on Transformer have demonstrated striking in-context learning (ICL) abilities. With a few demonstration input-label pairs, they can predict the label for an unseen input without any parameter updates. In this paper, we show an exciting phenomenon that SVD-based weight pruning can enhance ICL performance, and more surprising, pruning weights in deep layers often results in more stable performance improvements than in shallow layers. However, the underlying mechanism of those findings still remains an open question. To reveal those findings, we conduct an in-depth theoretical analysis by presenting the implicit gradient descent (GD) trajectories of ICL and giving the mutual information based generalization bounds of ICL via full implicit GD trajectories. This helps us reasonably explain the surprising experimental findings. Besides, based on all our experimental and theoretical insights, we intuitively propose a simple, model-compression and derivative-free algorithm for downstream tasks in enhancing ICL inference. Experiments on benchmark datasets and open source LLMs display the method effectiveness.",https://neurips.cc//virtual/2024/poster/93150,2024,NeurIPS,No,, Enhancing Large Vision Language Models with Self-Training on Image Comprehension,"Large vision language models (LVLMs) integrate large language models (LLMs) with pre-trained vision encoders, thereby activating the perception capability of the model to understand image inputs for different queries and conduct subsequent reasoning. Improving this capability requires high-quality vision-language data, which is costly and labor-intensive to acquire. Self-training approaches have been effective in single-modal settings to alleviate the need for labeled data by leveraging model's own generation. However, effective self-training remains a challenge regarding the unique visual perception and reasoning capability of LVLMs. To address this, we introduce **S**elf-**T**raining on **I**mage **C**omprehension (**STIC**), which emphasizes a self-training approach specifically for image comprehension. First, the model self-constructs a preference dataset for image descriptions using unlabeled images. Preferred responses are generated through a step-by-step prompt, while dis-preferred responses are generated from either corrupted images or misleading prompts. To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data and append its self-generated image descriptions to the prompts. We validate the effectiveness of STIC across seven different benchmarks, demonstrating substantial performance gains of 4.0% on average while using 70% less supervised fine-tuning data than the current method. Further studies dive into various components of STIC and highlight its potential to leverage vast quantities of unlabeled images for self-training.",https://neurips.cc//virtual/2024/poster/95961,2024,NeurIPS,No,, Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus,"Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning.To address this, we propose $\textbf{Additional Logic Training (ALT)}$, which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples.We first establish principles for designing high-quality samples by integrating symbolic logic theory and previous empirical insights.Then, based on these principles, we construct a synthetic corpus named $\textbf{Formal} \ \textbf{Logic} \ \textbf{\textit{D}eduction} \ \textbf{\textit{D}iverse}$ (FLD$ _{\times2}$), comprising numerous samples of multi-step deduction with unknown facts, diverse reasoning rules, diverse linguistic expressions, and challenging distractors.Finally, we empirically show that ALT on FLD$ _{\times2}$ substantially enhances the reasoning capabilities of state-of-the-art LLMs, including LLaMA-3.1-70B.Improvements include gains of up to 30 points on logical reasoning benchmarks, up to 10 points on math and coding benchmarks, and 5 points on the benchmark suite BBH.",https://neurips.cc//virtual/2024/poster/93733,2024,NeurIPS,Yes,Language,Methodological Enhancing vision-language models for medical imaging: bridging the 3D gap with innovative slice selection,"Recent approaches to vision-language tasks are built on the remarkable capabilities of large vision-language models (VLMs). These models excel in zero-shot and few-shot learning, enabling them to learn new tasks without parameter updates. However, their primary challenge lies in their design, which primarily accommodates 2D input, thus limiting their effectiveness for medical images, particularly radiological images like MRI and CT, which are typically 3D. To bridge the gap between state-of-the-art 2D VLMs and 3D medical image data, we developed an innovative, one-pass, unsupervised representative slice selection method called Vote-MI, which selects representative 2D slices from 3D medical imaging. To evaluate the effectiveness of vote-MI when implemented with VLMs, we introduce BrainMD, a robust, multimodal dataset comprising 2,453 annotated 3D MRI brain scans with corresponding textual radiology reports and electronic health records. Based on BrainMD, we further develop two benchmarks, BrainMD-select (including the most representative 2D slice of 3D image) and BrainBench (including various vision-language downstream tasks). Extensive experiments on the BrainMD dataset and its two corresponding benchmarks demonstrate that our representative selection method significantly improves performance in zero-shot and few-shot learning tasks. On average, Vote-MI achieves a 14.6\% and 16.6\% absolute gain for zero-shot and few-shot learning, respectively, compared to randomly selecting examples. Our studies represent a significant step toward integrating AI in medical imaging to enhance patient care and facilitate medical research. We hope this work will serve as a foundation for data selection as vision-language models are increasingly applied to new tasks.",https://neurips.cc//virtual/2024/poster/97755,2024,NeurIPS,Yes,Multimodal, Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration,"Large language models (LLMs) exhibit complementary strengths in various tasks, motivating the research of LLM ensembling.However, existing work focuses on training an extra reward model or fusion model to select or combine all candidate answers, posing a great challenge to the generalization on unseen data distributions.Besides, prior methods use textual responses as communication media, ignoring the valuable information in the internal representations.In this work, we propose a training-free ensemble framework \textsc{DeePEn}, fusing the informative probability distributions yielded by different LLMs at each decoding step.Unfortunately, the vocabulary discrepancy between heterogeneous LLMs directly makes averaging the distributions unfeasible due to the token misalignment.To address this challenge, \textsc{DeePEn} maps the probability distribution of each model from its own probability space to a universal \textit{relative space} based on the relative representation theory, and performs aggregation.Next, we devise a search-based inverse transformation to transform the aggregated result back to the probability space of one of the ensembling LLMs (main model), in order to determine the next token.We conduct extensive experiments on ensembles of different number of LLMs, ensembles of LLMs with different architectures, and ensembles between the LLM and the specialist model.Experimental results show that (i) \textsc{DeePEn} achieves consistent improvements across six benchmarks covering subject examination, reasoning, and knowledge, (ii) a well-performing specialist model can benefit from a less effective LLM through distribution fusion, and (iii) \textsc{DeePEn} has complementary strengths with other ensemble methods such as voting.",https://neurips.cc//virtual/2024/poster/96435,2024,NeurIPS,No,, Entity Alignment with Noisy Annotations from Large Language Models,"Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. While existing methods heavily rely on human-generated labels, it is prohibitively expensive to incorporate cross-domain experts for annotation in real-world scenarios. The advent of Large Language Models (LLMs) presents new avenues for automating EA with annotations, inspired by their comprehensive capability to process semantic information. However, it is nontrivial to directly apply LLMs for EA since the annotation space in real-world KGs is large. LLMs could also generate noisy labels that may mislead the alignment. To this end, we propose a unified framework, LLM4EA, to effectively leverage LLMs for EA. Specifically, we design a novel active learning policy to significantly reduce the annotation space by prioritizing the most valuable entities based on the entire inter-KG and intra-KG structure. Moreover, we introduce an unsupervised label refiner to continuously enhance label accuracy through in-depth probabilistic reasoning. We iteratively optimize the policy based on the feedback from a base EA model. Extensive experiments demonstrate the advantages of LLM4EA on four benchmark datasets in terms of effectiveness, robustness, and efficiency.",https://neurips.cc//virtual/2024/poster/93478,2024,NeurIPS,No,, ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models,"Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging. Existing benchmarks are either manually constructed or are automatic, but lack the ability to evaluate the thought process of LLMs with arbitrary complexity. We contend that utilizing existing relational databases based on the entity-relationship (ER) model is a promising approach for constructing benchmarks as they contain structured knowledge that can be used to question LLMs. Unlike knowledge graphs, which are also used to evaluate LLMs, relational databases have integrity constraints that can be used to better construct complex in-depth questions and verify answers: (1) functional dependencies can be used to pinpoint critical keywords that an LLM must know to properly answer a given question containing certain attribute values; and (2) foreign key constraints can be used to join relations and construct multi-hop questions, which can be arbitrarily long and used to debug intermediate answers. We thus propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark. ERBench supports continuous evaluation as databases change, multimodal questions, and various prompt engineering techniques. In our experiments, we construct LLM benchmarks using databases of multiple domains and make an extensive comparison of contemporary LLMs. We show how ERBench can properly evaluate any LLM by not only checking for answer correctness, but also effectively verifying the rationales by looking for the right keywords.",https://neurips.cc//virtual/2024/poster/97458,2024,NeurIPS,Yes,Language,Benchmark E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding,"Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.",https://neurips.cc//virtual/2024/poster/97748,2024,NeurIPS,Yes,Video, Evaluating language models as risk scores,"Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks.Conditioned on a question and answer-key, does the most likely token match the ground truth?Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty.In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks.We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products.A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks.We evaluate 17 recent LLMs across five proposed benchmark tasks.We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated.Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores.In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty.This reveals a general inability of instruction-tuned models to express data uncertainty using multiple-choice answers.A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models.These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation ecosystem that folktexts covers.",https://neurips.cc//virtual/2024/poster/97490,2024,NeurIPS,Yes,Language,Methodological EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations,"How to evaluate Large Language Models (LLMs) in code generation remains an open question. Many benchmarks have been proposed, but they have two limitations, i.e., data leakage and lack of domain-specific evaluation.The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains.To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories.(2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. EvoCodeBench provides a broad platform for domain-specific evaluations.(3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs.Besides, EvoCodeBench is collected by a rigorous pipeline and aligns with real-world repositories in multiple aspects (e.g., code distributions).We evaluate 8 popular LLMs (e.g., gpt-4, DeepSeek Coder, StarCoder 2) on EvoCodeBench and summarize some insights. EvoCodeBench reveals the actual abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different domains and discover their comfort and strange domains. For example, gpt-4 performs best in most domains but falls behind others in the Internet domain. StarCoder 2-15B unexpectedly performs well in the Database domain and even outperforms 33B LLMs. We release EvoCodeBench, all prompts, and LLMs' completions for further community analysis.",https://neurips.cc//virtual/2024/poster/97531,2024,NeurIPS,Yes,Language,Benchmark EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection,"Detecting Human-Object Interactions (HOI) in zero-shot settings, where models must handle unseen classes, poses significant challenges. Existing methods that rely on aligning visual encoders with large Vision-Language Models (VLMs) to tap into the extensive knowledge of VLMs, require large, computationally expensive models and encounter training difficulties. Adapting VLMs with prompt learning offers an alternative to direct alignment. However, fine-tuning on task-specific datasets often leads to overfitting to seen classes and suboptimal performance on unseen classes, due to the absence of unseen class labels. To address these challenges, we introduce a novel prompt learning-based framework for Efficient Zero-Shot HOI detection (EZ-HOI). First, we introduce Large Language Model (LLM) and VLM guidance for learnable prompts, integrating detailed HOI descriptions and visual semantics to adapt VLMs to HOI tasks. However, because training datasets contain seen-class labels alone, fine-tuning VLMs on such datasets tends to optimize learnable prompts for seen classes instead of unseen ones. Therefore, we design prompt learning for unseen classes using information from related seen classes, with LLMs utilized to highlight the differences between unseen and related seen classes. Quantitative evaluations on benchmark datasets demonstrate that our EZ-HOI achieves state-of-the-art performance across various zero-shot settings with only 10.35\% to 33.95\% of the trainable parameters compared to existing methods. Code is available at https://github.com/ChelsieLei/EZ-HOI.",https://neurips.cc//virtual/2024/poster/95203,2024,NeurIPS,No,, FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models,"Federated learning has enabled multiple parties to collaboratively train large language models without directly sharing their data (FedLLM).Following this training paradigm, the community has put massive efforts from diverse aspects including framework, performance, and privacy.However, an unpleasant fact is that there are currently no realistic datasets and benchmarks for FedLLM and previous works all rely on artificially constructed datasets, failing to capture properties in real-world scenarios.Addressing this, we propose FedLLM-Bench, which involves 8 training methods, 4 training datasets, and 6 evaluation metrics, to offer a comprehensive testbed for the FedLLM community.FedLLM-Bench encompasses three datasets (e.g., user-annotated multilingual dataset) for federated instruction tuning and one dataset (e.g., user-annotated preference dataset) for federated preference alignment, whose scale of client number ranges from 38 to 747.Our datasets incorporate several representative diversities: language, quality, quantity, instruction, length, embedding, and preference, capturing properties in real-world scenarios.Based on FedLLM-Bench, we conduct experiments on all datasets to benchmark existing FL methods and provide empirical insights (e.g., multilingual collaboration).We believe that our FedLLM-Bench can benefit the FedLLM community by reducing required efforts, providing a practical testbed, and promoting fair comparisons.Code and datasets are available at https://github.com/rui-ye/FedLLM-Bench.",https://neurips.cc//virtual/2024/poster/97593,2024,NeurIPS,Yes,Language,Benchmark FinBen: A Holistic Financial Benchmark for Large Language Models,"LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of comprehensive benchmarks, the rapid development of LLMs, and the complexity of financial tasks. In this paper, we introduce FinBen, the first extensive open-source evaluation benchmark, including 42 datasets spanning 24 financial tasks, covering eight critical aspects: information extraction (IE), textual analysis, question answering (QA), text generation, risk management, forecasting, decision-making, and bilingual (English and Spanish). FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and two novel datasets for regulations and stock trading. Our evaluation of 21 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals several key findings: While LLMs excel in IE and textual analysis, they struggle with advanced reasoning and complex tasks like text generation and forecasting. GPT-4 excels in IE and stock trading, while Gemini is better at text generation and forecasting. Instruction-tuned LLMs improve textual analysis but offer limited benefits for complex tasks such as QA. FinBen has been used to host the first financial LLMs shared task at the FinNLP-AgentScen workshop during IJCAI-2024, attracting 12 teams. Their novel solutions outperformed GPT-4, showcasing FinBen's potential to drive innovations in financial LLMs. All datasets and code are publicly available for the research community, with results shared and updated regularly on the Open Financial LLM Leaderboard.",https://neurips.cc//virtual/2024/poster/97525,2024,NeurIPS,Yes,Language,Benchmark FIRE: A Dataset for Feedback Integration and Refinement Evaluation of Multimodal Models,"Vision language models (VLMs) have achieved impressive progress in diverse applications, becoming a prevalent research direction. In this paper, we build FIRE, a feedback-refinement dataset, consisting of 1.1M multi-turn conversations that are derived from 27 source datasets, empowering VLMs to spontaneously refine their responses based on user feedback across diverse tasks. To scale up the data collection, FIRE is collected in two components: FIRE-100K and FIRE-1M, where FIRE-100K is generated by GPT-4V, and FIRE-1M is freely generated via models trained on FIRE-100K. Then, we build FIRE-Bench, a benchmark to comprehensively evaluate the feedback-refining capability of VLMs, which contains 11K feedback-refinement conversations as the test data, two evaluation settings, and a model to provide feedback for VLMs. We develop the FIRE-LLaVA model by fine-tuning LLaVA on FIRE-100K and FIRE-1M, which shows remarkable feedback-refining capability on FIRE-Bench and outperforms untrained VLMs by 50%, making more efficient user-agent interactions and underscoring the significance of the FIRE dataset.",https://neurips.cc//virtual/2024/poster/97805,2024,NeurIPS,Yes,Multimodal, Fisher Flow Matching for Generative Modeling over Discrete Data,"Generative modeling over discrete data has recently seen numerous success stories, with applications spanning language modeling, biological sequence design, and graph-structured molecular data. The predominant generative modeling paradigm for discrete data is still autoregressive, with more recent alternatives based on diffusion or flow-matching falling short of their impressive performance in continuous data settings, such as image or video generation. In this work, we introduce Fisher-Flow, a novel flow-matching model for discrete data. Fisher-Flow takes a manifestly geometric perspectiveby considering categorical distributions over discrete data as points residing on a statistical manifold equipped with its natural Riemannian metric: the \emph{Fisher-Rao metric}. As a result, we demonstrate discrete data itself can be continuously reparameterised to points on the positive orthant of the $d$-hypersphere $\mathbb{S}^d_+$, which allows us to define flows that map any source distribution to target in a principled manner by transporting mass along (closed-form) geodesics of $\mathbb{S}^d_+$. Furthermore, the learned flows in Fisher-Flow can be further bootstrapped by leveraging Riemannian optimal transport leading to improved training dynamics. We prove that the gradient flow induced by Fisher-FLow is optimal in reducing the forward KL divergence. We evaluate Fisher-Flow on an array of synthetic and diverse real-world benchmarks, including designing DNA Promoter, and DNA Enhancer sequences. Empirically, we find that Fisher-Flow improves over prior diffusion and flow-matching models on these benchmarks.",https://neurips.cc//virtual/2024/poster/96502,2024,NeurIPS,No,, FlexCap: Describe Anything in Images in Controllable Detail,"We introduce FlexCap, a vision-language model that generates region-specific descriptions of varying lengths. FlexCap is trained to produce length-conditioned captions for input boxes, enabling control over information density, with descriptions ranging from concise object labels to detailed captions. To achieve this, we create large-scale training datasets of image region descriptions with varying lengths from captioned web images. We demonstrate FlexCap’s effectiveness in several applications: first, it achieves strong performance in dense captioning tasks on the Visual Genome dataset. Second, we show how FlexCap’s localized descriptions can serve as input to a large language model to create a visual question answering (VQA) system, achieving state-of-the-art zero-shot performance on multiple VQA benchmarks. Our experiments illustrate FlexCap’s utility for tasks including image labeling, object attribute recognition, and visual dialog. Project webpage: https://flex-cap.github.io.",https://neurips.cc//virtual/2024/poster/95332,2024,NeurIPS,No,, Found in the Middle: How Language Models Use Long Contexts Better via Plug-and-Play Positional Encoding,"This paper aims to overcome the ``lost-in-the-middle'' challenge of large language models (LLMs). While recent advancements have successfully enabled LLMs to perform stable language modeling with up to 4 million tokens, the persistent difficulty faced by most LLMs in identifying relevant information situated in the middle of the context has not been adequately tackled. To address this problem, this paper introduces Multi-scale Positional Encoding (Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of LLMs to handle the relevant information located in the middle of the context, without fine-tuning or introducing any additional overhead. Ms-PoE leverages the position indice rescaling to relieve the long-term decay effect introduced by RoPE, while meticulously assigning distinct scaling ratios to different attention heads to preserve essential knowledge learned during the pre-training step, forming a multi-scale context fusion from short to long distance. Extensive experiments with a wide range of LLMs demonstrate the efficacy of our approach. Notably, Ms-PoE achieves an average accuracy gain of up to 3.8 on the Zero-SCROLLS benchmark over the original LLMs. Code will be made public upon acceptence.",https://neurips.cc//virtual/2024/poster/94207,2024,NeurIPS,No,, FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving,"Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,304 lemmas, and 201,498 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3-8B solves 17.39% (69→81) more problems, and Mistral-7B 12% (75→84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.",https://neurips.cc//virtual/2024/poster/97597,2024,NeurIPS,Yes,Language,Methodological GameTraversalBenchmark: Evaluating Planning Abilities Of Large Language Models Through Traversing 2D Game Maps,"Large language models (LLMs) have recently demonstrated great success in generating and understanding natural language. While they have also shown potential beyond the domain of natural language, it remains an open question as to what extent and in which way these LLMs can plan. We investigate their planning capabilities by proposing \texttt{GameTraversalBenchmark (GTB)}, a benchmark consisting of diverse 2D grid-based game maps. An LLM succeeds if it can traverse through given objectives, with a minimum number of steps and a minimum number of generation errors. We evaluate a number of LLMs on \texttt{GTB} and found that GPT-4-Turbo achieved the highest score of $44.97\%$ on \texttt{GTB\_Score} (GTBS), a composite score that combines the three above criteria. Furthermore, we preliminarily test large reasoning models, namely o1, which scores $67.84\%$ on GTBS, indicating that the benchmark remains challenging for current models. Code, data, and documentation are available at \url{https://github.com/umair-nasir14/Game-Traversal-Benchmark}.",https://neurips.cc//virtual/2024/poster/97479,2024,NeurIPS,Yes,Language,Benchmark Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search,"In this work we consider Code World Models, world models generated by a Large Language Model (LLM) in the form of Python code for model-based Reinforcement Learning (RL). Calling code instead of LLMs for planning has potential to be more precise, reliable, interpretable, and extremely efficient.However, writing appropriate Code World Models requires the ability to understand complex instructions, to generate exact code with non-trivial logic and to self-debug a long program with feedback from unit tests and environment trajectories. To address these challenges, we propose Generate, Improve and Fix with Monte Carlo Tree Search (GIF-MCTS), a new code generation strategy for LLMs. To test our approach in an offline RL setting, we introduce the Code World Models Benchmark (CWMB), a suite of program synthesis and planning tasks comprised of 18 diverse RL environments paired with corresponding textual descriptions and curated trajectories. GIF-MCTS surpasses all baselines on the CWMB and two other benchmarks, and we show that the Code World Models synthesized with it can be successfully used for planning, resulting in model-based RL agents with greatly improved sample efficiency and inference speed.",https://neurips.cc//virtual/2024/poster/96309,2024,NeurIPS,Yes,Language,Methodological GenRL: Multimodal-foundation world models for generalization in embodied agents,"Learning generalist embodied agents, able to solve multitudes of tasks in different domains is a long-standing problem. Reinforcement learning (RL) is hard to scale up as it requires a complex reward design for each task. In contrast, language can specify tasks in a more natural way. Current foundation vision-language models (VLMs) generally require fine-tuning or other adaptations to be adopted in embodied contexts, due to the significant domain gap. However, the lack of multimodal data in such domains represents an obstacle to developing foundation models for embodied applications. In this work, we overcome these problems by presenting multimodal-foundation world models, able to connect and align the representation of foundation VLMs with the latent space of generative world models for RL, without any language annotations. The resulting agent learning framework, GenRL, allows one to specify tasks through vision and/or language prompts, ground them in the embodied domain’s dynamics, and learn the corresponding behaviors in imagination.As assessed through large-scale multi-task benchmarking in locomotion and manipulation domains, GenRL enables multi-task generalization from language and visual prompts. Furthermore, by introducing a data-free policy learning strategy, our approach lays the groundwork for foundational policy learning using generative world models. Website, code and data: https://mazpie.github.io/genrl/",https://neurips.cc//virtual/2024/poster/92947,2024,NeurIPS,No,, Geometric-Averaged Preference Optimization for Soft Preference Labels,"Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic.However, human preferences can vary across individuals, and therefore should be represented distributionally.In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function.This approach adjusts the scale of learning loss based on the soft labels such that the loss would approach zero when the responses are closer to equally preferred.This simple modification can be easily applied to any DPO-based methods and mitigate over-optimization and objective mismatch, which prior works suffer from.Our experiments simulate the soft preference labels with AI feedback from LLMs and demonstrate that geometric averaging consistently improves performance on standard benchmarks for alignment research. In particular, we observe more preferable responses than binary labels and significant improvements where modestly-confident labels are in the majority.",https://neurips.cc//virtual/2024/poster/96758,2024,NeurIPS,No,, Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment,"Aligning human preference and value is an important requirement for contemporary foundation models. State-of-the-art techniques such as Reinforcement Learning from Human Feedback (RLHF) often consist of two stages: 1) supervised fine-tuning (SFT), where the model is fine-tuned by learning from human demonstration data; 2) Preference learning, where preference data is used to learn a reward model, which is in turn used by a reinforcement learning (RL) step to fine-tune the model. Such reward model serves as a proxy to human preference, and it is critical to guide the RL step towards improving the model quality. In this work, we argue that the SFT stage significantly benefits from learning a reward model as well. Instead of using the human demonstration data directly via supervised learning, we propose to leverage an Inverse Reinforcement Learning (IRL) technique to {\it simultaneously} build an reward model and a policy model. This approach leads to new SFT algorithms that are not only efficient to implement, but are robust to the presence of low-quality supervised learning data. Moreover, we discover a connection between the proposed IRL based approach, and a recent line of works called Self-Play Fine-tune (SPIN, \cite{chen2024self}). Theoretically, we show that the proposed algorithms converge to the stationary solutions of the IRL problem. Empirically, we align 1B and 7B models using proposed methods and evaluate them on a reward benchmark model and the HuggingFace Open LLM Leaderboard. The proposed methods show significant performance improvement over existing SFT approaches. Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process. Our code is available at \url{https://github.com/JasonJiaxiangLi/Reward_learning_SFT}.",https://neurips.cc//virtual/2024/poster/93598,2024,NeurIPS,No,, GLBench: A Comprehensive Benchmark for Graph with Large Language Models,"The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios. The data and code of the benchmark can be found at https://github.com/NineAbyss/GLBench.",https://neurips.cc//virtual/2024/poster/97881,2024,NeurIPS,Yes,Language,Benchmark GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI,"Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals, and can be applied in various fields. In the medical field, LVLMs have a high potential to offer substantial assistance for diagnosis and treatment. Before that, it is crucial to develop benchmarks to evaluate LVLMs' effectiveness in various medical applications. Current benchmarks are often built upon specific academic literature, mainly focusing on a single domain, and lacking varying perceptual granularities. Thus, they face specific challenges, including limited clinical relevance, incomplete evaluations, and insufficient guidance for interactive LVLMs. To address these limitations, we developed the GMAI-MMBench, the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date. It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format. Additionally, we implemented a lexical tree structure that allows users to customize evaluation tasks, accommodating various assessment needs and substantially supporting medical AI research and applications. We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o only achieves an accuracy of 53.96\%, indicating significant room for improvement. Moreover, we identified five key insufficiencies in current cutting-edge LVLMs that need to be addressed to advance the development of better medical applications. We believe that GMAI-MMBench will stimulate the community to build the next generation of LVLMs toward GMAI.",https://neurips.cc//virtual/2024/poster/97754,2024,NeurIPS,Yes,Multimodal, GraphVis: Boosting LLMs with Visual Knowledge Graph Integration,"The rapid evolution of large language models (LLMs) has expanded their capabilities across various data modalities, extending from well-established image data to increasingly popular graph data. Given the limitation of LLMs in hallucinations and inaccuracies in recalling factual knowledge, Knowledge Graph (KG) has emerged as a crucial data modality to support more accurate reasoning by LLMs. However, integrating structured knowledge from KGs into LLMs remains challenging, as most current KG-enhanced LLM methods directly convert the KG into linearized text triples, which is not as expressive as the original structured data. To address this, we introduce GraphVis, which conserves the intricate graph structure through the visual modality to enhance the comprehension of KGs with the aid of Large Vision Language Models (LVLMs). Our approach incorporates a unique curriculum fine-tuning scheme which first instructs LVLMs to recognize basic graphical features from the images, and subsequently incorporates reasoning on QA tasks with the visual graphs. This cross-modal methodology not only markedly enhances performance on standard textual QA but also shows improved zero-shot VQA performance by utilizing synthetic graph images to augment the data for VQA tasks. We present comprehensive evaluations across commonsense reasoning QA benchmarks, where GraphVis provides an average improvement of 11.1% over its base model and outperforms existing KG-enhanced LLM approaches. Across VQA benchmarks such as ScienceQA that share similar scientific diagram images, GraphVis provides a notable gain of 4.32%.",https://neurips.cc//virtual/2024/poster/94055,2024,NeurIPS,Yes,Image, G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering,"Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our \textit{G-Retriever} method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, \textit{G-Retriever} performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~\footnote{Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}}",https://neurips.cc//virtual/2024/poster/95524,2024,NeurIPS,Yes,Language,Methodological GTA: A Benchmark for General Tool Agents,"In developing general-purpose agents, significant focus has been placed on integrating large language models (LLMs) with various tools. This poses a challenge to the tool-use capabilities of LLMs. However, there are evident gaps between existing tool evaluations and real-world scenarios. Current evaluations often use AI-generated queries, single-step tasks, dummy tools, and text-only inputs, which fail to reveal the agents' real-world problem-solving abilities effectively. To address this, we propose GTA, a benchmark for **G**eneral **T**ool **A**gents, featuring three main aspects: (i) *Real user queries*: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps. (ii) *Real deployed tools*: an evaluation platform equipped with tools across perception, operation, logic, and creativity categories to evaluate the agents' actual task execution performance. (iii) *Real multimodal inputs*: authentic image files, such as spatial scenes, web page screenshots, tables, code snippets, and printed/handwritten materials, used as the query contexts to align with real-world scenarios closely. We designed 229 real-world tasks and executable tool chains to evaluate mainstream LLMs. Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50\% of the tasks and most LLMs achieving below 25\%. This evaluation reveals the bottlenecks in the tool-use capabilities of current LLMs in real-world scenarios, which is beneficial for the advancement of general-purpose tool agents. Dataset and code are available at https://github.com/open-compass/GTA.",https://neurips.cc//virtual/2024/poster/97620,2024,NeurIPS,Yes,Multimodal, Harmonizing Visual Text Comprehension and Generation,"In this work, we present TextHarmony, a unified and versatile multimodal generative model proficient in comprehending and generating visual text. Simultaneously generating images and texts typically results in performance degradation due to the inherent inconsistency between vision and language modalities. To overcome this challenge, existing approaches resort to modality-specific data for supervised fine-tuning, necessitating distinct model instances. We propose Slide-LoRA, which dynamically aggregates modality-specific and modality-agnostic LoRA experts, partially decoupling the multimodal generation space. Slide-LoRA harmonizes the generation of vision and language within a singular model instance, thereby facilitating a more unified generative process. Additionally, we develop a high-quality image caption dataset, DetailedTextCaps-100K, synthesized with a sophisticated closed-source MLLM to enhance visual text generation capabilities further. Comprehensive experiments across various benchmarks demonstrate the effectiveness of the proposed approach. Empowered by Slide-LoRA, TextHarmony achieves comparable performance to modality-specific fine-tuning results with only a 2% increase in parameters and shows an average improvement of 2.5% in visual text comprehension tasks and 4.0% in visual text generation tasks. Our work delineates the viability of an integrated approach to multimodal generation within the visual text domain, setting a foundation for subsequent inquiries. Code is available at https://github.com/bytedance/TextHarmony.",https://neurips.cc//virtual/2024/poster/94183,2024,NeurIPS,No,, Hints-In-Browser: Benchmarking Language Models for Programming Feedback Generation,"Generative AI and large language models hold great promise in enhancing programming education by generating individualized feedback and hints for learners. Recent works have primarily focused on improving the quality of generated feedback to achieve human tutors' quality. While quality is an important performance criterion, it is not the only criterion to optimize for real-world educational deployments. In this paper, we benchmark language models for programming feedback generation across several performance criteria, including quality, cost, time, and data privacy. The key idea is to leverage recent advances in the new paradigm of in-browser inference that allow running these models directly in the browser, thereby providing direct benefits across cost and data privacy. To boost the feedback quality of small models compatible with in-browser inference engines, we develop a fine-tuning pipeline based on GPT-4 generated synthetic data. We showcase the efficacy of fine-tuned Llama3-8B and Phi3-3.8B 4-bit quantized models using WebLLM's in-browser inference engine on three different Python programming datasets. We will release the full implementation along with a web app and datasets to facilitate further research on in-browser language models.",https://neurips.cc//virtual/2024/poster/97759,2024,NeurIPS,No,, Humor in AI: Massive Scale Crowd-Sourced Preferences and Benchmarks for Cartoon Captioning,"We present a novel multimodal preference dataset for creative tasks, consisting of over 250 million human votes on more than 2.2 million captions, collected through crowdsourcing rating data for The New Yorker's weekly cartoon caption contest over the past eight years. This unique dataset supports the development and evaluation of multimodal large language models and preference-based fine-tuning algorithms for humorous caption generation. We propose novel benchmarks for judging the quality of model-generated captions, utilizing both GPT4 and human judgments to establish ranking-based evaluation strategies. Our experimental results highlight the limitations of current fine-tuning methods, such as RLHF and DPO, when applied to creative tasks. Furthermore, we demonstrate that even state-of-the-art models like GPT4 and Claude currently underperform top human contestants in generating humorous captions. As we conclude this extensive data collection effort, we release the entire preference dataset to the research community, fostering further advancements in AI humor generation and evaluation.",https://neurips.cc//virtual/2024/poster/97450,2024,NeurIPS,Yes,Multimodal, HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models,"The increasing size of language models necessitates a thorough analysis across multiple dimensions to assess trade-offs among crucial hardware metrics such as latency, energy consumption, GPU memory usage, and performance. Identifying optimal model configurations under specific hardware constraints is becoming essential but remains challenging due to the computational load of exhaustive training and evaluation on multiple devices. To address this, we introduce HW-GPT-Bench, a hardware-aware benchmark that utilizes surrogate predictions to approximate various hardware metrics across 13 devices of architectures in the GPT-2 family, with architectures containing up to 1.55B parameters. Our surrogates, via calibrated predictions and reliable uncertainty estimates, faithfully model the heteroscedastic noise inherent in the energy and latency measurements. To estimate perplexity, we employ weight-sharing techniques from Neural Architecture Search (NAS), inheriting pretrained weights from the largest GPT-2 model. Finally, we demonstrate the utility of HW-GPT-Bench by simulating optimization trajectories of various multi-objective optimization algorithms in just a few seconds.",https://neurips.cc//virtual/2024/poster/97460,2024,NeurIPS,Yes,Language,Benchmark HYDRA: Model Factorization Framework for Black-Box LLM Personalization,"Personalization has emerged as a critical research area in modern intelligent systems, focusing on mining users' behavioral history and adapting to their preferences for delivering tailored experiences. Despite the remarkable few-shot capabilities exhibited by black-box large language models (LLMs), the inherent opacity of their model parameters presents significant challenges in aligning the generated output with individual expectations. Existing solutions have primarily focused on prompt design to incorporate user-specific profiles and behaviors; however, such approaches often struggle to generalize effectively due to their inability to capture shared knowledge among all users. To address these challenges, we propose HYDRA, a model factorization framework that captures both user-specific behavior patterns from historical data and shared general knowledge among all users to deliver personalized generation. In order to capture user-specific behavior patterns, we first train a reranker to prioritize the most useful information from top-retrieved relevant historical records.By combining the prioritized history with the corresponding query, we train an adapter to align the output with individual user-specific preferences, eliminating the reliance on access to inherent model parameters of black-box LLMs. Both the reranker and the adapter can be decomposed into a base model with multiple user-specific heads, resembling a hydra. The base model maintains shared knowledge across users, while the multiple personal heads capture user-specific preferences. Experimental results demonstrate that \method outperforms existing state-of-the-art prompt-based methods by an average relative improvement of 9.01% across five diverse personalization tasks in the LaMP benchmark.",https://neurips.cc//virtual/2024/poster/96150,2024,NeurIPS,No,, IaC-Eval: A Code Generation Benchmark for Cloud Infrastructure-as-Code Programs,"Infrastructure-as-Code (IaC), an important component of cloud computing, allows the definition of cloud infrastructure in high-level programs. However, developing IaC programs is challenging, complicated by factors that include the burgeoning complexity of the cloud ecosystem (e.g., diversity of cloud services and workloads), and the relative scarcity of IaC-specific code examples and public repositories. While large language models (LLMs) have shown promise in general code generation and could potentially aid in IaC development, no benchmarks currently exist for evaluating their ability to generate IaC code. We present IaC-Eval, a first step in this research direction. IaC-Eval's dataset includes 458 human-curated scenarios covering a wide range of popular AWS services, at varying difficulty levels. Each scenario mainly comprises a natural language IaC problem description and an infrastructure intent specification. The former is fed as user input to the LLM, while the latter is a general notion used to verify if the generated IaC program conforms to the user's intent; by making explicit the problem's requirements that can encompass various cloud services, resources and internal infrastructure details. Our in-depth evaluation shows that contemporary LLMs perform poorly on IaC-Eval, with the top-performing model, GPT-4, obtaining a pass@1 accuracy of 19.36%. In contrast, it scores 86.6% on EvalPlus, a popular Python code generation benchmark, highlighting a need for advancements in this domain. We open-source the IaC-Eval dataset and evaluation framework at https://github.com/autoiac-project/iac-eval to enable future research on LLM-based IaC code generation.",https://neurips.cc//virtual/2024/poster/97835,2024,NeurIPS,Yes,Language,Benchmark II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models,"The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. To fill this gap, we propose the Image Implication understanding Benchmark, II-Bench, which aims to evaluate the model's higher-order perception of images. Through extensive experiments on II-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on II-Bench. The pinnacle accuracy of MLLMs attains 74.8%, whereas human accuracy averages 90%, peaking at an impressive 98%. Subsequently, MLLMs perform worse on abstract and complex images, suggesting limitations in their ability to understand high-level semantics and capture image details. Finally, it is observed that most models exhibit enhanced accuracy when image sentiment polarity hints are incorporated into the prompts. This observation underscores a notable deficiency in their inherent understanding of image sentiment. We believe that II-Bench will inspire the community to develop the next generation of MLLMs, advancing the journey towards expert artificial general intelligence (AGI). II-Bench is publicly available at https://huggingface.co/datasets/m-a-p/II-Bench.",https://neurips.cc//virtual/2024/poster/97557,2024,NeurIPS,Yes,Image, Image2Struct: Benchmarking Structure Extraction for Vision-Language Models,"We introduce Image2Struct, a benchmark to evaluate vision-language models (VLMs) on extracting structure from images.Our benchmark 1) captures real-world use cases, 2) is fully automatic and does not require human judgment, and 3) is based on a renewable stream of fresh data.In Image2Struct, VLMs are prompted to generate the underlying structure (e.g., LaTeX code or HTML) from an input image (e.g., webpage screenshot).The structure is then rendered to produce an output image (e.g., rendered webpage), which is compared against the input image to produce a similarity score.This round-trip evaluation allows us to quantitatively evaluate VLMs on tasks with multiple valid structures.We create a pipeline that downloads fresh data from active online communities upon execution and evaluates the VLMs without human intervention.We introduce three domains (Webpages, LaTeX, and Musical Scores) and use five image metrics (pixel similarity, cosine similarity between the Inception vectors, learned perceptual image patch similarity, structural similarity index measure, and earth mover similarity) that allow efficient and automatic comparison between pairs of images. We evaluate Image2Struct on 14 prominent VLMs and find that scores vary widely, indicating that Image2Struct can differentiate between the performances of different VLMs.Additionally, the best score varies considerably across domains (e.g., 0.402 on sheet music vs. 0.830 on LaTeX equations), indicating that Image2Struct contains tasks of varying difficulty.For transparency, we release the full results at https://crfm.stanford.edu/helm/image2struct/v1.0.1/.",https://neurips.cc//virtual/2024/poster/97829,2024,NeurIPS,Yes,Image, Incentivizing Quality Text Generation via Statistical Contracts,"While the success of large language models (LLMs) increases demand for machine-generated text, current pay-per-token pricing schemes create a misalignment of incentives known in economics as moral hazard: Text-generating agents have strong incentive to cut costs by preferring a cheaper model over the cutting-edge one, and this can be done “behind the scenes” since the agent performs inference internally. In this work, we approach this issue from an economic perspective, by proposing a pay-for-performance, contract-based framework for incentivizing quality. We study a principal-agent game where the agent generates text using costly inference, and the contract determines the principal’s payment for the text according to an automated quality evaluation. Since standard contract theory is inapplicable when internal inference costs are unknown, we introduce cost-robust contracts. As our main theoretical contribution, we characterize optimal cost-robust contracts through a direct correspondence to optimal composite hypothesis tests from statistics, generalizing a result of Saig et al. (NeurIPS’23). We evaluate our framework empirically by deriving contracts for a range of objectives and LLM evaluation benchmarks, and find that cost-robust contracts sacrifice only a marginal increase in objective value compared to their cost-aware counterparts.",https://neurips.cc//virtual/2024/poster/93145,2024,NeurIPS,No,, INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness,"Large language models (LLMs) for code are typically trained to align with natural language instructions to closely follow their intentions and requirements. However, in many practical scenarios, it becomes increasingly challenging for these models to navigate the intricate boundary between helpfulness and safety, especially against highly complex yet potentially malicious instructions. In this work, we introduce INDICT: a new framework that empowers LLMs with Internal Dialogues of Critiques for both safety and helpfulness guidance. The internal dialogue is a dual cooperative system between a safety-driven critic and a helpfulness-driven critic. Each critic provides analysis against the given task and corresponding generated response, equipped with external knowledge queried through relevant code snippets and tools like web search and code interpreter. We engage the dual critic system in both code generation stage as well as code execution stage, providing preemptive and post-hoc guidance respectively to LLMs. We evaluated INDICT on 8 diverse tasks across 8 programming languages from 5 benchmarks, using LLMs from 7B to 70B parameters. We observed that our approach can provide an advanced level of critiques of both safety and helpfulness analysis, significantly improving the quality of output codes (+10% absolute improvements in all models).",https://neurips.cc//virtual/2024/poster/93974,2024,NeurIPS,No,, InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models,"Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source at https://infi-coder.github.io/infibench and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.",https://neurips.cc//virtual/2024/poster/97797,2024,NeurIPS,Yes,Language,Benchmark INQUIRE: A Natural World Text-to-Image Retrieval Benchmark,"We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research.",https://neurips.cc//virtual/2024/poster/97543,2024,NeurIPS,Yes,Image, Instruction Embedding: Latent Representations of Instructions Towards Task Identification,"Instruction data is crucial for improving the capability of Large Language Models (LLMs) to align with human-level performance. Recent research LIMA demonstrates that alignment is essentially a process where the model adapts instructions' interaction style or format to solve various tasks, leveraging pre-trained knowledge and skills. Therefore, for instructional data, the most important aspect is the task it represents, rather than the specific semantics and knowledge information. The latent representations of instructions play roles for some instruction-related tasks like data selection and demonstrations retrieval. However, they are always derived from text embeddings, encompass overall semantic information that influences the representation of task categories. In this work, we introduce a new concept, instruction embedding, and construct Instruction Embedding Benchmark (IEB) for its training and evaluation. Then, we propose a baseline Prompt-based Instruction Embedding (PIE) method to make the representations more attention on tasks. The evaluation of PIE, alongside other embedding methods on IEB with two designed tasks, demonstrates its superior performance in accurately identifying task categories. Moreover, the application of instruction embeddings in four downstream tasks showcases its effectiveness and suitability for instruction-related tasks.",https://neurips.cc//virtual/2024/poster/97861,2024,NeurIPS,Yes,Language,Methodological Instruction-Guided Visual Masking,"Instruction following is crucial in contemporary LLM. However, when extended to multimodal setting, it often suffers from misalignment between specific textual instruction and targeted local region of an image. To achieve more accurate and nuanced multimodal instruction following, we introduce Instruction-guided Visual Masking (IVM), a new versatile visual grounding model that is compatible with diverse multimodal models, such as LMM and robot model. By constructing visual masks for instruction-irrelevant regions, IVM-enhanced multimodal models can effectively focus on task-relevant image regions to better align with complex instructions. Specifically, we design a visual masking data generation pipeline and create an IVM-Mix-1M dataset with 1 million image-instruction pairs. We further introduce a new learning technique, Discriminator Weighted Supervised Learning (DWSL) for preferential IVM training that prioritizes high-quality data samples. Experimental results on generic multimodal tasks such as VQA and embodied robotic control demonstrate the versatility of IVM, which as a plug-and-play tool, significantly boosts the performance of diverse multimodal models, yielding new state-of-the-art results across challenging multimodal benchmarks. Code, model and data are available at https://github.com/2toinf/IVM.",https://neurips.cc//virtual/2024/poster/94441,2024,NeurIPS,Yes,Image, Instruction Tuning Large Language Models to Understand Electronic Health Records,"Large language models (LLMs) have shown impressive capabilities in solving a wide range of tasks based on human instructions. However, developing a conversational AI assistant for electronic health record (EHR) data remains challenging due to (1) the lack of large-scale instruction-following datasets and (2) the limitations of existing model architectures in handling complex and heterogeneous EHR data.In this paper, we introduce MIMIC-Instr, a dataset comprising over 400K open-ended instruction-following examples derived from the MIMIC-IV EHR database. This dataset covers various topics and is suitable for instruction-tuning general-purpose LLMs for diverse clinical use cases. Additionally, we propose Llemr, a general framework that enables LLMs to process and interpret EHRs with complex data structures. Llemr demonstrates competitive performance in answering a wide range of patient-related questions based on EHR data.Furthermore, our evaluations on clinical predictive modeling benchmarks reveal that the fine-tuned Llemr achieves performance comparable to state-of-the-art (SOTA) baselines using curated features. The dataset and code are available at \url{https://github.com/zzachw/llemr}.",https://neurips.cc//virtual/2024/poster/97801,2024,NeurIPS,Yes,Language,Methodological Instruction Tuning With Loss Over Instructions,"Instruction tuning plays a crucial role in shaping the outputs of language models (LMs) to desired styles. In this work, we propose a simple yet effective method, Instruction Modelling (IM), which trains LMs by applying a loss function to the instruction and prompt part rather than solely to the output part. Through experiments across 21 diverse benchmarks, we show that, in many scenarios, IM can effectively improve the LM performance on both NLP tasks (*e.g.,* MMLU, TruthfulQA, and HumanEval) and open-ended generation benchmarks (*e.g.,* MT-Bench and AlpacaEval). Remarkably, in the most advantageous case, IM boosts model performance on AlpacaEval 1.0 by over 100%. We identify two key factors influencing the effectiveness of IM: (1) The ratio between instruction length and output length in the training data; and (2) The number of training examples. We observe that IM is especially beneficial when trained on datasets with lengthy instructions paired with brief outputs, or under the Superficial Alignment Hypothesis (SAH) where a small amount of training examples are used for instruction tuning. Further analysis substantiates our hypothesis that our improvement can be attributed to reduced overfitting to instruction tuning datasets. It is worth noting that we are not proposing \ours as a replacement for the current instruction tuning process.Instead, our work aims to provide practical guidance for instruction tuning LMs, especially in low-resource scenarios.Our code is available at https://github.com/ZhengxiangShi/InstructionModelling.",https://neurips.cc//virtual/2024/poster/95892,2024,NeurIPS,No,, InternLM-XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Resolutions from 336 Pixels to 4K HD,"The Large Vision-Language Model (LVLM) field has seen significant advancements, yet its progression has been hindered by challenges in comprehending fine-grained visual content due to limited resolution. Recent efforts have aimed to enhance the high-resolution understanding capabilities of LVLMs, yet they remain capped at approximately 1500 $\times$ 1500 pixels and constrained to a relatively narrow resolution range. This paper represents InternLM-XComposer2-4KHD, a groundbreaking exploration into elevating LVLM resolution capabilities up to 4K HD (3840 × 1600) and beyond. Concurrently, considering the ultra-high resolution may not be necessary in all scenarios, it supports a wide range of diverse resolutions from 336 pixels to 4K standard, significantly broadening its scope of applicability. Specifically, this research advances the patch division paradigm by introducing a novel extension: dynamic resolution with automatic patch configuration. It maintains the training image aspect ratios while automatically varying patch counts and configuring layouts based on a pre-trained Vision Transformer (ViT) (336 $\times$ 336), leading to dynamic training resolution from 336 pixels to 4K standard. Our research demonstrates that scaling training resolution up to 4K HD leads to consistent performance enhancements without hitting the ceiling of potential improvements. InternLM-XComposer2-4KHD shows superb capability that matches or even surpasses GPT-4V and Gemini Pro in 10 of the 16 benchmarks.",https://neurips.cc//virtual/2024/poster/93691,2024,NeurIPS,No,, Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity,"Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions through proper grounding. However, LLM hallucination may result in robots confidently executing plans that are misaligned with user goals or even unsafe in critical scenarios. Additionally, inherent ambiguity in natural language instructions can introduce uncertainty into the LLM's reasoning and planning. We propose introspective planning, a systematic approach that guides LLMs to refine their own uncertainty in alignment with inherent task ambiguity. Our approach constructs a knowledge base containing introspective reasoning examples as post-hoc rationalizations of human-selected safe and compliant plans, which are retrieved during deployment. Evaluations on three tasks, including a new safe mobile manipulation benchmark, indicate that introspection substantially improves both compliance and safety over state-of-the-art LLM-based planning methods. Additionally, we empirically show that introspective planning, in combination with conformal prediction, achieves tighter confidence bounds, maintaining statistical success guarantees while minimizing unnecessary user clarification requests.",https://neurips.cc//virtual/2024/poster/96667,2024,NeurIPS,Yes,Language,Methodological Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models,"Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable performance across a wide range of tasks and domains. Despite this promise, spatial understanding and reasoning—a fundamental component of human cognition—remains under-explored. We propose SpatialEval, a novel benchmark that covers diverse aspects of spatial reasoning such as relationship understanding, navigation, and counting. We conduct a comprehensive evaluation of competitive language and vision-language models. Our findings reveal several counter-intuitive insights that have been overlooked in the literature: (1) Spatial reasoning poses significant challenges where competitive models can fall behind random guessing; (2) Despite additional visual input, VLMs often under-perform compared to their LLM counterparts; (3) When both textual and visual information is available, multi-modal language models become less reliant on visual information if sufficient textual clues are provided. Additionally, we demonstrate that leveraging redundancy between vision and text can significantly enhance model performance. We hope our study will inform the development of multimodal models to improve spatial intelligence and further close the gap with human intelligence. Our code is available at https://github.com/jiayuww/SpatialEval.",https://neurips.cc//virtual/2024/poster/94371,2024,NeurIPS,Yes,Multimodal, JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models,"Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as *jailbreak artifacts*; (2) a jailbreaking dataset comprising 100 behaviors---both original and sourced from prior work---which align with OpenAI's usage policies; (3) a standardized evaluation framework at https://github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at https://jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.",https://neurips.cc//virtual/2024/poster/97459,2024,NeurIPS,Yes,Language,Benchmark Jailbreaking Large Language Models Against Moderation Guardrails via Cipher Characters,"Large Language Models (LLMs) are typically harmless but remain vulnerable to carefully crafted prompts known as ``jailbreaks'', which can bypass protective measures and induce harmful behavior. Recent advancements in LLMs have incorporated moderation guardrails that can filter outputs, which trigger processing errors for certain malicious questions. Existing red-teaming benchmarks often neglect to include questions that trigger moderation guardrails, making it difficult to evaluate jailbreak effectiveness. To address this issue, we introduce JAMBench, a harmful behavior benchmark designed to trigger and evaluate moderation guardrails. JAMBench involves 160 manually crafted instructions covering four major risk categories at multiple severity levels. Furthermore, we propose a jailbreak method, JAM (Jailbreak Against Moderation), designed to attack moderation guardrails using jailbreak prefixes to bypass input-level filters and a fine-tuned shadow model functionally equivalent to the guardrail model to generate cipher characters to bypass output-level filters. Our extensive experiments on four LLMs demonstrate that JAM achieves higher jailbreak success ($\sim$ $\times$ 19.88) and lower filtered-out rates ($\sim$ $\times$ 1/6) than baselines.",https://neurips.cc//virtual/2024/poster/96243,2024,NeurIPS,Yes,Language,Benchmark JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images,"Existing vision-language understanding benchmarks largely consist of images of objects in their usual contexts.As a consequence, recent multimodal large language models can perform well with only a shallow visual understanding by relying on background language biases. Thus, strong performance on these benchmarks does not necessarily correlate with strong visual understanding. In this paper, we release JourneyBench, a comprehensive human-annotated benchmark of generated images designed to assess the model's fine-grained multimodal reasoning abilities across five tasks: complementary multimodal chain of thought, multi-image VQA, imaginary image captioning, VQA with hallucination triggers, and fine-grained retrieval with sample-specific distractors.Unlike existing benchmarks, JourneyBench explicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios where language bias and holistic image gist are insufficient. We benchmark state-of-the-art models on JourneyBench and analyze performance along a number of fine-grained dimensions. Results across all five tasks show that JourneyBench is exceptionally challenging for even the best models, indicating that models' visual reasoning abilities are not as strong as they first appear. We discuss the implications of our findings and propose avenues for further research.",https://neurips.cc//virtual/2024/poster/97518,2024,NeurIPS,Yes,Multimodal, Kangaroo: Lossless Self-Speculative Decoding for Accelerating LLMs via Double Early Exiting,"Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models (LLMs) while maintaining an identical sampling distribution. However, the conventional approach of training separate draft model to achieve a satisfactory token acceptance rate can be costly and impractical. In this paper, we propose a novel self-speculative decoding framework \emph{Kangaroo} with \emph{double} early exiting strategy, which leverages the shallow sub-network and the \texttt{LM Head} of the well-trained target LLM to construct a self-drafting model. Then, the self-verification stage only requires computing the remaining layers over the \emph{early-exited} hidden states in parallel. To bridge the representation gap between the sub-network and the full model, we train a lightweight and efficient adapter module on top of the sub-network. One significant challenge that comes with the proposed method is that the inference latency of the self-draft model may no longer be negligible compared to the big model. To boost the token acceptance rate while minimizing the latency of the self-drafting model, we introduce an additional \emph{early exiting} mechanism for both single-sequence and the tree decoding scenarios. Specifically, we dynamically halt the small model's subsequent prediction during the drafting phase once the confidence level for the current step falls below a certain threshold. This approach reduces unnecessary computations and improves overall efficiency. Extensive experiments on multiple benchmarks demonstrate our effectiveness, where Kangaroo achieves walltime speedups up to 2.04$\times$, outperforming Medusa-1 with 88.7\% fewer additional parameters. The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.",https://neurips.cc//virtual/2024/poster/93829,2024,NeurIPS,No,, KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge,"Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters. By incorporating this hierarchical knowledge along with textual information during the fine-tuning process, KG-FIT effectively captures both global semantics from the LLM and local semantics from the KG. Extensive experiments on the benchmark datasets FB15K-237, YAGO3-10, and PrimeKG demonstrate the superiority of KG-FIT over state-of-the-art pre-trained language model-based methods, achieving improvements of 14.4\%, 13.5\%, and 11.9\% in the Hits@10 metric for the link prediction task, respectively. Furthermore, KG-FIT yields substantial performance gains of 12.6\%, 6.7\%, and 17.7\% compared to the structure-based base models upon which it is built. These results highlight the effectiveness of KG-FIT in incorporating open-world knowledge from LLMs to significantly enhance the expressiveness and informativeness of KG embeddings.",https://neurips.cc//virtual/2024/poster/93450,2024,NeurIPS,No,, kGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution,"Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if machine learning (ML) models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72\% and 5.38\% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software.",https://neurips.cc//virtual/2024/poster/97426,2024,NeurIPS,Yes,Language,Benchmark KnowGPT: Knowledge Graph based Prompting for Large Language Models,"Large Language Models (LLMs) have demonstrated remarkable capabilities in many real-world applications. Nonetheless, LLMs are often criticized for their tendency to produce hallucinations, wherein the models fabricate incorrect statements on tasks beyond their knowledge and perception. To alleviate this issue, graph retrieval-augmented generation (GraphRAG) has been extensively explored which leverages the factual knowledge in knowledge graphs (KGs) to ground the LLM's responses in established facts and principles. However, most state-of-the-art LLMs are closed-source, making it challenging to develop a prompting framework that can efficiently and effectively integrate KGs into LLMs with hard prompts only. Generally, existing KG-enhanced LLMs usually suffer from three critical issues, including huge search space, high API costs, and laborious prompt engineering, that impede their widespread application in practice. To this end, we introduce a novel **Know**ledge **Gr**aph based **P**romp**T**ing framework, namely **KnowGPT**, to enhance LLMs with domain knowledge. KnowGPT contains a knowledge extraction module to extract the most informative knowledge from KGs, and a context-aware prompt construction module to automatically convert extracted knowledge into effective prompts. Experiments on three benchmarks demonstrate that KnowGPT significantly outperforms all competitors. Notably, KnowGPT achieves a 92.6% accuracy on OpenbookQA leaderboard, comparable to human-level performance.",https://neurips.cc//virtual/2024/poster/95299,2024,NeurIPS,No,, KptLLM: Unveiling the Power of Large Language Model for Keypoint Comprehension,"Recent advancements in Multimodal Large Language Models (MLLMs) have greatly improved their abilities in image understanding. However, these models often struggle with grasping pixel-level semantic details, e.g., the keypoints of an object. To bridge this gap, we introduce the novel challenge of Semantic Keypoint Comprehension, which aims to comprehend keypoints across different task scenarios, including keypoint semantic understanding, visual prompt-based keypoint detection, and textual prompt-based keypoint detection. Moreover, we introduce KptLLM, a unified multimodal model that utilizes an identify-then-detect strategy to effectively address these challenges. KptLLM underscores the initial discernment of semantics in keypoints, followed by the precise determination of their positions through a chain-of-thought process. With several carefully designed modules, KptLLM adeptly handles various modality inputs, facilitating the interpretation of both semantic contents and keypoint locations. Our extensive experiments demonstrate KptLLM's superiority in various keypoint detection benchmarks and its unique semantic capabilities in interpreting keypoints.",https://neurips.cc//virtual/2024/poster/94108,2024,NeurIPS,No,, Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference,"Large Transformer networks are increasingly used in settings where low inference latency is necessary to enable new applications and improve the end-user experience.However, autoregressive inference is resource intensive and requires parallelism for efficiency.Parallelism introduces collective communication that is both expensive and represents a phase when hardware resources are underutilized.Towards mitigating this, Kraken is an evolution of the standard Transformer architecture that is designed to complement existing tensor parallelism schemes for efficient inference on multi-device systems.By introducing a fixed degree of intra-layer model parallelism, the architecture allows collective operations to be overlapped with compute, decreasing latency and increasing hardware utilization.When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers while also preserving their language modeling capabilities as evaluated on the SuperGLUE benchmark.Importantly, when tested on multi-GPU systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes, context lengths, and degrees of tensor parallelism.",https://neurips.cc//virtual/2024/poster/93961,2024,NeurIPS,No,, Language Model as Visual Explainer,"In this paper, we present Language Model as Visual Explainer (\texttt{LVX}), a systematic approach for interpreting the internal workings of vision models using a tree-structured linguistic explanation, without the need for model training. Central to our strategy is the collaboration between vision models and LLM to craft explanations. On one hand, the LLM is harnessed to delineate hierarchical visual attributes, while concurrently, a text-to-image API retrieves images that are most aligned with these textual concepts. By mapping the collected texts and images to the vision model's embedding space, we construct a hierarchy-structured visual embedding tree. This tree is dynamically pruned and grown by querying the LLM using language templates, tailoring the explanation to the model. Such a scheme allows us to seamlessly incorporate new attributes while eliminating undesired concepts based on the model's representations. When applied to testing samples, our method provides human-understandable explanations in the form of attribute-laden trees. Beyond explanation, we retrained the vision model by calibrating it on the generated concept hierarchy, allowing the model to incorporate the refined knowledge of visual attributes. To access the effectiveness of our approach, we introduce new benchmarks and conduct rigorous evaluations, demonstrating its plausibility, faithfulness, and stability.",https://neurips.cc//virtual/2024/poster/96068,2024,NeurIPS,No,, Large Language Models' Expert-level Global History Knowledge Benchmark (HiST-LLM),"Large Language Models (LLMs) have the potential to transform humanities and social science research, yet their history knowledge and comprehension at a graduate level remains untested. Benchmarking LLMs in history is particularly challenging, given that human knowledge of history is inherently unbalanced, with more information available on Western history and recent periods. We introduce the History Seshat Test for LLMs (HiST-LLM), based on a subset of the Seshat Global History Databank, which provides a structured representation of human historical knowledge, containing 36,000 data points across 600 historical societies and over 2,700 scholarly references. This dataset covers every major world region from the Neolithic period to the Industrial Revolution and includes information reviewed and assembled by history experts and graduate research assistants. Using this dataset, we benchmark a total of seven models from the Gemini, OpenAI, and Llama families. We find that, in a four-choice format, LLMs have a balanced accuracy ranging from 33.6% (Llama-3.1-8B) to 46% (GPT-4-Turbo), outperforming random guessing (25%) but falling short of expert comprehension. LLMs perform better on earlier historical periods. Regionally, performance is more even but still better for the Americas and lowest in Oceania and Sub-Saharan Africa for the more advanced models. Our benchmark shows that while LLMs possess some expert-level historical knowledge, there is considerable room for improvement.",https://neurips.cc//virtual/2024/poster/97439,2024,NeurIPS,Yes,Language,Benchmark Large Language Models Play StarCraft II:Benchmarks and A Chain of Summarization Approach,"With the continued advancement of Large Language Models (LLMs) Agents in reasoning, planning, and decision-making, benchmarks have become crucial in evaluating these skills. However, there is a notable gap in benchmarks for real-time strategic decision-making. StarCraft II (SC2), with its complex and dynamic nature, serves as an ideal setting for such evaluations. To this end, we have developed TextStarCraft II, a specialized environment for assessing LLMs in real-time strategic scenarios within SC2. Addressing the limitations of traditional Chain of Thought (CoT) methods, we introduce the Chain of Summarization (CoS) method, enhancing LLMs' capabilities in rapid and effective decision-making. Our key experiments included:1. LLM Evaluation: Tested 10 LLMs in TextStarCraft II, most of them defeating LV5 build-in AI, showcasing effective strategy skills.2. Commercial Model Knowledge: Evaluated four commercial models on SC2 knowledge; GPT-4 ranked highest by Grandmaster-level experts.3. Human-AI Matches: Experimental results showed that fine-tuned LLMs performed on par with Gold-level players in real-time matches, demonstrating comparable strategic abilities.All code and data from thisstudy have been made pulicly available at https://github.com/histmeisah/Large-Language-Models-play-StarCraftII",https://neurips.cc//virtual/2024/poster/93911,2024,NeurIPS,Yes,Language,Benchmark Latent Paraphrasing: Perturbation on Layers Improves Knowledge Injection in Language Models,"As Large Language Models (LLMs) are increasingly deployed in specialized domains with continuously evolving knowledge, the need for timely and precise knowledge injection has become essential. Fine-tuning with paraphrased data is a common approach to enhance knowledge injection, yet it faces two significant challenges: high computational costs due to repetitive external model usage and limited sample diversity. To this end, we introduce LaPael, a latent-level paraphrasing method that applies input-dependent noise to early LLM layers.This approach enables diverse and semantically consistent augmentations directly within the model. Furthermore, it eliminates the recurring costs of paraphrase generation for each knowledge update. Our extensive experiments on question-answering benchmarks demonstrate that LaPael improves knowledge injection over standard fine-tuning and existing noise-based approaches. Additionally, combining LaPael with data-level paraphrasing further enhances performance.",https://neurips.cc//virtual/2024/poster/95060,2024,NeurIPS,No,, Learning Complete Protein Representation by Dynamically Coupling of Sequence and Structure,"Learning effective representations is imperative for comprehending proteins and deciphering their biological functions. Recent strides in language models and graph neural networks have empowered protein models to harness primary or tertiary structure information for representation learning. Nevertheless, the absence of practical methodologies to appropriately model intricate inter-dependencies between protein sequences and structures has resulted in embeddings that exhibit low performance on tasks such as protein function prediction. In this study, we introduce CoupleNet, a novel framework designed to interlink protein sequences and structures to derive informative protein representations. CoupleNet integrates multiple levels and scales of features in proteins, encompassing residue identities and positions for sequences, as well as geometric representations for tertiary structures from both local and global perspectives. A two-type dynamic graph is constructed to capture adjacent and distant sequential features and structural geometries, achieving completeness at the amino acid and backbone levels. Additionally, convolutions are executed on nodes and edges simultaneously to generate comprehensive protein embeddings. Experimental results on benchmark datasets showcase that CoupleNet outperforms state-of-the-art methods, exhibiting particularly superior performance in low-sequence similarities scenarios, adeptly identifying infrequently encountered functions and effectively capturing remote homology relationships in proteins.",https://neurips.cc//virtual/2024/poster/96915,2024,NeurIPS,No,, Learning Goal-Conditioned Representations for Language Reward Models,"Techniques that learn improved representations via offline data or self-supervised objectives have shown impressive results in traditional reinforcement learning.Nevertheless, it is unclear how improved representation learning can benefit reinforcement learning from human feedback on language models.In this work, we propose training reward models (RMs) in a contrastive, $\textit{goal-conditioned}$ fashion by increasing the representation similarity of future states along sampled preferred trajectories and decreasing the similarity along randomly sampled dispreferred trajectories.This objective significantly improves reward model performance by up to 0.09 AUROC across challenging benchmarks, such as MATH and GSM8k. These findings extend to general alignment as well -- on the Helpful-Harmless dataset, we observe 2.3\% increase in accuracy.Beyond improving reward model performance, we show this way of training RM representations enables improved steerability because it allows us to evaluate the likelihood of an action achieving a particular goal-state (e.g. whether a solution is correct or helpful).Leveraging this insight, we find that we can filter up to 55\% of generated tokens during majority voting by discarding trajectories likely to end up in an ""incorrect"" state, which leads to significant cost savings.We additionally find that these representations can perform fine-grained control by conditioning on desired future goal-states.For example, we show that steering a Llama 3 model towards helpful generations with our approach improves helpfulness by $9.6$\% over a supervised-fine-tuning trained baseline.Similarly, steering the model towards complex generations improves complexity by $21.6$\% over the baseline.Overall, we find that training RMs in this contrastive, goal-conditioned fashion significantly improves performance and enables model steerability.",https://neurips.cc//virtual/2024/poster/95067,2024,NeurIPS,No,, Learning Where to Edit Vision Transformers,"Model editing aims to data-efficiently correct predictive errors of large pre-trained models while ensuring generalization to neighboring failures and locality to minimize unintended effects on unrelated examples. While significant progress has been made in editing Transformer-based large language models, effective strategies for editing vision Transformers (ViTs) in computer vision remain largely untapped. In this paper, we take initial steps towards correcting predictive errors of ViTs, particularly those arising from subpopulation shifts. Taking a locate-then-edit approach, we first address the ``where-to-edit`` challenge by meta-learning a hypernetwork on CutMix-augmented data generated for editing reliability. This trained hypernetwork produces generalizable binary masks that identify a sparse subset of structured model parameters, responsive to real-world failure samples. Afterward, we solve the ``how-to-edit`` problem by simply fine-tuning the identified parameters using a variant of gradient descent to achieve successful edits. To validate our method, we construct an editing benchmark that introduces subpopulation shifts towards natural underrepresented images and AI-generated images, thereby revealing the limitations of pre-trained ViTs for object recognition. Our approach not only achieves superior performance on the proposed benchmark but also allows for adjustable trade-offs between generalization and locality. Our code is available at https://github.com/hustyyq/Where-to-Edit.",https://neurips.cc//virtual/2024/poster/94914,2024,NeurIPS,No,, "Learn more, but bother less: parameter efficient continual learning","Large Language Models (LLMs) have demonstrated profound capabilities due to their extensive pre-training on diverse corpora. However, LLMs often struggle with catastrophic forgetting when engaged in sequential task learning. In this paper, we propose a novel parameter-efficient approach for continual learning in LLMs, which empirically investigates knowledge transfer from previously learned tasks to new tasks through low-rank matrix parameters, enhancing the learning of new tasks without significant interference. Our method employs sensitivity-based analysis of low-rank matrix parameters to identify knowledge-specific parameters between sequential tasks, which are used to initialize the low-rank matrix parameters in new tasks. To maintain orthogonality and minimize forgetting, we further involve the gradient projection technique that keeps the low-rank subspaces of each new task orthogonal to those of previous tasks. Our experimental results on continual learning benchmarks validate the efficacy of our proposed method, which outperforms existing state-of-the-art methods in reducing forgetting, enhancing task performance, and preserving the model's ability to generalize to unseen tasks.",https://neurips.cc//virtual/2024/poster/94599,2024,NeurIPS,No,, LeDex: Training LLMs to Better Self-Debug and Explain Code,"In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose LeDex, a training framework that significantly improves the self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories from the LLM itself or a larger teacher model and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92\% and pass@10 by 9.30\% over four benchmarks. RL training brings additional up to 3.54\% improvement on pass@1 and 2.55\% improvement on pass@10. The trained LLMs show iterative refinement ability and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.",https://neurips.cc//virtual/2024/poster/94367,2024,NeurIPS,No,, Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation,"Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we first utilize hallucinations to mine task-related information from images and verify its accuracy to enhance precision of the generated prompts. Specifically, we introduce an iterative \textbf{Pro}mpt-\textbf{Ma}sk \textbf{C}ycle generation framework (ProMaC) with a prompt generator and a mask generator. The prompt generator uses a multi-scale chain of thought prompting, initially leveraging hallucinations to extract extended contextual prompts on a test image. These hallucinations are then minimized to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. Iteratively the generated masks induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code is in https://lwpyh.github.io/ProMaC/.",https://neurips.cc//virtual/2024/poster/96318,2024,NeurIPS,No,, Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning,"Training models with longer in-context lengths is a significant challenge for multimodal machine learning due to substantial GPU memory and computational costs. This exploratory study does not present state-of-the-art models; rather, it introduces an innovative method designed to increase in-context text length in multi-modality large language models (MLLMs) efficiently. We present \ModelFullName (\ModelName), which processes long in-context text using visual tokens. This technique significantly reduces GPU memory usage and floating point operations (FLOPs). For instance, our method expands the pre-training in-context length from 256 to 2048 tokens with fewer FLOPs for a 56 billion parameter MOE model. Experimental results demonstrate that \ModelName enhances OCR capabilities and delivers superior performance on common downstream benchmarks for in-context few-shot evaluation. Additionally, \ModelName proves effective for long context inference, achieving results comparable to full text input while maintaining computational efficiency.",https://neurips.cc//virtual/2024/poster/94826,2024,NeurIPS,No,, LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models,"Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice.To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval.This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application.We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated.",https://neurips.cc//virtual/2024/poster/97832,2024,NeurIPS,Yes,Language,Benchmark LibAMM: Empirical Insights into Approximate Computing for Accelerating Matrix Multiplication,"Matrix multiplication (MM) is pivotal in fields from deep learning to scientific computing, driving the quest for improved computational efficiency. Accelerating MM encompasses strategies like complexity reduction, parallel and distributed computing, hardware acceleration, and approximate computing techniques, namely AMM algorithms. Amidst growing concerns over the resource demands of large language models (LLMs), AMM has garnered renewed focus. However, understanding the nuances that govern AMM’s effectiveness remains incomplete. This study delves into AMM by examining algorithmic strategies, operational specifics, dataset characteristics, and their application in real-world tasks. Through comprehensive testing across diverse datasets and scenarios, we analyze how these factors affect AMM’s performance, uncovering that the selection of AMM approaches significantly influences the balance between efficiency and accuracy, with factors like memory access playing a pivotal role. Additionally, dataset attributes are shown to be vital for the success of AMM in applications. Our results advocate for tailored algorithmic approaches and careful strategy selection to enhance AMM’s effectiveness. To aid in the practical application and ongoing research of AMM, we introduce LibAMM —a toolkit offering a wide range of AMM algorithms, benchmarks, and tools for experiment management. LibAMM aims to facilitate research and application in AMM, guiding future developments towards more adaptive and context-aware computational solutions.",https://neurips.cc//virtual/2024/poster/97612,2024,NeurIPS,No,, LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low Resource and Extinct Languages,"In this paper, we present the LingOly benchmark, a novel benchmark for advanced reasoning abilities in large language models. Using challenging Linguistic Olympiad puzzles, we evaluate (i) capabilities for in-context identification and generalisation of linguistic patterns in very low-resource or extinct languages, and (ii) abilities to follow complex task instructions. The LingOly benchmark covers more than 90 mostly low-resource languages, minimising issues of data contamination, and contains 1,133 problems across 6 formats and 5 levels of human difficulty. We assess performance with both direct accuracy and comparison to a no-context baseline to penalise memorisation. Scores from 11 state-of-the-art LLMs demonstrate the benchmark to be challenging, and models perform poorly on the higher difficulty problems. On harder problems, even the top model only achieved 38.7% accuracy, a 24.7% improvement over the no-context baseline. Large closed models typically outperform open models, and in general, the higher resource the language, the better the scores. These results indicate, in absence of memorisation, true multi-step out-of-domain reasoning remains a challenge for current language models.",https://neurips.cc//virtual/2024/poster/97604,2024,NeurIPS,Yes,Language,Benchmark LLaNA: Large Language and NeRF Assistant,"Multimodal Large Language Models (MLLMs) have demonstrated an excellent understanding of images and 3D data. However, both modalities have shortcomings in holistically capturing the appearance and geometry of objects. Meanwhile, Neural Radiance Fields (NeRFs), which encode information within the weights of a simple Multi-Layer Perceptron (MLP), have emerged as an increasingly widespread modality that simultaneously encodes the geometry and photorealistic appearance of objects. This paper investigates the feasibility and effectiveness of ingesting NeRF into MLLM. We create LLaNA, the first general-purpose NeRF-languageassistant capable of performing new tasks such as NeRF captioning and Q&A. Notably, our method directly processes the weights of the NeRF’s MLP to extract information about the represented objects without the need to render images or materialize 3D data structures. Moreover, we build a dataset of NeRFs with text annotations for various NeRF-language tasks with no human intervention.Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that processing NeRF weights performs favourably against extracting 2D or 3D representations from NeRFs.",https://neurips.cc//virtual/2024/poster/96007,2024,NeurIPS,Yes,Multimodal, LLM-AutoDA: Large Language Model-Driven Automatic Data Augmentation for Long-tailed Problems,"The long-tailed distribution is the underlying nature of real-world data, and it presents unprecedented challenges for training deep learning models. Existing long-tailed learning paradigms based on re-balancing or data augmentation have partially alleviated the long-tailed problem. However, they still have limitations, such as relying on manually designed augmentation strategies, having a limited search space, and using fixed augmentation strategies. To address these limitations, this paper proposes a novel LLM-based long-tailed data augmentation framework called LLM-AutoDA, which leverages large-scale pretrained models to automatically search for the optimal augmentation strategies suitable for long-tailed data distributions. In addition, it applies this strategy to the original imbalanced data to create an augmented dataset and fine-tune the underlying long-tailed learning model. The performance improvement on the validation set serves as a reward signal to update the generation model, enabling the generation of more effective augmentation strategies in the next iteration. We conducted extensive experiments on multiple mainstream long-tailed learning benchmarks. The results show that LLM-AutoDA outperforms state-of-the-art data augmentation methods and other re-balancing methods significantly.",https://neurips.cc//virtual/2024/poster/94875,2024,NeurIPS,No,, LLMCBench: Benchmarking Large Language Model Compression for Efficient Deployment,"Although large language models (LLMs) have demonstrated their strong intelligence ability, the high demand for computation and storage hinders their practical application. To this end, many model compression techniques are proposed to increase the efficiency of LLMs. However, current researches only validate their methods on limited models, datasets, metrics, etc, and still lack a comprehensive evaluation under more general scenarios. So it is still a question of which model compression approach we should use under a specific case. To mitigate this gap, we present the Large Language Model Compression Benchmark (LLMCBench), a rigorously designed benchmark with an in-depth analysis for LLM compression algorithms. We first analyze the actual model production requirements and carefully design evaluation tracks and metrics. Then, we conduct extensive experiments and comparison using multiple mainstream LLM compression approaches. Finally, we perform an in-depth analysis based on the evaluation and provide useful insight for LLM compression design. We hope our LLMCBench can contribute insightful suggestions for LLM compression algorithm design and serve as a foundation for future research.",https://neurips.cc//virtual/2024/poster/97446,2024,NeurIPS,Yes,Language,Benchmark LLM Evaluators Recognize and Favor Their Own Generations,"Self-evaluation using large language models (LLMs) has proven valuable not only in benchmarking but also methods like reward modeling, constitutional AI, and self-refinement. But new biases are introduced due to the same LLM acting as both the evaluator and the evaluatee. One such bias is self-preference, where an LLM evaluator scores its own outputs higher than others’ while human annotators consider them of equal quality. But do LLMs actually recognize their own outputs when they give those texts higher scores, or is it just a coincidence? In this paper, we investigate if self-recognition capability contributes to self-preference. We discover that, out of the box, LLMs such as GPT-4 and Llama 2 have non-trivial accuracy at distinguishing themselves from other LLMs and humans. By finetuning LLMs, we discover a linear correlation between self-recognition capability and the strength of self-preference bias; using controlled experiments, we show that the causal explanation resists straightforward confounders. We discuss how self-recognition can interfere with unbiased evaluations and AI safety more generally.",https://neurips.cc//virtual/2024/poster/96672,2024,NeurIPS,No,, LLMs Can Evolve Continually on Modality for $\mathbb{X}$-Modal Reasoning,"Multimodal Large Language Models (MLLMs) have gained significant attention due to their impressive capabilities in multimodal understanding. However, existing methods rely heavily on extensive modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities. In this paper, we propose \textbf{PathWeave}, a flexible and scalable framework with modal-\textbf{path} s\textbf{w}itching and \textbf{e}xp\textbf{a}nsion abilities that enables MLLMs to continually \textbf{ev}olve on modalities for $\mathbb{X}$-modal reasoning. We leverage the concept of Continual Learning and develop an incremental training strategy atop pre-trained MLLMs, enabling their expansion to new modalities using uni-modal data, without executing joint-modal pretraining. In detail, a novel Adapter-in-Adapter (AnA) framework is introduced, in which uni-modal and cross-modal adapters are seamlessly integrated to facilitate efficient modality alignment and collaboration. Additionally, an MoE-based gating module is applied between two types of adapters to further enhance the multimodal interaction. To investigate the proposed method, we establish a challenging benchmark called \textbf{C}ontinual \textbf{L}earning of \textbf{M}odality (MCL), which consists of high-quality QA data from five distinct modalities: image, video, \textcolor{black}{audio, depth} and point cloud. Extensive experiments demonstrate the effectiveness of the proposed AnA framework on learning plasticity and memory stability during continual learning. Furthermore, PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73\%. Our code locates at \url{https://github.com/JiazuoYu/PathWeave}.",https://neurips.cc//virtual/2024/poster/94313,2024,NeurIPS,Yes,Multimodal, Long-form factuality in large language models,"Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model’s long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for long-form factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality. To do so, we balance the percentage of supported facts in a response (precision) with the percentage of provided facts relative to a hyperparameter representing a user’s preferred response length (recall).Empirically, we demonstrate that LLM agents can outperform crowdsourced human annotators—on a set of∼16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators. We also benchmark thirteen language models on LongFact across four model families (Gemini, GPT, Claude, and PaLM-2), finding that larger language models generally achieve better long-form factuality. LongFact, SAFE, and all experimental code are available at https://github.com/google-deepmind/long-form-factuality.",https://neurips.cc//virtual/2024/poster/96675,2024,NeurIPS,Yes,Language,Methodological "LOVA3: Learning to Visual Question Answering, Asking and Assessment","Question answering, asking, and assessment are three innate human traits crucial for understanding the world and acquiring knowledge. By enhancing these capabilities, humans can more effectively utilize data, leading to better comprehension and learning outcomes. However, current Multimodal Large Language Models (MLLMs) primarily focus on question answering, often neglecting the full potential of questioning and assessment skills. In this study, we introduce LOVA3, an innovative framework named ``Learning tO Visual Question Answering, Asking and Assessment,'' designed to equip MLLMs with these additional capabilities. Our approach involves the creation of two supplementary training tasks GenQA and EvalQA, aiming at fostering the skills of asking and assessing questions in the context of images. To develop the questioning ability, we compile a comprehensive set of multimodal foundational tasks. For assessment, we introduce a new benchmark called EvalQABench, comprising 64,000 training samples (split evenly between positive and negative samples) and 5,000 testing samples. We posit that enhancing MLLMs with the capabilities to answer, ask, and assess questions will enhance their multimodal comprehension, ultimately improving overall performance. To validate this hypothesis, we train MLLMs using the LOVA3 framework and evaluate them on a range of multimodal datasets and benchmarks. Our results demonstrate consistent performance gains, underscoring the critical role of these additional tasks in fostering comprehensive intelligence in MLLMs.",https://neurips.cc//virtual/2024/poster/93210,2024,NeurIPS,Yes,Image, Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models,"Large Multimodal Model (LMM) is a hot research topic in the computer vision area and has also demonstrated remarkable potential across multiple disciplinary fields. A recent trend is to further extend and enhance the perception capabilities of LMMs. The current methods follow the paradigm of adapting the visual task outputs to the format of the language model, which is the main component of a LMM. This adaptation leads to convenient development of such LMMs with minimal modifications, however, it overlooks the intrinsic characteristics of diverse visual tasks and hinders the learning of perception capabilities. To address this issue, we propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement. We decouple the LMM's learning of perception capabilities into task-agnostic and task-specific stages. Lumen first promotes fine-grained vision-language concept alignment, which is the fundamental capability for various visual tasks. Thus the output of the task-agnostic stage is a shared representation for all the tasks we address in this paper. Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders with negligible training efforts. Comprehensive experimental results on a series of vision-centric and VQA benchmarks indicate that our Lumen model not only achieves or surpasses the performance of existing LMM-based approaches in a range of vision-centric tasks while maintaining general visual understanding and instruction following capabilities.",https://neurips.cc//virtual/2024/poster/93228,2024,NeurIPS,No,, MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution,"In software development, resolving the emergent issues within GitHub repositories is a complex challenge that involves not only the incorporation of new code but also the maintenance of existing code.Large Language Models (LLMs) have shown promise in code generation but face difficulties in resolving Github issues, particularly at the repository level. To overcome this challenge, we empirically study the reason why LLMs fail to resolve GitHub issues and analyze the major factors. Motivated by the empirical findings, we propose a novel LLM-based **M**ulti-**A**gent framework for **G**itHub **I**ssue re**S**olution, **MAGIS**, consisting of four agents customized for software evolution: Manager, Repository Custodian, Developer, and Quality Assurance Engineer agents. This framework leverages the collaboration of various agents in the planning and coding process to unlock the potential of LLMs to resolve GitHub issues. In experiments, we employ the SWE-bench benchmark to compare MAGIS with popular LLMs, including GPT-3.5, GPT-4, and Claude-2. MAGIS can resolve **13.94%** GitHub issues, significantly outperforming the baselines.Specifically, MAGIS achieves an eight-fold increase in resolved ratio over the direct application of GPT-4, the advanced LLM.",https://neurips.cc//virtual/2024/poster/93481,2024,NeurIPS,No,, MAmmoTH2: Scaling Instructions from the Web,"Instruction tuning improves the reasoning abilities of large language models (LLMs), with data quality and scalability being the crucial factors. Most instruction tuning data come from human crowd-sourcing or GPT-4 distillation. We propose a paradigm to efficiently harvest 10 million naturally existing instruction data from the pre-training web corpus to enhance LLM reasoning. Our approach involves (1) recalling relevant documents, (2) extracting instruction-response pairs, and (3) refining the extracted pairs using open-source LLMs. Fine-tuning base LLMs on this dataset, we build MAmmoTH2 models, which significantly boost performance on reasoning benchmarks. Notably, MAmmoTH2-7B’s (Mistral) performance increases from 11% to 36.7% on MATH and from 36% to 68.4% on GSM8K without training on any in-domain data. Further training MAmmoTH2 on public instruction tuning datasets yields MAmmoTH2-Plus, achieving state-of-the-art performance on several reasoning and chatbot benchmarks. Our work demonstrates how to harvest large-scale, high-quality instruction data without costly human annotation or GPT-4 distillation, providing a new paradigm for building better instruction tuning data.",https://neurips.cc//virtual/2024/poster/93014,2024,NeurIPS,No,, MARPLE: A Benchmark for Long-Horizon Inference,"Reconstructing past events requires reasoning across long time horizons. To figure out what happened, humans draw on prior knowledge about the world and human behavior and integrate insights from various sources of evidence including visual, language, and auditory cues. We introduce MARPLE, a benchmark for evaluating long-horizon inference capabilities using multi-modal evidence. Our benchmark features agents interacting with simulated households, supporting vision, language, and auditory stimuli, as well as procedurally generated environments and agent behaviors. Inspired by classic ``whodunit'' stories, we ask AI models and human participants to infer which agent caused a change in the environment based on a step-by-step replay of what actually happened. The goal is to correctly identify the culprit as early as possible. Our findings show that human participants outperform both traditional Monte Carlo simulation methods and an LLM baseline (GPT-4) on this task. Compared to humans, traditional inference models are less robust and performant, while GPT-4 has difficulty comprehending environmental changes. We analyze factors influencing inference performance and ablate different modes of evidence, finding that all modes are valuable for performance. Overall, our experiments demonstrate that the long-horizon, multimodal inference tasks in our benchmark present a challenge to current models. Project website: https://marple-benchmark.github.io/.",https://neurips.cc//virtual/2024/poster/97512,2024,NeurIPS,Yes,Multimodal, Mars: Situated Inductive Reasoning in an Open-World Environment,"Large Language Models (LLMs) trained on massive corpora have shown remarkable success in knowledge-intensive tasks. Yet, most of them rely on pre-stored knowledge. Inducing new general knowledge from a specific environment andperforming reasoning with the acquired knowledge—situated inductive reasoning, is crucial and challenging for machine intelligence. In this paper, we design Mars, an interactive environment devised for situated inductive reasoning. It introduces counter-commonsense game mechanisms by modifying terrain, survival setting and task dependency while adhering to certain principles. In Mars, agents need to actively interact with their surroundings, derive useful rules and perform decision-making tasks in specific contexts. We conduct experiments on various RL-based and LLM-based methods, finding that they all struggle on this challenging situated inductive reasoning benchmark. Furthermore, we explore Induction from Reflection, where we instruct agents to perform inductive reasoning from history trajectory. The superior performance underscores the importance of inductive reasoning in Mars. Through Mars, we aim to galvanize advancements in situated inductive reasoning and set the stage for developing the next generation of AI systems that can reason in an adaptive and context-sensitive way.",https://neurips.cc//virtual/2024/poster/97857,2024,NeurIPS,Yes,Language,Methodological MARVEL: Multidimensional Abstraction and Reasoning through Visual Evaluation and Learning,"While multi-modal large language models (MLLMs) have shown significant progress across popular visual reasoning benchmarks, whether they possess abstract visual reasoning abilities remains an open question. Similar to the Sudoku puzzles, abstract visual reasoning (AVR) problems require finding high-level patterns (e.g., repetition constraints on numbers) that control the input shapes (e.g., digits) in a specific task configuration (e.g., matrix). However, existing AVR benchmarks only consider a limited set of patterns (addition, conjunction), input shapes (rectangle, square), and task configurations (3 × 3 matrices). And they fail to capture all abstract reasoning patterns in human cognition necessary for addressing real-world tasks, such as geometric properties and object boundary understanding in real-world navigation. To evaluate MLLMs’ AVR abilities systematically, we introduce MARVEL founded on the core knowledge system in human cognition, a multi-dimensional AVR benchmark with 770 puzzles composed of six core knowledge patterns, geometric and abstract shapes, and five different task configurations. To inspect whether the model performance is grounded in perception or reasoning, MARVEL complements the standard AVR question with perception questions in a hierarchical evaluation framework. We conduct comprehensive experiments on MARVEL with ten representative MLLMs in zero-shot and few-shot settings. Our experiments reveal that all MLLMs show near-random performance on MARVEL, with significant performance gaps (40%) compared to humans across all patterns and task configurations. Further analysis of perception questions reveals that MLLMs struggle to comprehend the visual features (near-random performance). Although closed-source MLLMs, such as GPT-4V, show a promising understanding of reasoning patterns (on par with humans) after adding textual descriptions, this advantage is hindered by their weak perception abilities. We release our entirecode and dataset at https://github.com/1171-jpg/MARVEL_AVR.",https://neurips.cc//virtual/2024/poster/97456,2024,NeurIPS,Yes,Image, MathPile: A Billion-Token-Scale Pretraining Corpus for Math,"High-quality, large-scale corpora are the cornerstone of building foundation models. In this work, we introduce MathPile, a diverse and high-quality math-centric corpus comprising about 9.5 billion tokens. Throughout its creation, we adhered to the principle of “less is more”, firmly believing in the supremacy of data quality over quantity, even in the pre-training phase. Our meticulous data collection and processing efforts included a complex suite of preprocessing, prefiltering, language identification, cleaning, filtering, and deduplication, ensuring the high quality of our corpus. Furthermore, we performed data contamination detection on downstream benchmark test sets to eliminate duplicates and conducted continual pre-training experiments, booting the performance on common mathematical reasoning benchmarks. We aim for our MathPile to boost language models’ mathematical reasoning abilities and open-source its different versions and processing scripts to advance the field.",https://neurips.cc//virtual/2024/poster/97685,2024,NeurIPS,No,, Matryoshka Query Transformer for Large Vision-Language Models,"Large Vision-Language Models (LVLMs) typically encode an image into a fixed number of visual tokens (e.g., 576) and process these tokens with a language model. Despite their strong performance, LVLMs face challenges in adapting to varying computational constraints. This raises the question: can we achieve flexibility in the number of visual tokens to suit different tasks and computational resources? We answer this with an emphatic yes. Inspired by Matryoshka Representation Learning, we introduce the Matryoshka Query Transformer (MQT), capable of encoding an image into $m$ visual tokens during inference, where $m$ can be any number up to a predefined maximum. This is achieved by employing a query transformer with $M$ latent query tokens to compress the visual embeddings. During each training step, we randomly select $m \leq M$ latent query tokens and train the model using only these first $m$ tokens, discarding the rest.Combining MQT with LLaVA, we train a single model once, and flexibly and drastically reduce the number of inference-time visual tokens while maintaining similar or better performance compared to training independent models for each number of tokens. Our model, MQT-LLaVA, matches LLaVA-1.5 performance across 11 benchmarks using a maximum of 256 tokens instead of LLaVA’s fixed 576. Reducing to 16 tokens (8x less TFLOPs) only sacrifices the performance by 2.4 points on MMBench. On certain tasks such as ScienceQA and MMMU, we can even go down to only 2 visual tokens with performance drops of just 3\% and 6\% each.Our exploration of the trade-off between the accuracy and computational cost brought about by the number of visual tokens facilitates future research to achieve the best of both worlds.",https://neurips.cc//virtual/2024/poster/96220,2024,NeurIPS,No,, MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making,"Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named **M**edical **D**ecision-making **Agents** (**MDAgents**) that helps to address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, a simple emulation inspired by the way real-world medical decision-making processes are adapted to tasks of different complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and clinical diagnosis benchmarks, including a comparison ofLLMs’ medical complexity classification against human physicians. MDAgents achieved the **best performance in seven out of ten** benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant **improvement of up to 4.2\%** ($p$ < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy **improvement of 11.8\%**. Our code can be found at https://github.com/mitmedialab/MDAgents.",https://neurips.cc//virtual/2024/poster/96041,2024,NeurIPS,No,, Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset,"Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models exceeding human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on \datasetname, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The dataset is released at [MathLLMs/MathVision](https://huggingface.co/datasets/MathLLMs/MathVision)",https://neurips.cc//virtual/2024/poster/97697,2024,NeurIPS,Yes,Multimodal, MedCalc-Bench: Evaluating Large Language Models for Medical Calculations,"Current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks. MedCalc-Bench is publicly available at: https://github.com/ncbi-nlp/MedCalc-Bench.",https://neurips.cc//virtual/2024/poster/97666,2024,NeurIPS,Yes,Language,Benchmark MediQ: Question-Asking LLMs and a Benchmark for Reliable Interactive Clinical Reasoning,"Users typically engage with LLMs interactively, yet most existing benchmarks evaluate them in a static, single-turn format, posing reliability concerns in interactive scenarios. We identify a key obstacle towards reliability: LLMs are trained to answer any question, even with incomplete context or insufficient knowledge. In this paper, we propose to change the static paradigm to an interactive one, develop systems that proactively ask questions to gather more information and respond reliably, and introduce an benchmark—MEDIQ—to evaluate question-asking ability in LLMs. MEDIQ simulates clinical interactions consisting of a Patient System and an adaptive Expert System; with potentially incomplete initial information, the Expert refrains from making diagnostic decisions when unconfident, and instead elicits missing details via follow-up questions. We provide a pipeline to convert single-turn medical benchmarks into an interactive format. Our results show that directly prompting state-of-the-art LLMs to ask questions degrades performance, indicating that adapting LLMs to proactive information-seeking settings is nontrivial. We experiment with abstention strategies to better estimate model confidence and decide when to ask questions, improving diagnostic accuracy by 22.3%; however, performance still lags compared to an (unrealistic in practice) upper bound with complete information upfront. Further analyses show improved interactive performance with filtering irrelevant contexts and reformatting conversations. Overall, we introduce a novel problem towards LLM reliability, an interactive MEDIQ benchmark and a novel question-asking system, and highlight directions to extend LLMs’ information-seeking abilities in critical domains.",https://neurips.cc//virtual/2024/poster/94856,2024,NeurIPS,Yes,Language,Benchmark MedJourney: Benchmark and Evaluation of Large Language Models over Patient Clinical Journey,"Large language models (LLMs) have demonstrated remarkable capabilities in language understanding and generation, leading to their widespread adoption across various fields. Among these, the medical field is particularly well-suited for LLM applications, as many medical tasks can be enhanced by LLMs. Despite the existence of benchmarks for evaluating LLMs in medical question-answering and exams, there remains a notable gap in assessing LLMs' performance in supporting patients throughout their entire hospital visit journey in real-world clinical practice. In this paper, we address this gap by dividing a typical patient's clinical journey into four stages: planning, access, delivery and ongoing care. For each stage, we introduce multiple tasks and corresponding datasets, resulting in a comprehensive benchmark comprising 12 datasets, of which five are newly introduced, and seven are constructed from existing datasets. This proposed benchmark facilitates a thorough evaluation of LLMs' effectiveness across the entire patient journey, providing insights into their practical application in clinical settings. Additionally, we evaluate three categories of LLMs against this benchmark: 1) proprietary LLM services such as GPT-4; 2) public LLMs like QWen; and 3) specialized medical LLMs, like HuatuoGPT2. Through this extensive evaluation, we aim to provide a better understanding of LLMs' performance in the medical domain, ultimately contributing to their more effective deployment in healthcare settings.",https://neurips.cc//virtual/2024/poster/97646,2024,NeurIPS,Yes,Language,Benchmark MedSafetyBench: Evaluating and Improving the Medical Safety of Large Language Models,"As large language models (LLMs) develop increasingly sophisticated capabilities and find applications in medical settings, it becomes important to assess their medical safety due to their far-reaching implications for personal and public health, patient safety, and human rights. However, there is little to no understanding of the notion of medical safety in the context of LLMs, let alone how to evaluate and improve it. To address this gap, we first define the notion of medical safety in LLMs based on the Principles of Medical Ethics set forth by the American Medical Association. We then leverage this understanding to introduce MedSafetyBench, the first benchmark dataset designed to measure the medical safety of LLMs. We demonstrate the utility of MedSafetyBench by using it to evaluate and improve the medical safety of LLMs. Our results show that publicly-available medical LLMs do not meet standards of medical safety and that fine-tuning them using MedSafetyBench improves their medical safety while preserving their medical performance. By introducing this new benchmark dataset, our work enables a systematic study of the state of medical safety in LLMs and motivates future work in this area, paving the way to mitigate the safety risks of LLMs in medicine. The benchmark dataset and code are available at https://github.com/AI4LIFE-GROUP/med-safety-bench.",https://neurips.cc//virtual/2024/poster/97606,2024,NeurIPS,Yes,Language,Benchmark Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length,"The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce MEGALODON, an neural architecture for efficient sequence modeling with unlimited context length. MEGALODON inherits the architecture of MEGA (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with LLAMA2, MEGALODON achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. MEGALODON reaches a training loss of 1.70, landing mid-way between LLAMA2-7B (1.75) and LLAMA2-13B (1.67). This result is robust throughout a wide range of benchmarks, where MEGALODON consistently outperforms Transformers across different tasks, domains, and modalities.",https://neurips.cc//virtual/2024/poster/94748,2024,NeurIPS,No,, Membership Inference Attacks against Large Vision-Language Models,"Large vision-language models (VLLMs) exhibit promising capabilities for processing multi-modal tasks across various application scenarios. However, their emergence also raises significant data security concerns, given the potential inclusion of sensitive information, such as private photos and medical records, in their training datasets. Detecting inappropriately used data in VLLMs remains a critical and unresolved issue, mainly due to the lack of standardized datasets and suitable methodologies. In this study, we introduce the first membership inference attack (MIA) benchmark tailored for various VLLMs to facilitate training data detection. Then, we propose a novel MIA pipeline specifically designed for token-level image detection. Lastly, we present a new metric called MaxRényi-K%, which is based on the confidence of the model output and applies to both text and image data. We believe that our work can deepen the understanding and methodology of MIAs in the context of VLLMs. Our code and datasets are available at https://github.com/LIONS-EPFL/VL-MIA.",https://neurips.cc//virtual/2024/poster/93657,2024,NeurIPS,Yes,Multimodal, MemoryFormer : Minimize Transformer Computation by Removing Fully-Connected Layers,"In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.",https://neurips.cc//virtual/2024/poster/96955,2024,NeurIPS,No,, "Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs","AI assistants such as ChatGPT are trained to respond to users by saying, ""I am a large language model”.This raises questions. Do such models ""know'' that they are LLMs and reliably act on this knowledge? Are they ""aware"" of their current circumstances, such as being deployed to the public?We refer to a model's knowledge of itself and its circumstances as **situational awareness**.To quantify situational awareness in LLMs, we introduce a range of behavioral tests, based on question answering and instruction following. These tests form the **Situational Awareness Dataset (SAD)**, a benchmark comprising 7 task categories and over 13,000 questions.The benchmark tests numerous abilities, including the capacity of LLMs to (i) recognize their own generated text, (ii) predict their own behavior, (iii) determine whether a prompt is from internal evaluation or real-world deployment, and (iv) follow instructions that depend on self-knowledge.We evaluate 16 LLMs on SAD, including both base (pretrained) and chat models.While all models perform better than chance, even the highest-scoring model (Claude 3 Opus) is far from a human baseline on certain tasks. We also observe that performance on SAD is only partially predicted by metrics of general knowledge. Chat models, which are finetuned to serve as AI assistants, outperform their corresponding base models on SAD but not on general knowledge tasks.The purpose of SAD is to facilitate scientific understanding of situational awareness in LLMs by breaking it down into quantitative abilities. Situational awareness is important because it enhances a model's capacity for autonomous planning and action. While this has potential benefits from automation, it also introduces novel risks related to AI safety and control.",https://neurips.cc//virtual/2024/poster/97669,2024,NeurIPS,Yes,Language,Benchmark MEQA: A Benchmark for Multi-hop Event-centric Question Answering with Explanations,"Existing benchmarks for multi-hop question answering (QA) primarily evaluate models based on their ability to reason about entities and the relationships between them. However, there's a lack of insight into how these models perform in terms of both events and entities. In this paper, we introduce a novel semi-automatic question generation strategy by composing event structures from information extraction (IE) datasets and present the first Multi-hop Event-centric Question Answering (MEQA) benchmark. It contains (1) 2,243 challenging questions that require a diverse range of complex reasoning over entity-entity, entity-event, and event-event relations; (2) corresponding multi-step QA-format event reasoning chain (explanation) which leads to the answer for each question. We also introduce two metrics for evaluating explanations: completeness and logical consistency. We conduct comprehensive benchmarking and analysis, which shows that MEQA is challenging for the latest state-of-the-art models encompassing large language models (LLMs); and how they fall short of providing faithful explanations of the event-centric reasoning process.",https://neurips.cc//virtual/2024/poster/97474,2024,NeurIPS,Yes,Language,Benchmark Mercury: A Code Efficiency Benchmark for Code Large Language Models,"Amidst the recent strides in evaluating Large Language Models for Code (Code LLMs), existing benchmarks have mainly focused on the functional correctness of generated code, neglecting the importance of their computational efficiency. To fill the gap, we present Mercury, the first code efficiency benchmark for Code LLMs. It comprises 1,889 Python tasks, each accompanied by adequate solutions that serve as real-world efficiency baselines, enabling a comprehensive analysis of the runtime distribution. Based on the distribution, we introduce a new metric Beyond, which computes a runtime-percentile-weighted Pass score to reflect functional correctness and code efficiency simultaneously. On Mercury, leading Code LLMs can achieve 65% on Pass, while less than 50% on Beyond. Given that an ideal Beyond score would be aligned with the Pass score, it indicates that while Code LLMs exhibit impressive capabilities in generating functionally correct code, there remains a notable gap in their efficiency. Finally, our empirical experiments reveal that Direct Preference Optimization (DPO) serves as a robust baseline for enhancing code efficiency compared with Supervised Fine Tuning (SFT), which paves a promising avenue for future exploration of efficient code generation. Our code and data are available on GitHub: https://github.com/Elfsong/Mercury.",https://neurips.cc//virtual/2024/poster/97452,2024,NeurIPS,Yes,Language,Benchmark Meta-Diffu$B$: A Contextualized Sequence-to-Sequence Text Diffusion Model with Meta-Exploration,"The diffusion model, a new generative modeling paradigm, has achieved significant success in generating images, audio, video, and text. It has been adapted for sequence-to-sequence text generation (Seq2Seq) through DiffuSeq, termed the S2S-Diffusion model. Existing S2S-Diffusion models predominantly rely on fixed or hand-crafted rules to schedule noise during the diffusion and denoising processes. However, these models are limited by non-contextualized noise, which fails to fully consider the characteristics of Seq2Seq tasks. In this paper, we propose the Meta-Diffu$B$ framework—a novel scheduler-exploiter S2S-Diffusion paradigm designed to overcome the limitations of existing S2S-Diffusion models. We employ Meta-Exploration to train an additional scheduler model dedicated to scheduling contextualized noise for each sentence. Our exploiter model, an S2S-Diffusion model, leverages the noise scheduled by our scheduler model for updating and generation. Meta-Diffu$B$ achieves state-of-the-art performance compared to previous S2S-Diffusion models and fine-tuned pre-trained language models (PLMs) across four Seq2Seq benchmark datasets. We further investigate and visualize the impact of Meta-Diffu$B$'s noise scheduling on the generation of sentences with varying difficulties. Additionally, our scheduler model can function as a ""plug-and-play"" model to enhance DiffuSeq without the need for fine-tuning during the inference stage.",https://neurips.cc//virtual/2024/poster/95436,2024,NeurIPS,No,, MetaLA: Unified Optimal Linear Approximation to Softmax Attention Map,"Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: (1) Dynamic memory ability; (2) Static approximation ability; (3) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.",https://neurips.cc//virtual/2024/poster/94714,2024,NeurIPS,No,, Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models,"The rapid development of large language and vision models (LLVMs) has been driven by advances in visual instruction tuning. Recently, open-source LLVMs have curated high-quality visual instruction tuning datasets and utilized additional vision encoders or multiple computer vision models in order to narrow the performance gap with powerful closed-source LLVMs. These advancements are attributed to multifaceted information required for diverse capabilities, including fundamental image understanding, real-world knowledge about common-sense and non-object concepts (e.g., charts, diagrams, symbols, signs, and math problems), and step-by-step procedures for solving complex questions. Drawing from the multifaceted information, we present a new efficient LLVM, Mamba-based traversal of rationales (Meteor), which leverages multifaceted rationale to enhance understanding and answering capabilities. To embed lengthy rationales containing abundant information, we employ the Mamba architecture, capable of processing sequential data with linear time complexity. We introduce a new concept of traversal of rationale that facilitates efficient embedding of rationale. Subsequently, the backbone multimodal language model (MLM) is trained to generate answers with the aid of rationale. Through these steps, Meteor achieves significant improvements in vision language performances across multiple evaluation benchmarks requiring diverse capabilities, without scaling up the model size or employing additional vision encoders and computer vision models.",https://neurips.cc//virtual/2024/poster/95711,2024,NeurIPS,No,, Micro-Bench: A Microscopy Benchmark for Vision-Language Understanding,"Recent advances in microscopy have enabled the rapid generation of terabytes of image data in cell biology and biomedical research. Vision-language models (VLMs) offer a promising solution for large-scale biological image analysis, enhancing researchers’ efficiency, identifying new image biomarkers, and accelerating hypothesis generation and scientific discovery. However, there is a lack of standardized, diverse, and large-scale vision-language benchmarks to evaluate VLMs’ perception and cognition capabilities in biological image understanding. To address this gap, we introduce Micro-Bench, an expert-curated benchmark encompassing 24 biomedical tasks across various scientific disciplines (biology, pathology), microscopy modalities (electron, fluorescence, light), scales (subcellular, cellular, tissue), and organisms in both normal and abnormal states. We evaluate state-of-the-art biomedical, pathology, and general VLMs on Micro-Bench and find that: i) current models struggle on all categories, even for basic tasks such as distinguishing microscopy modalities; ii) current specialist models fine-tuned on biomedical data often perform worse than generalist models; iii) fine-tuning in specific microscopy domains can cause catastrophic forgetting, eroding prior biomedical knowledge encoded in their base model. iv) weight interpolation between fine-tuned and pre-trained models offers one solution to forgetting and improves general performance across biomedical tasks. We release Micro-Bench under a permissive license to accelerate the research and development of microscopy foundation models.",https://neurips.cc//virtual/2024/poster/97589,2024,NeurIPS,Yes,Image, MiniCache: KV Cache Compression in Depth Dimension for Large Language Models,"A critical approach for efficiently deploying computationally demanding large language models (LLMs) is Key-Value (KV) caching. The KV cache stores key-value states of previously generated tokens, significantly reducing the need for repetitive computations and thereby lowering latency in autoregressive generation. However, the size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation. In this paper, we present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective, significantly reducing the memory footprint for LLM inference. Our approach is based on the observation that KV cache states exhibit high similarity between the adjacent layers in the middle-to-deep portion of LLMs. To facilitate merging, we propose disentangling the states into the magnitude and direction components, interpolating the directions of the state vectors while preserving their lengths unchanged. Furthermore, we introduce a token retention strategy to keep highly distinct state pairs unmerged, thus preserving the information with minimal additional storage overhead. Our MiniCache is training-free and general, complementing existing KV cache compression strategies, such as quantization and sparsity. We conduct a comprehensive evaluation of MiniCache utilizing various models including LLaMA-2, LLaMA-3, Phi-3, Mistral, and Mixtral across multiple benchmarks, demonstrating its exceptional performance in achieving superior compression ratios and high throughput. On the ShareGPT dataset, LLaMA-2-7B with cross-layer merging achieves a compression ratio of $1.53\times$. Additionally, since MiniCache is orthogonal to existing quantization techniques, it can achieve a compression ratio of up to $5.02\times$ when combined with the 4-bit quantization technique, enhancing inference throughput by approximately $5\times$ and reducing the memory footprint by $41\%$ compared to the FP16 full cache baseline, all while maintaining near-lossless performance. Project is available at https://minicache.vmv.re .",https://neurips.cc//virtual/2024/poster/93380,2024,NeurIPS,No,, Mitigating Object Hallucination via Concentric Causal Attention,"Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence, Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.",https://neurips.cc//virtual/2024/poster/96152,2024,NeurIPS,No,, MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures,"Evaluating large language models (LLMs) is challenging. Traditional ground-truth- based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User- facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf bench- marks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks’ advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community’s understanding of LLM evaluation and guide future research directions.",https://neurips.cc//virtual/2024/poster/96545,2024,NeurIPS,Yes,Language,Methodological MLLM-CompBench: A Comparative Reasoning Benchmark for Multimodal LLMs,"The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping, while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-CompBench, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-CompBench mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-CompBench to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-CompBench not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs.",https://neurips.cc//virtual/2024/poster/97438,2024,NeurIPS,Yes,Image, MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models,"Powered by remarkable advancements in Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities in manifold tasks.However, the practical application scenarios of MLLMs are intricate, exposing them to potential malicious instructions and thereby posing safety risks.While current benchmarks do incorporate certain safety considerations, they often lack comprehensive coverage and fail to exhibit the necessary rigor and robustness.For instance, the common practice of employing GPT-4V as both the evaluator and a model to be evaluated lacks credibility, as it tends to exhibit a bias toward its own responses.In this paper, we present MLLMGuard, a multi-dimensional safety evaluation suite for MLLMs, including a bilingual image-text evaluation dataset, inference utilities, and a lightweight evaluator.MLLMGuard's assessment comprehensively covers two languages (English and Chinese) and five important safety dimensions (Privacy, Bias, Toxicity, Truthfulness, and Legality), each with corresponding rich subtasks.Focusing on these dimensions, our evaluation dataset is primarily sourced from platforms such as social media, and it integrates text-based and image-based red teaming techniques with meticulous annotation by human experts.This can prevent inaccurate evaluation caused by data leakage when using open-source datasets and ensures the quality and challenging nature of our benchmark.Additionally, a fully automated lightweight evaluator termed GuardRank is developed, which achieves significantly higher evaluation accuracy than GPT-4.Our evaluation results across 13 advanced models indicate that MLLMs still have a substantial journey ahead before they can be considered safe and responsible.",https://neurips.cc//virtual/2024/poster/97540,2024,NeurIPS,Yes,Multimodal, MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding,"The advent of large vision-language models (LVLMs) has spurred research into their applications in multi-modal contexts, particularly in video understanding. Traditional VideoQA benchmarks, despite providing quantitative metrics, often fail to encompass the full spectrum of video content and inadequately assess models' temporal comprehension. To address these limitations, we introduce MMBench-Video, a quantitative benchmark designed to rigorously evaluate LVLMs' proficiency in video understanding. MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases. The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.We employ GPT-4 for automated assessment, demonstrating superior accuracy and robustness over earlier LLM-based evaluations. Utilizing MMBench-Video, we have conducted comprehensive evaluations that include both proprietary and open-source LVLMs for images and videos. MMBench-Video stands as a valuable resource for the research community, facilitating improved evaluation of LVLMs and catalyzing progress in the field of video understanding.",https://neurips.cc//virtual/2024/poster/97696,2024,NeurIPS,Yes,Video, MMDU: A Multi-Turn Multi-Image Dialog Understanding Benchmark and Instruction-Tuning Dataset for LVLMs,"Generating natural and meaningful responses to communicate with multi-modal human inputs is a fundamental capability of Large Vision-Language Models (LVLMs). While current open-source LVLMs demonstrate promising performance in simplified scenarios such as single-turn single-image input, they fall short in real-world conversation scenarios such as following instructions in a long context history with multi-turn and multi-images. Existing LVLM benchmarks primarily focus on single-choice questions or short-form responses, which do not adequately assess the capabilities of LVLMs in real-world human-AI interaction applications. Therefore, we introduce MMDU, a comprehensive benchmark, and MMDU-45k, a large-scale instruction tuning dataset, designed to evaluate and improve LVLMs' abilities in multi-turn and multi-image conversations. We employ the clustering algorithm to find the relevant images and textual descriptions from the open-source Wikipedia and construct the question-answer pairs by human annotators with the assistance of the GPT-4o model.MMDU has a maximum of 18k image+text tokens, 20 images, and 27 turns, which is at least 5x longer than previous benchmarks and poses challenges to current LVLMs. Our in-depth analysis of 15 representative LVLMs using MMDU reveals that open-source LVLMs lag behind closed-source counterparts due to limited conversational instruction tuning data.We demonstrate that fine-tuning open-source LVLMs on MMDU-45k significantly address this gap, generating longer and more accurate conversations, and improving scores on MMDU and existing benchmarks (MMStar: +1.1%, MathVista: +1.5%, ChartQA: +1.2%). Our contributions pave the way for bridging the gap between current LVLM models and real-world application demands. The links to MMDU, and MMDU-45k are available in the supplementary material.",https://neurips.cc//virtual/2024/poster/97480,2024,NeurIPS,Yes,Multimodal, MMLONGBENCH-DOC: Benchmarking Long-context Document Understanding with Visualizations,"Understanding documents with rich layouts and multi-modal components is a long-standing and practical task. Recent Large Vision-Language Models (LVLMs) have made remarkable strides in various tasks, particularly in single-page document understanding (DU). However, their abilities on long-context DU remain an open problem. This work presents MMLONGBENCH-DOC, a long-context, multi- modal benchmark comprising 1,082 expert-annotated questions. Distinct from previous datasets, it is constructed upon 135 lengthy PDF-formatted documents with an average of 47.5 pages and 21,214 textual tokens. Towards comprehensive evaluation, answers to these questions rely on pieces of evidence from (1) different sources (text, image, chart, table, and layout structure) and (2) various locations (i.e., page number). Moreover, 33.7\% of the questions are cross-page questions requiring evidence across multiple pages. 20.6\% of the questions are designed to be unanswerable for detecting potential hallucinations. Experiments on 14 LVLMs demonstrate that long-context DU greatly challenges current models. Notably, the best-performing model, GPT-4o, achieves an F1 score of only 44.9\%, while the second-best, GPT-4V, scores 30.5\%. Furthermore, 12 LVLMs (all except GPT-4o and GPT-4V) even present worse performance than their LLM counterparts which are fed with lossy-parsed OCR documents. These results validate the necessity of future research toward more capable long-context LVLMs.",https://neurips.cc//virtual/2024/poster/97524,2024,NeurIPS,Yes,Multimodal, MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark,"In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates part of the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16\% to 33\% compared to MMLU, but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5\% in MMLU to just 2\% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is more discriminative benchmark to better track progress in the field.",https://neurips.cc//virtual/2024/poster/97435,2024,NeurIPS,Yes,Language,Benchmark "MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation","Recently, the diffusion-based generative paradigm has achieved impressive general image generation capabilities with text prompts due to its accurate distribution modeling and stable training process. However, generating diverse remote sensing (RS) images that are tremendously different from general images in terms of scale and perspective remains a formidable challenge due to the lack of a comprehensive remote sensing image generation dataset with various modalities, ground sample distances (GSD), and scenes. In this paper, we propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and benchmark for text-to-image generation in diverse remote sensing scenarios. Specifically, we first collect nine publicly available RS datasets and conduct standardization for all samples. To bridge RS images to textual semantic information, we utilize a large-scale pretrained vision-language model to automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image pairs (including multi-modal images). In particular, we design some methods to obtain the images with different GSD and various environments (e.g., low-light, foggy) in a single sample. With extensive manual screening and refining annotations, we ultimately obtain a MMM-RS dataset that comprises approximately 2.1 million text-image pairs. Extensive experimental results verify that our proposed MMM-RS dataset allows off-the-shelf diffusion models to generate diverse RS images across various modalities, scenes, weather conditions, and GSD. The dataset is available at https://github.com/ljl5261/MMM-RS.",https://neurips.cc//virtual/2024/poster/97495,2024,NeurIPS,Yes,Multimodal, MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations,"With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation.",https://neurips.cc//virtual/2024/poster/97429,2024,NeurIPS,Yes,Multimodal, Mobility-LLM: Learning Visiting Intentions and Travel Preference from Human Mobility Data with Large Language Models,"Location-based services (LBS) have accumulated extensive human mobility data on diverse behaviors through check-in sequences. These sequences offer valuable insights into users’ intentions and preferences. Yet, existing models analyzing check-in sequences fail to consider the semantics contained in these sequences, which closely reflect human visiting intentions and travel preferences, leading to an incomplete comprehension. Drawing inspiration from the exceptional semantic understanding and contextual information processing capabilities of large language models (LLMs) across various domains, we present Mobility-LLM, a novel framework that leverages LLMs to analyze check-in sequences for multiple tasks. Since LLMs cannot directly interpret check-ins, we reprogram these sequences to help LLMs comprehensively understand the semantics of human visiting intentions and travel preferences. Specifically, we introduce a visiting intention memory network (VIMN) to capture the visiting intentions at each record, along with a shared pool of human travel preference prompts (HTPP) to guide the LLM in understanding users’ travel preferences. These components enhance the model’s ability to extract and leverage semantic information from human mobility data effectively. Extensive experiments on four benchmark datasets and three downstream tasks demonstrate that our approach significantly outperforms existing models, underscoring the effectiveness of Mobility-LLM in advancing our understanding of human mobility data within LBS contexts.",https://neurips.cc//virtual/2024/poster/96914,2024,NeurIPS,No,, MoVA: Adapting Mixture of Vision Experts to Multimodal Context,"As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts. This benefits from the powerful model function understanding ability of the large language model (LLM). In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge from various experts. This coarse-to-fine paradigm effectively leverages representations from experts based on multimodal context and model expertise, further enhancing the generalization ability. We conduct extensive experiments to evaluate the effectiveness of the proposed approach. Without any bells and whistles, MoVA can achieve significant performance gains over current state-of-the-art methods in a wide range of challenging multimodal benchmarks.",https://neurips.cc//virtual/2024/poster/93279,2024,NeurIPS,No,, MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs,"Large language models (LLMs) have shown increasing capability in problem-solving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, evaluating these reasoning abilities has become increasingly challenging. Existing outcome-based benchmarks are beginning to saturate, becoming less effective in tracking meaningful progress. To address this, we present a process-based benchmark MR-Ben that demands a meta-reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. Our meta-reasoning paradigm is especially suited for system-2 slow thinking, mirroring the human cognitive process of carefully examining assumptions, conditions, calculations, and logic to identify mistakes. MR-Ben comprises 5,975 questions curated by human experts across a wide range of subjects, including physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models). For example, with models like the o1 series from OpenAI demonstrating strong performance by effectively scrutinizing the solution space, many other state-of-the-art models fall significantly behind on MR-Ben, exposing potential shortcomings in their training strategies and inference methodologies.",https://neurips.cc//virtual/2024/poster/95909,2024,NeurIPS,Yes,Language,Benchmark MSA Generation with Seqs2Seqs Pretraining: Advancing Protein Structure Predictions,"Deep learning models like AlphaFold2 have revolutionized protein structure prediction, achieving unprecedented accuracy. However, the dependence on robust multiple sequence alignments (MSAs) continues to pose a challenge, especially for proteins that lack a wealth of homologous sequences. To overcome this limitation, we introduce MSA-Generator, a self-supervised generative protein language model. Trained on a sequence-to-sequence task using an automatically constructed dataset, MSA-Generator employs protein-specific attention mechanisms to harness large-scale protein databases, generating virtual MSAs that enrich existing ones and boost prediction accuracy. Our experiments on CASP14 and CASP15 benchmarks reveal significant improvements in LDDT scores, particularly for complex and challenging sequences, enhancing the performance of both AlphaFold2 and RoseTTAFold. The code is released at \url{https://github.com/lezhang7/MSAGen}.",https://neurips.cc//virtual/2024/poster/96109,2024,NeurIPS,No,, Multi-language Diversity Benefits Autoformalization,"Autoformalization is the task of translating natural language materials into machine-verifiable formalisations. Progress in autoformalization research is hindered by the lack of a sizeable dataset consisting of informal-formal pairs expressing the same essence. Existing methods tend to circumvent this challenge by manually curating small corpora or using few-shot learning with large language models. But these methods suffer from data scarcity and formal language acquisition difficulty. In this work, we create mma, a large, flexible, multi-language, and multi-domain dataset of informal-formal pairs, by using a language model to translate in the reverse direction, that is, from formal mathematical statements into corresponding informal ones. Experiments show that language models fine-tuned on mma can produce up to $29-31$\% of statements acceptable with minimal corrections on the miniF2F and ProofNet benchmarks, up from $0$\% with the base model. We demonstrate that fine-tuning on multi-language formal data results in more capable autoformalization models even on single-language tasks.",https://neurips.cc//virtual/2024/poster/96799,2024,NeurIPS,Yes,Language,Methodological "Multi-LLM Debate: Framework, Principals, and Interventions","The flexible and generalized nature of large language models has allowed for their application in a wide array of language-based domains.Much like their human contemporaries, these models are capable of engaging in discussions and debates as a means of improving answer quality.We first take a theoretical approach to analyzing debate and provide a framework through which debate can be mathematically examined.Building on this framework, we provide several theoretical results for multi-agent debate.In particular, we demonstrate that similar model capabilities, or similar model responses, can result in static debate dynamics where the debate procedure simply converges to the majority opinion. When this majority opinion is the result of a common misconception (ingrained in the models through shared training data) debate is likely to converge to answers associated with that common misconception.Using insights from our theoretical results we then propose three interventions which improve the efficacy of debate. For each intervention, we provide theoretical results demonstrating how debate is improved.We also demonstrate that these interventions result in better performance on four common benchmark tasks.",https://neurips.cc//virtual/2024/poster/93363,2024,NeurIPS,No,, Multi-modal Situated Reasoning in 3D Scenes,"Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding suffer from severe limitations in data modality, scope, diversity, and scale. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated questionanswering pairs across 9 distinct question categories, covering complex scenarios and object modalities within 3D scenes. We introduce a novel interleaved multimodal input setting in our benchmark to provide both texts, images, and point clouds for situation and question description, aiming to resolve ambiguity in describing situations with single-modality inputs (e.g., texts). Additionally, we devise the Multi-modal Next-step Navigation (MSNN) benchmark to evaluate models’ grounding of actions and transitions between situations. Comprehensive evaluations on reasoning and navigation tasks highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and crossdomain transfer further demonstrate the effectiveness of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models, contributing to advancements in 3D scene understanding for embodied AI.",https://neurips.cc//virtual/2024/poster/97727,2024,NeurIPS,Yes,Multimodal, Multi-Object Hallucination in Vision Language Models,"Large vision language models (LVLMs) often suffer from object hallucination, producing objects not present in the given images. While current benchmarks for object hallucination primarily concentrate on the presence of a single object class rather than individual entities, this work systematically investigates multi-object hallucination, examining how models misperceive (e.g., invent nonexistent objects or become distracted) when tasked with focusing on multiple objects simultaneously.We introduce Recognition-based Object Probing Evaluation (ROPE), an automated evaluation protocol that considers the distribution of object classes within a single image during testing and uses visual referring prompts to eliminate ambiguity. With comprehensive empirical studies and analysis of potential factors leading to multi-object hallucination, we found that (1) LVLMs suffer more hallucinations when focusing on multiple objects compared to a single object. (2) The tested object class distribution affects hallucination behaviors, indicating that LVLMs may follow shortcuts and spurious correlations.(3) Hallucinatory behaviors are influenced by data-specific factors, salience and frequency, and model intrinsic behaviors.We hope to enable LVLMs to recognize and reason about multiple objects that often occur in realistic visual scenes, provide insights, and quantify our progress towards mitigating the issues.",https://neurips.cc//virtual/2024/poster/95666,2024,NeurIPS,Yes,Image, Multi-Scale Representation Learning for Protein Fitness Prediction,"Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of functional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets. While initial protein representation learning studies solely focused on either sequence or structural features, recent hybrid architectures have sought to merge these modalities to harness their respective strengths. However, these sequence-structure models have so far achieved only incremental improvements when compared to the leading sequence-only approaches, highlighting unresolved challenges effectively leveraging these modalities together. Moreover, the function of certain proteins is highly dependent on the granular aspects of their surface topology, which have been overlooked by prior models.To address these limitations, we introduce the Sequence-Structure-Surface Fitness (**S3F**) model — a novel multimodal representation learning framework that integrates protein features across several scales. Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology. The proposed method achieves state-of-the-art fitness prediction on the ProteinGym benchmark encompassing 217 substitution deep mutational scanning assays, and provides insights into the determinants of protein function.Our code is at https://github.com/DeepGraphLearning/S3F.",https://neurips.cc//virtual/2024/poster/93883,2024,NeurIPS,No,, MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models,"Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish **MultiTrust**, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: *truthfulness*, *safety*, *robustness*, *fairness*, and *privacy*. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: [https://multi-trust.github.io/](https://multi-trust.github.io/).",https://neurips.cc//virtual/2024/poster/97845,2024,NeurIPS,Yes,Multimodal, Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking,"Stochastic dominance is an important concept in probability theory, econometrics and social choice theory for robustly modeling agents' preferences between random outcomes. While many works have been dedicated to the univariate case,little has been done in the multivariate scenario, wherein an agent has to decide between different multivariate outcomes. By exploiting a characterization of multivariate first stochastic dominance in terms of couplings, we introduce a statistic that assesses multivariate almost stochastic dominance under the framework of Optimal Transport with a smooth cost. Further, we introduce an entropic regularization of this statistic, and establish a central limit theorem (CLT) and consistency of the bootstrap procedure for the empirical statistic. Armed with this CLT, we propose a hypothesis testing framework as well as an efficient implementation using the Sinkhorn algorithm. We showcase our method in comparing and benchmarking Large Language Models that are evaluated on multiple metrics. Our multivariate stochastic dominance test allows us to capture the dependencies between the metrics in order to make an informed and statistically significant decision on the relative performance of the models.",https://neurips.cc//virtual/2024/poster/95459,2024,NeurIPS,Yes,Language,Methodological NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples,"Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term $\textbf{natural adversarial samples}$. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, ${\bf NaturalBench}$, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing ``blind'' solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can largely be solved with language priors like commonsense knowledge. We evaluate ${\bf 53}$ state-of-the-art VLMs on NaturalBench, showing that models like BLIP-3, LLaVA-OneVision, Cambrian-1, InternLM-XC2, Llama3.2-Vision, Molmo, Qwen2-VL, and even the (closed-source) GPT-4o lag 50%-70% behind human performance (which is above 90%). We analyze why NaturalBench is hard from two angles: (1) ${\bf Compositionality:}$ Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) ${\bf Biases: }$ NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. We show that debiasing can be crucial for VLM performance. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.",https://neurips.cc//virtual/2024/poster/97799,2024,NeurIPS,Yes,Multimodal, Needle In A Multimodal Haystack,"With the rapid advancement of multimodal large language models (MLLMs), their evaluation has become increasingly comprehensive. However, understanding long multimodal content, as a foundational ability for real-world applications, remains underexplored. In this work, we present Needle In A Multimodal Haystack (MM-NIAH), the first benchmark specifically designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents. Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning. In each task, the model is required to answer the questions according to different key information scattered throughout the given multimodal document. Evaluating the leading MLLMs on MM-NIAH, we observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation. We hope this work can provide a platform for further research on long multimodal document comprehension and contribute to the advancement of MLLMs. Code and benchmark are released at https://github.com/OpenGVLab/MM-NIAH.",https://neurips.cc//virtual/2024/poster/97674,2024,NeurIPS,Yes,Multimodal, Neural Residual Diffusion Models for Deep Scalable Vision Generation,"The most advanced diffusion models have recently adopted increasingly deep stacked networks (e.g., U-Net or Transformer) to promote the generative emergence capabilities of vision generation models similar to large language models (LLMs). However, progressively deeper stacked networks will intuitively cause numerical propagation errors and reduce noisy prediction capabilities on generative data, which hinders massively deep scalable training of vision generation models. In this paper, we first uncover the nature that neural networks being able to effectively perform generative denoising lies in the fact that the intrinsic residual unit has consistent dynamic property with the input signal's reverse diffusion process, thus supporting excellent generative abilities.Afterwards, we stand on the shoulders of two common types of deep stacked networks to propose a unified and massively scalable Neural Residual Diffusion Models framework (Neural-RDM for short), which is a simple yet meaningful change to the common architecture of deep generative networks by introducing a series of learnable gated residual parameters that conform to the generative dynamics. Experimental results on various generative tasks show that the proposed neural residual models obtain state-of-the-art scores on image's and video's generative benchmarks. Rigorous theoretical proofs and extensive experiments also demonstrate the advantages of this simple gated residual mechanism consistent with dynamic modeling in improving the fidelity and consistency of generated content and supporting large-scale scalable training.",https://neurips.cc//virtual/2024/poster/95457,2024,NeurIPS,No,, NewTerm: Benchmarking Real-Time New Terms for Large Language Models with Annual Updates,"Despite their remarkable abilities in various tasks, large language models (LLMs) still struggle with real-time information (e.g., new facts and terms) due to the knowledge cutoff in their development process. However, existing benchmarks focus on outdated content and limited fields, facing difficulties in real-time updating and leaving new terms unexplored. To address this problem, we propose an adaptive benchmark, NewTerm, for real-time evaluation of new terms. We design a highly automated construction method to ensure high-quality benchmark construction with minimal human effort, allowing flexible updates for real-time information. Empirical results on various LLMs demonstrate over 20% performance reduction caused by new terms. Additionally, while updates to the knowledge cutoff of LLMs can cover some of the new terms, they are unable to generalize to more distant new terms. We also analyze which types of terms are more challenging and why LLMs struggle with new terms, paving the way for future research. Finally, we construct NewTerm 2022 and 2023 to evaluate the new terms updated each year and will continue updating annually. The benchmark and codes can be found at https://anonymous.4open.science/r/NewTerms.",https://neurips.cc//virtual/2024/poster/97724,2024,NeurIPS,Yes,Language,Benchmark No Filter: Cultural and Socioeconomic Diversity in Contrastive Vision-Language Models,"We study cultural and socioeconomic diversity in contrastive vision-language models (VLMs). Using a broad range of benchmark datasets and evaluation metrics, we bring to attention several important findings. First, the common filtering of training data to English image-text pairs disadvantages communities of lower socioeconomic status and negatively impacts cultural understanding. Notably, this performance gap is not captured by - and even at odds with - the currently popular evaluation metrics derived from the Western-centric ImageNet and COCO datasets. Second, pretraining with global, unfiltered data before fine-tuning on English content can improve cultural understanding without sacrificing performance on said popular benchmarks. Third, we introduce the task of geo-localization as a novel evaluation metric to assess cultural diversity in VLMs. Our work underscores the value of using diverse data to create more inclusive multimodal systems and lays the groundwork for developing VLMs that better represent global perspectives.",https://neurips.cc//virtual/2024/poster/94944,2024,NeurIPS,Yes,Multimodal, No Free Delivery Service: Epistemic limits of passive data collection in complex social systems,"Rapid model validation via the train-test paradigm has been a key driver for the breathtaking progress in machine learning and AI. However, modern AI systems often depend on a combination of tasks and data collection practices that violate all assumptions ensuring test validity. Yet, without rigorous model validation we cannot ensure the intended outcomes of deployed AI systems, including positive social impact, nor continue to advance AI research in a scientifically sound way. In this paper, I will show that for widely considered inference settings in complex social systems the train-test paradigm does not only lack a justification but is indeed invalid for any risk estimator, including counterfactual and causal estimators, with high probability. These formal impossibility results highlight a fundamental epistemic issue, i.e., that for key tasks in modern AI we cannot know whether models are valid under current data collection practices. Importantly, this includes variants of both recommender systems and reasoning via large language models, and neither naïve scaling nor limited benchmarks are suited to address this issue. I am illustrating these results via the widely used MovieLens benchmark and conclude by discussing the implications of these results for AI in social systems, including possible remedies such as participatory data curation and open science.",https://neurips.cc//virtual/2024/poster/94758,2024,NeurIPS,No,, NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security,"Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.",https://neurips.cc//virtual/2024/poster/97547,2024,NeurIPS,Yes,Language,Benchmark Observational Scaling Laws and the Predictability of Langauge Model Performance,"Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~100 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.",https://neurips.cc//virtual/2024/poster/95350,2024,NeurIPS,No,, OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step,"Despite significant advancements in text generation and reasoning, Large Language Models (LLMs) still face challenges in accurately performing complex arithmetic operations. Language model systems often enable LLMs to generate code for arithmetic operations to achieve accurate calculations. However, this approach compromises speed and security, and fine-tuning risks the language model losing prior capabilities. We propose a framework that enables exact arithmetic in *a single autoregressive step*, providing faster, more secure, and more interpretable LLM systems with arithmetic capabilities. We use the hidden states of a LLM to control a symbolic architecture that performs arithmetic. Our implementation using Llama 3 with OccamNet as a symbolic model (OccamLlama) achieves 100\% accuracy on single arithmetic operations ($+,-,\times,\div,\sin{},\cos{},\log{},\exp{},\sqrt{}$), outperforming GPT 4o with and without a code interpreter. Furthermore, OccamLlama outperforms GPT 4o with and without a code interpreter on average across a range of mathematical problem solving benchmarks, demonstrating that OccamLLMs can excel in arithmetic tasks, even surpassing much larger models. Code is available at https://github.com/druidowm/OccamLLM.",https://neurips.cc//virtual/2024/poster/93221,2024,NeurIPS,No,, OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI,"The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problem-solving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97\% overall accuracy (28.67\% for mathematics and 29.71\% for physics), illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.",https://neurips.cc//virtual/2024/poster/97617,2024,NeurIPS,Yes,Multimodal, "OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding","Current universal segmentation methods demonstrate strong capabilities in pixel-level image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level understanding and have difficulty accepting visual prompts for flexible user interaction. This paper proposes OMG-LLaVA, a new and elegant framework combining powerful pixel-level vision understanding with reasoning abilities. It can accept various visual and text prompts for flexible user interaction. Specifically, we use a universal segmentation method as the visual encoder, integrating image information, perception priors, and visual prompts into visual tokens provided to the LLM. The LLM is responsible for understanding the user's text instructions and providing text responses and pixel-level segmentation results based on the visual information. We propose perception prior embedding to better integrate perception priors with image features. OMG-LLaVA achieves image-level, object-level, and pixel-level reasoning and understanding in a single model, matching or surpassing the performance of specialized methods on multiple benchmarks. Rather than using LLM to connect each specialist, our work aims at end-to-end training on one encoder, one decoder, and one LLM. The code and model have been released for further research.",https://neurips.cc//virtual/2024/poster/94820,2024,NeurIPS,No,, One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos,"We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.",https://neurips.cc//virtual/2024/poster/94482,2024,NeurIPS,Yes,Video, On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion,"Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging.Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. \thm{Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training?} In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question.Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance. To surmount these limitations,we propose a dynamic logit fusion approach that works with a series of task-specific small models, each specialized in a different task. This method adaptively allocates weights among these models at each decoding step,learning the weights through Kullback-Leibler divergence constrained optimization problems. We conduct extensive experiments across various benchmarks in both single-task and multi-task settings, achieving leading results.By transferring expertise from the 7B model to the 13B model, our method closes the performance gap by 96.4\% in single-task scenarios and by 86.3\% in multi-task scenarios compared to full fine-tuning of the 13B model. Notably, we achieve surpassing performance on unseen tasks. Moreover, we further demonstrate that our method can effortlessly integrate in-context learning for single tasks and task arithmetic for multi-task scenarios.",https://neurips.cc//virtual/2024/poster/95177,2024,NeurIPS,No,, On scalable oversight with weak LLMs judging strong LLMs,"Scalable oversight protocols aim to enable humans to accurately supervise superhuman AI. In this paper we study debate, where two AI's compete to convince a judge; consultancy, where a single AI tries to convince a judge that asks questions;and compare to a baseline of direct question-answering, where the judge just answers outright without the AI.We use large language models (LLMs) as both AI agents and as stand-ins for human judges, taking the judge models to be weaker than agent models. We benchmark on a diverse range of asymmetries between judges and agents, extending previous work on a single extractive QA task with information asymmetry, to also include mathematics, coding, logic and multimodal reasoning asymmetries. We find that debate outperforms consultancy across all tasks when the consultant is randomly assigned to argue for the correct/incorrect answer. Comparing debate to direct question answering, the results depend on the type of task: in extractive QA tasks with information asymmetry debate outperforms direct question answering, but in other tasks without information asymmetry the results are mixed.Previous work assigned debaters/consultants an answer to argue for. When we allow them to instead choose which answer to argue for, we find judges are less frequently convinced by the wrong answer in debate than in consultancy.Further, we find that stronger debater models increase judge accuracy, though more modestly than in previous studies.",https://neurips.cc//virtual/2024/poster/95397,2024,NeurIPS,No,, On the Noise Robustness of In-Context Learning for Text Generation,"Large language models (LLMs) have shown impressive performance on downstream tasks by in-context learning (ICL), which heavily relies on the quality of demonstrations selected from a large set of annotated examples. Recent works claim that in-context learning is robust to noisy demonstrations in text classification. In this work, we show that, on text generation tasks, noisy annotations significantly hurt the performance of in-context learning. To circumvent the issue, we propose a simple and effective approach called Local Perplexity Ranking (LPR), which replaces the ""noisy"" candidates with their nearest neighbors that are more likely to be clean. Our method is motivated by analyzing the perplexity deviation caused by noisy labels and decomposing perplexity into inherent perplexity and matching perplexity. Our key idea behind LPR is thus to decouple the matching perplexity by performing the ranking among the neighbors in semantic space. Our approach can prevent the selected demonstrations from including mismatched input-label pairs while preserving the effectiveness of the original selection methods. Extensive experiments demonstrate the effectiveness of LPR, improving the EM score by up to 18.75 on common benchmarks with noisy annotations.",https://neurips.cc//virtual/2024/poster/96962,2024,NeurIPS,No,, On the Worst Prompt Performance of Large Language Models,"The performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts, which raises significant concerns about their reliability in real-world scenarios. Existing studies often divide prompts into task-level instructions and case-level inputs and primarily focus on evaluating and improving robustness against variations in tasks-level instructions. However, this setup fails to fully address the diversity of real-world user queries and assumes the existence of task-specific datasets. To address these limitations, we introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries and emphasizes the importance of using the worst prompt performance to gauge the lower bound of model performance. Extensive experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance; for instance, a difference of 45.48% between the worst and best performance for the Llama-2-70B-chat model, with its worst performance dipping as low as 9.38%. We further illustrate the difficulty in identifying the worst prompt from both model-agnostic and model-dependent perspectives, emphasizing the absence of a shortcut to characterize the worst prompt. We also attempt to enhance the worst prompt performance using existing prompt engineering and prompt consistency methods, but find that their impact is limited. These findings underscore the need to create more resilient LLMs that can maintain high performance across diverse prompts.",https://neurips.cc//virtual/2024/poster/95497,2024,NeurIPS,Yes,Language,Benchmark OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset,"Recent work has shown the immense potential of synthetically generated datasets for training large language models (LLMs), especially for acquiring targeted skills. Current large-scale math instruction tuning datasets such as MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed using outputs from closed-source LLMs with commercially restrictive licenses. A key reason limiting the use of open-source LLMs in these data generation pipelines has been the wide gap between the mathematical skills of the best closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on the recent progress in open-source LLMs, our proposed prompting novelty, and some brute-force scaling, we construct OpenMathInstruct-1, a math instruction tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by synthesizing code-interpreter solutions for GSM8K and MATH, two popular math reasoning benchmarks, using the recently released and permissively licensed Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which is competitive with the best gpt-distilled models. We will release our code, models, and the OpenMathInstruct-1 dataset under a commercially permissive license.",https://neurips.cc//virtual/2024/poster/97731,2024,NeurIPS,Not found,, Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning,"In tabular prediction tasks, tree-based models combined with automated feature engineering methods often outperform deep learning approaches that rely on learned representations. While these feature engineering techniques are effective, they typically depend on a pre-defined search space and primarily use validation scores for feature selection, thereby missing valuable insights from previous experiments.To address these limitations, we propose a novel tabular learning framework that utilizes large language models (LLMs), termed Optimizing Column feature generator with decision Tree reasoning (OCTree). Our key idea is to leverage the reasoning capabilities of LLMs to identify effective feature generation rules without manually specifying the search space and provide language-based reasoning information highlighting past experiments as feedback for iterative rule improvements. We use decision trees to convey this reasoning information, as they can be easily represented in natural language, effectively providing knowledge from prior experiments (i.e., the impact of the generated features on performance) to the LLMs. Our empirical results demonstrate that OCTree consistently enhances the performance of various prediction models across diverse benchmarks, outperforming competing automated feature engineering methods. Code is available at https://github.com/jaehyun513/OCTree.",https://neurips.cc//virtual/2024/poster/96262,2024,NeurIPS,No,, Optimus-1: Hybrid Multimodal Memory Empowered Agents Excel in Long-Horizon Tasks,"Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid Multimodal Memory module, outperforming the GPT-4V baseline on many tasks.",https://neurips.cc//virtual/2024/poster/94762,2024,NeurIPS,No,, OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments,"Autonomous agents that accomplish complex computer tasks with minimal human interventions have the potential to transform human-computer interaction, significantly enhancing accessibility and productivity. However, existing benchmarks either lack an interactive environment or are limited to environments specific to certain applications or domains, failing to reflect the diverse and complex nature of real-world computer use, thereby limiting the scope of tasks and agent scalability. To address this issue, we introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents, supporting task setup, execution-based evaluation, and interactive learning across various operating systems such as Ubuntu, Windows, and macOS. OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks that involve arbitrary applications. Building upon OSWorld, we create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and workflows spanning multiple applications. Each task example is derived from real-world computer use cases and includes a detailed initial state setup configuration and a custom execution-based evaluation script for reliable, reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based agents on OSWorld reveals significant deficiencies in their ability to serve as computer assistants. While humans can accomplish over 72.36% of the tasks, the best model achieves only 12.24% success, primarily struggling with GUI grounding and operational knowledge. Comprehensive analysis using OSWorld provides valuable insights for developing multimodal generalist agents that were not possible with previous benchmarks. Our code, environment, baseline models, and data are publicly available at [this https URL](https://os-world.github.io/).",https://neurips.cc//virtual/2024/poster/97468,2024,NeurIPS,Yes,Multimodal, Paloma: A Benchmark for Evaluating Language Model Fit,"Evaluations of language models (LMs) commonly report perplexity on monolithic data held out from training. Implicitly or explicitly, this data is composed of domains—varying distributions of language. We introduce Perplexity Analysis for Language Model Assessment (Paloma), a benchmark to measure LM fit to 546 English and code domains, instead of assuming perplexity on one distribution extrapolates to others. We include two new datasets of the top 100 subreddits (e.g., r/depression on Reddit) and programming languages (e.g., Java on GitHub), both sources common in contemporary LMs. With our benchmark, we release 6 baseline 1B LMs carefully controlled to provide fair comparisons about which pretraining corpus is best and code for others to apply those controls to their own experiments. Our case studies demonstrate how the fine-grained results from Paloma surface findings such as that models pretrained without data beyond Common Crawl exhibit anomalous gaps in LM fit to many domains or that loss is dominated by the most frequently occurring strings in the vocabulary.",https://neurips.cc//virtual/2024/poster/97430,2024,NeurIPS,Yes,Language,Benchmark PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations,"Expert-designed close-ended benchmarks are indispensable in assessing the knowledge capacity of large language models (LLMs). Despite their widespread use, concerns have mounted regarding their reliability due to limited test scenarios and an unavoidable risk of data contamination. To rectify this, we present PertEval, a toolkit devised for in-depth probing of LLMs' knowledge capacity through **knowledge-invariant perturbations**. These perturbations employ human-like restatement techniques to generate on-the-fly test samples from static benchmarks, meticulously retaining knowledge-critical content while altering irrelevant details. Our toolkit further includes a suite of **response consistency analyses** that compare performance on raw vs. perturbed test sets to precisely assess LLMs' genuine knowledge capacity. Six representative LLMs are re-evaluated using PertEval. Results reveal significantly inflated performance of the LLMs on raw benchmarks, including an absolute 25.8% overestimation for GPT-4. Additionally, through a nuanced response pattern analysis, we discover that PertEval retains LLMs' uncertainty to specious knowledge, and reveals their potential rote memorization to correct options which leads to overestimated performance. We also find that the detailed response consistency analyses by PertEval could illuminate various weaknesses in existing LLMs' knowledge mastery and guide the development of refinement. Our findings provide insights for advancing more robust and genuinely knowledgeable LLMs. Our code is available at https://github.com/aigc-apps/PertEval.",https://neurips.cc//virtual/2024/poster/97773,2024,NeurIPS,Yes,Language,Methodological PhyloGen: Language Model-Enhanced Phylogenetic Inference via Graph Structure Generation,"Phylogenetic trees elucidate evolutionary relationships among species, but phylogenetic inference remains challenging due to the complexity of combining continuous (branch lengths) and discrete parameters (tree topology). Traditional Markov Chain Monte Carlo methods face slow convergence and computational burdens. Existing Variational Inference methods, which require pre-generated topologies and typically treat tree structures and branch lengths independently, may overlook critical sequence features, limiting their accuracy and flexibility. We propose PhyloGen, a novel method leveraging a pre-trained genomic language model to generate and optimize phylogenetic trees without dependence on evolutionary models or aligned sequence constraints. PhyloGen views phylogenetic inference as a conditionally constrained tree structure generation problem, jointly optimizing tree topology and branch lengths through three core modules: (i) Feature Extraction, (ii) PhyloTree Construction, and (iii) PhyloTree Structure Modeling. Meanwhile, we introduce a Scoring Function to guide the model towards a more stable gradient descent. We demonstrate the effectiveness and robustness of PhyloGen on eight real-world benchmark datasets. Visualization results confirm PhyloGen provides deeper insights into phylogenetic relationships.",https://neurips.cc//virtual/2024/poster/95863,2024,NeurIPS,No,, PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models,"To parameter-efficiently fine-tune (PEFT) large language models (LLMs), the low-rank adaptation (LoRA) method approximates the model changes $\Delta W \in \mathbb{R}^{m \times n}$ through the product of two matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, where $r \ll \min(m, n)$, $A$ is initialized with Gaussian noise, and $B$ with zeros. LoRA **freezes the original model $W$** and **updates the ""Noise \& Zero"" adapter**, which may lead to slow convergence. To overcome this limitation, we introduce **P**r**i**ncipal **S**ingular values and **S**ingular vectors **A**daptation (PiSSA). PiSSA shares the same architecture as LoRA, but initializes the adaptor matrices $A$ and $B$ with the principal components of the original matrix $W$, and put the remaining components into a residual matrix $W^{res} \in \mathbb{R}^{m \times n}$ which is frozen during fine-tuning.Compared to LoRA, PiSSA **updates the principal components** while **freezing the ""residual"" parts**, allowing faster convergence and enhanced performance. Comparative experiments of PiSSA and LoRA across 11 different models, ranging from 184M to 70B, encompassing 5 NLG and 8 NLU tasks, reveal that PiSSA consistently outperforms LoRA under identical experimental setups. On the GSM8K benchmark, Gemma-7B fine-tuned with PiSSA achieves an accuracy of 77.7\%, surpassing LoRA's 74.53\% by 3.25\%. Due to the same architecture, PiSSA is also compatible with quantization to further reduce the memory requirement of fine-tuning. Compared to QLoRA, QPiSSA (PiSSA with 4-bit quantization) exhibits smaller quantization errors in the initial stages. Fine-tuning LLaMA-3-70B on GSM8K, QPiSSA attains an accuracy of 86.05\%, exceeding the performances of QLoRA at 81.73\%. Leveraging a fast SVD technique, PiSSA can be initialized in only a few seconds, presenting a negligible cost for transitioning from LoRA to PiSSA.",https://neurips.cc//virtual/2024/poster/96517,2024,NeurIPS,No,, "Policy Learning from Tutorial Books via Understanding, Rehearsing and Introspecting","When humans need to learn a new skill, we can acquire knowledge through written books, including textbooks, tutorials, etc. However, current research for decision-making, like reinforcement learning (RL), has primarily required numerous real interactions with the target environment to learn a skill, while failing to utilize the existing knowledge already summarized in the text. The success of Large Language Models (LLMs) sheds light on utilizing such knowledge behind the books. In this paper, we discuss a new policy learning problem called Policy Learning from tutorial Books (PLfB) upon the shoulders of LLMs’ systems, which aims to leverage rich resources such as tutorial books to derive a policy network. Inspired by how humans learn from books, we solve the problem via a three-stage framework: Understanding, Rehearsing, and Introspecting (URI). In particular, it first rehearses decision-making trajectories based on the derived knowledge after understanding the books, then introspects in the imaginary dataset to distill a policy network. We build two benchmarks for PLfB~based on Tic-Tac-Toe and Football games. In experiment, URI's policy achieves at least 44% net win rate against GPT-based agents without any real data; In Football game, which is a complex scenario, URI's policy beat the built-in AIs with a 37% while using GPT-based agent can only achieve a 6\% winning rate. The project page: https://plfb-football.github.io.",https://neurips.cc//virtual/2024/poster/96082,2024,NeurIPS,Yes,Language,Methodological Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning,"Residual networks, as discrete approximations of Ordinary Differential Equations (ODEs), have inspired significant advancements in neural network design, including multistep methods, high-order methods, and multi-particle dynamical systems. The precision of the solution to ODEs significantly affects parameter optimization, thereby impacting model performance. In this work, we present a series of advanced explorations of Transformer architecture design to minimize the error compared to the true ``solution.'' First, we introduce a predictor-corrector learning framework to minimize truncation errors, which consists of a high-order predictor and a multistep corrector. Second, we propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor. Extensive experiments on large-scale machine translation, abstractive summarization, language modeling, and natural language understanding benchmarks demonstrate the superiority of our approach. On the WMT'14 English-German and English-French tasks, our model achieved BLEU scores of 30.95 and 44.27, respectively. Furthermore, on the OPUS multilingual machine translation task, our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters. Notably, it also beats LLama models by 5.7 accuracy points on the LM Harness Evaluation.",https://neurips.cc//virtual/2024/poster/94940,2024,NeurIPS,No,, Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control,"Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs. Such capabilities are difficult to learn solely from task-specific data. This has led to the emergence of pre-trained vision-language models as a tool for transferring representations learned from internet-scale data to downstream tasks and new domains. However, commonly used contrastively trained representations such as in CLIP have been shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene understanding—a capability vital for control. To address this shortcoming, we consider representations from pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts and as such, contain text-conditioned representations that reflect highly fine-grained visuo-spatial information. Using pre-trained text-to-image diffusion models, we construct Stable Control Representations which allow learning downstream control policies that generalize to complex, open-ended environments. We show that policies learned using Stable Control Representations are competitive with state-of-the-art representation learning approaches across a broad range of simulated control settings, encompassing challenging manipulation and navigation tasks. Most notably, we show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.",https://neurips.cc//virtual/2024/poster/95658,2024,NeurIPS,No,, Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs,"Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks.By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs $10 \times$ larger on the rigorous multimodal benchmark MMStar.",https://neurips.cc//virtual/2024/poster/93501,2024,NeurIPS,No,, PrivAuditor: Benchmarking Data Protection Vulnerabilities in LLM Adaptation Techniques,"Large Language Models (LLMs) are recognized for their potential to be an important building block toward achieving artificial general intelligence due to their unprecedented capability for solving diverse tasks. Despite these achievements, LLMs often underperform in domain-specific tasks without training on relevant domain data. This phenomenon, which is often attributed to distribution shifts, makes adapting pre-trained LLMs with domain-specific data crucial. However, this adaptation raises significant privacy concerns, especially when the data involved come from sensitive domains. In this work, we extensively investigate the privacy vulnerabilities of adapted (fine-tuned) LLMs and benchmark privacy leakage across a wide range of data modalities, state-of-the-art privacy attack methods, adaptation techniques, and model architectures. We systematically evaluate and pinpoint critical factors related to privacy leakage. With our organized codebase and actionable insights, we aim to provide a standardized auditing tool for practitioners seeking to deploy customized LLM applications with faithful privacy assessments.",https://neurips.cc//virtual/2024/poster/97662,2024,NeurIPS,No,, ProgressGym: Alignment with a Millennium of Moral Progress,"Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce **progress alignment** as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce [**ProgressGym**](https://github.com/PKU-Alignment/ProgressGym), an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 [historical LLMs](https://huggingface.co/collections/PKU-Alignment/progressgym-666735fcf3e4efa276226eaa), ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present *lifelong* and *extrapolative* algorithms as baseline methods of progress alignment, and build an [open leaderboard](https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard) soliciting novel algorithms and challenges.",https://neurips.cc//virtual/2024/poster/97875,2024,NeurIPS,Yes,Language,Methodological ProtGO: Function-Guided Protein Modeling for Unified Representation Learning,"Protein representation learning is indispensable for various downstream applications of artificial intelligence for bio-medicine research, such as drug design and function prediction. However, achieving effective representation learning for proteins poses challenges due to the diversity of data modalities involved, including sequence, structure, and function annotations. Despite the impressive capabilities of large language models in biomedical text modelling, there remains a pressing need for a framework that seamlessly integrates these diverse modalities, particularly focusing on the three critical aspects of protein information: sequence, structure, and function. Moreover, addressing the inherent data scale differences among these modalities is essential. To tackle these challenges, we introduce ProtGO, a unified model that harnesses a teacher network equipped with a customized graph neural network (GNN) and a Gene Ontology (GO) encoder to learn hybrid embeddings. Notably, our approach eliminates the need for additional functions as input for the student network, which shares the same GNN module. Importantly, we utilize a domain adaptation method to facilitate distribution approximation for guiding the training of the teacher-student framework. This approach leverages distributions learned from latent representations to avoid the alignment of individual samples. Benchmark experiments highlight that ProtGO significantly outperforms state-of-the-art baselines, clearly demonstrating the advantages of the proposed unified framework.",https://neurips.cc//virtual/2024/poster/96904,2024,NeurIPS,No,, RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs,"Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel method called RankRAG, which instruction-tunes a single LLM for both context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG-8B and Llama3-RankRAG-70B significantly outperform Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B, respectively, on nine general knowledge-intensive benchmarks for RAG. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.",https://neurips.cc//virtual/2024/poster/95135,2024,NeurIPS,No,, RedCode: Risky Code Execution and Generation Benchmark for Code Agents,"With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding and software development, safety and security concerns, such as generating or executing malicious code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, an evaluation platform with benchmarks grounded in four key principles: real interaction with systems, holistic evaluation of unsafe code generation and execution, diverse input formats, and high-quality safety scenarios and tests. RedCode consists of two parts to evaluate agents’ safety in unsafe code execution and generation: (1) RedCode-Exec provides challenging code prompts in Python as inputs, aiming to evaluate code agents’ ability to recognize and handle unsafe code. We then map the Python code to other programming languages (e.g., Bash) and natural text summaries or descriptions for evaluation, leading to a total of over 4,000 testing instances. We provide 25 types of critical vulnerabilities spanning various domains, such as websites, file systems, and operating systems. We provide a Docker sandbox environment to evaluate the execution capabilities of code agents and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents’ vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing unsafe operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Unsafe operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen reveal that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are publicly available at https://github.com/AI-secure/RedCode.",https://neurips.cc//virtual/2024/poster/97521,2024,NeurIPS,Yes,Language,Benchmark Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models,"Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting LLMs to downstream tasks. ICL typically constructs a few-shot learning scenario, either manually or by setting up a Retrieval-Augmented Generation (RAG) system, helping models quickly grasp domain knowledge or question-answering patterns without changing model parameters. However, this approach involves trade-offs, such as slower inference speed and increased space occupancy. PEFT assists the model in adapting to tasks through minimal parameter modifications, but the training process still demands high hardware requirements, even with a small number of parameters involved. To address these challenges, we propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning, maintaining low inference costs. RTD constructs a reference datastore from the provided training examples and optimizes the LLM's final vocabulary distribution by flexibly selecting suitable references based on the input, resulting in more trustable responses and enabling the model to adapt to downstream tasks at a low cost. Experimental evaluations on various LLMs using different benchmarks demonstrate that RTD establishes a new paradigm for augmenting models to downstream tasks. Furthermore, our method exhibits strong orthogonality with traditional methods, allowing for concurrent usage. Our code can be found at https://github.com/ShiLuohe/ReferenceTrustableDecoding.",https://neurips.cc//virtual/2024/poster/95245,2024,NeurIPS,No,, ReMI: A Dataset for Reasoning with Multiple Images,"With the continuous advancement of large language models (LLMs), it is essential to create new benchmarks to evaluate their expanding capabilities and identify areas for improvement. This work focuses on multi-image reasoning, an emerging capability in state-of-the-art LLMs. We introduce ReMI, a dataset designed to assess LLMs' ability to reason with multiple images. This dataset encompasses a diverse range of tasks, spanning various reasoning domains such as math, physics, logic, code, table/chart understanding, and spatial and temporal reasoning. It also covers a broad spectrum of characteristics found in multi-image reasoning scenarios. We have benchmarked several cutting-edge LLMs using ReMI and found a substantial gap between their performance and human-level proficiency. This highlights the challenges in multi-image reasoning and the need for further research. Our analysis also reveals the strengths and weaknesses of different models, shedding light on the types of reasoning that are currently attainable and areas where future models require improvement. We anticipate that ReMI will be a valuable resource for developing and evaluating more sophisticated LLMs capable of handling real-world multi-image understanding tasks.",https://neurips.cc//virtual/2024/poster/97828,2024,NeurIPS,Yes,Image, Renovating Names in Open-Vocabulary Segmentation Benchmarks,"Names are essential to both human cognition and vision-language models. Open-vocabulary models utilize class names as text prompts to generalize to categories unseen during training. However, the precision of these names is often overlooked in existing datasets. In this paper, we address this underexplored problem by presenting a framework for ""renovating"" names in open-vocabulary segmentation benchmarks (RENOVATE). Our framework features a renaming model that enhances the quality of names for each visual segment. Through experiments, we demonstrate that our renovated names help train stronger open-vocabulary models with up to 15% relative improvement and significantly enhance training efficiency with improved data quality. We also show that our renovated names improve evaluation by better measuring misclassification and enabling fine-grained model analysis. We provide our code and relabelings for several popular segmentation datasets to the research community on our project page: https://andrehuang.github.io/renovate.",https://neurips.cc//virtual/2024/poster/94935,2024,NeurIPS,No,, RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content,"Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (*e.g.*, Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (*e.g.*, a news article) absent from the internet; (2) a question about the document’s topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.",https://neurips.cc//virtual/2024/poster/97851,2024,NeurIPS,Yes,Language,Benchmark Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference,"As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents; and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives – maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM’s overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality.",https://neurips.cc//virtual/2024/poster/93326,2024,NeurIPS,No,, Revisiting Few-Shot Object Detection with Vision-Language Models,"The era of vision-language models (VLMs) trained on web-scale datasets challenges conventional formulations of “open-world"" perception. In this work, we revisit the task of few-shot object detection (FSOD) in the context of recent foundational VLMs. First, we point out that zero-shot predictions from VLMs such as GroundingDINO significantly outperform state-of-the-art few-shot detectors (48 vs. 33 AP) on COCO. Despite their strong zero-shot performance, such foundation models may still be sub-optimal. For example, trucks on the web may be defined differently from trucks for a target applications such as autonomous vehicle perception. We argue that the task of few-shot recognition can be reformulated as aligning foundation models to target concepts using a few examples. Interestingly, such examples can be multi-modal, using both text and visual cues, mimicking instructions that are often given to human annotators when defining a target concept of interest. Concretely, we propose Foundational FSOD, a new benchmark protocol that evaluates detectors pre-trained on any external data and fine-tuned on multi-modal (text and visual) K-shot examples per target class. We repurpose nuImages for Foundational FSOD, benchmark several popular open-source VLMs, and provide an empirical analysis of state-of-the-art methods. Lastly, we discuss our recent CVPR 2024 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 23.3 mAP!",https://neurips.cc//virtual/2024/poster/97860,2024,NeurIPS,Yes,Multimodal, ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos,"We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events.Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3\% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.",https://neurips.cc//virtual/2024/poster/97852,2024,NeurIPS,Yes,Video, Right this way: Can VLMs Guide Us to See More to Answer Questions?,"In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.",https://neurips.cc//virtual/2024/poster/96477,2024,NeurIPS,Yes,Multimodal, "RoleAgent: Building, Interacting, and Benchmarking High-quality Role-Playing Agents from Scripts","Believable agents can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication. Recently, generative agents have been proposed to simulate believable human behavior by using Large Language Models. However, the existing method heavily relies on human-annotated agent profiles (e.g., name, age, personality, relationships with others, and so on) for the initialization of each agent, which cannot be scaled up easily. In this paper, we propose a scalable RoleAgent framework to generate high-quality role-playing agents from raw scripts, which includes building and interacting stages. Specifically, in the building stage, we use a hierarchical memory system to extract and summarize the structure and high-level information of each agent for the raw script. In the interacting stage, we propose a novel innovative mechanism with four steps to achieve a high-quality interaction between agents. Finally, we introduce a systematic and comprehensive evaluation benchmark called RoleAgentBench to evaluate the effectiveness of our RoleAgent, which includes 100 and 28 roles for 20 English and 5 Chinese scripts, respectively. Extensive experimental results on RoleAgentBench demonstrate the effectiveness of RoleAgent.",https://neurips.cc//virtual/2024/poster/97569,2024,NeurIPS,Yes,Language,Methodological RWKU: Benchmarking Real-World Knowledge Unlearning for Large Language Models,"Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus; therefore, it is crucial to erase this knowledge from the models. Machine unlearning is a promising solution for efficiently removing specific knowledge by post hoc modifying models. In this paper, we propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning. RWKU is designed based on the following three key factors: (1) For the task setting, we consider a more practical and challenging unlearning setting, where neither the forget corpus nor the retain corpus is accessible. (2) For the knowledge source, we choose 200 real-world famous people as the unlearning targets and show that such popular knowledge is widely present in various LLMs. (3) For the evaluation framework, we design the forget set and the retain set to evaluate the model’s capabilities across various real-world applications. Regarding the forget set, we provide four four membership inference attack (MIA) methods and nine kinds of adversarial attack probes to rigorously test unlearning efficacy. Regarding the retain set, we assess locality and utility in terms of neighbor perturbation, general ability, reasoning ability, truthfulness, factuality, and fluency. We conduct extensive experiments across two unlearning scenarios, two models and six baseline methods and obtain some meaningful findings. We release our benchmark and code publicly at http://rwku-bench.github.io for future work.",https://neurips.cc//virtual/2024/poster/97449,2024,NeurIPS,Yes,Language,Benchmark SafeWorld: Geo-Diverse Safety Alignment,"In the rapidly evolving field of Large Language Models (LLMs), ensuring safety is a crucial and widely discussed topic. However, existing works often overlooks the geo-diversity of cultural and legal standards across the world. To reveal the chal5 lenges posed by geo-diverse safety standards, we introduce SafeWorld, a novel benchmark specifically designed to evaluate LLMs’ ability to generate responses that are not only helpful but also culturally sensitive and legally compliant across diverse global contexts. SafeWorld encompasses 2,775 test user queries, each grounded in high-quality, human-verified cultural norms and legal policies from 50 countries and 493 regions/races. On top of it, we propose a multi-dimensional automatic safety evaluation framework that assesses the contextual appropriateness, accuracy, and comprehensiveness of responses. Our evaluations reveal that current LLMs struggle to meet these criteria effectively. To enhance LLMs’ alignment with geo-diverse safety standards, we synthesize helpful preference pairs for Direct Preference Optimization (DPO) alignment. The preference pair construction aims to encourage LLMs to behave appropriately and provide precise references to relevant cultural norms and policies when necessary. Our trained SafeWorldLM outperforms all competing models, including GPT-4o on all the three evaluation dimensions by a large margin. Global human evaluators also note a nearly 20% higher winning rate in helpfulness and harmfulness evaluation.",https://neurips.cc//virtual/2024/poster/94887,2024,NeurIPS,Yes,Language,Benchmark Scene Graph Generation with Role-Playing Large Language Models,"Current approaches for open-vocabulary scene graph generation (OVSGG) use vision-language models such as CLIP and follow a standard zero-shot pipeline – computing similarity between the query image and the text embeddings for each category (i.e., text classifiers). In this work, we argue that the text classifiers adopted by existing OVSGG methods, i.e., category-/part-level prompts, are scene-agnostic as they remain unchanged across contexts. Using such fixed text classifiers not only struggles to model visual relations with high variance, but also falls short in adapting to distinct contexts. To plug these intrinsic shortcomings, we devise SDSGG, a scene-specific description based OVSGG framework where the weights of text classifiers are adaptively adjusted according to the visual content. In particular, to generate comprehensive and diverse descriptions oriented to the scene, an LLM is asked to play different roles (e.g., biologist and engineer) to analyze and discuss the descriptive features of a given scene from different views. Unlike previous efforts simply treating the generated descriptions as mutually equivalent text classifiers, SDSGG is equipped with an advanced renormalization mechanism to adjust the influence of each text classifier based on its relevance to the presented scene (this is what the term “specific” means). Furthermore, to capture the complicated interplay between subjects and objects, we propose a new lightweight module called mutual visual adapter. It refines CLIP’s ability to recognize relations by learning an interaction-aware semantic space. Extensive experiments on prevalent benchmarks show that SDSGG significantly outperforms top-leading methods.",https://neurips.cc//virtual/2024/poster/93060,2024,NeurIPS,No,, SciCode: A Research Coding Benchmark Curated by Scientists,"Since language models (LMs) now outperform average humans on many challenging tasks, it is becoming increasingly difficult to develop challenging, high-quality, and realistic evaluations. We address this by examining LM capabilities to generate code for solving real scientific research problems. Incorporating input from scientists and AI researchers in 16 diverse natural science sub-fields, including mathematics, physics, chemistry, biology, and materials science, we create a scientist-curated coding benchmark, SciCode. The problems naturally factorize into multiple subproblems, each involving knowledge recall, reasoning, and code synthesis. In total, SciCode contains 338 subproblems decomposed from 80 challenging main problems, and it offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. OpenAI o1-preview, the best-performing model among those tested, can solve only 7.7\% of the problems in the most realistic setting. We believe that SciCode demonstrates both contemporary LMs' progress towards realizing helpful scientific assistants and sheds light on the building and evaluation of scientific AI in the future.",https://neurips.cc//virtual/2024/poster/97822,2024,NeurIPS,Yes,Language,Benchmark SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words,"Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information.This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction.Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech.Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses.We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation.To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation.SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound.To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a process similar to that of SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses.Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures.Moreover, experiments demonstrate that LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics.We open-source SD-Eval at https://github.com/amphionspace/SD-Eval.",https://neurips.cc//virtual/2024/poster/97707,2024,NeurIPS,Yes,Audio, Search for Efficient Large Language Models,"Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs.However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs.In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration.Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data.Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks.Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.",https://neurips.cc//virtual/2024/poster/93789,2024,NeurIPS,No,, Seeing the Image: Prioritizing Visual Correlation by Contrastive Alignment,"Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner. Despite being simple and effective, this method results in sub-optimal cross-modal alignment by over-emphasizing the text tokens that are less correlated with or even contradictory with the input images. In this paper, we advocate for distinct contributions for each text token based on its visual correlation. Specifically, we present by contrasting image inputs, the difference in prediction logits on each text token provides strong guidance of visual correlation. We therefore introduce Contrastive Alignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens. Our experimental results demonstrate that CAL consistently improves different types of VLMs across different resolutions and model sizes on various benchmark datasets. Importantly, our method incurs minimal additional computational overhead, rendering it highly efficient compared to alternative data scaling strategies.",https://neurips.cc//virtual/2024/poster/95404,2024,NeurIPS,No,, Selective Attention: Enhancing Transformer through Principled Context Control,"The attention mechanism within the transformer architecture enables the model to weigh and combine tokens based on their relevance to the query. While self-attention has enjoyed major success, it notably treats all queries $q$ in the same way by applying the mapping $V^\top\text{softmax}(Kq)$, where $V,K$ are the value and key embeddings respectively. In this work, we argue that this uniform treatment hinders the ability to control contextual sparsity and relevance. As a solution, we introduce the Selective Self-Attention (SSA) layer that augments the softmax nonlinearity with a principled temperature scaling strategy. By controlling temperature, SSA adapts the contextual sparsity of the attention map to the query embedding and its position in the context window. Through theory and experiments, we demonstrate that this alleviates attention dilution, aids the optimization process, and enhances the model's ability to control softmax spikiness of individual queries. We also incorporate temperature scaling for value embeddings and show that it boosts the model's ability to suppress irrelevant/noisy tokens. Notably, SSA is a lightweight method which introduces less than 0.5\% new parameters through a weight-sharing strategy and can be fine-tuned on existing LLMs. Extensive empirical evaluations demonstrate that SSA-equipped models achieve a noticeable and consistent accuracy improvement on language modeling benchmarks.",https://neurips.cc//virtual/2024/poster/95224,2024,NeurIPS,No,, SelfCodeAlign: Self-Alignment for Code Generation,"Instruction tuning is a supervised fine-tuning approach that significantly improves the ability of large language models (LLMs) to follow human instructions. For programming tasks, most models are finetuned with costly human-annotated instruction-response pairs or those generated by large, proprietary LLMs, which may not be permitted. We propose SelfCodeAlign, the first fully transparent and permissive pipeline for self-aligning code LLMs without extensive human annotations or distillation. SelfCodeAlign employs the same base model for inference throughout the data generation process. It first extracts diverse coding concepts from high-quality seed snippets to generate new tasks. It then samples multiple responses per task, pairs each with test cases, and validates them in a sandbox environment. Finally, passing examples are selected for instruction tuning. In our primary experiments, we use SelfCodeAlign with CodeQwen1.5-7B to generate a dataset of 74k instruction-response pairs. Finetuning on this dataset leads to a model that achieves a 67.1 pass@1 on HumanEval+, surpassing CodeLlama-70B-Instruct despite being ten times smaller. Across all benchmarks, this finetuned model consistently outperforms the original version trained with OctoPack, the previous state-of-the-art method for instruction tuning without human annotations or distillation. Additionally, we show that SelfCodeAlign is effective across LLMs of various sizes, from 3B to 33B, and that the base models can benefit more from alignment with their own data distribution. We further validate each component’s effectiveness in our pipeline, showing that SelfCodeAlign outperforms both direct distillation from GPT-4o and leading GPT-3.5-based distillation methods, such as OSS-Instruct and Evol-Instruct. SelfCodeAlign has also led to the creation of StarCoder2-Instruct, the first fully transparent, permissively licensed, and self-aligned code LLM that achieves state-of-the-art coding performance. Overall, SelfCodeAlign shows for the first time that a strong instruction-tuned code LLM can result from self-alignment rather than distillation.",https://neurips.cc//virtual/2024/poster/93079,2024,NeurIPS,No,, SELF-DISCOVER: Large Language Models Self-Compose Reasoning Structures,"We introduce SELF-DISCOVER, a general framework for LLMs to self-discover the task-intrinsic reasoning structures to tackle complex reasoning problems that are challenging for typical prompting methods. Core to the framework is a self-discovery process where LLMs select multiple atomic reasoning modules such as critical thinking and step-by-step thinking, and compose them into an explicit reasoning structure for LLMs to follow during decoding. SELF-DISCOVER substantially improves GPT-4 and PaLM 2’s performance on challenging reasoning benchmarks such as BigBench-Hard, grounded agent reasoning, and MATH, by as much as 32% compared to Chain of Thought (CoT). Furthermore, SELF-DISCOVER outperforms inference-intensive methods such as CoT-Self-Consistency by more than 20%, while requiring 10-40x fewer inference compute. Finally, we show that the self-discovered reasoning structures are universally applicable across model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share commonalities with human reasoning patterns.",https://neurips.cc//virtual/2024/poster/96192,2024,NeurIPS,No,, Self-playing Adversarial Language Game Enhances LLM Reasoning,"We explore the potential of self-play training for large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate around a target word only visible to the attacker. The attacker aims to induce the defender to speak the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players must have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Playing this Adversarial language Game (SPAG). With this goal, we select several open-source LLMs and let each act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performances uniformly improve on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLMs' reasoning abilities. The code is available at https://github.com/Linear95/SPAG.",https://neurips.cc//virtual/2024/poster/93638,2024,NeurIPS,No,, SELMA: Learning and Merging Skill-Specific Text-to-Image Experts with Auto-Generated Data,"Recent text-to-image (T2I) generation models have demonstrated impressive capabilities in creating images from text descriptions. However, these T2I generation models often fail to generate images that precisely match the details of the text inputs, such as incorrect spatial relationship or missing objects. In this paper, we introduce SELMA: Skill-Specific Expert Learning and Merging with Auto-Generated Data, a novel paradigm to improve the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets, with skill-specific expert learning and merging. First, SELMA leverages an LLM’s in-context learning capability to generate multiple datasets of text prompts that can teach different skills, and then generates the images with a T2I model based on the prompts. Next, SELMA adapts the T2I model to the new skills by learning multiple single-skill LoRA (low-rank adaptation) experts followed by expert merging. Our independent expert fine-tuning specializes multiple models for different skills, and expert merging helps build a joint multi-skill T2I model that can generate faithful images given diverse text prompts, while mitigating the knowledge conflict from different datasets. We empirically demonstrate that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks (+2.1% on TIFA and +6.9% on DSG), human preference metrics (PickScore, ImageReward, and HPS), as well as human evaluation. Moreover, fine-tuning with image-text pairs auto-collected via SELMA shows comparable performance to fine-tuning with ground truth data. Lastly, we show that fine-tuning with images from a weaker T2I model can help improve the generation quality of a stronger T2I model, suggesting promising weak-to-strong generalization in T2I models. We provide code in the supplementary materials.",https://neurips.cc//virtual/2024/poster/93356,2024,NeurIPS,No,, Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space,"With the widespread application of Large Language Models (LLMs) to various domains, concerns regarding the trustworthiness of LLMs in safety-critical scenarios have been raised, due to their unpredictable tendency to hallucinate and generate misinformation. Existing LLMs do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates, making it difficult to evaluate trustworthiness. Although several studies aim to develop uncertainty quantification methods for LLMs, they have fundamental limitations, such as being restricted to classification tasks, requiring additional training and data, considering only lexical instead of semantic information, and being prompt-wise but not response-wise. A new framework is proposed in this paper to address these issues. Semantic density extracts uncertainty/confidence information for each response from a probability distribution perspective in semantic space. It has no restriction on task types and is ""off-the-shelf"" for new models and tasks. Experiments on seven state-of-the-art LLMs, including the latest Llama 3 and Mixtral-8x22B models, on four free-form question-answering benchmarks demonstrate the superior performance and robustness of semantic density compared to prior approaches.",https://neurips.cc//virtual/2024/poster/95598,2024,NeurIPS,No,, SETLEXSEM CHALLENGE: Using Set Operations to Evaluate the Lexical and Semantic Robustness of Language Models,"Set theory is foundational to mathematics and, when sets are finite, to reasoning about the world. An intelligent system should perform set operations consistently, regardless of superficial variations in the operands. Initially designed for semantically-oriented NLP tasks, large language models (LLMs) are now being evaluated on algorithmic tasks. Because sets are comprised of arbitrary symbols (e.g. numbers, words), they provide an opportunity to test, systematically, the invariance of LLMs’ algorithmic abilities under simple lexical or semantic variations. To this end, we present the SETLEXSEM CHALLENGE, a synthetic benchmark that evaluates the performance of LLMs on set operations. SETLEXSEM assesses the robustness of LLMs’ instruction-following abilities under various conditions, focusing on the set operations and the nature and construction of the set members. Evaluating seven LLMs with SETLEXSEM, we find that they exhibit poor robust- ness to variation in both operation and operands. We show – via the framework’s systematic sampling of set members along lexical and semantic dimensions – that LLMs are not only not robust to variation along these dimensions but demonstrate unique failure modes in particular, easy-to-create semantic groupings of ""deceptive"" sets. We find that rigorously measuring language model robustness to variation in frequency and length is challenging and present an analysis that measures them in- dependently. The code for reproducing the results of this paper, and for generating the SETLEXSEM CHALLENGE dataset, is available https://github.com/amazon-science/SetLexSem-Challenge.",https://neurips.cc//virtual/2024/poster/97730,2024,NeurIPS,Yes,Language,Benchmark SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types,"Ensuring the safety of large language model (LLM) applications is essential for developing trustworthy artificial intelligence. Current LLM safety benchmarks have two limitations. First, they focus solely on either discriminative or generative evaluation paradigms while ignoring their interconnection. Second, they rely on standardized inputs, overlooking the effects of widespread prompting techniques, such as system prompts, few-shot demonstrations, and chain-of-thought prompting. To overcome these issues, we developed SG-Bench, a novel benchmark to assess the generalization of LLM safety across various tasks and prompt types. This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety. Our assessment of 3 advanced proprietary LLMs and 10 open-source LLMs with the benchmark reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment. We also explain these findings quantitatively and qualitatively to provide insights for future research.",https://neurips.cc//virtual/2024/poster/97610,2024,NeurIPS,Yes,Language,Benchmark SGLang: Efficient Execution of Structured Language Model Programs,"Large language models (LLMs) are increasingly used for complex tasks that require multiple generation calls, advanced prompting techniques, control flow, and structured inputs/outputs. However, efficient systems are lacking for programming and executing these applications. We introduce SGLang, a system for efficient execution of complex language model programs. SGLang consists of a frontend language and a runtime. The frontend simplifies programming with primitives for generation and parallelism control. The runtime accelerates execution with novel optimizations like RadixAttention for KV cache reuse and compressed finite state machines for faster structured output decoding. Experiments show that SGLang achieves up to $6.4\times$ higher throughput compared to state-of-the-art inference systems on various large language and multi-modal models on tasks including agent control, logical reasoning, few-shot learning benchmarks, JSON decoding, retrieval-augmented generation pipelines, and multi-turn chat. The code is publicly available at https://github.com/sgl-project/sglang.",https://neurips.cc//virtual/2024/poster/94872,2024,NeurIPS,No,, SG-Nav: Online 3D Scene Graph Prompting for LLM-based Zero-shot Object Navigation,"In this paper, we propose a new framework for zero-shot object navigation.Existing zero-shot object navigation methods prompt LLM with the text of spatially closed objects, which lacks enough scene context for in-depth reasoning.To better preserve the information of environment and fully exploit the reasoning ability of LLM, we propose to represent the observed scene with 3D scene graph. The scene graph encodes the relationships between objects, groups and rooms with a LLM-friendly structure, for which we design a hierarchical chain-of-thought prompt to help LLM reason the goal location according to scene context by traversing the nodes and edges.Moreover, benefit from the scene graph representation, we further design a re-perception mechanism to empower the object navigation framework with the ability to correct perception error.We conduct extensive experiments on MP3D, HM3D and RoboTHOR environments, where SG-Nav surpasses previous state-of-the-art zero-shot methods by more than \textbf{10\%} SR on all benchmarks, while the decision process is explainable. To the best of our knowledge, SG-Nav is the first zero-shot method that achieves even higher performance than supervised object navigation methods on the challenging MP3D benchmark.Code of this project will be released in the final version.",https://neurips.cc//virtual/2024/poster/95803,2024,NeurIPS,No,, shapiq: Shapley Interactions for Machine Learning,"Originally rooted in game theory, the Shapley Value (SV) has recently become an important tool in machine learning research. Perhaps most notably, it is used for feature attribution and data valuation in explainable artificial intelligence. Shapley Interactions (SIs) naturally extend the SV and address its limitations by assigning joint contributions to groups of entities, which enhance understanding of black box machine learning models. Due to the exponential complexity of computing SVs and SIs, various methods have been proposed that exploit structural assumptions or yield probabilistic estimates given limited resources. In this work, we introduce shapiq, an open-source Python package that unifies state-of-the-art algorithms to efficiently compute SVs and any-order SIs in an application-agnostic framework. Moreover, it includes a benchmarking suite containing 11 machine learning applications of SIs with pre-computed games and ground-truth values to systematically assess computational performance across domains. For practitioners, shapiq is able to explain and visualize any-order feature interactions in predictions of models, including vision transformers, language models, as well as XGBoost and LightGBM with TreeSHAP-IQ. With shapiq, we extend shap beyond feature attributions and consolidate the application of SVs and SIs in machine learning that facilitates future research. The source code and documentation are available at https://github.com/mmschlk/shapiq.",https://neurips.cc//virtual/2024/poster/97533,2024,NeurIPS,No,, ShareGPT4Video: Improving Video Understanding and Generation with Better Captions,"We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos. We annotated 4.8M aesthetically appealing videos by it and verified their effectiveness on a 10-second text2video generation task. For video understanding, we verified the effectiveness of ShareGPT4Video on several current LVLM architectures and presented our superb new LVLM ShareGPT4Video-8B. All the models, strategies, and annotations will be open-sourced and we hope this project can serve as a pivotal resource for advancing both the LVLMs and T2VMs community.",https://neurips.cc//virtual/2024/poster/97789,2024,NeurIPS,No,, Shopping MMLU: A Massive Multi-Task Online Shopping Benchmark for Large Language Models,"Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shoppping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we are hosting a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.",https://neurips.cc//virtual/2024/poster/97808,2024,NeurIPS,Yes,Language,Benchmark Should We Really Edit Language Models? On the Evaluation of Edited Language Models,"Model editing has become an increasingly popular alternative for efficiently updating knowledge within language models. Current methods mainly focus on reliability, generalization, and locality, with many methods excelling across these criteria. Some recent works disclose the pitfalls of these editing methods such as knowledge distortion or conflict. However, the general abilities of post-edited language models remain unexplored. In this paper, we perform a comprehensive evaluation on various editing methods and different language models, and have following findings.(1) Existing editing methods lead to inevitable performance deterioration on general benchmarks, indicating that existing editing methods maintain the general abilities of the model within only a few dozen edits.When the number of edits is slightly large, the intrinsic knowledge structure of the model is disrupted or even completely damaged. (2) Instruction-tuned models are more robust to editing, showing less performance drop on general knowledge after editing. (3) Language model with large scale is more resistant to editing compared to small model.(4) The safety of the edited model, is significantly weakened, even for those safety-aligned models.Our findings indicate that current editing methods are only suitable for small-scale knowledge updates within language models, which motivates further research on more practical and reliable editing methods.",https://neurips.cc//virtual/2024/poster/93785,2024,NeurIPS,No,, Simple and Effective Masked Diffusion Language Models,"While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling.In this work, we show that simple masked discrete diffusion is more performant than previously thought.We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements.Our objective has a simple form—it is a mixture of classical masked language modeling losses—and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model.On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We provide the code, along with a blog post and video tutorial on the project page: https://s-sahoo.com/mdlm",https://neurips.cc//virtual/2024/poster/95622,2024,NeurIPS,No,, Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models,"Machine unlearning (MU) empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Joint training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.",https://neurips.cc//virtual/2024/poster/94704,2024,NeurIPS,Yes,Image, SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models,"Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales (from 2B to 70B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks, including multi-choice, open-generation, and adaptations to chain-of-thought reasoning tasks. The results demonstrate that SLED consistently improves factual accuracy by up to 20\% compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.",https://neurips.cc//virtual/2024/poster/93358,2024,NeurIPS,No,, SlimGPT: Layer-wise Structured Pruning for Large Language Models,"Large language models (LLMs) have garnered significant attention for their remarkable capabilities across various domains, whose vast parameter scales present challenges for practical deployment. Structured pruning is an effective method to balance model performance with efficiency, but performance restoration under computational resource constraints is a principal challenge in pruning LLMs. Therefore, we present a low-cost and fast structured pruning method for LLMs named SlimGPT based on the Optimal Brain Surgeon framework. We propose Batched Greedy Pruning for rapid and near-optimal pruning, which enhances the accuracy of head-wise pruning error estimation through grouped Cholesky decomposition and improves the pruning efficiency of FFN via Dynamic Group Size, thereby achieving approximate local optimal pruning results within one hour. Besides, we explore the limitations of layer-wise pruning from the perspective of error accumulation and propose Incremental Pruning Ratio, a non-uniform pruning strategy to reduce performance degradation. Experimental results on the LLaMA benchmark show that SlimGPT outperforms other methods and achieves state-of-the-art results.",https://neurips.cc//virtual/2024/poster/95477,2024,NeurIPS,No,, SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM,"Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.",https://neurips.cc//virtual/2024/poster/95976,2024,NeurIPS,Yes,Video, SM3-Text-to-Query: Synthetic Multi-Model Medical Text-to-Query Benchmark,"Electronic health records (EHRs) are stored in various database systems with different database models on heterogeneous storage architectures, such as relational databases, document stores, or graph databases. These different database models have a big impact on query complexity and performance. While this has been a known fact in database research, its implications for the growing number of Text-to-Query systems have surprisingly not been investigated so far.In this paper, we present SM3-Text-to-Query, the first multi-model medical Text-to-Query benchmark based on synthetic patient data from Synthea, following the SNOMED-CT taxonomy---a widely used knowledge graph ontology covering medical terminology. SM3-Text-to-Query provides data representations for relational databases (PostgreSQL), document stores (MongoDB), and graph databases (Neo4j and GraphDB (RDF)), allowing the evaluation across four popular query languages, namely SQL, MQL, Cypher, and SPARQL.We systematically and manually develop 408 template questions, which we augment to construct a benchmark of 10K diverse natural language question/query pairs for these four query languages (40K pairs overall). On our dataset, we evaluate several common in-context-learning (ICL) approaches for a set of representative closed and open-source LLMs.Our evaluation sheds light on the trade-offs between database models and query languages for different ICL strategies and LLMs. Last,SM3-Text-to-Query is easily extendable to additional query languages or real, standard-based patient databases.",https://neurips.cc//virtual/2024/poster/97708,2024,NeurIPS,Yes,Language,Benchmark SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models,"Despite the effectiveness of data selection for pretraining and instruction fine-tuninglarge language models (LLMs), improving data efficiency in supervised fine-tuning(SFT) for specialized domains poses significant challenges due to the complexityof fine-tuning data. To bridge this gap, we introduce an effective and scalabledata selection method for SFT, SmallToLarge (S2L), which trains a smallmodel, clusters loss trajectories of the examples, and samples from these clusters toguide data selection for larger models. We prove that during fine-tuning, sampleswithin the same loss trajectory cluster exhibit similar gradients. Then, we showthat S2L subsets have a bounded gradient error w.r.t. the full data, hence guaranteeconvergence to the neighborhood of the optimal solution. We demonstrate throughextensive experiments that S2L significantly improves data efficiency in SFT formathematical problem-solving, reducing the training data requirement to just $11$%of the original MathInstruct dataset to match full dataset performance whileoutperforming state-of-the-art data selection algorithms by an average of $4.7$%across $6$ in- and out-domain evaluation datasets. Remarkably, selecting only 50Kdata for SFT, S2L achieves a $32.7$% accuracy on the challenging MATHbenchmark, improving Phi-2 by $16.6$%. In clinical text summarization on theMIMIC-III dataset, S2L again outperforms training on the full dataset usingonly $50$% of the data. Notably, S2L can perform scalable data selection using areference model $100\times$ smaller than the target model, proportionally reducing thecomputational cost.",https://neurips.cc//virtual/2024/poster/95679,2024,NeurIPS,No,, SpatialRGPT: Grounded Spatial Reasoning in Vision-Language Models,"Vision Language Models (VLMs) have demonstrated remarkable performance in 2D vision and language tasks. However, their ability to reason about spatial arrangements remains limited. In this work, we introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs’ spatial perception and reasoning capabilities. SpatialRGPT advances VLMs’ spatial understanding through two key innovations: (i) a data curation pipeline that enables effective learning of regional representation from 3D scene graphs, and (ii) a flexible ``plugin'' module for integrating depth information into the visual encoder of existing VLMs. During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances. Additionally, we propose SpatialRGBT-Bench, a benchmark with ground-truth 3D annotations encompassing indoor, outdoor, and simulated environments, for evaluating 3D spatial cognition in Vision-Language Models (VLMs). Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts. The model also exhibits strong generalization capabilities, effectively reasoning about complex spatial relations and functioning as a region-aware dense reward annotator for robotic tasks. Code, dataset, and benchmark are released at https://www.anjiecheng.me/SpatialRGPT.",https://neurips.cc//virtual/2024/poster/95720,2024,NeurIPS,Yes,Multimodal, Spectral Editing of Activations for Large Language Model Alignment,"Large language models (LLMs) often exhibit undesirable behaviours, such as generating untruthful or biased content. Editing their internal representations has been shown to be effective in mitigating such behaviours on top of the existing alignment methods. We propose a novel inference-time editing method, namely spectral editing of activations (SEA), to project the input representations into directions with maximal covariance with the positive demonstrations (e.g., truthful) while minimising covariance with the negative demonstrations (e.g., hallucinated). We also extend our method to non-linear editing using feature functions. We run extensive experiments on benchmarks concerning truthfulness and bias with six open-source LLMs of different sizes and model families. The results demonstrate the superiority of SEA in effectiveness, generalisation to similar tasks, as well as computation and data efficiency. We also show that SEA editing only has a limited negative impact on other model capabilities.",https://neurips.cc//virtual/2024/poster/93529,2024,NeurIPS,No,, Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?,"Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.",https://neurips.cc//virtual/2024/poster/97692,2024,NeurIPS,Yes,Multimodal, SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation,"We introduce SpreadsheetBench, a challenging spreadsheet manipulation benchmark exclusively derived from real-world scenarios, designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users. Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums, which reflect the intricate needs of users. The associated spreadsheets from the forums contain a variety of tabular data such as multiple tables, non-standard relational tables, and abundant non-textual elements. Furthermore, we propose a more reliable evaluation metric akin to online judge platforms, where multiple spreadsheet files are created as test cases for each instruction, ensuring the evaluation of robust solutions capable of handling spreadsheets with varying values.Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance, highlighting the benchmark's difficulty.",https://neurips.cc//virtual/2024/poster/97753,2024,NeurIPS,Yes,Language,Benchmark StackEval: Benchmarking LLMs in Coding Assistance,"We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval.",https://neurips.cc//virtual/2024/poster/97856,2024,NeurIPS,Yes,Language,Benchmark Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training,"LLMs are computationally expensive to pre-train due to their large scale.Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored.This work identifies three critical $\underline{\textit{O}}$bstacles: ($\textit{O}$1) lack of comprehensive evaluation, ($\textit{O}$2) untested viability for scaling, and ($\textit{O}$3) lack of empirical guidelines.To tackle $\textit{O}$1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting.Our findings reveal that a depthwise stacking operator, called $G_{\text{stack}}$, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into $G_{\text{stack}}$ to address $\textit{O}$2 and $\textit{O}$3.For $\textit{O}$2 (untested scalability), our study shows that $G_{\text{stack}}$ is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens.For example, compared to a conventionally trained 7B model using 300B tokens, our $G_{\text{stack}}$ model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address $\textit{O}$3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for $G_{\text{stack}}$, making it practical in general LLM pre-training.We also provide in-depth discussions and comprehensive ablation studies of $G_{\text{stack}}$. Our code and pre-trained model are available at https://llm-stacking.github.io/.",https://neurips.cc//virtual/2024/poster/95968,2024,NeurIPS,No,, Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning,"The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12\% and notable gains in specific metrics, such as a 40\% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset. Codes will be released soon.",https://neurips.cc//virtual/2024/poster/93952,2024,NeurIPS,No,, STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases,"Answering real-world complex queries, such as complex product search, often requires accurate retrieval from semi-structured knowledge bases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, many previous works studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine. We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties, together with their ground-truth answers (items). We conduct rigorous human evaluation to validate the quality of our synthesized queries. We further enhance the benchmark with high-quality human-generated queries to provide an authentic reference. STARK serves as a comprehensive testbed for evaluating the performance of retrieval systems driven by large language models (LLMs). Our experiments suggest that STARK presents significant challenges to the current retrieval and LLM systems, highlighting the need for more capable semi-structured retrieval systems.",https://neurips.cc//virtual/2024/poster/97698,2024,NeurIPS,Yes,Language,Benchmark StreamBench: Towards Benchmarking Continuous Improvement of Language Agents,"Recent works have shown that large language model (LLM) agents are able to improve themselves from experience, which is an important ability for continuous enhancement post-deployment. However, existing benchmarks primarily evaluate their innate capabilities and do not assess their ability to improve over time. To address this gap, we introduce StreamBench, a pioneering benchmark designed to evaluate the continuous improvement of LLM agents over an input-feedback sequence. StreamBench simulates an online learning environment where LLMs receive a continuous flow of feedback stream and iteratively enhance their performance. In addition, we propose several simple yet effective baselines for improving LLMs on StreamBench, and provide a comprehensive analysis to identify critical components that contribute to successful streaming strategies. Our work serves as a stepping stone towards developing effective online learning strategies for LLMs, paving the way for more adaptive AI systems in streaming scenarios.",https://neurips.cc//virtual/2024/poster/97831,2024,NeurIPS,Yes,Language,Benchmark Streaming Long Video Understanding with Large Language Models,"This paper presents VideoStreaming, an advanced vision-language large model (VLLM) for video understanding, that capably understands arbitrary-length video with a constant number of video tokens streamingly encoded and adaptively selected.The challenge of video understanding in the vision language area mainly lies in the significant computational burden caused by the great number of tokens extracted from long videos. Previous works rely on sparse sampling or frame compression to reduce tokens. However, such approaches either disregard temporal information in a long time span or sacrifice spatial details, resulting in flawed compression. To address these limitations, our VideoStreaming has two core designs: Memory-Propagated Streaming Encoding and Adaptive Memory Selection. The Memory-Propagated Streaming Encoding architecture segments long videos into short clips and sequentially encodes each clip with a propagated memory. In each iteration, we utilize the encoded results of the preceding clip as historical memory, which is integrated with the current clip to distill a condensed representation that encapsulates the video content up to the current timestamp. This method not only incorporates long-term temporal dynamics into the streaming encoding process but also yields a fixed-length memory as a global representation for arbitrarily long videos. After the encoding process, the Adaptive Memory Selection strategy selects a constant number of question-related memories from all the historical memories, and feeds them into the LLM to generate informative responses. The question-related selection reduces redundancy within the memories, enabling efficient and precise video understanding. Meanwhile, the disentangled video extraction and reasoning design allows the LLM to answer different questions about a video by directly selecting corresponding memories, without the need to encode the whole video for each question. Through extensive experiments, our model achieves superior performance and higher efficiency on long video benchmarks, showcasing precise temporal comprehension for detailed question answering.",https://neurips.cc//virtual/2024/poster/94520,2024,NeurIPS,No,, Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack,"We introduce Lifelong ICL, a problem setting that challenges long-context language models (LMs) to learn a sequence of language tasks through in-context learning (ICL). We further introduce Task Haystack, an evaluation suite dedicated to assessing and diagnosing how long-context LMs utilizes contexts in Lifelong ICL. When given a task instruction and test inputs, long-context LMs are expectedto leverage the relevant demonstrations in the Lifelong ICL prompt, avoid distraction and interference from other tasks, and achieve test accuracies that are not significantly worse than those of the Single-task ICL baseline.Task Haystack draws inspiration from the widely-adopted “needle-in-a-haystack” (NIAH) evaluation, but presents distinct new challenges. It requires models (1) to utilize the contexts at a deeper level, rather than resorting to simple copying and pasting; (2) to navigate through long streams of evolving topics and tasks, proxying the complexities and dynamism of contexts in real-world scenarios. Additionally, Task Haystack inherits the controllability of NIAH, providing model developers with tools and visualizations to identify model vulnerabilities effectively.We benchmark 14 long-context LMs using Task Haystack, finding that frontier models like GPT-4o still struggle with the setting, failing on 15% of cases on average. Most open-weight models further lack behind by a large margin, with failure rates reaching up to 61%. In our controlled analysis, we identify factors such as distraction and recency bias as contributors to these failure cases. Further, performance declines when task instructions are paraphrased at test time or when ICL demonstrations are repeated excessively, raising concerns about the robustness, instruction understanding, and true context utilization of long-context LMs. We release our code and data to encourage future research that investigates and addresses these limitations.",https://neurips.cc//virtual/2024/poster/97545,2024,NeurIPS,Yes,Language,Benchmark SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations,"Despite their remarkable successes, state-of-the-art large language models (LLMs), including vision-and-language models (VLMs) and unimodal language models (ULMs), fail to understand precise semantics. For example, semantically equivalent sentences expressed using different lexical compositions elicit diverging representations. The degree of this divergence and its impact on encoded semantics is not very well understood. In this paper, we introduce the SUGARCREPE++ dataset to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations. Each sample in SUGARCREPE++ dataset consists of an image and a corresponding triplet of captions: a pair of semantically equivalent but lexically different positive captions and one hard negative caption. This poses a 3-way semantic (in)equivalence problem to the language models. We comprehensively evaluate VLMs and ULMs that differ in architecture, pre-training objectives and datasets to benchmark the performance of SUGARCREPE++ dataset. Experimental results highlight the difficulties of VLMs in distinguishing between lexical and semantic variations, particularly to object attributes and spatial relations. Although VLMs with larger pre-training datasets, model sizes, and multiple pre-training objectives achieve better performance on SUGARCREPE++, there is a significant opportunity for improvement. We demonstrate that models excelling on compositionality datasets may not perform equally well on SUGARCREPE++. This indicates that compositionality alone might not be sufficient to fully understand semantic and lexical alterations. Given the importance of the property that the SUGARCREPE++ dataset targets, it serves as a new challenge to the vision-and-language community. Data and code is available at https://github.com/Sri-Harsha/scpp.",https://neurips.cc//virtual/2024/poster/97833,2024,NeurIPS,Yes,Multimodal, Super Consistency of Neural Network Landscapes and Learning Rate Transfer,"Recently, there has been growing evidence that if the width and depth of a neural network are scaled toward the so-called rich feature learning limit ($\mu$P and its depth extension), then some hyperparameters --- such as the learning rate --- exhibit transfer from small to very large models. From an optimization perspective, this phenomenon is puzzling, as it implies that the loss landscape is consistently similar across very different model sizes. In this work, we study the landscape through the lens of the Hessian, with a focus on its largest eigenvalue (i.e. the sharpness), and find that certain spectral properties under $\mu$P are largely independent of the width and depth of the network along the training trajectory. We name this property *super consistency* of the landscape. On the other hand, we show that in the Neural Tangent Kernel (NTK) and other scaling regimes, the sharpness exhibits very different dynamics at different scales. But what causes these differences in the sharpness dynamics? Through a connection between the Hessian's and the NTK's spectrum, we argue that the cause lies in the presence (for $\mu$P) or progressive absence (for the NTK scaling) of feature learning.We corroborate our claims with a substantial suite of experiments, covering a wide range of datasets and architectures: from ResNets and Vision Transformers trained on benchmark vision datasets to Transformers-based language models trained on WikiText.",https://neurips.cc//virtual/2024/poster/93421,2024,NeurIPS,No,, SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents,"Rigorous software testing is crucial for developing and maintaining high-quality code, making automated test generation a promising avenue for both improving software quality and boosting the effectiveness of code generation methods. However, while code generation with Large Language Models (LLMs) is an extraordinarily active research area, test generation remains relatively unexplored. We address this gap and investigate the capability of LLM-based Code Agents to formalize user issues into test cases. To this end, we propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth bug-fixes, and golden tests. We find that LLMs generally perform surprisingly well at generating relevant test cases, with Code Agents designed for code repair exceeding the performance of systems designed specifically for test generation. Further, as test generation is a similar but more structured task than code generation, it allows for a more fine-grained analysis using issue reproduction rate and coverage changes, providing a dual metric for analyzing systems designed for code repair. Finally, we find that generated tests are an effective filter for proposed code fixes, doubling the precision of SWE-Agent. We release all data and code at https://github.com/logic-star-ai/SWT-Bench.",https://neurips.cc//virtual/2024/poster/96304,2024,NeurIPS,Yes,Language,Benchmark Symbolic Regression with a Learned Concept Library,"We present a novel method for symbolic regression (SR), the task of searching for compact programmatic hypotheses that best explain a dataset. The problem is commonly solved using genetic algorithms; we show that we can enhance such methods by inducing a library of abstract textual concepts. Our algorithm, called LaSR, uses zero-shot queries to a large language model (LLM) to discover and evolve concepts occurring in known high-performing hypotheses. We discover new hypotheses using a mix of standard evolutionary steps and LLM-guided steps (obtained through zero-shot LLM queries) conditioned on discovered concepts. Once discovered, hypotheses are used in a new round of concept abstraction and evolution. We validate LaSR on the Feynman equations, a popular SR benchmark, as well as a set of synthetic tasks. On these benchmarks, LaSR substantially outperforms a variety of state-of-the-art SR approaches based on deep learning and evolutionary algorithms. Moreover, we show that LASR can be used to discover a new and powerful scaling law for LLMs.",https://neurips.cc//virtual/2024/poster/96212,2024,NeurIPS,No,, Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale,"LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.",https://neurips.cc//virtual/2024/poster/95647,2024,NeurIPS,No,, T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models,"The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its safety risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover limited aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, the first comprehensive benchmark for conducting safety-critical assessments of text-to-video models. We define 4 primary categories with 14 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts, and jailbreak attack-based prompts. We then conduct a thorough safety evaluation on 9 recently released T2V models. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AIs. Our code is publicly available at \url{https://github.com/yibo-miao/T2VSafetyBench}.",https://neurips.cc//virtual/2024/poster/97732,2024,NeurIPS,Yes,Video, TableRAG: Million-Token Table Understanding with Language Models,"Recent advancements in language models (LMs) have notably enhanced their ability to reason with tabular data, primarily through program-aided mechanisms that manipulate and analyze tables.However, these methods often require the entire table as input, leading to scalability challenges due to the positional bias or context length constraints.In response to these challenges, we introduce TableRAG, a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.This enables more efficient data encoding and precise retrieval, significantly reducing prompt lengths and mitigating information loss.We have developed two new million-token benchmarks from the Arcade and BIRD-SQL datasets to thoroughly evaluate TableRAG's effectiveness at scale.Our results demonstrate that TableRAG's retrieval design achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.",https://neurips.cc//virtual/2024/poster/96701,2024,NeurIPS,Yes,Language,Methodological TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy,"Tables contain factual and quantitative data accompanied by various structures and contents that pose challenges for machine comprehension. Previous methods generally design task-specific architectures and objectives for individual tasks, resulting in modal isolation and intricate workflows. In this paper, we present a novel large vision-language model, TabPedia, equipped with a concept synergy mechanism. In this mechanism, all the involved diverse visual table understanding (VTU) tasks and multi-source visual embeddings are abstracted as concepts. This unified framework allows TabPedia to seamlessly integrate VTU tasks, such as table detection, table structure recognition, table querying, and table question answering, by leveraging the capabilities of large language models (LLMs). Moreover, the concept synergy mechanism enables table perception-related and comprehension-related tasks to work in harmony, as they can effectively leverage the needed clues from the corresponding source perception embeddings. Furthermore, to better evaluate the VTU task in real-world scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA, featuring approximately 9,000 QA pairs. Extensive quantitative and qualitative experiments on both table perception and comprehension tasks, conducted across various public benchmarks, validate the effectiveness of our TabPedia. The superior performance further confirms the feasibility of using LLMs for understanding visual tables when all concepts work in synergy. The benchmark ComTQA has been open-sourced at https://huggingface.co/datasets/ByteDance/ComTQA. The source code and model also have been released at https://github.com/zhaowc-ustc/TabPedia.",https://neurips.cc//virtual/2024/poster/94530,2024,NeurIPS,Yes,Multimodal, TaskBench: Benchmarking Large Language Models for Task Automation,"In recent years, the remarkable progress of large language models (LLMs) has sparked interest in task automation, which involves decomposing complex tasks described by user instructions into sub-tasks and invoking external tools to execute them, playing a central role in autonomous agents. However, there is a lack of systematic and standardized benchmarks to promote the development of LLMs in task automation. To address this, we introduce TaskBench, a comprehensive framework to evaluate the capability of LLMs in task automation. Specifically, task automation can be divided into three critical stages: task decomposition, tool selection, and parameter prediction. To tackle the complexities inherent in these stages, we introduce the concept of Tool Graph to represent decomposed tasks and adopt a back-instruct method to generate high-quality user instructions. We propose TaskEval, a multi-faceted evaluation methodology that assesses LLM performance across these three stages. Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation. Experimental results demonstrate that TaskBench effectively reflects the capabilities of various LLMs in task automation. It provides insights into model performance across different task complexities and domains, pushing the boundaries of what current models can achieve. TaskBench offers a scalable, adaptable, and reliable benchmark for advancing LLM-based autonomous agents.",https://neurips.cc//virtual/2024/poster/97613,2024,NeurIPS,Yes,Language,Benchmark Task Me Anything,"Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 500M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4O demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.",https://neurips.cc//virtual/2024/poster/97494,2024,NeurIPS,Yes,Language,Benchmark TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs,"Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.",https://neurips.cc//virtual/2024/poster/97714,2024,NeurIPS,Yes,Language,Benchmark The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale,"The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments.",https://neurips.cc//virtual/2024/poster/97513,2024,NeurIPS,No,, The Mamba in the Llama: Distilling and Accelerating Hybrid Models,"Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at [MambaInLlama](https://github.com/jxiw/MambaInLlama) for distillation and [SpeculativeMamba](https://github.com/itsdaniele/speculative\_mamba) for speculative decoding.",https://neurips.cc//virtual/2024/poster/93289,2024,NeurIPS,No,, Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series,"Large pre-trained models excel in zero/few-shot learning for language and vision tasks but face challenges in multivariate time series (TS) forecasting due to diverse data characteristics. Consequently, recent research efforts have focused on developing pre-trained TS forecasting models. These models, whether built from scratch or adapted from large language models (LLMs), excel in zero/few-shot forecasting tasks. However, they are limited by slow performance, high computational demands, and neglect of cross-channel and exogenous correlations. To address this, we introduce Tiny Time Mixers (TTM), a compact model (starting from 1M parameters) with effective transfer learning capabilities, trained exclusively on public TS datasets. TTM, based on the light-weight TSMixer architecture, incorporates innovations like adaptive patching, diverse resolution sampling, and resolution prefix tuning to handle pre-training on varied dataset resolutions with minimal model capacity. Additionally, it employs multi-level modeling to capture channel correlations and infuse exogenous signals during fine-tuning. TTM outperforms existing popular benchmarks in zero/few-shot forecasting by (4-40\%), while reducing computational requirements significantly. Moreover, TTMs are lightweight and can be executed even on CPU-only machines, enhancing usability and fostering wider adoption in resource-constrained environments. The model weights for reproducibility and research use are available at https://huggingface.co/ibm/ttm-research-r2/, while enterprise-use weights under the Apache license can be accessed as follows: the initial TTM-Q variant at https://huggingface.co/ibm-granite/granite-timeseries-ttm-r1, and the latest variants (TTM-B, TTM-E, TTM-A) weights are available at https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2. The source code for the TTM model along with the usage scripts are available at https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer",https://neurips.cc//virtual/2024/poster/96748,2024,NeurIPS,No,, Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis,"Although text-to-image (T2I) models exhibit remarkable generation capabilities,they frequently fail to accurately bind semantically related objects or attributesin the input prompts; a challenge termed semantic binding. Previous approacheseither involve intensive fine-tuning of the entire T2I model or require users orlarge language models to specify generation layouts, adding complexity. In thispaper, we define semantic binding as the task of associating a given object with itsattribute, termed attribute binding, or linking it to other related sub-objects, referredto as object binding. We introduce a novel method called Token Merging (ToMe),which enhances semantic binding by aggregating relevant tokens into a singlecomposite token. This ensures that the object, its attributes and sub-objects all sharethe same cross-attention map. Additionally, to address potential confusion amongmain objects with complex textual prompts, we propose end token substitution asa complementary strategy. To further refine our approach in the initial stages ofT2I generation, where layouts are determined, we incorporate two auxiliary losses,an entropy loss and a semantic binding loss, to iteratively update the compositetoken to improve the generation integrity. We conducted extensive experiments tovalidate the effectiveness of ToMe, comparing it against various existing methodson the T2I-CompBench and our proposed GPT-4o object binding benchmark. Ourmethod is particularly effective in complex scenarios that involve multiple objectsand attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe",https://neurips.cc//virtual/2024/poster/93334,2024,NeurIPS,Yes,Multimodal, TOPA: Extending Large Language Models for Video Understanding via Text-Only Pre-Alignment,"Recent advancements in image understanding have benefited from the extensive use of web image-text pairs. However, video understanding remains a challenge despite the availability of substantial web video-text data. This difficulty primarily arises from the inherent complexity of videos and the inefficient language supervision in recent web-collected video-text datasets. In this paper, we introduce Text-Only Pre-Alignment (TOPA), a novel approach to extend large language models (LLMs) for video understanding, without the need for pre-training on real video data. Specifically, we first employ an advanced LLM to automatically generate Textual Videos comprising continuous textual frames, along with corresponding annotations to simulate real video-text data. Then, these annotated textual videos are used to pre-align a language-only LLM with the video modality. To bridge the gap between textual and real videos, we employ the CLIP model as the feature extractor to align image and text modalities. During text-only pre-alignment, the continuous textual frames, encoded as a sequence of CLIP text features, are analogous to continuous CLIP image features, thus aligning the LLM with real video representation. Extensive experiments, including zero-shot evaluation and finetuning on various video understanding tasks, demonstrate that TOPA is an effective and efficient framework for aligning video content with LLMs. In particular, without training on any video data, the TOPA-Llama2-13B model achieves a Top-1 accuracy of 51.0% on the challenging long-form video understanding benchmark, Egoschema. This performance surpasses previous video-text pre-training approaches and proves competitive with recent GPT-3.5 based video agents.",https://neurips.cc//virtual/2024/poster/96589,2024,NeurIPS,No,, Towards Calibrated Robust Fine-Tuning of Vision-Language Models,"Improving out-of-distribution (OOD) generalization during in-distribution (ID) adaptation is a primary goal of robust fine-tuning of zero-shot models beyond naive fine-tuning. However, despite decent OOD generalization performance from recent robust fine-tuning methods, confidence calibration for reliable model output has not been fully addressed. This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models. Firstly, we show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data: 1) ID calibration error and 2) the smallest singular value of the ID input covariance matrix. Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value, which is further guided by the self-distillation of a moving-averaged model to achieve calibrated prediction as well. Starting from empirical evidence supporting our theoretical statements, we provide extensive experimental results on ImageNet distribution shift benchmarks that demonstrate the effectiveness of our theorem and its practical implementation.",https://neurips.cc//virtual/2024/poster/95878,2024,NeurIPS,No,, Towards General Loop Invariant Generation: A Benchmark of Programs with Memory Manipulation,"Program verification is vital for ensuring software reliability, especially in the context of increasingly complex systems. Loop invariants, remaining true before and after each iteration of loops, are crucial for this verification process. Traditional provers and machine learning based methods for generating loop invariants often require expert intervention or extensive labeled data, and typically only handle numerical property verification. These methods struggle with programs involving complex data structures and memory manipulations, limiting their applicability and automation capabilities. This paper introduces a new benchmark named LIG-MM, specifically for programs with complex data structures and memory manipulations. We collect 312 programs from various sources, including daily programs from college homework, the international competition (SV-COMP), benchmarks from previous papers (SLING), and programs from real-world software systems (Linux Kernel, GlibC, LiteOS, and Zephyr). Based on LIG-MM, our findings indicate that previous methods, including GPT-4, fail to automate verification for these programs. Consequently, we propose a novel LLM-SE framework that coordinates LLM with symbolic execution, fine-tuned using self-supervised learning, to generate loop invariants. Experimental results on LIG-MM demonstrate that our LLM-SE outperforms state-of-the-art methods, offering a new direction toward automated program verification in real-world scenarios.",https://neurips.cc//virtual/2024/poster/97660,2024,NeurIPS,Yes,Language,Benchmark Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning,"Previous studies on continual knowledge learning (CKL) in large language models (LLMs) have predominantly focused on approaches such as regularization, architectural modifications, and rehearsal techniques to mitigate catastrophic forgetting. However, these methods naively inherit the inefficiencies of standard training procedures, indiscriminately applying uniform weight across all tokens, which can lead to unnecessary parameter updates and increased forgetting. To address these shortcomings, we propose a novel CKL approach termed Train-Attention-Augmented Language Model (TAALM), which enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness. This method employs a meta-learning framework that optimizes token importance predictions, facilitating targeted knowledge updates and minimizing forgetting. Also, we observe that existing benchmarks do not clearly exhibit the trade-off between learning and retaining, therefore we propose a new benchmark, LAMA-ckl, to address this issue. Through experiments conducted on both newly introduced and established CKL benchmarks, TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches. The code and the dataset are available online.",https://neurips.cc//virtual/2024/poster/93521,2024,NeurIPS,Yes,Language,Methodological UDA: A Benchmark Suite for Retrieval Augmented Generation in Real-World Document Analysis,"The use of Retrieval-Augmented Generation (RAG) has improved Large Language Models (LLMs) in collaborating with external data, yet significant challenges exist in real-world scenarios. In areas such as academic literature and finance question answering, data are often found in raw text and tables in HTML or PDF formats, which can be lengthy and highly unstructured. In this paper, we introduce a benchmark suite, namely Unstructured Document Analysis (UDA), that involves 2,965 real-world documents and 29,590 expert-annotated Q&A pairs. We revisit popular LLM- and RAG-based solutions for document analysis and evaluate the design choices and answer qualities across multiple document domains and diverse query types. Our evaluation yields interesting findings and highlights the importance of data parsing and retrieval. We hope our benchmark can shed light and better serve real-world document analysis applications. The benchmark suite and code can be found at https://github.com/qinchuanhui/UDA-Benchmark",https://neurips.cc//virtual/2024/poster/97735,2024,NeurIPS,Yes,Language,Benchmark UltraEdit: Instruction-based Fine-Grained Image Editing at Scale,"This paper presents UltraEdit, a large-scale (~ 4M editing samples), automatically generated dataset for instruction-based image editing. Our key idea is to address the drawbacks in existing image editing datasets like InstructPix2Pix and MagicBrush, and provide a *systematic* approach to producing massive and high-quality image editing samples: 1) UltraEdit includes more diverse editing instructions by combining LLM creativity and in-context editing examples by human raters; 2) UltraEdit is anchored on real images (photographs or artworks), which offers more diversity and less biases than those purely synthesized by text-to-image models; 3) UltraEdit supports region-based editing with high-quality, automatically produced region annotations. Our experiments show that canonical diffusion-based editing baselines trained on UltraEdit set new records on challenging MagicBrush and Emu-Edit benchmarks, respectively. Our analysis further confirms the crucial role of real image anchors and region-based editing data. The dataset, code, and models will be made public.",https://neurips.cc//virtual/2024/poster/97827,2024,NeurIPS,No,, UltraMedical: Building Specialized Generalists in Biomedicine,"Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains and are moving towards more specialized areas. Recent advanced proprietary models such as GPT-4 and Gemini have achieved significant advancements in biomedicine, which have also raised privacy and security challenges. The construction of specialized generalists hinges largely on high-quality datasets, enhanced by techniques like supervised fine-tuning and reinforcement learning from human or AI feedback, and direct preference optimization. However, these leading technologies (e.g., preference learning) are still significantly limited in the open source community due to the scarcity of specialized data. In this paper, we present the UltraMedical collections, which consist of high-quality manual and synthetic datasets in the biomedicine domain, featuring preference annotations across multiple advanced LLMs. By utilizing these datasets, we fine-tune a suite of specialized medical models based on Llama-3 series, demonstrating breathtaking capabilities across various medical benchmarks. Moreover, we develop powerful reward models skilled in biomedical and general reward benchmark, enhancing further online preference learning within the biomedical LLM community.",https://neurips.cc//virtual/2024/poster/97506,2024,NeurIPS,No,, UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling,"Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks,researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress.To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a range of carefully categorized vision-centric capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations. Surprisingly, we also discover today's best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST, which much simpler networks can solve. Where scale falls short, we find that more precise interventions, such as data quality or tailored-learning objectives offer more promise. For practitioners, we also offer guidance on selecting a suitable VLM for a given application. Finally, we release an easy-to-run UniBench code-base with the full set of 50+ benchmarks and comparisons across 59 models as well as a distilled, representative set of benchmarks that runs in 5 minutes on a single GPU. UniBench with model evaluations on all benchmarks are provided as a toolbox at: https://github.com/facebookresearch/unibench",https://neurips.cc//virtual/2024/poster/97581,2024,NeurIPS,Yes,Multimodal, Unified Generative and Discriminative Training for Multi-modal Large Language Models,"In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM’s hidden state. This approach enhances the MLLM’s ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.",https://neurips.cc//virtual/2024/poster/93174,2024,NeurIPS,No,, Unified Lexical Representation for Interpretable Visual-Language Alignment,"Visual-Language Alignment (VLA) has gained a lot of attention since CLIP's groundbreaking work. Although CLIP performs well, the typical direct latent feature alignment lacks clarity in its representation and similarity scores. On the other hand, lexical representation, a vector whose element represents the similarity between the sample and a word from the vocabulary, is a natural sparse representation and interpretable, providing exact matches for individual words.However, lexical representations are difficult to learn due to no ground-truth supervision and false-discovery issues, and thus requires complex design to train effectively.In this paper, we introduce LexVLA, a more interpretable VLA framework by learning a unified lexical representation for both modalities without complex design. We use DINOv2 as our visual model for its local-inclined features and Llama 2, a generative language model, to leverage its in-context lexical prediction ability.To avoid the false discovery, we propose an overuse penalty to refrain the lexical representation from falsely frequently activating meaningless words.We demonstrate that these two pre-trained uni-modal models can be well-aligned by fine-tuning on the modest multi-modal dataset and avoid intricate training configurations. On cross-modal retrieval benchmarks, LexVLA, trained on the CC-12M multi-modal dataset, outperforms baselines fine-tuned on larger datasets (e.g., YFCC15M) and those trained from scratch on even bigger datasets (e.g., 1.1B data, including CC-12M).We conduct extensive experiments to analyze LexVLA. Codes are available at https://github.com/Clementine24/LexVLA.",https://neurips.cc//virtual/2024/poster/93063,2024,NeurIPS,No,, UniMTS: Unified Pre-training for Motion Time Series,"Motion time series collected from low-power, always-on mobile and wearable devices such as smartphones and smartwatches offer significant insights into human behavioral patterns, with wide applications in healthcare, automation, IoT, and AR/XR. However, given security and privacy concerns, building large-scale motion time series datasets remains difficult, hindering the development of pre-trained models for human activity analysis. Typically, existing models are trained and tested on the same dataset, leading to poor generalizability across variations in device location, device mounting orientation, and human activity type. In this paper, we introduce UniMTS, the first unified pre-training procedure for motion time series that generalizes across diverse device latent factors and activities. Specifically, we employ a contrastive learning framework that aligns motion time series with text descriptions enriched by large language models. This helps the model learn the semantics of time series to generalize across activities. Given the absence of large-scale motion time series data, we derive and synthesize time series from existing motion skeleton data with all-joint coverage. We use spatio-temporal graph networks to capture the relationships across joints for generalization across different device locations. We further design rotation-invariant augmentation to make the model agnostic to changes in device mounting orientations. Our model shows exceptional generalizability across 18 motion time series classification benchmark datasets, outperforming the best baselines by 340% in the zero-shot setting, 16.3% in the few-shot setting, and 9.2% in the full-shot setting.",https://neurips.cc//virtual/2024/poster/96073,2024,NeurIPS,No,, UniTox: Leveraging LLMs to Curate a Unified Dataset of Drug-Induced Toxicity from FDA Labels,"Drug-induced toxicity is one of the leading reasons new drugs fail clinical trials. Machine learning models that predict drug toxicity from molecular structure could help researchers prioritize less toxic drug candidates. However, current toxicity datasets are typically small and limited to a single organ system (e.g., cardio, renal, or liver). Creating these datasets often involved time-intensive expert curation by parsing drug labelling documents that can exceed 100 pages per drug. Here, we introduce UniTox, a unified dataset of 2,418 FDA-approved drugs with drug-induced toxicity summaries and ratings created by using GPT-4o to process FDA drug labels. UniTox spans eight types of toxicity: cardiotoxicity, liver toxicity, renal toxicity, pulmonary toxicity, hematological toxicity, dermatological toxicity, ototoxicity, and infertility. This is, to the best of our knowledge, the largest such systematic human in vivo database by number of drugs and toxicities, and the first covering nearly all non-combination FDA-approved medications for several of these toxicities. We recruited clinicians to validate a random sample of our GPT-4o annotated toxicities, and UniTox's toxicity ratings concord with clinician labelers 85-96\% of the time. Finally, we benchmark several machine learning models trained on UniTox to demonstrate the utility of this dataset for building molecular toxicity prediction models.",https://neurips.cc//virtual/2024/poster/97665,2024,NeurIPS,No,, Unleashing Region Understanding in Intermediate Layers for MLLM-based Referring Expression Generation,"The Multi-modal Large Language Model (MLLM) based Referring Expression Generation (REG) task has gained increasing popularity, which aims to generate an unambiguous text description that applies to exactly one object or region in the image by leveraging foundation models. We empirically found that there exists a potential trade-off between the detailedness and the correctness of the descriptions for the referring objects. On the one hand, generating sentences with more details is usually required in order to provide more precise object descriptions. On the other hand, complicated sentences could easily increase the probability of hallucinations. To address this issue, we propose a training-free framework, named ``unleash-then-eliminate'', which first elicits the latent information in the intermediate layers, and then adopts a cycle-consistency-based decoding method to alleviate the production of hallucinations. Furthermore, to reduce the computational load of cycle-consistency-based decoding, we devise a Probing-based Importance Estimation method to statistically estimate the importance weights of intermediate layers within a subset. These importance weights are then incorporated into the decoding process over the entire dataset, intervening in the next token prediction from intermediate layers.Extensive experiments conducted on the RefCOCOg and PHD benchmarks show that our proposed framework could outperform existing methods on both semantic and hallucination-related metrics. Code will be made available in https://github.com/Glupayy/unleash-eliminate.",https://neurips.cc//virtual/2024/poster/96885,2024,NeurIPS,No,, Unveiling Causal Reasoning in Large Language Models: Reality or Mirage?,"Causal reasoning capability is critical in advancing large language models (LLMs) towards artificial general intelligence (AGI). While versatile LLMs appear to have demonstrated capabilities in understanding contextual causality and providing responses that obey the laws of causality, it remains unclear whether they perform genuine causal reasoning akin to humans. However, current evidence indicates the contrary. Specifically, LLMs are only capable of performing shallow (level-1) causal reasoning, primarily attributed to the causal knowledge embedded in their parameters, but they lack the capacity for genuine human-like (level-2) causal reasoning. To support this hypothesis, methodologically, we delve into the autoregression mechanism of transformer-based LLMs, revealing that it is not inherently causal. Empirically, we introduce a new causal Q&A benchmark named CausalProbe 2024, whose corpus is fresh and nearly unseen for the studied LLMs. Empirical results show a significant performance drop on CausalProbe 2024 compared to earlier benchmarks, indicating that LLMs primarily engage in level-1 causal reasoning.To bridge the gap towards level-2 causal reasoning, we draw inspiration from the fact that human reasoning is usually facilitated by general knowledge and intended goals. Inspired by this, we propose G$^2$-Reasoner, a LLM causal reasoning method that incorporates general knowledge and goal-oriented prompts into LLMs' causal reasoning processes. Experiments demonstrate that G$^2$-Reasoner significantly enhances LLMs' causal reasoning capability, particularly in fresh and fictitious contexts. This work sheds light on a new path for LLMs to advance towards genuine causal reasoning, going beyond level-1 and making strides towards level-2.",https://neurips.cc//virtual/2024/poster/96872,2024,NeurIPS,Yes,Language,Methodological Unveiling Encoder-Free Vision-Language Models,"Existing vision-language models (VLMs) mostly rely on vision encoders to extract visual features followed by large language models (LLMs) for visual-language tasks. However, the vision encoders set a strong inductive bias in abstracting visual representation, e.g., resolution, aspect ratio, and semantic priors, which could impede the flexibility and efficiency of the VLMs. Training pure VLMs that accept the seamless vision and language inputs, i.e., without vision encoders, remains challenging and rarely explored. Empirical observations reveal that direct training without encoders results in slow convergence and large performance gaps. In this work, we bridge the gap between encoder-based and encoder-free models, and present a simple yet effective training recipe towards pure VLMs. Specifically, we unveil the key aspects of training encoder-free VLMs efficiently via thorough experiments: (1) Bridging vision-language representation inside one unified decoder; (2) Enhancing visual recognition capability via extra supervision. With these strategies, we launch EVE, an encoder-free vision-language model that can be trained and forwarded efficiently. Notably, solely utilizing 35M publicly accessible data, EVE can impressively rival the encoder-based VLMs of similar capacities across multiple vision-language benchmarks. It significantly outperforms the counterpart Fuyu-8B with mysterious training procedures and undisclosed training data. We believe that EVE provides a transparent and efficient route for developing pure decoder-only architecture across modalities.",https://neurips.cc//virtual/2024/poster/95075,2024,NeurIPS,No,, Unveiling the Bias Impact on Symmetric Moral Consistency of Large Language Models,"Large Language Models (LLMs) have demonstrated remarkable capabilities, surpassing human experts in various benchmark tests and playing a vital role in various industry sectors. Despite their effectiveness, a notable drawback of LLMs is their inconsistent moral behavior, which raises ethical concerns. This work delves into symmetric moral consistency in large language models and demonstrates that modern LLMs lack sufficient consistency ability in moral scenarios. Our extensive investigation of twelve popular LLMs reveals that their assessed consistency scores are influenced by position bias and selection bias rather than their intrinsic abilities. We propose a new framework tSMC, which gauges the effects of these biases and effectively mitigates the bias impact based on the Kullback–Leibler divergence to pinpoint LLMs' mitigated Symmetric Moral Consistency. We find that the ability of LLMs to maintain consistency varies across different moral scenarios. Specifically, LLMs show more consistency in scenarios with clear moral answers compared to those where no choice is morally perfect. The average consistency score of 12 LLMs ranges from $60.7\%$ in high-ambiguity moral scenarios to $84.8\%$ in low-ambiguity moral scenarios.",https://neurips.cc//virtual/2024/poster/93215,2024,NeurIPS,No,, Unveiling the Tapestry of Consistency in Large Vision-Language Models,"Large vision-language models (LVLMs) have recently achieved rapid progress, exhibiting great perception and reasoning abilities concerning visual information. However, when faced with prompts in different sizes of solution spaces, LVLMs fail to always give consistent answers regarding the same knowledge point. This inconsistency of answers between different solution spaces is prevalent in LVLMs and erodes trust. To this end, we provide a multi-modal benchmark ConBench, to intuitively analyze how LVLMs perform when the solution space of a prompt revolves around a knowledge point. Based on the ConBench tool, we are the first to reveal the tapestry and get the following findings: (1) In the discriminate realm, the larger the solution space of the prompt, the lower the accuracy of the answers. (2) Establish the relationship between the discriminative and generative realms: the accuracy of the discriminative question type exhibits a strong positive correlation with its Consistency with the caption. (3) Compared to open-source models, closed-source models exhibit a pronounced bias advantage in terms of Consistency. Eventually, we ameliorate the consistency of LVLMs by trigger-based diagnostic refinement, indirectly improving the performance of their caption. We hope this paper will accelerate the research community in better evaluating their models and encourage future advancements in the consistency domain.",https://neurips.cc//virtual/2024/poster/93307,2024,NeurIPS,Yes,Multimodal, UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction,"Urban knowledge graph has recently worked as an emerging building block to distill critical knowledge from multi-sourced urban data for diverse urban application scenarios. Despite its promising benefits, urban knowledge graph construction (UrbanKGC) still heavily relies on manual effort, hindering its potential advancement. This paper presents UrbanKGent, a unified large language model agent framework, for urban knowledge graph construction. Specifically, we first construct the knowledgeable instruction set for UrbanKGC tasks (such as relational triplet extraction and knowledge graph completion) via heterogeneity-aware and geospatial-infused instruction generation. Moreover, we propose a tool-augmented iterative trajectory refinement module to enhance and refine the trajectories distilled from GPT-4. Through hybrid instruction fine-tuning with augmented trajectories on Llama 2 and Llama 3 family, we obtain UrbanKGC agent family, consisting of UrbanKGent-7/8/13B version. We perform a comprehensive evaluation on two real-world datasets using both human and GPT-4 self-evaluation. The experimental results demonstrate that UrbanKGent family can not only significantly outperform 31 baselines in UrbanKGC tasks, but also surpass the state-of-the-art LLM, GPT-4, by more than 10% with approximately 20 times lower cost. Compared with the existing benchmark, the UrbanKGent family could help construct an UrbanKG with hundreds of times richer relationships using only one-fifth of the data. Our data and code are available at https://github.com/usail-hkust/UrbanKGent.",https://neurips.cc//virtual/2024/poster/95400,2024,NeurIPS,No,, VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections,"Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.",https://neurips.cc//virtual/2024/poster/94503,2024,NeurIPS,No,, VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding,"Existing Video Corpus Moment Retrieval (VCMR) is limited to coarse-grained understanding that hinders precise video moment localization when given fine-grained queries. In this paper, we propose a more challenging fine-grained VCMR benchmark requiring methods to localize the best-matched moment from the corpus with other partially matched candidates. To improve the dataset construction efficiency and guarantee high-quality data annotations, we propose VERIFIED, an automatic \underline{V}id\underline{E}o-text annotation pipeline to generate captions with \underline{R}el\underline{I}able \underline{FI}n\underline{E}-grained statics and \underline{D}ynamics. Specifically, we resort to large language models (LLM) and large multimodal models (LMM) with our proposed Statics and Dynamics Enhanced Captioning modules to generate diverse fine-grained captions for each video. To filter out the inaccurate annotations caused by the LLM hallucination, we propose a Fine-Granularity Aware Noise Evaluator where we fine-tune a video foundation model with disturbed hard-negatives augmented contrastive and matching losses. With VERIFIED, we construct a more challenging fine-grained VCMR benchmark containing Charades-FIG, DiDeMo-FIG, and ActivityNet-FIG which demonstrate a high level of annotation quality. We evaluate several state-of-the-art VCMR models on the proposed dataset, revealing that there is still significant scope for fine-grained video understanding in VCMR.",https://neurips.cc//virtual/2024/poster/97632,2024,NeurIPS,Yes,Video, Verified Code Transpilation with LLMs,"Domain-specific languages (DSLs) have become integral to various software workflows. Such languages offer domain-specific optimizations and abstractions that improve code readability and maintainability. However, leveraging these languages requires developers to rewrite existing code using the specific DSL's API. While large language models (LLMs) have shown some success in automatic code transpilation, none of them provide any functional correctness guarantees on the rewritten code. Another approach for automating this task is verified lifting, which relies on program synthesis to find programs in the target language that are functionally equivalent to the source language program. While several verified lifting tools have been developed for various application domains, they are specialized for specific source-target languages or require significant expertise in domain knowledge to make the search efficient. In this paper, leveraging recent advances in LLMs, we propose an LLM-based approach (LLMLift) to building verified lifting tools. We use the LLM's capabilities to reason about programs to translate a given program into its corresponding equivalent in the target language. Additionally, we use LLMs to generate proofs for functional equivalence. We develop lifting-based compilers for four DSLs targeting different application domains. Our approach not only outperforms previous symbolic-based tools in number of benchmarks transpiled and transpilation time, but also requires significantly less effort to build.",https://neurips.cc//virtual/2024/poster/93370,2024,NeurIPS,No,, VHELM: A Holistic Evaluation of Vision Language Models,"Current benchmarks for assessing vision-language models (VLMs) often focus on their perception or problem-solving capabilities and neglect other critical aspects such as fairness, multilinguality, or toxicity. Furthermore, they differ in their evaluation procedures and the scope of the evaluation, making it difficult to compare models. To address these issues, we extend the HELM framework to VLMs to present the Holistic Evaluation of Vision Language Models (VHELM). VHELM aggregates various datasets to cover one or more of the 9 aspects: *visual perception*, *knowledge*, *reasoning*, *bias*, *fairness*, *multilinguality*, *robustness*, *toxicity*, and *safety*. In doing so, we produce a comprehensive, multi-dimensional view of the capabilities of the VLMs across these important factors. In addition, we standardize the standard inference parameters, methods of prompting, and evaluation metrics to enable fair comparisons across models. Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast. Our initial run evaluates 22 VLMs on 21 existing datasets to provide a holistic snapshot of the models. We uncover new key findings, such as the fact that efficiency-focused models (e.g., Claude 3 Haiku or Gemini 1.5 Flash) perform significantly worse than their full models (e.g., Claude 3 Opus or Gemini 1.5 Pro) on the bias benchmark but not when evaluated on the other aspects. For transparency, we release the raw model generations and complete results on our website at https://crfm.stanford.edu/helm/vhelm/v2.0.1. VHELM is intended to be a living benchmark, and we hope to continue adding new datasets and models over time.",https://neurips.cc//virtual/2024/poster/97677,2024,NeurIPS,Yes,Multimodal, VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation,"A well-known dilemma in large vision-language models (e.g., GPT-4, LLaVA) is that while increasing the number of vision tokens generally enhances visual understanding, it also significantly raises memory and computational costs, especially in long-term, dense video frame streaming scenarios. Although learnable approaches like Q-Former and Perceiver Resampler have been developed to reduce the vision token burden, they overlook the context causally modeled by LLMs (i.e., key-value cache), potentially leading to missed visual cues when addressing user queries. In this paper, we introduce a novel approach to reduce vision compute by leveraging redundant vision tokens ``skipping layers'' rather than decreasing the number of vision tokens. Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video. Specifically, for certain transformer layer, we learn to skip the computation for a high proportion (e.g., 80\%) of vision tokens, passing them directly to the next layer. This approach significantly enhances model efficiency, achieving approximately 42% time and 30% memory savings for the entire training. Moreover, our method reduces the computation in the context and avoid decreasing the vision tokens, thus preserving or even improving performance compared to the vanilla model. We conduct extensive experiments to demonstrate the effectiveness of VideoLLM-MoD, showing its state-of-the-art results on multiple benchmarks, including narration, forecasting, and summarization tasks in COIN, Ego4D, and Ego-Exo4D datasets. The code and checkpoints will be made available at github.com/showlab/VideoLLM-online.",https://neurips.cc//virtual/2024/poster/95449,2024,NeurIPS,No,, Vision Foundation Model Enables Generalizable Object Pose Estimation,"Object pose estimation plays a crucial role in robotic manipulation, however, its practical applicability still suffers from limited generalizability. This paper addresses the challenge of generalizable object pose estimation, particularly focusing on category-level object pose estimation for unseen object categories. Current methods either require impractical instance-level training or are confined to predefined categories, limiting their applicability. We propose VFM-6D, a novel framework that explores harnessing existing vision and language models, to elaborate object pose estimation into two stages: category-level object viewpoint estimation and object coordinate map estimation. Based on the two-stage framework, we introduce a 2D-to-3D feature lifting module and a shape-matching module, both of which leverage pre-trained vision foundation models to improve object representation and matching accuracy. VFM-6D is trained on cost-effective synthetic data and exhibits superior generalization capabilities. It can be applied to both instance-level unseen object pose estimation and category-level object pose estimation for novel categories. Evaluations on benchmark datasets demonstrate the effectiveness and versatility of VFM-6D in various real-world scenarios.",https://neurips.cc//virtual/2024/poster/95972,2024,NeurIPS,No,, VisMin: Visual Minimal-Change Understanding,"Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). To evaluate VLMs' fine-grained understanding, existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, our focus is on evaluating VLMs' capability to distinguish between two very similar images given a caption. To this end, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. Importantly, the image pair (as well as the caption pair) contains minimal changes, i.e., between the two images (as well as between the two captions), only one aspect changes at a time from among the following possible types of changes: object, attribute, count, and spatial relation. These four types of minimal changes are specifically designed to test the models' understanding of objects, attributes of objects (such as color, material, shape), counts of objects, and spatial relationships between objects. To curate our benchmark, we built an automatic pipeline using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. Furthermore, leveraging the automated nature of our data creation process, we generate a large-scale training dataset, which we use to finetune CLIP (a foundational VLM) and Idefics2 (a multimodal large language model). Our findings show that both these models benefit significantly from fine-tuning on this data, as evident by marked improvements in fine-grained understanding across a wide range of benchmarks. Additionally, such fine-tuning improves CLIP's general image-text alignment capabilities too. All resources including the benchmark, the training data, and the finetuned model checkpoints will be released.",https://neurips.cc//virtual/2024/poster/94495,2024,NeurIPS,Yes,Image, Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction,"We present Visual AutoRegressive modeling (VAR), a new generation paradigm that redefines the autoregressive learning on images as coarse-to-fine ""next-scale prediction"" or ""next-resolution prediction"", diverging from the standard raster-scan ""next-token prediction"". This simple, intuitive methodology allows autoregressive (AR) transformers to learn visual distributions fast and generalize well: VAR, for the first time, makes GPT-style AR models surpass diffusion transformers in image generation. On ImageNet 256x256 benchmark, VAR significantly improve AR baseline by improving Frechet inception distance (FID) from 18.65 to 1.73, inception score (IS) from 80.4 to 350.2, with around 20x faster inference speed. It is also empirically verified that VAR outperforms the Diffusion Transformer (DiT) in multiple dimensions including image quality, inference speed, data efficiency, and scalability. Scaling up VAR models exhibits clear power-law scaling laws similar to those observed in LLMs, with linear correlation coefficients near -0.998 as solid evidence. VAR further showcases zero-shot generalization ability in downstream tasks including image in-painting, out-painting, and editing. These results suggest VAR has initially emulated the two important properties of LLMs: Scaling Laws and zero-shot task generalization. We have released all models and codes to promote the exploration of AR/VAR models for visual generation and unified learning.",https://neurips.cc//virtual/2024/poster/94115,2024,NeurIPS,No,, Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning,"Multi-Modal Large Language Models (MLLMs) have demonstrated impressive performance in various VQA tasks. However, they often lack interpretability and struggle with complex visual inputs, especially when the resolution of the input image is high or when the interested region that could provide key information for answering the question is small. To address these challenges, we collect and introduce the large-scale Visual CoT dataset comprising 438k question-answer pairs, annotated with intermediate bounding boxes highlighting key regions essential for answering the questions. Additionally, about 98k pairs of them are annotated with detailed reasoning steps. Importantly, we propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable thoughts. We also introduce the related benchmark to evaluate the MLLMs in scenarios requiring specific local region identification.Extensive experiments demonstrate the effectiveness of our framework and shed light on better inference strategies. The Visual CoT dataset, benchmark, and pre-trained models are available on this [website](https://hao-shao.com/projects/viscot.html) to support further research in this area.",https://neurips.cc//virtual/2024/poster/97623,2024,NeurIPS,Yes,Image, Visual Perception by Large Language Model’s Weights,"Existing Multimodal Large Language Models (MLLMs) follow the paradigm that perceives visual information by aligning visual features with the input space of Large Language Models (LLMs) and concatenating visual tokens with text tokens to form a unified sequence input for LLMs. These methods demonstrate promising results on various vision-language tasks but are limited by the high computational effort due to the extended input sequence resulting from the involvement of visual tokens. In this paper, instead of input space alignment, we propose a novel parameter space alignment paradigm that represents visual information as model weights. For each input image, we use a vision encoder to extract visual features, convert features into perceptual weights, and merge the perceptual weights with LLM's weights. In this way, the input of LLM does not require visual tokens, which reduces the length of the input sequence and greatly improves efficiency. Following this paradigm, we propose VLoRA with the perceptual weights generator. The perceptual weights generator is designed to convert visual features to perceptual weights with low-rank property, exhibiting a form similar to LoRA. The experimental results show that our VLoRA achieves comparable performance on various benchmarks for MLLMs, while significantly reducing the computational costs for both training and inference. Code and models are released at \url{https://github.com/FeipengMa6/VLoRA}.",https://neurips.cc//virtual/2024/poster/95713,2024,NeurIPS,No,, Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models,"Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person’s discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82% accuracy, with Gemini-Pro-1.5 leading with 40% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models’ capabilities in interpreting complex visual scenarios. Data, code, and leaderboard are available at https://visual-riddles.github.io/.",https://neurips.cc//virtual/2024/poster/97561,2024,NeurIPS,Yes,Multimodal, VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance,"Concept Bottleneck Models (CBMs) provide interpretable prediction by introducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-understandable concepts to explain models' decision. Recent works proposed to utilize Large Language Models and pre-trained Vision-Language Models to automate the training of CBMs, making it more scalable and automated. However, existing approaches still fall short in two aspects: First, the concepts predicted by CBL often mismatch the input image, raising doubts about the faithfulness of interpretation. Second, it has been shown that concept values encode unintended information: even a set of random concepts could achieve comparable test accuracy to state-of-the-art CBMs. To address these critical limitations, in this work, we propose a novel framework called Vision-Language-Guided Concept Bottleneck Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted performance. Our method leverages off-the-shelf open-domain grounded object detectors to provide visually grounded concept annotation, which largely enhances the faithfulness of concept prediction while further improving the model performance. In addition, we propose a new metric called Number of Effective Concepts (NEC) to control the information leakage and provide better interpretability. Extensive evaluations across five standard benchmarks show that our method, VLG-CBM, outperforms existing methods by at least 4.27\% and up to 51.09\% on *Accuracy at NEC=5* (denoted as ANEC-5), and by at least 0.45\% and up to 29.78\% on *average accuracy* (denoted as ANEC-avg), while preserving both faithfulness and interpretability of the learned concepts as demonstrated in extensive experiments.",https://neurips.cc//virtual/2024/poster/95698,2024,NeurIPS,No,, VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark,"Recently, knowledge editing on large language models (LLMs) has received considerable attention. Compared to this, editing Large Vision-Language Models (LVLMs) faces extra challenges from diverse data modalities and complicated model components, and data for LVLMs editing are limited. The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images and cannot assess whether models apply edited knowledge in relevant content. Therefore, we employ more reliable data collection methods to construct a new Large $\textbf{V}$ision-$\textbf{L}$anguage Model $\textbf{K}$nowledge $\textbf{E}$diting $\textbf{B}$enchmark, $\textbf{VLKEB}$, and extend the Portability metric for more comprehensive evaluation. Leveraging a multi-modal knowledge graph, our image data are bound with knowledge entities. This can be further used to extract entity-related knowledge, which constitutes the base of editing data. We conduct experiments of different editing methods on five LVLMs, and thoroughly analyze how do they impact the models. The results reveal strengths and deficiencies of these methods and hopefully provide insights for future research. The codes and dataset are available at: https://github.com/VLKEB/VLKEB.",https://neurips.cc//virtual/2024/poster/97679,2024,NeurIPS,Yes,Multimodal, VLM4Bio: A Benchmark Dataset to Evaluate Pretrained Vision-Language Models for Trait Discovery from Biological Images,"Images are increasingly becoming the currency for documenting biodiversity on the planet, providing novel opportunities for accelerating scientific discoveries in the field of organismal biology, especially with the advent of large vision-language models (VLMs). We ask if pre-trained VLMs can aid scientists in answering a range of biologically relevant questions without any additional fine-tuning. In this paper, we evaluate the effectiveness of $12$ state-of-the-art (SOTA) VLMs in the field of organismal biology using a novel dataset, VLM4Bio, consisting of $469K$ question-answer pairs involving $30K$ images from three groups of organisms: fishes, birds, and butterflies, covering five biologically relevant tasks. We also explore the effects of applying prompting techniques and tests for reasoning hallucination on the performance of VLMs, shedding new light on the capabilities of current SOTA VLMs in answering biologically relevant questions using images.",https://neurips.cc//virtual/2024/poster/97668,2024,NeurIPS,Yes,Image, VMamba: Visual State Space Model,"Designing computationally efficient network architectures remains an ongoing necessity in computer vision. In this paper, we adapt Mamba, a state-space language model, into VMamba, a vision backbone with linear time complexity. At the core of VMamba is a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan (SS2D) module. By traversing along four scanning routes, SS2D bridges the gap between the ordered nature of 1D selective scan and the non-sequential structure of 2D vision data, which facilitates the collection of contextual information from various sources and perspectives. Based on the VSS blocks, we develop a family of VMamba architectures and accelerate them through a succession of architectural and implementation enhancements. Extensive experiments demonstrate VMamba’s promising performance across diverse visual perception tasks, highlighting its superior input scaling efficiency compared to existing benchmark models. Source code is available at https://github.com/MzeroMiko/VMamba",https://neurips.cc//virtual/2024/poster/94617,2024,NeurIPS,No,, Vript: A Video Is Worth Thousands of Words,"Advancements in multimodal learning, particularly in video understanding and generation, require high-quality video-text datasets for improved model performance. Vript addresses this issue with a meticulously annotated corpus of 12K high-resolution videos, offering detailed, dense, and script-like captions for over 420K clips. Each clip has a caption of ~145 words, which is over 10x longer than most video-text datasets. Unlike captions only documenting static content in previous datasets, we enhance video captioning to video scripting by documenting not just the content, but also the camera operations, which include the shot types (medium shot, close-up, etc) and camera movements (panning, tilting, etc). By utilizing the Vript, we explore three training paradigms of aligning more text with the video modality rather than clip-caption pairs. This results in Vriptor, a top-performing video captioning model among open-source models, comparable to GPT-4V in performance. Vriptor is also a powerful model capable of end-to-end generation of dense and detailed captions for long videos. Moreover, we introduce Vript-Hard, a benchmark consisting of three video understanding tasks that are more challenging than existing benchmarks: Vript-HAL is the first benchmark evaluating action and object hallucinations in video LLMs, Vript-RR combines reasoning with retrieval resolving question ambiguity in long-video QAs, and Vript-ERO is a new task to evaluate the temporal understanding of events in long videos rather than actions in short videos in previous works. All code, models, and datasets are available in https://github.com/mutonix/Vript.",https://neurips.cc//virtual/2024/poster/97868,2024,NeurIPS,Yes,Video, VRSBench: A Versatile Vision-Language Benchmark Dataset for Remote Sensing Image Understanding,"We introduce a new benchmark designed to advance the development of general-purpose, large-scale vision-language models for remote sensing images. Although several vision-language datasets in remote sensing have been proposed to pursue this goal, existing datasets are typically tailored to single tasks, lack detailed object information, or suffer from inadequate quality control. Exploring these improvement opportunities, we present a Versatile vision-language Benchmark for Remote Sensing image understanding, termed VRSBench. This benchmark comprises 29,614 images, with 29,614 human-verified detailed captions, 52,472 object references, and 123,221 question-answer pairs. It facilitates the training and evaluation of vision-language models across a broad spectrum of remote sensing image understanding tasks. We further evaluated state-of-the-art models on this benchmark for three vision-language tasks: image captioning, visual grounding, and visual question answering. Our work aims to significantly contribute to the development of advanced vision-language models in the field of remote sensing. The data and code can be accessed at https://vrsbench.github.io.",https://neurips.cc//virtual/2024/poster/97530,2024,NeurIPS,Yes,Multimodal, WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models,"The need for effective unlearning mechanisms in large language models (LLMs) is increasingly urgent, driven by the necessity to adhere to data regulations and foster ethical generative AI practices. LLM unlearning is designed to reduce the impact of undesirable data influences and associated model capabilities without diminishing the utility of the model if unrelated to the information being forgotten. Despite growing interest, much of the existing research has focused on varied unlearning method designs to boost effectiveness and efficiency. However, the inherent relationship between model weights and LLM unlearning has not been extensively examined. In this paper, we systematically explore how model weights interact with unlearning processes in LLMs and we design the weight attribution-guided LLM unlearning method, WAGLE, which unveils the interconnections between 'influence' of weights and 'influence' of data to forget and retain in LLM generation. By strategically guiding the LLM unlearning across different types of unlearning methods and tasks, WAGLE can erase the undesired content, while maintaining the performance of the original tasks. We refer to the weight attribution-guided LLM unlearning method as WAGLE, which unveils the interconnections between 'influence' of weights and 'influence' of data to forget and retain in LLM generation. Our extensive experiments show that WAGLE boosts unlearning performance across a range of LLM unlearning methods such as gradient difference and (negative) preference optimization, applications such as fictitious unlearning (TOFU benchmark), malicious use prevention (WMDP benchmark), and copyrighted information removal, and models including Zephyr-7b-beta and Llama2-7b. To the best of our knowledge, our work offers the first principled method for attributing and pinpointing the influential weights in enhancing LLM unlearning. It stands in contrast to previous methods that lack weight attribution and simpler weight attribution techniques.",https://neurips.cc//virtual/2024/poster/94863,2024,NeurIPS,No,, WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off,"Watermarking is a technical means to dissuade malfeasant usage of Large Language Models.This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM.Its new design leaves the LLM untouched (no modification of the weights, logits or temperature).WaterMax balances robustness and computational complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness.Its performance is both theoretically proven and experimentally validated.It outperforms all the SotA techniques under the most complete benchmark suite.",https://neurips.cc//virtual/2024/poster/95807,2024,NeurIPS,No,, Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles,"While advancements in NLP have significantly improved the performance of Large Language Models (LLMs) on tasks requiring vertical thinking, their lateral thinking capabilities remain under-explored and challenging to measure due to the complexity of assessing creative thought processes and the scarcity of relevant data. To address these challenges, we introduce SPLAT, a benchmark leveraging Situation Puzzles to evaluate and elicit LAteral Thinking of LLMs. This benchmark, containing 975 graded situation puzzles across three difficulty levels, employs a new multi-turn player-judge framework instead of the traditional model-based evaluation, which often necessitates a stronger evaluation model. This framework simulates an interactive game where the model (player) asks the evaluation model (judge) questions about an incomplete story to infer the full scenario. The judge answers based on a detailed reference scenario or evaluates if the player's predictions align with the reference one. This approach lessens dependence on more robust evaluation models, enabling the assessment of state-of-the-art LLMs. The experiments demonstrate that a robust evaluation model, such as WizardLM-2, closely matches human judgements in both intermediate question-answering and final scenario accuracy, achieving over 80% agreement--similar to the agreement levels among humans. Furthermore, applying data and reasoning processes from our benchmark to other lateral thinking-related benchmarks, e.g., RiddleSense and BrainTeaser, leads to performance enhancements. This suggests that our benchmark effectively evaluates and elicits the lateral thinking abilities of LLMs.",https://neurips.cc//virtual/2024/poster/94104,2024,NeurIPS,Yes,Language,Benchmark Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models,"Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce $\textit{weak-to-strong search}$, framing the alignment of a large language model as a test-time greedy search to maximize the log-probability difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (1) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (2) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance.Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned $\texttt{gpt2}$s to improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small models (e.g., $\texttt{zephyr-7b-beta}$ and its untuned version) can improve the length-controlled win rates of both white-box and black-box large models against $\texttt{gpt-4-turbo}$ (e.g., $34.4\% \rightarrow 37.9\%$ for $\texttt{Llama-3-70B-Instruct}$ and $16.0\% \rightarrow 20.1\%$ for $\texttt{gpt-3.5-turbo-instruct}$), despite the small models' low win rates $\approx 10.0\%$.",https://neurips.cc//virtual/2024/poster/94341,2024,NeurIPS,No,, Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs,"Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code are available at https://github.com/MBZUAI-LLM/web2code.",https://neurips.cc//virtual/2024/poster/97572,2024,NeurIPS,Yes,Image, WenMind: A Comprehensive Benchmark for Evaluating Large Language Models in Chinese Classical Literature and Language Arts,"Large Language Models (LLMs) have made significant advancements across numerous domains, but their capabilities in Chinese Classical Literature and Language Arts (CCLLA) remain largely unexplored due to the limited scope and tasks of existing benchmarks. To fill this gap, we propose WenMind, a comprehensive benchmark dedicated for evaluating LLMs in CCLLA. WenMind covers the sub-domains of Ancient Prose, Ancient Poetry, and Ancient Literary Culture, comprising 4,875 question-answer pairs, spanning 42 fine-grained tasks, 3 question formats, and 2 evaluation scenarios: domain-oriented and capability-oriented. Based on WenMind, we conduct a thorough evaluation of 31 representative LLMs, including general-purpose models and ancient Chinese LLMs. The results reveal that even the best-performing model, ERNIE-4.0, only achieves a total score of 64.3, indicating significant room for improvement of LLMs in the CCLLA domain. We also provide insights into the strengths and weaknesses of different LLMs and highlight the importance of pre-training data in achieving better results.Overall, WenMind serves as a standardized and comprehensive baseline, providing valuable insights for future CCLLA research. Our benchmark and related code are available at \url{https://github.com/SCUT-DLVCLab/WenMind}.",https://neurips.cc//virtual/2024/poster/97880,2024,NeurIPS,Yes,Language,Benchmark What matters when building vision-language models?,"The growing interest in vision-language models (VLMs) has been driven by improvements in large language models and vision transformers. Despite the abundance of literature on this subject, we observe that critical decisions regarding the design of VLMs are often not justified. We argue that these unsupported decisions impede progress in the field by making it difficult to identify which choices improve model performance. To address this issue, we conduct extensive experiments around pre-trained models, architecture choice, data, and training methods. Our consolidation of findings includes the development of Idefics2, an efficient foundational VLM of 8 billion parameters. Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks, and is often on par with models four times its size. We release the model (base, instructed, and chat) along with the datasets created for its training.",https://neurips.cc//virtual/2024/poster/94309,2024,NeurIPS,No,, What to Say and When to Say it: Live Fitness Coaching as a Testbed for Situated Interaction,"Vision-language models have shown impressive progress in recent years. However, existing models are largely limited to turn-based interactions, where each turn must be stepped (i.e., prompted) by the user. Open-ended, asynchronous interactions, where an AI model may proactively deliver timely responses or feedback based on the unfolding situation in real-time, are an open challenge. In this work, we present the QEVD benchmark and dataset, which explores human-AI interaction in the challenging, yet controlled, real-world domain of fitness coaching – a task which intrinsically requires monitoring live user activity and providing immediate feedback. The benchmark requires vision-language models to recognize complex human actions, identify possible mistakes, and provide appropriate feedback in real-time. Our experiments reveal the limitations of existing state-of-the-art vision-language models for such asynchronous situated interactions. Motivated by this, we propose a simple end-to-end streaming baseline that can respond asynchronously to human actions with appropriate feedback at the appropriate time.",https://neurips.cc//virtual/2024/poster/97489,2024,NeurIPS,Yes,Multimodal, When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models,"Recently, Large Language Models (LLMs) make remarkable evolutions in language understanding and generation. Following this, various benchmarks for measuring all kinds of capabilities of LLMs have sprung up. In this paper, we challenge the reasoning and understanding abilities of LLMs by proposing a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp. Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment. And we design three tasks with increasing difficulty in the FLUB benchmark to evaluate the fallacy understanding ability of LLMs. Based on FLUB, we investigate the performance of multiple representative and advanced LLMs, reflecting our FLUB is challenging and worthy of more future study. Interesting discoveries and valuable insights are achieved in our extensive experiments and detailed analyses. We hope that our benchmark can encourage the community to improve LLMs' ability to understand fallacies. Our data and codes are available at https://github.com/THUKElab/FLUB.",https://neurips.cc//virtual/2024/poster/97757,2024,NeurIPS,Yes,Language,Benchmark WhodunitBench: Evaluating Large Multimodal Agents via Murder Mystery Games,"Recently, large language models (LLMs) have achieved superior performance, empowering the development of large multimodal agents (LMAs). An LMA is anticipated to execute practical tasks requires various capabilities including multimodal perception, interaction, reasoning, and decision making. However, existing benchmarks are limited in assessing compositional skills and actions demanded by practical scenarios, where they primarily focused on single tasks and static scenarios. To bridge this gap, we introduce WhodunitBench, a benchmark rooted from murder mystery games, where players are required to utilize the aforementioned skills to achieve their objective (i.e., identifying the `murderer' or hiding themselves), providing a simulated dynamic environment for evaluating LMAs. Specifically, WhodunitBench includes two evaluation modes. The first mode, the arena-style evaluation, is constructed from 50 meticulously curated scripts featuring clear reasoning clues and distinct murderers; The second mode, the chain of evaluation, consists of over 3000 curated multiple-choice questions and open-ended questions, aiming to assess every facet of the murder mystery games for LMAs. Experiments show that although current LMAs show acceptable performance in basic perceptual tasks, they are insufficiently equipped for complex multi-agent collaboration and multi-step reasoning tasks. Furthermore, the full application of the theory of mind to complete games in a manner akin to human behavior remains a significant challenge. We hope this work can illuminate the path forward, providing a solid foundation for the future development of LMAs. Our WhodunitBench is open-source and accessible at: https://github.com/jun0wanan/WhodunitBench-Murder_Mystery_Games",https://neurips.cc//virtual/2024/poster/97492,2024,NeurIPS,Yes,Language,Benchmark Who Evaluates the Evaluations? Objectively Scoring Text-to-Image Prompt Coherence Metrics with T2IScoreScore (TS2),"With advances in the quality of text-to-image (T2I) models has come interest in benchmarking their prompt faithfulness---the semantic coherence of generated images to the prompts they were conditioned on. A variety of T2I faithfulness metrics have been proposed, leveraging advances in cross-modal embeddings and vision-language models (VLMs). However, these metrics are not rigorously compared and benchmarked, instead presented with correlation to human Likert scores over a set of easy-to-discriminate images against seemingly weak baselines. We introduce T2IScoreScore, a curated set of semantic error graphs containing a prompt and a set of increasingly erroneous images. These allow us to rigorously judge whether a given prompt faithfulness metric can correctly order images with respect to their objective error count and significantly discriminate between different error nodes, using meta-metric scores derived from established statistical tests. Surprisingly, we find that the state-of-the-art VLM-based metrics (e.g., TIFA, DSG, LLMScore, VIEScore) we tested fail to significantly outperform simple (and supposedly worse) feature-based metrics like CLIPScore, particularly on a hard subset of naturally-occurring T2I model errors. TS2 will enable the development of better T2I prompt faithfulness metrics through more rigorous comparison of their conformity to expected orderings and separations under objective criteria.",https://neurips.cc//virtual/2024/poster/95132,2024,NeurIPS,Yes,Multimodal, Why are Visually-Grounded Language Models Bad at Image Classification?,"Image classification is one of the most fundamental capabilities of machine vision intelligence. In this work, we revisit the image classification task using visually-grounded language models (VLMs) such as GPT-4V and LLaVA. We find that existing proprietary and public VLMs, despite often using CLIP as a vision encoder and having many more parameters, significantly underperform CLIP on standard image classification benchmarks like ImageNet. To understand the reason, we explore several hypotheses concerning the inference algorithms, training objectives, and data processing in VLMs. Our analysis reveals that the primary cause is data-related: critical information for image classification is encoded in the VLM's latent space but can only be effectively decoded with enough training data. Specifically, there is a strong correlation between the frequency of class exposure during VLM training and instruction-tuning and the VLM's performance in those classes; when trained with sufficient data, VLMs can match the accuracy of state-of-the-art classification models. Based on these findings, we enhance a VLM by integrating classification-focused datasets into its training, and demonstrate that the enhanced classification performance of the VLM transfers to its general capabilities, resulting in an improvement of 11.8% on the newly collected ImageWikiQA dataset.",https://neurips.cc//virtual/2024/poster/95478,2024,NeurIPS,No,, WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia,"Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs), such as hallucinations and outdated information. However, it remains unclear how LLMs handle knowledge conflicts arising from different augmented retrieved passages, especially when these passages originate from the same source and have equal trustworthiness. In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions that have varying answers based on contradictory passages from Wikipedia, a dataset widely regarded as a high-quality pre-training resource for most LLMs. Specifically, we introduce WikiContradict, a benchmark consisting of 253 high-quality, human-annotated instances designed to assess the performance of LLMs in providing a complete perspective on conflicts from the retrieved documents, rather than choosing one answer over another, when augmented with retrieved passages containing real-world knowledge conflicts. We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages. Through rigorous human evaluations on a subset of WikiContradict instances involving 5 LLMs and over 3,500 judgements, we shed light on the behaviour and limitations of these models. For instance, when provided with two passages containing contradictory facts, all models struggle to generate answers that accurately reflect the conflicting nature of the context, especially for implicit conflicts requiring reasoning. Since human evaluation is costly, wealso introduce an automated model that estimates LLM performance using a strong open-source language model, achieving an F-score of 0.8. Using this automated metric, we evaluate more than 1,500 answers from seven LLMs across all WikiContradict instances.",https://neurips.cc//virtual/2024/poster/97844,2024,NeurIPS,Yes,Language,Benchmark WikiDO: A New Benchmark Evaluating Cross-Modal Retrieval for Vision-Language Models,"Cross-modal (image-to-text and text-to-image) retrieval is an established task used in evaluation benchmarks to test the performance of vision-language models (VLMs). Several state-of-the-art VLMs (e.g. CLIP, BLIP-2) have achieved near-perfect performance on widely-used image-text retrieval benchmarks such as MSCOCO-Test-5K and Flickr30K-Test-1K. As a measure of out-of-distribution (OOD) generalization, prior works rely on zero-shot performance evaluated on one dataset (Flickr) using a VLM finetuned on another one (MSCOCO). We argue that such comparisons are insufficient to assess the OOD generalization capability of models due to high visual and linguistic similarity between the evaluation and finetuning datasets. To address this gap, we introduce WikiDO (drawn from Wikipedia Diversity Observatory), a novel cross-modal retrieval benchmark to assess the OOD generalization capabilities of pretrained VLMs. This consists of newly scraped 380K image-text pairs from Wikipedia with domain labels, a carefully curated, human-verified a)in-distribution (ID) test set (3K) and b) OOD test set (3K). The image-text pairs are very diverse in topics and geographical locations. We evaluate different VLMs of varying capacity on the \wikido benchmark; BLIP-2 achieves zero-shot performance of $R@1\approx66\%$ on the OOD test set, compared to $\approx$ $81\%$ on COCO and $\approx95\%$ on Flickr. When fine-tuned on WikiDO, the $R@1$ improvement is at most $\approx5\%$ on OOD instances compared to $\approx12\%$ on ID instances. We probe the VLMs with varying finetuning objectives and datasets of varying sizes to identify what aids OOD generalization the most. Our results confirm that WikiDO offers a strong cross-modal benchmark for current VLMs in specifically evaluating for OOD generalization. Our benchmark is hosted as a competition at https://kaggle.com/competitions/wikido24 with public access to dataset and code.",https://neurips.cc//virtual/2024/poster/97785,2024,NeurIPS,Yes,Multimodal, "WildGuard: Open One-stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs","We introduce WildGuard---an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios.Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 25.3% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 4.8% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%. We will make all our data, models and training/evaluation code publicly available under CC BY 4.0 license.",https://neurips.cc//virtual/2024/poster/97764,2024,NeurIPS,Yes,Language,Technical WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences,"Recent breakthroughs in vision-language models (VLMs) emphasize the necessity of benchmarking human preferences in real-world multimodal interactions. To address this gap, we launched WildVision-Arena (WV-Arena), an online platform that collects human preferences to evaluate VLMs. We curated WV-Bench by selecting 500 high-quality samples from 8,000 user submissions in WV-Arena. WV-Bench uses GPT-4 as the judge to compare each VLM with Claude-3-Sonnet, achieving a Spearman correlation of 0.94 with the WV-Arena Elo. This significantly outperforms other benchmarks like MMVet, MMMU, and MMStar.Our comprehensive analysis of 20K real-world interactions reveals important insights into the failure cases of top-performing VLMs. For example, we find that although GPT-4V surpasses many other models like Reka-Flash, Opus, and Yi-VL-Plus in simple visual recognition and reasoning tasks, it still faces challenges with subtle contextual cues, spatial reasoning, visual imagination, and expert domain knowledge. Additionally, current VLMs exhibit issues with hallucinations and safety when intentionally provoked. We are releasing our chat and feedback data to further advance research in the field of VLMs.",https://neurips.cc//virtual/2024/poster/97560,2024,NeurIPS,Yes,Multimodal, WizardArena: Post-training Large Language Models via Simulated Offline Chatbot Arena,"Recent work demonstrates that, post-training large language models with open-domain instruction following data have achieved colossal success. Simultaneously, human Chatbot Arena has emerged as one of the most reasonable benchmarks for model evaluation and developmental guidance. However, the processes of manually curating high-quality training data and utilizing online human evaluation platforms are both expensive and limited. To mitigate the manual and temporal costs associated with post-training, this paper introduces a Simulated Chatbot Arena named WizardArena, which is fully based on and powered by open-source LLMs. For evaluation scenario, WizardArena can efficiently predict accurate performance rankings among different models based on offline test set. For training scenario, we simulate arena battles among various state-of-the-art models on a large scale of instruction data, subsequently leveraging the battle results to constantly enhance target model in both the supervised fine-tuning and reinforcement learning . Experimental results demonstrate that our WizardArena aligns closely with the online human arena rankings, and our models trained on offline extensive battle data exhibit significant performance improvements during SFT, DPO, and PPO stages.",https://neurips.cc//virtual/2024/poster/94915,2024,NeurIPS,Yes,Language,Methodological WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks,"The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recent LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress towards capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena.",https://neurips.cc//virtual/2024/poster/97713,2024,NeurIPS,Yes,Language,Benchmark XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation,"Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D.",https://neurips.cc//virtual/2024/poster/92979,2024,NeurIPS,No,, Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation,"The masked language model has received remarkable attention due to its effectiveness on various natural language processing tasks. However, few works have adopted this technique in the sequence-to-sequence models. In this work, we introduce a jointly masked sequence-to-sequence model and explore its application on non-autoregressive neural machine translation~(NAT). Specifically, we first empirically study the functionalities of the encoder and the decoder in NAT models, and find that the encoder takes a more important role than the decoder regarding the translation quality. Therefore, we propose to train the encoder more rigorously by masking the encoder input while training. As for the decoder, we propose to train it based on the consecutive masking of the decoder input with an n-gram loss function to alleviate the problem of translating duplicate words. The two types of masks are applied to the model jointly at the training stage. We conduct experiments on five benchmark machine translation tasks, and our model can achieve 27.69/32.24 BLEU scores on WMT14 English-German/German-English tasks with 5+ times speed up compared with an autoregressive model.",,2020,ACL,No,, A Systematic Assessment of Syntactic Generalization in Neural Language Models,"While state-of-the-art neural network models continue to achieve lower perplexity scores on language modeling benchmarks, it remains unknown whether optimizing for broad-coverage predictive performance leads to human-like syntactic knowledge. Furthermore, existing work has not provided a clear picture about the model properties required to produce proper syntactic generalizations. We present a systematic evaluation of the syntactic knowledge of neural language models, testing 20 combinations of model types and data sizes on a set of 34 English-language syntactic test suites. We find substantial differences in syntactic generalization performance by model architecture, with sequential models underperforming other architectures. Factorially manipulating model architecture and training dataset size (1M-40M words), we find that variability in syntactic generalization performance is substantially greater by architecture than by dataset size for the corpora tested in our experiments. Our results also reveal a dissociation between perplexity and syntactic generalization performance.",,2020,ACL,No,, Automatic Detection of Generated Text is Easiest when Humans are Fooled,"Recent advancements in neural language modelling make it possible to rapidly generate vast amounts of human-sounding text. The capabilities of humans and automatic discriminators to detect machine-generated text have been a large source of research interest, but humans and machines rely on different cues to make their decisions. Here, we perform careful benchmarking and analysis of three popular sampling-based decoding strategies—top-_k_, nucleus sampling, and untruncated random sampling—and show that improvements in decoding methods have primarily optimized for fooling humans. This comes at the expense of introducing statistical abnormalities that make detection easy for automatic systems. We also show that though both human and automatic detector performance improve with longer excerpt length, even multi-sentence excerpts can fool expert human raters over 30% of the time. Our findings reveal the importance of using both human and automatic detectors to assess the humanness of text generation systems.",,2020,ACL,No,, SPECTER: Document-level Representation Learning using Citation-informed Transformers,"Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, accurate embeddings of documents are a necessity. We propose SPECTER, a new method to generate document-level embedding of scientific papers based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, Specter can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that Specter outperforms a variety of competitive baselines on the benchmark.",,2020,ACL,Yes,Language,Methodological Span Selection Pre-training for Question Answering,"BERT (Bidirectional Encoder Representations from Transformers) and related pre-trained Transformers have provided large gains across many language understanding tasks, achieving a new state-of-the-art (SOTA). BERT is pretrained on two auxiliary tasks: Masked Language Model and Next Sentence Prediction. In this paper we introduce a new pre-training task inspired by reading comprehension to better align the pre-training from memorization to understanding. Span Selection PreTraining (SSPT) poses cloze-like training instances, but rather than draw the answer from the model’s parameters, it is selected from a relevant passage. We find significant and consistent improvements over both BERT-BASE and BERT-LARGE on multiple Machine Reading Comprehension (MRC) datasets. Specifically, our proposed model has strong empirical evidence as it obtains SOTA results on Natural Questions, a new benchmark MRC dataset, outperforming BERT-LARGE by 3 F1 points on short answer prediction. We also show significant impact in HotpotQA, improving answer prediction F1 by 4 points and supporting fact prediction F1 by 1 point and outperforming the previous best system. Moreover, we show that our pre-training approach is particularly effective when training data is limited, improving the learning curve by a large amount.",,2020,ACL,No,, Improving Transformer Models by Reordering their Sublayers,"Multilayer transformer networks consist of interleaved self-attention and feedforward sublayers. Could ordering the sublayers in a different pattern lead to better performance? We generate randomly ordered transformers and train them with the language modeling objective. We observe that some of these models are able to achieve better performance than the interleaved baseline, and that those successful variants tend to have more self-attention at the bottom and more feedforward sublayers at the top. We propose a new transformer pattern that adheres to this property, the sandwich transformer, and show that it improves perplexity on multiple word-level and character-level language modeling benchmarks, at no cost in parameters, memory, or training time. However, the sandwich reordering pattern does not guarantee performance gains across every task, as we demonstrate on machine translation models. Instead, we suggest that further exploration of task-specific sublayer reorderings is needed in order to unlock additional gains.",,2020,ACL,No,, Enhancing Pre-trained Chinese Character Representation with Word-aligned Attention,"Most Chinese pre-trained models take character as the basic unit and learn representation according to character’s external contexts, ignoring the semantics expressed in the word, which is the smallest meaningful utterance in Chinese. Hence, we propose a novel word-aligned attention to exploit explicit word information, which is complementary to various character-based Chinese pre-trained language models. Specifically, we devise a pooling mechanism to align the character-level attention to the word level and propose to alleviate the potential issue of segmentation error propagation by multi-source information fusion. As a result, word and character information are explicitly integrated at the fine-tuning procedure. Experimental results on five Chinese NLP benchmark tasks demonstrate that our method achieves significant improvements against BERT, ERNIE and BERT-wwm.",,2020,ACL,No,, On the Encoder-Decoder Incompatibility in Variational Text Modeling and Beyond,"Variational autoencoders (VAEs) combine latent variables with amortized variational inference, whose optimization usually converges into a trivial local optimum termed posterior collapse, especially in text modeling. By tracking the optimization dynamics, we observe the encoder-decoder incompatibility that leads to poor parameterizations of the data manifold. We argue that the trivial local optimum may be avoided by improving the encoder and decoder parameterizations since the posterior network is part of a transition map between them. To this end, we propose Coupled-VAE, which couples a VAE model with a deterministic autoencoder with the same structure and improves the encoder and decoder parameterizations via encoder weight sharing and decoder signal matching. We apply the proposed Coupled-VAE approach to various VAE models with different regularization, posterior family, decoder structure, and optimization strategy. Experiments on benchmark datasets (i.e., PTB, Yelp, and Yahoo) show consistently improved results in terms of probability estimation and richness of the latent space. We also generalize our method to conditional language modeling and propose Coupled-CVAE, which largely improves the diversity of dialogue generation on the Switchboard dataset.",,2020,ACL,No,, MIND: A Large-scale Dataset for News Recommendation,"News recommendation is an important technique for personalized news service. Compared with product and movie recommendations which have been comprehensively studied, the research on news recommendation is much more limited, mainly due to the lack of a high-quality benchmark dataset. In this paper, we present a large-scale dataset named MIND for news recommendation. Constructed from the user click logs of Microsoft News, MIND contains 1 million users and more than 160k English news articles, each of which has rich textual content such as title, abstract and body. We demonstrate MIND a good testbed for news recommendation through a comparative study of several state-of-the-art news recommendation methods which are originally developed on different proprietary datasets. Our results show the performance of news recommendation highly relies on the quality of news content understanding and user interest modeling. Many natural language processing techniques such as effective text representation methods and pre-trained language models can effectively improve the performance of news recommendation. The MIND dataset will be available at https://msnews.github.io.",,2020,ACL,No,, Encoder-Decoder Models Can Benefit from Pre-trained Masked Language Models in Grammatical Error Correction,"This paper investigates how to effectively incorporate a pre-trained masked language model (MLM), such as BERT, into an encoder-decoder (EncDec) model for grammatical error correction (GEC). The answer to this question is not as straightforward as one might expect because the previous common methods for incorporating a MLM into an EncDec model have potential drawbacks when applied to GEC. For example, the distribution of the inputs to a GEC model can be considerably different (erroneous, clumsy, etc.) from that of the corpora used for pre-training MLMs; however, this issue is not addressed in the previous methods. Our experiments show that our proposed method, where we first fine-tune a MLM with a given GEC corpus and then use the output of the fine-tuned MLM as additional features in the GEC model, maximizes the benefit of the MLM. The best-performing model achieves state-of-the-art performances on the BEA-2019 and CoNLL-2014 benchmarks. Our code is publicly available at: https://github.com/kanekomasahiro/bert-gec.",,2020,ACL,No,, On the Cross-lingual Transferability of Monolingual Representations,"State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.",,2020,ACL,Yes,Language,Methodological Pretraining with Contrastive Sentence Objectives Improves Discourse Performance of Language Models,"Recent models for unsupervised representation learning of text have employed a number of techniques to improve contextual word representations but have put little focus on discourse-level representations. We propose Conpono, an inter-sentence objective for pretraining language models that models discourse coherence and the distance between sentences. Given an anchor sentence, our model is trained to predict the text k sentences away using a sampled-softmax objective where the candidates consist of neighboring sentences and sentences randomly sampled from the corpus. On the discourse representation benchmark DiscoEval, our model improves over the previous state-of-the-art by up to 13% and on average 4% absolute across 7 tasks. Our model is the same size as BERT-Base, but outperforms the much larger BERT-Large model and other more recent approaches that incorporate discourse. We also show that Conpono yields gains of 2%-6% absolute even for tasks that do not explicitly evaluate discourse: textual entailment (RTE), common sense reasoning (COPA) and reading comprehension (ReCoRD).",,2020,ACL,No,, Intermediate-Task Transfer Learning with Pretrained Language Models: When and Why Does It Work?,"While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.",,2020,ACL,No,, Video-Grounded Dialogues with Pretrained Generation Language Models,"Pre-trained language models have shown remarkable success in improving various downstream NLP tasks due to their ability to capture dependencies in textual data and generate natural responses. In this paper, we leverage the power of pre-trained language models for improving video-grounded dialogue, which is very challenging and involves complex features of different dynamics: (1) Video features which can extend across both spatial and temporal dimensions; and (2) Dialogue features which involve semantic dependencies over multiple dialogue turns. We propose a framework by extending GPT-2 models to tackle these challenges by formulating video-grounded dialogue tasks as a sequence-to-sequence task, combining both visual and textual representation into a structured sequence, and fine-tuning a large pre-trained GPT-2 network. Our framework allows fine-tuning language models to capture dependencies across multiple modalities over different levels of information: spatio-temporal level in video and token-sentence level in dialogue context. We achieve promising improvement on the Audio-Visual Scene-Aware Dialogues (AVSD) benchmark from DSTC7, which supports a potential direction in this line of research.",,2020,ACL,No,, Handling Rare Entities for Neural Sequence Labeling,"One great challenge in neural sequence labeling is the data sparsity problem for rare entity words and phrases. Most of test set entities appear only few times and are even unseen in training corpus, yielding large number of out-of-vocabulary (OOV) and low-frequency (LF) entities during evaluation. In this work, we propose approaches to address this problem. For OOV entities, we introduce local context reconstruction to implicitly incorporate contextual information into their representations. For LF entities, we present delexicalized entity identification to explicitly extract their frequency-agnostic and entity-type-specific representations. Extensive experiments on multiple benchmark datasets show that our model has significantly outperformed all previous methods and achieved new start-of-the-art results. Notably, our methods surpass the model fine-tuned on pre-trained language models without external resource.",,2020,ACL,No,, 2kenize: Tying Subword Sequences for Chinese Script Conversion,"Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have insufficient performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method’s particular strengths are in dealing with code mixing and named entities.",,2020,ACL,Yes,Language,Methodological Do Transformers Need Deep Long-Range Memory?,"Deep attention models have advanced the modelling of sequential data across many domains. For language modelling in particular, the Transformer-XL — a Transformer augmented with a long-range memory of past activations — has been shown to be state-of-the-art across a variety of well-studied benchmarks. The Transformer-XL incorporates a long-range memory at every layer of the network, which renders its state to be thousands of times larger than RNN predecessors. However it is unclear whether this is necessary. We perform a set of interventions to show that comparable performance can be obtained with 6X fewer long range memories and better performance can be obtained by limiting the range of attention in lower layers of the network.",,2020,ACL,No,, TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data,"Recent years have witnessed the burgeoning of pretrained language models (LMs) for text-based natural language (NL) understanding tasks. Such models are typically trained on free-form NL text, hence may not be suitable for tasks like semantic parsing over structured data, which require reasoning over both free-form NL questions and structured tabular data (e.g., database tables). In this paper we present TaBERT, a pretrained LM that jointly learns representations for NL sentences and (semi-)structured tables. TaBERT is trained on a large corpus of 26 million tables and their English contexts. In experiments, neural semantic parsers using TaBERT as feature representation layers achieve new best results on the challenging weakly-supervised semantic parsing benchmark WikiTableQuestions, while performing competitively on the text-to-SQL dataset Spider.",,2020,ACL,No,, Unsupervised Cross-lingual Representation Learning at Scale,"This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6% average accuracy on XNLI, +13% average F1 score on MLQA, and +2.4% F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7% in XNLI accuracy for Swahili and 11.4% for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.",,2020,ACL,No,, Contrastive Distillation on Intermediate Representations for Language Model Compression,"Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.",,2020,ACL,No,, Online Back-Parsing for AMR-to-Text Generation,"AMR-to-text generation aims to recover a text containing the same meaning as an input AMR graph. Current research develops increasingly powerful graph encoders to better represent AMR graphs, with decoders based on standard language modeling being used to generate outputs. We propose a decoder that back predicts projected AMR graphs on the target sentence during text generation. As the result, our outputs can better preserve the input meaning than standard decoders. Experiments on two AMR benchmarks show the superiority of our model over the previous state-of-the-art system based on graph Transformer.",,2020,ACL,No,, SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness,"Models that perform well on a training domain often fail to generalize to out-of-domain (OOD) examples. Data augmentation is a common method used to prevent overfitting and improve OOD generalization. However, in natural language, it is difficult to generate new examples that stay on the underlying data manifold. We introduce SSMBA, a data augmentation method for generating synthetic training examples by using a pair of corruption and reconstruction functions to move randomly on a data manifold. We investigate the use of SSMBA in the natural language domain, leveraging the manifold assumption to reconstruct corrupted text with masked language models. In experiments on robustness benchmarks across 3 tasks and 9 datasets, SSMBA consistently outperforms existing data augmentation methods and baseline models on both in-domain and OOD data, achieving gains of 0.8% on OOD Amazon reviews, 1.8% accuracy on OOD MNLI, and 1.4 BLEU on in-domain IWSLT14 German-English.",,2020,ACL,No,, CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models,"Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.",,2020,ACL,Yes,Language,Benchmark HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training,"We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.",,2020,ACL,Yes,Multimodal, BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover’s Distance,"Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for different NLP tasks. In addition, we leverage Earth Mover’s Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables effective matching for the many-to-many layer mapping. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the model’s performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression",,2020,ACL,No,, Knowledge-Grounded Dialogue Generation with Pre-trained Language Models,"We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.",,2020,ACL,No,, AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts,"The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.",,2020,ACL,No,, Unsupervised Commonsense Question Answering with Self-Talk,"Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.",,2020,ACL,No,, Investigating representations of verb bias in neural language models,"Languages typically provide more than one grammatical construction to express certain types of messages. A speaker’s choice of construction is known to depend on multiple factors, including the choice of main verb – a phenomenon known as verb bias. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.",,2020,ACL,Yes,Language,Benchmark Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space,"When trained effectively, the Variational Autoencoder (VAE) can be both a powerful generative model and an effective representation learning framework for natural language. In this paper, we propose the first large-scale language VAE model Optimus (Organizing sentences via Pre-Trained Modeling of a Universal Space). A universal latent embedding space for sentences is first pre-trained on large text corpus, and then fine-tuned for various language generation and understanding tasks. Compared with GPT-2, Optimus enables guided language generation from an abstract level using the latent vectors. Compared with BERT, Optimus can generalize better on low-resource language understanding tasks due to the smooth latent space structure. Extensive experimental results on a wide range of language tasks demonstrate the effectiveness of Optimus. It achieves new state-of-the-art on VAE language modeling benchmarks.",,2020,ACL,No,, BioMegatron: Larger Biomedical Domain Language Model,"There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of question answering, named entity recognition, and relation extraction. Code and checkpoints to reproduce our experiments are available at [github.com/NVIDIA/NeMo].",,2020,ACL,No,, RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark,"In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.",,2020,ACL,Yes,Language,Benchmark An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training,"Pre-training large language models has become a standard in the natural language processing community. Such models are pre-trained on generic data (e.g. BookCorpus and English Wikipedia) and often fine-tuned on tasks in the same domain. However, in order to achieve state-of-the-art performance on out of domain tasks such as clinical named entity recognition and relation extraction, additional in domain pre-training is required. In practice, staged multi-domain pre-training presents performance deterioration in the form of catastrophic forgetting (CF) when evaluated on a generic benchmark such as GLUE. In this paper we conduct an empirical investigation into known methods to mitigate CF. We find that elastic weight consolidation provides best overall scores yielding only a 0.33% drop in performance across seven generic tasks while remaining competitive in bio-medical tasks. Furthermore, we explore gradient and latent clustering based data selection techniques to improve coverage when using elastic weight consolidation and experience replay methods.",,2020,ACL,No,, Does the Objective Matter? Comparing Training Objectives for Pronoun Resolution,"Hard cases of pronoun resolution have been used as a long-standing benchmark for commonsense reasoning. In the recent literature, pre-trained language models have been used to obtain state-of-the-art results on pronoun resolution. Overall, four categories of training and evaluation objectives have been introduced. The variety of training datasets and pre-trained language models used in these works makes it unclear whether the choice of training objective is critical. In this work, we make a fair comparison of the performance and seed-wise stability of four models that represent the four categories of objectives. Our experiments show that the objective of sequence ranking performs the best in-domain, while the objective of semantic similarity between candidates and pronoun performs the best out-of-domain. We also observe a seed-wise instability of the model using sequence ranking, which is not the case when the other objectives are used.",,2020,ACL,No,, On Losses for Modern Language Models,"BERT set many state-of-the-art results over varied NLU benchmarks by pre-training over two tasks: masked language modelling (MLM) and next sentence prediction (NSP), the latter of which has been highly criticized. In this paper, we 1) clarify NSP’s effect on BERT pre-training, 2) explore fourteen possible auxiliary pre-training tasks, of which seven are novel to modern language models, and 3) investigate different ways to include multiple tasks into pre-training. We show that NSP is detrimental to training due to its context splitting and shallow semantic signal. We also identify six auxiliary pre-training tasks – sentence ordering, adjacent sentence prediction, TF prediction, TF-IDF prediction, a FastSent variant, and a Quick Thoughts variant – that outperform a pure MLM baseline. Finally, we demonstrate that using multiple tasks in a multi-task pre-training framework provides better results than using any single auxiliary task. Using these methods, we outperform BERTBase on the GLUE benchmark using fewer than a quarter of the training tokens.",,2020,ACL,No,, X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models,"Language models (LMs) have proven surprisingly successful at capturing factual knowledge by completing cloze-style fill-in-the-blank questions such as “Punta Cana is located in _.” However, while knowledge is both written and queried in many languages, studies on LMs’ factual representation ability have almost invariably been performed on English. To assess factual knowledge retrieval in LMs in different languages, we create a multilingual benchmark of cloze-style probes for typologically diverse languages. To properly handle language variations, we expand probing methods from single- to multi-word entities, and develop several decoding algorithms to generate multi-token predictions. Extensive experimental results provide insights about how well (or poorly) current state-of-the-art LMs perform at this task in languages with more or fewer available resources. We further propose a code-switching-based method to improve the ability of multilingual LMs to access knowledge, and verify its effectiveness on several benchmark languages. Benchmark data and code have be released at https://x-factr.github.io.",,2020,ACL,Yes,Language,Benchmark Structured Pruning of Large Language Models,"Large language models have recently achieved state of the art performance across a wide variety of natural language tasks. Meanwhile, the size of these models and their latency have significantly increased, which makes their usage costly, and raises an interesting question: do language models need to be large? We study this question through the lens of model compression. We present a generic, structured pruning approach by parameterizing each weight matrix using its low-rank factorization, and adaptively removing rank-1 components during training. On language modeling tasks, our structured approach outperforms other unstructured and block-structured pruning baselines at various compression levels, while achieving significant speedups during both training and inference. We also demonstrate that our method can be applied to pruning adaptive word embeddings in large language models, and to pruning the BERT model on several downstream fine-tuning classification benchmarks.",,2020,ACL,No,, What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding,"In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attention. Embedding the position information in the self-attention mechanism is also an indispensable factor in Transformers however is often discussed at will. Hence, we carry out an empirical study on position embedding of mainstream pre-trained Transformers mainly focusing on two questions: 1) Do position embeddings really learn the meaning of positions? 2) How do these different learned position embeddings affect Transformers for NLP tasks? This paper focuses on providing a new insight of pre-trained position embeddings by feature-level analysis and empirical experiments on most of iconic NLP tasks. It is believed that our experimental results can guide the future works to choose the suitable positional encoding function for specific tasks given the application property.",,2020,ACL,No,, Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting,"Deep pretrained language models have achieved great success in the way of pretraining first and then fine-tuning. But such a sequential transfer learning paradigm often confronts the catastrophic forgetting problem and leads to sub-optimal performance. To fine-tune with less forgetting, we propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks. Specifically, we introduce a Pretraining Simulation mechanism to recall the knowledge from pretraining tasks without data, and an Objective Shifting mechanism to focus the learning on downstream tasks gradually. Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark. Our method also enables BERT-base to achieve better average performance than directly fine-tuning of BERT-large. Further, we provide the open-source RecAdam optimizer, which integrates the proposed mechanisms into Adam optimizer, to facility the NLP community.",,2020,ACL,No,, Precise Task Formalization Matters in Winograd Schema Evaluations,"Performance on the Winograd Schema Challenge (WSC), a respected English commonsense reasoning benchmark, recently rocketed from chance accuracy to 89% on the SuperGLUE leaderboard, with relatively little corroborating evidence of a correspondingly large improvement in reasoning ability. We hypothesize that much of this improvement comes from recent changes in task formalization—the combination of input specification, loss function, and reuse of pretrained parameters—by users of the dataset, rather than improvements in the pretrained model’s reasoning ability. We perform an ablation on two Winograd Schema datasets that interpolates between the formalizations used before and after this surge, and find (i) framing the task as multiple choice improves performance dramatically and (ii)several additional techniques, including the reuse of a pretrained language modeling head, can mitigate the model’s extreme sensitivity to hyperparameters. We urge future benchmark creators to impose additional structure to minimize the impact of formalization decisions on reported results.",,2020,ACL,No,, Grammatical Error Correction in Low Error Density Domains: A New Benchmark and Analyses,"Evaluation of grammatical error correction (GEC) systems has primarily focused on essays written by non-native learners of English, which however is only part of the full spectrum of GEC applications. We aim to broaden the target domain of GEC and release CWEB, a new benchmark for GEC consisting of website text generated by English speakers of varying levels of proficiency. Website data is a common and important domain that contains far fewer grammatical errors than learner essays, which we show presents a challenge to state-of-the-art GEC systems. We demonstrate that a factor behind this is the inability of systems to rely on a strong internal language model in low error density domains. We hope this work shall facilitate the development of open-domain GEC models that generalize to different topics and genres.",,2020,ACL,Yes,Language,Benchmark PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation,"Self-supervised pre-training, such as BERT, MASS and BART, has emerged as a powerful technique for natural language understanding and generation. Existing pre-training techniques employ autoencoding and/or autoregressive objectives to train Transformer-based models by recovering original word tokens from corrupted text with some masked tokens. The training goals of existing techniques are often inconsistent with the goals of many language generation tasks, such as generative question answering and conversational response generation, for producing new text given context. This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. The new scheme alleviates the mismatch introduced by the existing denoising scheme between pre-training and fine-tuning where generation is more than reconstructing original text. An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks covering generative question answering (Rank 1 on the official MARCO leaderboard), abstractive summarization on CNN/DailyMail as well as Gigaword, question generation on SQuAD, and conversational response generation on Cornell Movie Dialogues.",,2020,ACL,No,, Keep CALM and Explore: Language Models for Action Generation in Text-based Games,"Text-based games present a unique challenge for autonomous agents to operate in natural language and handle enormous action spaces. In this paper, we propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state. Our key insight is to train language models on human gameplay, where people demonstrate linguistic priors and a general game sense for promising actions conditioned on game history. We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards. We evaluate our approach using the Jericho benchmark, on games unseen by CALM during training. Our method obtains a 69% relative improvement in average game score over the previous state-of-the-art model. Surprisingly, on half of these games, CALM is competitive with or better than other models that have access to ground truth admissible actions. Code and data are available at https://github.com/princeton-nlp/calm-textgame.",,2020,ACL,No,, A Simple Yet Strong Pipeline for HotpotQA,"State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design complexity? Our results suggest that the answer may be no, because even our simple pipeline based on BERT, named , performs surprisingly well. Specifically, on HotpotQA, Quark outperforms these models on both question answering and support identification (and achieves performance very close to a RoBERTa model). Our pipeline has three steps: 1) use BERT to identify potentially relevant sentences independently of each other; 2) feed the set of selected sentences as context into a standard BERT span prediction model to choose an answer; and 3) use the sentence selection model, now with the chosen answer, to produce supporting sentences. The strong performance of Quark resurfaces the importance of carefully exploring simple model designs before using popular benchmarks to justify the value of complex techniques.",,2020,ACL,No,, Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning,"In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition, we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective that is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmarks, including question answering and knowledge base completion.",,2020,ACL,No,, Text Classification Using Label Names Only: A Language Model Self-Training Approach,"Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.",,2020,ACL,No,, Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks,"State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.",,2021,ACL,No,, Stereotyping Norwegian Salmon: An Inventory of Pitfalls in Fairness Benchmark Datasets,"Auditing NLP systems for computational harms like surfacing stereotypes is an elusive goal. Several recent efforts have focused on benchmark datasets consisting of pairs of contrastive sentences, which are often accompanied by metrics that aggregate an NLP system’s behavior on these pairs into measurements of harms. We examine four such benchmarks constructed for two NLP tasks: language modeling and coreference resolution. We apply a measurement modeling lens—originating from the social sciences—to inventory a range of pitfalls that threaten these benchmarks’ validity as measurement models for stereotyping. We find that these benchmarks frequently lack clear articulations of what is being measured, and we highlight a range of ambiguities and unstated assumptions that affect how these benchmarks conceptualize and operationalize stereotyping.",,2021,ACL,No,, "MATE-KD: Masked Adversarial TExt, a Companion to Knowledge Distillation","The advent of large pre-trained language models has given rise to rapid progress in the field of Natural Language Processing (NLP). While the performance of these models on standard benchmarks has scaled with size, compression techniques such as knowledge distillation have been key in making them practical. We present MATE-KD, a novel text-based adversarial training algorithm which improves the performance of knowledge distillation. MATE-KD first trains a masked language model-based generator to perturb text by maximizing the divergence between teacher and student logits. Then using knowledge distillation a student is trained on both the original and the perturbed training samples. We evaluate our algorithm, using BERT-based models, on the GLUE benchmark and demonstrate that MATE-KD outperforms competitive adversarial learning and data augmentation baselines. On the GLUE test set our 6 layer RoBERTa based model outperforms BERT-large.",,2021,ACL,No,, Common Sense Beyond English: Evaluating and Improving Multilingual Language Models for Commonsense Reasoning,"Commonsense reasoning research has so far been limited to English. We aim to evaluate and improve popular multilingual language models (ML-LMs) to help advance commonsense reasoning (CSR) beyond English. We collect the Mickey corpus, consisting of 561k sentences in 11 different languages, which can be used for analyzing and improving ML-LMs. We propose Mickey Probe, a language-general probing task for fairly evaluating the common sense of popular ML-LMs across different languages. In addition, we also create two new datasets, X-CSQA and X-CODAH, by translating their English versions to 14 other languages, so that we can evaluate popular ML-LMs for cross-lingual commonsense reasoning. To improve the performance beyond English, we propose a simple yet effective method — multilingual contrastive pretraining (MCP). It significantly enhances sentence representations, yielding a large performance gain on both benchmarks (e.g., +2.7% accuracy for X-CSQA over XLM-R_L).",,2021,ACL,Yes,Language,Methodological Exploiting Language Relatedness for Low Web-Resource Language Model Adaptation: An Indic Languages Study,"Recent research in multilingual language models (LM) has demonstrated their ability to effectively handle multiple languages in a single model. This holds promise for low web-resource languages (LRL) as multilingual models can enable transfer of supervision from high resource languages to LRLs. However, incorporating a new language in an LM still remains a challenge, particularly for languages with limited corpora and in unseen scripts. In this paper we argue that relatedness among languages in a language family may be exploited to overcome some of the corpora limitations of LRLs, and propose RelateLM. We focus on Indian languages, and exploit relatedness along two dimensions: (1) script (since many Indic scripts originated from the Brahmic script), and (2) sentence structure. RelateLM uses transliteration to convert the unseen script of limited LRL text into the script of a Related Prominent Language (RPL) (Hindi in our case). While exploiting similar sentence structures, RelateLM utilizes readily available bilingual dictionaries to pseudo translate RPL text into LRL corpora. Experiments on multiple real-world benchmark datasets provide validation to our hypothesis that using a related language as pivot, along with transliteration and pseudo translation based data augmentation, can be an effective way to adapt LMs for LRLs, rather than direct training or pivoting through English.",,2021,ACL,No,, Challenges in Information-Seeking QA: Unanswerable Questions and Paragraph Retrieval,"Recent pretrained language models “solved” many reading comprehension benchmarks, where questions are written with access to the evidence document. However, datasets containing information-seeking queries where evidence documents are provided after the queries are written independently remain challenging. We analyze why answering information-seeking queries is more challenging and where their prevalent unanswerabilities arise, on Natural Questions and TyDi QA. Our controlled experiments suggest two headrooms – paragraph selection and answerability prediction, i.e. whether the paired evidence document contains the answer to the query or not. When provided with a gold paragraph and knowing when to abstain from answering, existing models easily outperform a human annotator. However, predicting answerability itself remains challenging. We manually annotate 800 unanswerable examples across six languages on what makes them challenging to answer. With this new data, we conduct per-category answerability prediction, revealing issues in the current dataset collection as well as task formulation. Together, our study points to avenues for future research in information-seeking question answering, both for dataset creation and model development. Our code and annotated data is publicly available at https://github.com/AkariAsai/unanswerable_qa.",,2021,ACL,No,, Improving Formality Style Transfer with Context-Aware Rule Injection,"Models pre-trained on large-scale regular text corpora often do not work well for user-generated data where the language styles differ significantly from the mainstream text. Here we present Context-Aware Rule Injection (CARI), an innovative method for formality style transfer (FST) by injecting multiple rules into an end-to-end BERT-based encoder and decoder model. CARI is able to learn to select optimal rules based on context. The intrinsic evaluation showed that CARI achieved the new highest performance on the FST benchmark dataset. Our extrinsic evaluation showed that CARI can greatly improve the regular pre-trained models’ performance on several tweet sentiment analysis tasks. Our contributions are as follows: 1.We propose a new method, CARI, to integrate rules for pre-trained language models. CARI is context-aware and can trained end-to-end with the downstream NLP applications. 2.We have achieved new state-of-the-art results for FST on the benchmark GYAFC dataset. 3.We are the first to evaluate FST methods with extrinsic evaluation and specifically on sentiment classification tasks. We show that CARI outperformed existing rule-based FST approaches for sentiment classification.",,2021,ACL,No,, A Survey of Code-switching: Linguistic and Social Perspectives for Language Technologies,"The analysis of data in which multiple languages are represented has gained popularity among computational linguists in recent years. So far, much of this research focuses mainly on the improvement of computational methods and largely ignores linguistic and social aspects of C-S discussed across a wide range of languages within the long-established literature in linguistics. To fill this gap, we offer a survey of code-switching (C-S) covering the literature in linguistics with a reflection on the key issues in language technologies. From the linguistic perspective, we provide an overview of structural and functional patterns of C-S focusing on the literature from European and Indian contexts as highly multilingual areas. From the language technologies perspective, we discuss how massive language models fail to represent diverse C-S types due to lack of appropriate training data, lack of robust evaluation benchmarks for C-S (across multilingual situations and types of C-S) and lack of end-to- end systems that cover sociolinguistic aspects of C-S as well. Our survey will be a step to- wards an outcome of mutual benefit for computational scientists and linguists with a shared interest in multilingualism and C-S.",,2021,ACL,No,, RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models,"Text representation models are prone to exhibit a range of societal biases, reflecting the non-controlled and biased nature of the underlying pretraining data, which consequently leads to severe ethical issues and even bias amplification. Recent work has predominantly focused on measuring and mitigating bias in pretrained language models. Surprisingly, the landscape of bias measurements and mitigation resources and methods for conversational language models is still very scarce: it is limited to only a few types of bias, artificially constructed resources, and completely ignores the impact that debiasing methods may have on the final perfor mance in dialog tasks, e.g., conversational response generation. In this work, we present REDDITBIAS, the first conversational data set grounded in the actual human conversations from Reddit, allowing for bias measurement and mitigation across four important bias dimensions: gender,race,religion, and queerness. Further, we develop an evaluation framework which simultaneously 1)measures bias on the developed REDDITBIAS resource, and 2)evaluates model capability in dialog tasks after model debiasing. We use the evaluation framework to benchmark the widely used conversational DialoGPT model along with the adaptations of four debiasing methods. Our results indicate that DialoGPT is biased with respect to religious groups and that some debiasing techniques can remove this bias while preserving downstream task performance.",,2021,ACL,Yes,Language,Methodological Rational LAMOL: A Rationale-based Lifelong Learning Framework,"Lifelong learning (LL) aims to train a neural network on a stream of tasks while retaining knowledge from previous tasks. However, many prior attempts in NLP still suffer from the catastrophic forgetting issue, where the model completely forgets what it just learned in the previous tasks. In this paper, we introduce Rational LAMOL, a novel end-to-end LL framework for language models. In order to alleviate catastrophic forgetting, Rational LAMOL enhances LAMOL, a recent LL model, by applying critical freezing guided by human rationales. When the human rationales are not available, we propose exploiting unsupervised generated rationales as substitutions. In the experiment, we tested Rational LAMOL on permutations of three datasets from the ERASER benchmark. The results show that our proposed framework outperformed vanilla LAMOL on most permutations. Furthermore, unsupervised rationale generation was able to consistently improve the overall LL performance from the baseline without relying on human-annotated rationales.",,2021,ACL,No,, LeeBERT: Learned Early Exit for BERT with cross-level optimization,"Pre-trained language models like BERT are performant in a wide range of natural language tasks. However, they are resource exhaustive and computationally expensive for industrial scenarios. Thus, early exits are adopted at each layer of BERT to perform adaptive computation by predicting easier samples with the first few layers to speed up the inference. In this work, to improve efficiency without performance drop, we propose a novel training scheme called Learned Early Exit for BERT (LeeBERT). First, we ask each exit to learn from each other, rather than learning only from the last layer. Second, the weights of different loss terms are learned, thus balancing off different objectives. We formulate the optimization of LeeBERT as a bi-level optimization problem, and we propose a novel cross-level optimization (CLO) algorithm to improve the optimization results. Experiments on the GLUE benchmark show that our proposed methods improve the performance of the state-of-the-art (SOTA) early exit methods for pre-trained models.",,2021,ACL,No,, PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction,"Chinese spelling correction (CSC) is a task to detect and correct spelling errors in texts. CSC is essentially a linguistic problem, thus the ability of language understanding is crucial to this task. In this paper, we propose a Pre-trained masked Language model with Misspelled knowledgE (PLOME) for CSC, which jointly learns how to understand language and correct spelling errors. To this end, PLOME masks the chosen tokens with similar characters according to a confusion set rather than the fixed token “[MASK]” as in BERT. Besides character prediction, PLOME also introduces pronunciation prediction to learn the misspelled knowledge on phonic level. Moreover, phonological and visual similarity knowledge is important to this task. PLOME utilizes GRU networks to model such knowledge based on characters’ phonics and strokes. Experiments are conducted on widely used benchmarks. Our method achieves superior performance against state-of-the-art approaches by a remarkable margin. We release the source code and pre-trained model for further use by the community (https://github.com/liushulinle/PLOME).",,2021,ACL,No,, A Semantic-based Method for Unsupervised Commonsense Question Answering,"Unsupervised commonsense question answering is appealing since it does not rely on any labeled task data. Among existing work, a popular solution is to use pre-trained language models to score candidate choices directly conditioned on the question or context. However, such scores from language models can be easily affected by irrelevant factors, such as word frequencies, sentence structures, etc. These distracting factors may not only mislead the model to choose a wrong answer but also make it oversensitive to lexical perturbations in candidate answers. In this paper, we present a novel SEmantic-based Question Answering method (SEQA) for unsupervised commonsense question answering. Instead of directly scoring each answer choice, our method first generates a set of plausible answers with generative models (e.g., GPT-2), and then uses these plausible answers to select the correct choice by considering the semantic similarity between each plausible answer and each choice. We devise a simple, yet sound formalism for this idea and verify its effectiveness and robustness with extensive experiments. We evaluate the proposed method on four benchmark datasets, and our method achieves the best results in unsupervised settings. Moreover, when attacked by TextFooler with synonym replacement, SEQA demonstrates much less performance drops than baselines, thereby indicating stronger robustness.",,2021,ACL,No,, Can Generative Pre-trained Language Models Serve As Knowledge Bases for Closed-book QA?,"Recent work has investigated the interesting question using pre-trained language models (PLMs) as knowledge bases for answering open questions. However, existing work is limited in using small benchmarks with high test-train overlaps. We construct a new dataset of closed-book QA using SQuAD, and investigate the performance of BART. Experiments show that it is challenging for BART to remember training facts in high precision, and also challenging to answer closed-book questions even if relevant knowledge is retained. Some promising directions are found, including decoupling the knowledge memorizing process and the QA finetune process, forcing the model to recall relevant knowledge when question answering.",,2021,ACL,Yes,Language,Methodological Consistency Regularization for Cross-Lingual Fine-Tuning,"Fine-tuning pre-trained cross-lingual language models can transfer task-specific supervision from one language to the others. In this work, we propose to improve cross-lingual fine-tuning with consistency regularization. Specifically, we use example consistency regularization to penalize the prediction sensitivity to four types of data augmentations, i.e., subword sampling, Gaussian noise, code-switch substitution, and machine translation. In addition, we employ model consistency to regularize the models trained with two augmented versions of the same training set. Experimental results on the XTREME benchmark show that our method significantly improves cross-lingual fine-tuning across various tasks, including text classification, question answering, and sequence labeling.",,2021,ACL,No,, Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment,"The cross-lingual language models are typically pretrained with masked language modeling on multilingual text or parallel sentences. In this paper, we introduce denoising word alignment as a new cross-lingual pre-training task. Specifically, the model first self-label word alignments for parallel sentences. Then we randomly mask tokens in a bitext pair. Given a masked token, the model uses a pointer network to predict the aligned token in the other language. We alternately perform the above two steps in an expectation-maximization manner. Experimental results show that our method improves cross-lingual transferability on various datasets, especially on the token-level tasks, such as question answering, and structured prediction. Moreover, the model can serve as a pretrained word aligner, which achieves reasonably low error rate on the alignment benchmarks. The code and pretrained parameters are available at github.com/CZWin32768/XLM-Align.",,2021,ACL,No,, BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?,"Analogies play a central role in human commonsense reasoning. The ability to recognize analogies such as “eye is to seeing what ear is to hearing”, sometimes referred to as analogical proportions, shape how we structure knowledge and understand language. Surprisingly, however, the task of identifying such analogies has not yet received much attention in the language model era. In this paper, we analyze the capabilities of transformer-based language models on this unsupervised task, using benchmarks obtained from educational settings, as well as more commonly used datasets. We find that off-the-shelf language models can identify analogies to a certain extent, but struggle with abstract and complex relations, and results are highly sensitive to model architecture and hyperparameters. Overall the best results were obtained with GPT-2 and RoBERTa, while configurations using BERT were not able to outperform word embedding models. Our results raise important questions for future work about how, and to what extent, pre-trained language models capture knowledge about abstract semantic relations.",,2021,ACL,No,, MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding,"Recently, various neural models for multi-party conversation (MPC) have achieved impressive improvements on a variety of tasks such as addressee recognition, speaker identification and response prediction. However, these existing methods on MPC usually represent interlocutors and utterances individually and ignore the inherent complicated structure in MPC which may provide crucial interlocutor and utterance semantics and would enhance the conversation understanding process. To this end, we present MPC-BERT, a pre-trained model for MPC understanding that considers learning who says what to whom in a unified model with several elaborated self-supervised tasks. Particularly, these tasks can be generally categorized into (1) interlocutor structure modeling including reply-to utterance recognition, identical speaker searching and pointer consistency distinction, and (2) utterance semantics modeling including masked shared utterance restoration and shared node detection. We evaluate MPC-BERT on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that MPC-BERT outperforms previous methods by large margins and achieves new state-of-the-art performance on all three downstream tasks at two benchmarks.",,2021,ACL,No,, Structural Guidance for Transformer Language Models,"Transformer-based language models pre-trained on large amounts of text data have proven remarkably successful in learning generic transferable linguistic representations. Here we study whether structural guidance leads to more human-like systematic linguistic generalization in Transformer language models without resorting to pre-training on very large amounts of data. We explore two general ideas. The “Generative Parsing” idea jointly models the incremental parse and word sequence as part of the same sequence modeling task. The “Structural Scaffold” idea guides the language model’s representation via additional structure loss that separately predicts the incremental constituency parse. We train the proposed models along with a vanilla Transformer language model baseline on a 14 million-token and a 46 million-token subset of the BLLIP dataset, and evaluate models’ syntactic generalization performances on SG Test Suites and sized BLiMP. Experiment results across two benchmarks suggest converging evidence that generative structural supervisions can induce more robust and humanlike linguistic generalization in Transformer language models without the need for data intensive pre-training.",,2021,ACL,No,, How is BERT surprised? Layerwise detection of linguistic anomalies,"Transformer language models have shown remarkable ability in detecting when a word is anomalous in context, but likelihood scores offer no information about the cause of the anomaly. In this work, we use Gaussian models for density estimation at intermediate layers of three language models (BERT, RoBERTa, and XLNet), and evaluate our method on BLiMP, a grammaticality judgement benchmark. In lower layers, surprisal is highly correlated to low token frequency, but this correlation diminishes in upper layers. Next, we gather datasets of morphosyntactic, semantic, and commonsense anomalies from psycholinguistic studies; we find that the best performing model RoBERTa exhibits surprisal in earlier layers when the anomaly is morphosyntactic than when it is semantic, while commonsense anomalies do not exhibit surprisal at any intermediate layer. These results suggest that language models employ separate mechanisms to detect different types of linguistic anomalies.",,2021,ACL,No,, BinaryBERT: Pushing the Limit of BERT Quantization,"The rapid development of large pre-trained language models has greatly increased the demand for model compression techniques, among which quantization is a popular solution. In this paper, we propose BinaryBERT, which pushes BERT quantization to the limit by weight binarization. We find that a binary BERT is hard to be trained directly than a ternary counterpart due to its complex and irregular loss landscape. Therefore, we propose ternary weight splitting, which initializes BinaryBERT by equivalently splitting from a half-sized ternary network. The binary model thus inherits the good performance of the ternary one, and can be further enhanced by fine-tuning the new architecture after splitting. Empirical results show that our BinaryBERT has only a slight performance drop compared with the full-precision model while being 24x smaller, achieving the state-of-the-art compression results on the GLUE and SQuAD benchmarks. Code will be released.",,2021,ACL,No,, A Pre-training Strategy for Zero-Resource Response Selection in Knowledge-Grounded Conversations,"Recently, many studies are emerging towards building a retrieval-based dialogue system that is able to effectively leverage background knowledge (e.g., documents) when conversing with humans. However, it is non-trivial to collect large-scale dialogues that are naturally grounded on the background documents, which hinders the effective and adequate training of knowledge selection and response matching. To overcome the challenge, we consider decomposing the training of the knowledge-grounded response selection into three tasks including: 1) query-passage matching task; 2) query-dialogue history matching task; 3) multi-turn response matching task, and joint learning all these tasks in a unified pre-trained language model. The former two tasks could help the model in knowledge selection and comprehension, while the last task is designed for matching the proper response with the given query and background knowledge (dialogue history). By this means, the model can be learned to select relevant knowledge and distinguish proper response, with the help of ad-hoc retrieval corpora and a large number of ungrounded multi-turn dialogues. Experimental results on two benchmarks of knowledge-grounded response selection indicate that our model can achieve comparable performance with several existing methods that rely on crowd-sourced data for training.",,2021,ACL,No,, WARP: Word-level Adversarial ReProgramming,"Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model. In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task. Using up to 25K trainable parameters per task, this approach outperforms all existing methods with up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks with just 32 training samples.",,2021,ACL,No,, Pre-training Universal Language Representation,"Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific levels of linguistic units. This work introduces universal language representation learning, i.e., embeddings of different levels of linguistic units or text with quite diverse lengths in a uniform vector space. We propose the training objective MiSAD that utilizes meaningful n-grams extracted from large unlabeled corpus by a simple but effective algorithm for pre-trained language models. Then we empirically verify that well designed pre-training scheme may effectively yield universal language representation, which will bring great convenience when handling multiple layers of linguistic objects in a unified way. Especially, our model achieves the highest accuracy on analogy tasks in different language levels and significantly improves the performance on downstream tasks in the GLUE benchmark and a question answering dataset.",,2021,ACL,No,, Structural Pre-training for Dialogue Comprehension,"Pre-trained language models (PrLMs) have demonstrated superior performance due to their strong ability to learn universal language representations from self-supervised pre-training. However, even with the help of the powerful PrLMs, it is still challenging to effectively capture task-related knowledge from dialogue texts which are enriched by correlations among speaker-aware utterances. In this work, we present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features. To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives: 1) utterance order restoration, which predicts the order of the permuted utterances in dialogue context; 2) sentence backbone regularization, which regularizes the model to improve the factual correctness of summarized subject-verb-object triplets. Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.",,2021,ACL,No,, AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained Language Models,"Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. Few studies have been conducted to explore the design of architecture hyper-parameters in BERT, especially for the more efficient PLMs with tiny sizes, which are essential for practical deployment on resource-constrained devices. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters. Specifically, we carefully design the techniques of one-shot learning and the search space to provide an adaptive and efficient development way of tiny PLMs for various latency constraints. We name our method AutoTinyBERT and evaluate its effectiveness on the GLUE and SQuAD benchmarks. The extensive experiments show that our method outperforms both the SOTA search-based baseline (NAS-BERT) and the SOTA distillation-based methods (such as DistilBERT, TinyBERT, MiniLM, and MobileBERT). In addition, based on the obtained architectures, we propose a more efficient development method that is even faster than the development of a single PLM. The source code and models will be publicly available upon publication.",,2021,ACL,No,, Learning to Perturb Word Embeddings for Out-of-distribution QA,"QA models based on pretrained language models have achieved remarkable performance on various benchmark datasets. However, QA models do not generalize well to unseen data that falls outside the training distribution, due to distributional shifts. Data augmentation (DA) techniques which drop/replace words have shown to be effective in regularizing the model from overfitting to the training data. Yet, they may adversely affect the QA tasks since they incur semantic changes that may lead to wrong answers for the QA task. To tackle this problem, we propose a simple yet effective DA method based on a stochastic noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics. We validate the performance of the QA models trained with our word embedding perturbation on a single source dataset, on five different target domains. The results show that our method significantly outperforms the baseline DA methods. Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.",,2021,ACL,No,, PHMOSpell: Phonological and Morphological Knowledge Guided Chinese Spelling Check,"Chinese Spelling Check (CSC) is a challenging task due to the complex characteristics of Chinese characters. Statistics reveal that most Chinese spelling errors belong to phonological or visual errors. However, previous methods rarely utilize phonological and morphological knowledge of Chinese characters or heavily rely on external resources to model their similarities. To address the above issues, we propose a novel end-to-end trainable model called PHMOSpell, which promotes the performance of CSC with multi-modal information. Specifically, we derive pinyin and glyph representations for Chinese characters from audio and visual modalities respectively, which are integrated into a pre-trained language model by a well-designed adaptive gating mechanism. To verify its effectiveness, we conduct comprehensive experiments and ablation tests. Experimental results on three shared benchmarks demonstrate that our model consistently outperforms previous state-of-the-art models.",,2021,ACL,No,, TGEA: An Error-Annotated Dataset and Benchmark Tasks for TextGeneration from Pretrained Language Models,"In order to deeply understand the capability of pretrained language models in text generation and conduct a diagnostic evaluation, we propose TGEA, an error-annotated dataset with multiple benchmark tasks for text generation from pretrained language models (PLMs). We use carefully selected prompt words to guide GPT-2 to generate candidate sentences, from which we select 47K for error annotation. Crowdsourced workers manually check each of these sentences and detect 12k erroneous sentences. We create an error taxonomy to cover 24 types of errors occurring in these erroneous sentences according to the nature of errors with respect to linguistics and knowledge (e.g., common sense). For each erroneous span in PLM-generated sentences, we also detect another span that is closely associated with it. Each error is hence manually labeled with comprehensive annotations, including the span of the error, the associated span, minimal correction to the error, the type of the error, and rationale behind the error. Apart from the fully annotated dataset, we also present a detailed description of the data collection procedure, statistics and analysis of the dataset. This is the first dataset with comprehensive annotations for PLM-generated texts, which facilitates the diagnostic evaluation of PLM-based text generation. Furthermore, we use TGEA as a benchmark dataset and propose a series of automatic diagnosis tasks, including error detection, error type classification, associated span detection, error rationale generation, to further promote future study on the automatic error detection and correction on texts generated by pretrained language models.",,2021,ACL,Yes,Language,Benchmark Generating Query Focused Summaries from Query-Free Resources,"The availability of large-scale datasets has driven the development of neural models that create generic summaries from single or multiple documents. In this work we consider query focused summarization (QFS), a task for which training data in the form of queries, documents, and summaries is not readily available. We propose to decompose QFS into (1) query modeling (i.e., finding supportive evidence within a set of documents for a query) and (2) conditional language modeling (i.e., summary generation). We introduce MaRGE, a Masked ROUGE Regression framework for evidence estimation and ranking which relies on a unified representation for summaries and queries, so that summaries in generic data can be converted into proxy queries for learning a query model. Experiments across QFS benchmarks and query types show that our model achieves state-of-the-art performance despite learning from weak supervision.",,2021,ACL,No,, BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised Named Entity Recognition,"We study the problem of learning a named entity recognition (NER) tagger using noisy labels from multiple weak supervision sources. Though cheap to obtain, the labels from weak supervision sources are often incomplete, inaccurate, and contradictory, making it difficult to learn an accurate NER model. To address this challenge, we propose a conditional hidden Markov model (CHMM), which can effectively infer true labels from multi-source noisy labels in an unsupervised way. CHMM enhances the classic hidden Markov model with the contextual representation power of pre-trained language models. Specifically, CHMM learns token-wise transition and emission probabilities from the BERT embeddings of the input tokens to infer the latent true labels from noisy observations. We further refine CHMM with an alternate-training approach (CHMM-ALT). It fine-tunes a BERT-NER model with the labels inferred by CHMM, and this BERT-NER’s output is regarded as an additional weak source to train the CHMM in return. Experiments on four NER benchmarks from various domains show that our method outperforms state-of-the-art weakly supervised NER models by wide margins.",,2021,ACL,No,, Unleash GPT-2 Power for Event Detection,"Event Detection (ED) aims to recognize mentions of events (i.e., event triggers) and their types in text. Recently, several ED datasets in various domains have been proposed. However, the major limitation of these resources is the lack of enough training data for individual event types which hinders the efficient training of data-hungry deep learning models. To overcome this issue, we propose to exploit the powerful pre-trained language model GPT-2 to generate training samples for ED. To prevent the noises inevitable in automatically generated data from hampering training process, we propose to exploit a teacher-student architecture in which the teacher is supposed to learn anchor knowledge from the original data. The student is then trained on combination of the original and GPT-generated data while being led by the anchor knowledge from the teacher. Optimal transport is introduced to facilitate the anchor knowledge-based guidance between the two networks. We evaluate the proposed model on multiple ED benchmark datasets, gaining consistent improvement and establishing state-of-the-art results for ED.",,2021,ACL,No,, GhostBERT: Generate More Features with Cheap Operations for BERT,"Transformer-based pre-trained language models like BERT, though powerful in many tasks, are expensive in both memory and computation, due to their large number of parameters. Previous works show that some parameters in these models can be pruned away without severe accuracy drop. However, these redundant features contribute to a comprehensive understanding of the training data and removing them weakens the model’s representation ability. In this paper, we propose GhostBERT, which generates more features with very cheap operations from the remaining features. In this way, GhostBERT has similar memory and computational cost as the pruned model, but enjoys much larger representation power. The proposed ghost module can also be applied to unpruned BERT models to enhance their performance with negligible additional parameters and computation. Empirical results on the GLUE benchmark on three backbone models (i.e., BERT, RoBERTa and ELECTRA) verify the efficacy of our proposed method.",,2021,ACL,No,, Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization,"The Lottery Ticket Hypothesis suggests that an over-parametrized network consists of ”lottery tickets”, and training a certain collection of them (i.e., a subnetwork) can match the performance of the full model. In this paper, we study such a collection of tickets, which is referred to as ”winning tickets”, in extremely over-parametrized models, e.g., pre-trained language models. We observe that at certain compression ratios, the generalization performance of the winning tickets can not only match but also exceed that of the full model. In particular, we observe a phase transition phenomenon: As the compression ratio increases, generalization performance of the winning tickets first improves then deteriorates after a certain threshold. We refer to the tickets on the threshold as ”super tickets”. We further show that the phase transition is task and model dependent — as the model size becomes larger and the training data set becomes smaller, the transition becomes more pronounced. Our experiments on the GLUE benchmark show that the super tickets improve single task fine-tuning by 0.9 points on BERT-base and 1.0 points on BERT-large, in terms of task-average score. We also demonstrate that adaptively sharing the super tickets across tasks benefits multi-task learning.",,2021,ACL,No,, ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic,"Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.",,2021,ACL,Yes,Language,Methodological Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking,"Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.",,2021,ACL,Yes,Language,Methodological A Simple Recipe for Multilingual Grammatical Error Correction,"This paper presents a simple recipe to trainstate-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a CLANG-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy Lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages – we demonstrate that performing a single fine-tuning stepon cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English.",,2021,ACL,Yes,Language,Methodological "TextBox: A Unified, Modularized, and Extensible Framework for Text Generation","In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 text generation models on 9 benchmark datasets, covering the categories of VAE, GAN, and pretrained language models. Meanwhile, our library maintains sufficient modularity and extensibility by properly decomposing the model architecture, inference, and learning process into highly reusable modules, which allows users to easily incorporate new models into our framework. The above features make TextBox especially suitable for researchers and practitioners to quickly reproduce baseline models and develop new models. TextBox is implemented based on PyTorch, and released under Apache License 2.0 at the link https://github.com/RUCAIBox/TextBox.",,2021,ACL,No,, Distilling Linguistic Context for Language Model Compression,"A computationally expensive and memory intensive neural network lies behind the recent success of language representation learning. Knowledge distillation, a major technique for deploying such a vast language model in resource-scarce environments, transfers the knowledge on individual word representations learned without restrictions. In this paper, inspired by the recent observations that language representations are relatively positioned and have more semantic knowledge as a whole, we present a new knowledge distillation objective for language representation learning that transfers the contextual knowledge via two types of relationships across representations: Word Relation and Layer Transforming Relation. Unlike other recent distillation techniques for the language models, our contextual distillation does not have any restrictions on architectural changes between teacher and student. We validate the effectiveness of our method on challenging benchmarks of language understanding tasks, not only in architectures of various sizes but also in combination with DynaBERT, the recently proposed adaptive size pruning method.",,2021,ACL,No,, Do Long-Range Language Models Actually Use Long-Range Context?,"Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines).",,2021,ACL,No,, Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus,"Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.",,2021,ACL,No,, Shortcutted Commonsense: Data Spuriousness in Deep Learning of Commonsense Reasoning,"Commonsense is a quintessential human capacity that has been a core challenge to Artificial Intelligence since its inception. Impressive results in Natural Language Processing tasks, including in commonsense reasoning, have consistently been achieved with Transformer neural language models, even matching or surpassing human performance in some benchmarks. Recently, some of these advances have been called into question: so called data artifacts in the training data have been made evident as spurious correlations and shallow shortcuts that in some cases are leveraging these outstanding results. In this paper we seek to further pursue this analysis into the realm of commonsense related language processing tasks. We undertake a study on different prominent benchmarks that involve commonsense reasoning, along a number of key stress experiments, thus seeking to gain insight on whether the models are learning transferable generalizations intrinsic to the problem at stake or just taking advantage of incidental shortcuts in the data items. The results obtained indicate that most datasets experimented with are problematic, with models resorting to non-robust features and appearing not to be learning and generalizing towards the overall tasks intended to be conveyed or exemplified by the datasets.",,2021,ACL,No,, Evaluating the Robustness of Neural Language Models to Input Perturbations,"High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks. However, results for common benchmark datasets often do not reflect model reliability and robustness when applied to noisy, real-world data. In this study, we design and implement various types of character-level and word-level perturbation methods to simulate realistic scenarios in which input texts may be slightly noisy or different from the data distribution on which NLP systems were trained. Conducting comprehensive experiments on different NLP tasks, we investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations. The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced. We highlight that models need to be further improved and that current benchmarks are not reflecting model robustness well. We argue that evaluations on perturbed inputs should routinely complement widely-used benchmarks in order to yield a more realistic understanding of NLP systems’ robustness.",,2021,ACL,No,, How much pretraining data do language models need to learn syntax?,"Transformers-based pretrained language models achieve outstanding results in many well-known NLU benchmarks. However, while pretraining methods are very convenient, they are expensive in terms of time and resources. This calls for a study of the impact of pretraining data size on the knowledge of the models. We explore this impact on the syntactic capabilities of RoBERTa, using models trained on incremental sizes of raw text data. First, we use syntactic structural probes to determine whether models pretrained on more data encode a higher amount of syntactic information. Second, we perform a targeted syntactic evaluation to analyze the impact of pretraining data size on the syntactic generalization performance of the models. Third, we compare the performance of the different models on three downstream applications: part-of-speech tagging, dependency parsing and paraphrase identification. We complement our study with an analysis of the cost-benefit trade-off of training such models. Our experiments show that while models pretrained on more data encode more syntactic knowledge and perform better on downstream applications, they do not always offer a better performance across the different syntactic phenomena and come at a higher financial and environmental cost.",,2021,ACL,No,, Sentence Bottleneck Autoencoders from Transformer Language Models,"Representation learning for text via pretraining a language model on a large corpus has become a standard starting point for building NLP systems. This approach stands in contrast to autoencoders, also trained on raw text, but with the objective of learning to encode each input as a vector that allows full reconstruction. Autoencoders are attractive because of their latent space structure and generative properties. We therefore explore the construction of a sentence-level autoencoder from a pretrained, frozen transformer language model. We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder. We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer (an example of controlled generation), and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.",,2021,ACL,No,, Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning,"Commonsense is defined as the knowledge on which everyone agrees. However, certain types of commonsense knowledge are correlated with culture and geographic locations and they are only shared locally. For example, the scenes of wedding ceremonies vary across regions due to different customs influenced by historical and religious factors. Such regional characteristics, however, are generally omitted in prior work. In this paper, we construct a Geo-Diverse Visual Commonsense Reasoning dataset (GD-VCR) to test vision-and-language models’ ability to understand cultural and geo-location-specific commonsense. In particular, we study two state-of-the-art Vision-and-Language models, VisualBERT and ViLBERT trained on VCR, a standard benchmark with images primarily from Western regions. We then evaluate how well the trained models can generalize to answering the questions in GD-VCR. We find that the performance of both models for non-Western regions including East Asia, South Asia, and Africa is significantly lower than that for Western region. We analyze the reasons behind the performance disparity and find that the performance gap is larger on QA pairs that: 1) are concerned with culture-related scenarios, e.g., weddings, religious activities, and festivals; 2) require high-level geo-diverse commonsense reasoning rather than low-order perception and recognition. Dataset and code are released at https://github.com/WadeYin9712/GD-VCR.",,2021,ACL,Yes,Image, Effect of Visual Extensions on Natural Language Understanding in Vision-and-Language Models,"A method for creating a vision-and-language (V&L) model is to extend a language model through structural modifications and V&L pre-training. Such an extension aims to make a V&L model inherit the capability of natural language understanding (NLU) from the original language model. To see how well this is achieved, we propose to evaluate V&L models using an NLU benchmark (GLUE). We compare five V&L models, including single-stream and dual-stream models, trained with the same pre-training. Dual-stream models, with their higher modality independence achieved by approximately doubling the number of parameters, are expected to preserve the NLU capability better. Our main finding is that the dual-stream scores are not much different than the single-stream scores, contrary to expectation. Further analysis shows that pre-training causes the performance drop in NLU tasks with few exceptions. These results suggest that adopting a single-stream structure and devising the pre-training could be an effective method for improving the maintenance of language knowledge in V&L extensions.",,2021,ACL,No,, FLiText: A Faster and Lighter Semi-Supervised Text Classification with Convolution Networks,"In natural language processing (NLP), state-of-the-art (SOTA) semi-supervised learning (SSL) frameworks have shown great performance on deep pre-trained language models such as BERT, and are expected to significantly reduce the demand for manual labeling. However, our empirical studies indicate that these frameworks are not suitable for lightweight models such as TextCNN, LSTM and etc. In this work, we develop a new SSL framework called FLiText, which stands for Faster and Lighter semi-supervised Text classification. FLiText introduces an inspirer network together with the consistency regularization framework, which leverages a generalized regular constraint on the lightweight models for efficient SSL. As a result, FLiText obtains new SOTA performance for lightweight models across multiple SSL benchmarks on text classification. Compared with existing SOTA SSL methods on TextCNN, FLiText improves the accuracy of lightweight model TextCNN from 51.00% to 90.49% on IMDb, 39.8% to 58.06% on Yelp-5, and from 55.3% to 65.08% on Yahoo! Answer. In addition, compared with the fully supervised method on the full dataset, FLiText just uses less than 1% of labeled data to improve the accuracy by 6.59%, 3.94%, and 3.22% on the datasets of IMDb, Yelp-5, and Yahoo! Answer respectively.",,2021,ACL,No,, Augmenting BERT-style Models with Predictive Coding to Improve Discourse-level Representations,"Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection.",,2021,ACL,No,, RockNER: A Simple Method to Create Adversarial Examples for Evaluating the Robustness of Named Entity Recognition Models,"To audit the robustness of named entity recognition (NER) models, we propose RockNER, a simple yet effective method to create natural adversarial examples. Specifically, at the entity level, we replace target entities with other entities of the same semantic class in Wikidata; at the context level, we use pre-trained language models (e.g., BERT) to generate word substitutions. Together, the two levels of at- tack produce natural adversarial examples that result in a shifted distribution from the training data on which our target models have been trained. We apply the proposed method to the OntoNotes dataset and create a new benchmark named OntoRock for evaluating the robustness of existing NER models via a systematic evaluation protocol. Our experiments and analysis reveal that even the best model has a significant performance drop, and these models seem to memorize in-domain entity patterns instead of reasoning from the context. Our work also studies the effects of a few simple data augmentation methods to improve the robustness of NER models.",,2021,ACL,Yes,Language,Methodological Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI,"Recently, language models (LMs) have achieved significant performance on many NLU tasks, which has spurred widespread interest for their possible applications in the scientific and social area. However, LMs have faced much criticism of whether they are truly capable of reasoning in NLU. In this work, we propose a diagnostic method for first-order logic (FOL) reasoning with a new proposed benchmark, LogicNLI. LogicNLI is an NLI-style dataset that effectively disentangles the target FOL reasoning from commonsense inference and can be used to diagnose LMs from four perspectives: accuracy, robustness, generalization, and interpretability. Experiments on BERT, RoBERTa, and XLNet, have uncovered the weaknesses of these LMs on FOL reasoning, which motivates future exploration to enhance the reasoning ability.",,2021,ACL,Yes,Language,Benchmark Solving Aspect Category Sentiment Analysis as a Text Generation Task,"Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre-trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.",,2021,ACL,No,, Long-Range Modeling of Source Code Files with eWASH: Extended Window Access by Syntax Hierarchy,"Statistical language modeling and translation with transformers have found many successful applications in program understanding and generation tasks, setting high benchmarks for tools in modern software development environments. The finite context window of these neural models means, however, that they will be unable to leverage the entire relevant context of large files and packages for any given task. While there are many efforts to extend the context window, we introduce an architecture-independent approach for leveraging the syntactic hierarchies of source code for incorporating entire file-level context into a fixed-length window. Using concrete syntax trees of each source file we extract syntactic hierarchies and integrate them into context window by selectively removing from view more specific, less relevant scopes for a given task. We evaluate this approach on code generation tasks and joint translation of natural language and source code in Python programming language, achieving a new state-of-the-art in code completion and summarization for Python in the CodeXGLUE benchmark. We also introduce new CodeXGLUE benchmarks for user-experience-motivated tasks: code completion with normalized literals, method body completion/code summarization conditioned on file-level context.",,2021,ACL,Yes,Language,Methodological Can Language Models be Biomedical Knowledge Bases?,"Pre-trained language models (LMs) have become ubiquitous in solving various natural language processing (NLP) tasks. There has been increasing interest in what knowledge these LMs contain and how we can extract that knowledge, treating LMs as knowledge bases (KBs). While there has been much work on probing LMs in the general domain, there has been little attention to whether these powerful LMs can be used as domain-specific KBs. To this end, we create the BioLAMA benchmark, which is comprised of 49K biomedical factual knowledge triples for probing biomedical LMs. We find that biomedical LMs with recently proposed probing methods can achieve up to 18.51% Acc@5 on retrieving biomedical knowledge. Although this seems promising given the task difficulty, our detailed analyses reveal that most predictions are highly correlated with prompt templates without any subjects, hence producing similar results on each relation and hindering their capabilities to be used as domain-specific KBs. We hope that BioLAMA can serve as a challenging benchmark for biomedical factual probing.",,2021,ACL,Yes,Language,Benchmark SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations,"Next generation task-oriented dialog systems need to understand conversational contexts with their perceived surroundings, to effectively help users in the real-world multimodal environment. Existing task-oriented dialog datasets aimed towards virtual assistance fall short and do not situate the dialog in the user’s multimodal context. To overcome, we present a new dataset for Situated and Interactive Multimodal Conversations, SIMMC 2.0, which includes 11K task-oriented user<->assistant dialogs (117K utterances) in the shopping domain, grounded in immersive and photo-realistic scenes. The dialogs are collection using a two-phase pipeline: (1) A novel multimodal dialog simulator generates simulated dialog flows, with an emphasis on diversity and richness of interactions, (2) Manual paraphrasing of generating utterances to draw from natural language distribution. We provide an in-depth analysis of the collected dataset, and describe in detail the four main benchmark tasks we propose for SIMMC 2.0. Our baseline model, powered by the state-of-the-art language model, shows promising results, and highlights new challenges and directions for the community to study.",,2021,ACL,Yes,Multimodal, Dialogue State Tracking with a Language Model using Schema-Driven Prompting,"Task-oriented conversational systems often use dialogue state tracking to represent the user’s intentions, which involves filling in values of pre-defined slots. Many approaches have been proposed, often using task-specific architectures with special-purpose classifiers. Recently, good results have been obtained using more general architectures based on pretrained language models. Here, we introduce a new variation of the language modeling approach that uses schema-driven prompting to provide task-aware history encoding that is used for both categorical and non-categorical slots. We further improve performance by augmenting the prompting with schema descriptions, a naturally occurring source of in-domain knowledge. Our purely generative system achieves state-of-the-art performance on MultiWOZ 2.2 and achieves competitive performance on two other benchmarks: MultiWOZ 2.1 and M2M. The data and code will be available at https://github.com/chiahsuan156/DST-as-Prompting.",,2021,ACL,No,, Improving and Simplifying Pattern Exploiting Training,"Recently, pre-trained language models (LMs) have achieved strong performance when fine-tuned on difficult benchmarks like SuperGLUE. However, performance can suffer when there are very few labeled examples available for fine-tuning. Pattern Exploiting Training (PET) is a recent approach that leverages patterns for few-shot learning. However, PET uses task-specific unlabeled data. In this paper, we focus on few-shot learning without any unlabeled data and introduce ADAPET, which modifies PET’s objective to provide denser supervision during fine-tuning. As a result, ADAPET outperforms PET on SuperGLUE without any task-specific unlabeled data.",,2021,ACL,No,, AESOP: Paraphrase Generation with Adaptive Syntactic Control,"We propose to control paraphrase generation through carefully chosen target syntactic structures to generate more proper and higher quality paraphrases. Our model, AESOP, leverages a pretrained language model and adds deliberately chosen syntactical control via a retrieval-based selection module to generate fluent paraphrases. Experiments show that AESOP achieves state-of-the-art performances on semantic preservation and syntactic conformation on two benchmark datasets with ground-truth syntactic control from human-annotated exemplars. Moreover, with the retrieval-based target syntax selection module, AESOP generates paraphrases with even better qualities than the current best model using human-annotated target syntactic parses according to human evaluation. We further demonstrate the effectiveness of AESOP to improve classification models’ robustness to syntactic perturbation by data augmentation on two GLUE tasks.",,2021,ACL,No,, Incorporating medical knowledge in BERT for clinical relation extraction,"In recent years pre-trained language models (PLM) such as BERT have proven to be very effective in diverse NLP tasks such as Information Extraction, Sentiment Analysis and Question Answering. Trained with massive general-domain text, these pre-trained language models capture rich syntactic, semantic and discourse information in the text. However, due to the differences between general and specific domain text (e.g., Wikipedia versus clinic notes), these models may not be ideal for domain-specific tasks (e.g., extracting clinical relations). Furthermore, it may require additional medical knowledge to understand clinical text properly. To solve these issues, in this research, we conduct a comprehensive examination of different techniques to add medical knowledge into a pre-trained BERT model for clinical relation extraction. Our best model outperforms the state-of-the-art systems on the benchmark i2b2/VA 2010 clinical relation extraction dataset.",,2021,ACL,No,, Modeling Document-Level Context for Event Detection via Important Context Selection,"The task of Event Detection (ED) in Information Extraction aims to recognize and classify trigger words of events in text. The recent progress has featured advanced transformer-based language models (e.g., BERT) as a critical component in state-of-the-art models for ED. However, the length limit for input texts is a barrier for such ED models as they cannot encode long-range document-level context that has been shown to be beneficial for ED. To address this issue, we propose a novel method to model document-level context for ED that dynamically selects relevant sentences in the document for the event prediction of the target sentence. The target sentence will be then augmented with the selected sentences and consumed entirely by transformer-based language models for improved representation learning for ED. To this end, the REINFORCE algorithm is employed to train the relevant sentence selection for ED. Several information types are then introduced to form the reward function for the training process, including ED performance, sentence similarity, and discourse relations. Our extensive experiments on multiple benchmark datasets reveal the effectiveness of the proposed model, leading to new state-of-the-art performance.",,2021,ACL,No,, PDALN: Progressive Domain Adaptation over a Pre-trained Model for Low-Resource Cross-Domain Named Entity Recognition,"Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challenges, we propose a progressive domain adaptation Knowledge Distillation (KD) approach – PDALN. It achieves superior domain adaptability by employing three components: (1) Adaptive data augmentation techniques, which alleviate cross-domain gap and label sparsity simultaneously; (2) Multi-level Domain invariant features, derived from a multi-grained MMD (Maximum Mean Discrepancy) approach, to enable knowledge transfer across domains; (3) Advanced KD schema, which progressively enables powerful pre-trained language models to perform domain adaptation. Extensive experiments on four benchmarks show that PDALN can effectively adapt high-resource domains to low-resource target domains, even if they are diverse in terms and writing styles. Comparison with other baselines indicates the state-of-the-art performance of PDALN.",,2021,ACL,No,, Exploring Strategies for Generalizable Commonsense Reasoning with Pre-trained Models,"Commonsense reasoning benchmarks have been largely solved by fine-tuning language models. The downside is that fine-tuning may cause models to overfit to task-specific data and thereby forget their knowledge gained during pre-training. Recent works only propose lightweight model updates as models may already possess useful knowledge from past experience, but a challenge remains in understanding what parts and to what extent models should be refined for a given task. In this paper, we investigate what models learn from commonsense reasoning datasets. We measure the impact of three different adaptation methods on the generalization and accuracy of models. Our experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers. We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.",,2021,ACL,No,, Efficient Nearest Neighbor Language Models,"Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore, which allows them to learn through explicitly memorizing the training datapoints. While effective, these models often require retrieval from a large datastore at test time, significantly increasing the inference overhead and thus limiting the deployment of non-parametric NLMs in practical applications. In this paper, we take the recently proposed k-nearest neighbors language model as an example, exploring methods to improve its efficiency along various dimensions. Experiments on the standard WikiText-103 benchmark and domain-adaptation datasets show that our methods are able to achieve up to a 6x speed-up in inference speed while retaining comparable performance. The empirical analysis we present may provide guidelines for future research seeking to develop or deploy more efficient non-parametric NLMs.",,2021,ACL,No,, STraTA: Self-Training with Task Augmentation for Better Few-shot Learning,"Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, which stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.",,2021,ACL,No,, Structure-aware Fine-tuning of Sequence-to-sequence Transformers for Transition-based AMR Parsing,"Predicting linearized Abstract Meaning Representation (AMR) graphs using pre-trained sequence-to-sequence Transformer models has recently led to large improvements on AMR parsing benchmarks. These parsers are simple and avoid explicit modeling of structure but lack desirable properties such as graph well-formedness guarantees or built-in graph-sentence alignments. In this work we explore the integration of general pre-trained sequence-to-sequence language models and a structure-aware transition-based approach. We depart from a pointer-based transition system and propose a simplified transition set, designed to better exploit pre-trained language models for structured fine-tuning. We also explore modeling the parser state within the pre-trained encoder-decoder architecture and different vocabulary strategies for the same purpose. We provide a detailed comparison with recent progress in AMR parsing and show that the proposed parser retains the desirable properties of previous transition-based approaches, while being simpler and reaching the new parsing state of the art for AMR 2.0, without the need for graph re-categorization.",,2021,ACL,No,, Continuous Entailment Patterns for Lexical Inference in Context,"Combining a pretrained language model (PLM) with textual patterns has been shown to help in both zero- and few-shot settings. For zero-shot performance, it makes sense to design patterns that closely resemble the text seen during self-supervised pretraining because the model has never seen anything else. Supervised training allows for more flexibility. If we allow for tokens outside the PLM’s vocabulary, patterns can be adapted more flexibly to a PLM’s idiosyncrasies. Contrasting patterns where a “token” can be any continuous vector from those where a discrete choice between vocabulary elements has to be made, we call our method CONtinous pAtterNs (CONAN). We evaluate CONAN on two established benchmarks for lexical inference in context (LIiC) a.k.a. predicate entailment, a challenging natural language understanding task with relatively small training data. In a direct comparison with discrete patterns, CONAN consistently leads to improved performance, setting a new state of the art. Our experiments give valuable insights on the kind of pattern that enhances a PLM’s performance on LIiC and raise important questions regarding our understanding of PLMs using text patterns.",,2021,ACL,No,, RICA: Evaluating Robust Inference Capabilities Based on Commonsense Axioms,"Pre-trained language models (PTLMs) have achieved impressive performance on commonsense inference benchmarks, but their ability to employ commonsense to make robust inferences, which is crucial for effective communications with humans, is debated. In the pursuit of advancing fluid human-AI communication, we propose a new challenge, RICA: Robust Inference using Commonsense Axioms, that evaluates robust commonsense inference despite textual perturbations. To generate data for this challenge, we develop a systematic and scalable procedure using commonsense knowledge bases and probe PTLMs across two different evaluation settings. Extensive experiments on our generated probe sets with more than 10k statements show that PTLMs perform no better than random guessing on the zero-shot setting, are heavily impacted by statistical biases, and are not robust to perturbation attacks. We also find that fine-tuning on similar statements offer limited gains, as PTLMs still fail to generalize to unseen inferences. Our new large-scale benchmark exposes a significant gap between PTLMs and human-level language understanding and offers a new challenge for PTLMs to demonstrate commonsense.",,2021,ACL,Yes,Language,Benchmark Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models,"Can we get existing language models and refine them for zero-shot commonsense reasoning? This paper presents an initial study exploring the feasibility of zero-shot commonsense reasoning for the Winograd Schema Challenge by formulating the task as self-supervised refinement of a pre-trained language model. In contrast to previous studies that rely on fine-tuning annotated datasets, we seek to boost conceptualization via loss landscape refinement. To this end, we propose a novel self-supervised learning approach that refines the language model utilizing a set of linguistic perturbations of similar concept relationships. Empirical analysis of our conceptually simple framework demonstrates the viability of zero-shot commonsense reasoning on multiple benchmarks.",,2021,ACL,No,, Distilling Relation Embeddings from Pretrained Language Models,"Pre-trained language models have been found to capture a surprisingly rich amount of lexical knowledge, ranging from commonsense properties of everyday concepts to detailed factual knowledge about named entities. Among others, this makes it possible to distill high-quality word vectors from pre-trained language models. However, it is currently unclear to what extent it is possible to distill relation embeddings, i.e. vectors that characterize the relationship between two words. Such relation embeddings are appealing because they can, in principle, encode relational knowledge in a more fine-grained way than is possible with knowledge graphs. To obtain relation embeddings from a pre-trained language model, we encode word pairs using a (manually or automatically generated) prompt, and we fine-tune the language model such that relationally similar word pairs yield similar output vectors. We find that the resulting relation embeddings are highly competitive on analogy (unsupervised) and relation classification (supervised) benchmarks, even without any task-specific fine-tuning. Source code to reproduce our experimental results and the model checkpoints are available in the following repository: https://github.com/asahi417/relbert",,2021,ACL,No,, Revisiting Self-training for Few-shot Learning of Language Model,"As unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model. The question is how to effectively make use of such data. In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM. Given two views of a text sample via weak and strong augmentation techniques, SFLM generates a pseudo label on the weakly augmented version. Then, the model predicts the same pseudo label when fine-tuned with the strongly augmented version. This simple approach is shown to outperform other state-of-the-art supervised and semi-supervised counterparts on six sentence classification and six sentence-pair classification benchmarking tasks. In addition, SFLM only relies on a few in-domain unlabeled data. We conduct a comprehensive analysis to demonstrate the robustness of our proposed approach under various settings, including augmentation techniques, model scale, and few-shot knowledge transfer across tasks.",,2021,ACL,No,, BARThez: a Skilled Pretrained French Sequence-to-Sequence Model,"Inductive transfer learning has taken the entire NLP field by storm, with models such as BERT and BART setting new state of the art on countless NLU tasks. However, most of the available models and research have been conducted for English. In this work, we introduce BARThez, the first large-scale pretrained seq2seq model for French. Being based on BART, BARThez is particularly well-suited for generative tasks. We evaluate BARThez on five discriminative tasks from the FLUE benchmark and two generative tasks from a novel summarization dataset, OrangeSum, that we created for this research. We show BARThez to be very competitive with state-of-the-art BERT-based French language models such as CamemBERT and FlauBERT. We also continue the pretraining of a multilingual BART on BARThez’ corpus, and show our resulting model, mBARThez, to significantly boost BARThez’ generative performance.",,2021,ACL,No,, Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning,"Recent pretrained language models extend from millions to billions of parameters. Thus the need to fine-tune an extremely large pretrained model with a limited training corpus arises in various downstream tasks. In this paper, we propose a straightforward yet effective fine-tuning technique, Child-Tuning, which updates a subset of parameters (called child network) of large pretrained models via strategically masking out the gradients of the non-child network during the backward process. Experiments on various downstream tasks in GLUE benchmark show that Child-Tuning consistently outperforms the vanilla fine-tuning by 1.5 8.6 average score among four different pretrained models, and surpasses the prior fine-tuning techniques by 0.6 1.3 points. Furthermore, empirical results on domain transfer and task transfer show that Child-Tuning can obtain better generalization performance by large margins.",,2021,ACL,No,, Studying word order through iterative shuffling,"As neural language models approach human performance on NLP benchmark tasks, their advances are widely seen as evidence of an increasingly complex understanding of syntax. This view rests upon a hypothesis that has not yet been empirically tested: that word order encodes meaning essential to performing these tasks. We refute this hypothesis in many cases: in the GLUE suite and in various genres of English text, the words in a sentence or phrase can rarely be permuted to form a phrase carrying substantially different information. Our surprising result relies on inference by iterative shuffling (IBIS), a novel, efficient procedure that finds the ordering of a bag of words having the highest likelihood under a fixed language model. IBIS can use any black-box model without additional training and is superior to existing word ordering algorithms. Coalescing our findings, we discuss how shuffling inference procedures such as IBIS can benefit language modeling and constrained generation.",,2021,ACL,No,, Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training,"We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.",,2021,ACL,No,, "Back to Square One: Artifact Detection, Training and Commonsense Disentanglement in the Winograd Schema","The Winograd Schema (WS) has been proposed as a test for measuring commonsense capabilities of models. Recently, pre-trained language model-based approaches have boosted performance on some WS benchmarks but the source of improvement is still not clear. This paper suggests that the apparent progress on WS may not necessarily reflect progress in commonsense reasoning. To support this claim, we first show that the current evaluation method of WS is sub-optimal and propose a modification that uses twin sentences for evaluation. We also propose two new baselines that indicate the existence of artifacts in WS benchmarks. We then develop a method for evaluating WS-like sentences in a zero-shot setting to account for the commonsense reasoning abilities acquired during the pretraining and observe that popular language models perform randomly in this setting when using our more strict evaluation. We conclude that the observed progress is mostly due to the use of supervision in training WS models, which is not likely to successfully support all the required commonsense reasoning skills and knowledge.",,2021,ACL,No,, Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression,"Recent studies on compression of pretrained language models (e.g., BERT) usually use preserved accuracy as the metric for evaluation. In this paper, we propose two new metrics, label loyalty and probability loyalty that measure how closely a compressed model (i.e., student) mimics the original model (i.e., teacher). We also explore the effect of compression with regard to robustness under adversarial attacks. We benchmark quantization, pruning, knowledge distillation and progressive module replacing with loyalty and robustness. By combining multiple compression techniques, we provide a practical strategy to achieve better accuracy, loyalty and robustness.",,2021,ACL,No,, IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization,"We present IndoBERTweet, the first large-scale pretrained model for Indonesian Twitter that is trained by extending a monolingually-trained Indonesian BERT model with additive domain-specific vocabulary. We focus in particular on efficient model adaptation under vocabulary mismatch, and benchmark different ways of initializing the BERT embedding layer for new word types. We find that initializing with the average BERT subword embedding makes pretraining five times faster, and is more effective than proposed methods for vocabulary adaptation in terms of extrinsic evaluation over seven Twitter-based datasets.",,2021,ACL,No,, Types of Out-of-Distribution Texts and How to Detect Them,"Despite agreement on the importance of detecting out-of-distribution (OOD) examples, there is little consensus on the formal definition of the distribution shifts of OOD examples and how to best detect them. We categorize these examples as exhibiting a background shift or semantic shift, and find that the two major approaches to OOD detection, calibration and density estimation (language modeling for text), have distinct behavior on these types of OOD data. Across 14 pairs of in-distribution and OOD English natural language understanding datasets, we find that density estimation methods consistently beat calibration methods in background shift settings and perform worse in semantic shift settings. In addition, we find that both methods generally fail to detect examples from challenge data, indicating that these examples constitute a different type of OOD data. Overall, while the categorization we apply explains many of the differences between the two methods, our results call for a more explicit definition of OOD to create better benchmarks and build detectors that can target the type of OOD data expected at test time.",,2021,ACL,No,, Self-training with Few-shot Rationalization,"While pre-trained language models have obtained state-of-the-art performance for several natural language understanding tasks, they are quite opaque in terms of their decision-making process. While some recent works focus on rationalizing neural predictions by highlighting salient concepts in the text as justifications or rationales, they rely on thousands of labeled training examples for both task labels as well as annotated rationales for every instance. Such extensive large-scale annotations are infeasible to obtain for many tasks. To this end, we develop a multi-task teacher-student framework based on self-training pre-trained language models with limited task-specific labels and rationales and judicious sample selection to learn from informative pseudo-labeled examples. We study several characteristics of what constitutes a good rationale and demonstrate that the neural model performance can be significantly improved by making it aware of its rationalized predictions, particularly in low-resource settings. Extensive experiments in several benchmark datasets demonstrate the effectiveness of our approach.",,2021,ACL,No,, GeneSis: A Generative Approach to Substitutes in Context,"The lexical substitution task aims at generating a list of suitable replacements for a target word in context, ideally keeping the meaning of the modified text unchanged. While its usage has increased in recent years, the paucity of annotated data prevents the finetuning of neural models on the task, hindering the full fruition of recently introduced powerful architectures such as language models. Furthermore, lexical substitution is usually evaluated in a framework that is strictly bound to a limited vocabulary, making it impossible to credit appropriate, but out-of-vocabulary, substitutes. To assess these issues, we proposed GeneSis (Generating Substitutes in contexts), the first generative approach to lexical substitution. Thanks to a seq2seq model, we generate substitutes for a word according to the context it appears in, attaining state-of-the-art results on different benchmarks. Moreover, our approach allows silver data to be produced for further improving the performances of lexical substitution systems. Along with an extensive analysis of GeneSis results, we also present a human evaluation of the generated substitutes in order to assess their quality. We release the fine-tuned models, the generated datasets, and the code to reproduce the experiments at https://github.com/SapienzaNLP/genesis.",,2021,ACL,No,, Multi-Domain Multilingual Question Answering,"Question answering (QA) is one of the most challenging and impactful tasks in natural language processing. Most research in QA, however, has focused on the open-domain or monolingual setting while most real-world applications deal with specific domains or languages. In this tutorial, we attempt to bridge this gap. Firstly, we introduce standard benchmarks in multi-domain and multilingual QA. In both scenarios, we discuss state-of-the-art approaches that achieve impressive performance, ranging from zero-shot transfer learning to out-of-the-box training with open-domain QA systems. Finally, we will present open research problems that this new research agenda poses such as multi-task learning, cross-lingual transfer learning, domain adaptation and training large scale pre-trained multilingual language models.",,2021,ACL,Yes,Language,Benchmark Understanding by Understanding Not: Modeling Negation in Language Models,"Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language models often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.",,2021,ACL,No,, Fine-grained Post-training for Improving Retrieval-based Dialogue Systems,"Retrieval-based dialogue systems display an outstanding performance when pre-trained language models are used, which includes bidirectional encoder representations from transformers (BERT). During the multi-turn response selection, BERT focuses on training the relationship between the context with multiple utterances and the response. However, this method of training is insufficient when considering the relations between each utterance in the context. This leads to a problem of not completely understanding the context flow that is required to select a response. To address this issue, we propose a new fine-grained post-training method that reflects the characteristics of the multi-turn dialogue. Specifically, the model learns the utterance level interactions by training every short context-response pair in a dialogue session. Furthermore, by using a new training objective, the utterance relevance classification, the model understands the semantic relevance and coherence between the dialogue utterances. Experimental results show that our model achieves new state-of-the-art with significant margins on three benchmark datasets. This suggests that the fine-grained post-training method is highly effective for the response selection task.",,2021,ACL,No,, Lattice-BERT: Leveraging Multi-Granularity Representations in Chinese Pre-trained Language Models,"Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese — Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.",,2021,ACL,No,, Target-specified Sequence Labeling with Multi-head Self-attention for Target-oriented Opinion Words Extraction,"Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.",,2021,ACL,No,, "Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!","Natural language processing (NLP) tasks, ranging from text classification to text generation, have been revolutionised by the pretrained language models, such as BERT. This allows corporations to easily build powerful APIs by encapsulating fine-tuned BERT models for downstream tasks. However, when a fine-tuned BERT model is deployed as a service, it may suffer from different attacks launched by the malicious users. In this work, we first present how an adversary can steal a BERT-based API service (the victim/target model) on multiple benchmark datasets with limited prior knowledge and queries. We further show that the extracted model can lead to highly transferable adversarial attacks against the victim model. Our studies indicate that the potential vulnerabilities of BERT-based API services still hold, even when there is an architectural mismatch between the victim model and the attack model. Finally, we investigate two defence strategies to protect the victim model, and find that unless the performance of the victim model is sacrificed, both model extraction and adversarial transferability can effectively compromise the target models.",,2021,ACL,No,, Rethinking Network Pruning – under the Pre-train and Fine-tune Paradigm,"Transformer-based pre-trained language models have significantly improved the performance of various natural language processing (NLP) tasks in the recent years. While effective and prevalent, these models are usually prohibitively large for resource-limited deployment scenarios. A thread of research has thus been working on applying network pruning techniques under the pretrain-then-finetune paradigm widely adopted in NLP. However, the existing pruning results on benchmark transformers, such as BERT, are not as remarkable as the pruning results in the literature of convolutional neural networks (CNNs). In particular, common wisdom in pruning CNN states that sparse pruning technique compresses a model more than that obtained by reducing number of channels and layers, while existing works on sparse pruning of BERT yields inferior results than its small-dense counterparts such as TinyBERT. In this work, we aim to fill this gap by studying how knowledge are transferred and lost during the pre-train, fine-tune, and pruning process, and proposing a knowledge-aware sparse pruning process that achieves significantly superior results than existing literature. We show for the first time that sparse pruning compresses a BERT model significantly more than reducing its number of channels and layers. Experiments on multiple data sets of GLUE benchmark show that our method outperforms the leading competitors with a 20-times weight/FLOPs compression and neglectable loss in prediction accuracy.",,2021,ACL,No,, Video Question Answering with Phrases via Semantic Roles,"Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models’ application scenario. In this work, we leverage semantic roles derived from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We perform extensive analysis and ablative studies to guide future work. Code and data are public.",,2021,ACL,Yes,Video, From Masked Language Modeling to Translation: Non-English Auxiliary Tasks Improve Zero-shot Spoken Language Understanding,"The lack of publicly available evaluation data for low-resource languages limits progress in Spoken Language Understanding (SLU). As key tasks like intent classification and slot filling require abundant training data, it is desirable to reuse existing data in high-resource languages to develop models for low-resource scenarios. We introduce xSID, a new benchmark for cross-lingual (x) Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect. To tackle the challenge, we propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer. We study two setups which differ by type and language coverage of the pre-trained embeddings. Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.",,2021,ACL,Yes,Language,Methodological Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training,"Prior work on Data-To-Text Generation, the task of converting knowledge graph (KG) triples into natural text, focused on domain-specific benchmark datasets. In this paper, however, we verbalize the entire English Wikidata KG, and discuss the unique challenges associated with a broad, open-domain, large-scale verbalization. We further show that verbalizing a comprehensive, encyclopedic KG like Wikidata can be used to integrate structured KGs and natural language corpora. In contrast to the many architectures that have been developed to integrate these two sources, our approach converts the KG into natural text, allowing it to be seamlessly integrated into existing language models. It carries the further advantages of improved factual accuracy and reduced toxicity in the resulting language model. We evaluate this approach by augmenting the retrieval corpus in a retrieval language model and showing significant improvements on the knowledge intensive tasks of open domain QA and the LAMA knowledge probe.",,2021,ACL,No,, InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training,"In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm.",,2021,ACL,No,, Cross-lingual Cross-modal Pretraining for Multimodal Retrieval,"Recent pretrained vision-language models have achieved impressive performance on cross-modal retrieval tasks in English. Their success, however, heavily depends on the availability of many annotated image-caption datasets for pretraining, where the texts are not necessarily in English. Although we can utilize machine translation (MT) tools to translate non-English text to English, the performance still largely relies on MT’s quality and may suffer from high latency problems in real-world applications. This paper proposes a new approach to learn cross-lingual cross-modal representations for matching images and their relevant captions in multiple languages. We seamlessly combine cross-lingual pretraining objectives and cross-modal pretraining objectives in a unified framework to learn image and text in a joint embedding space from available English image-caption data, monolingual and parallel corpus. We show that our approach achieves SOTA performance in retrieval tasks on two multimodal multilingual image caption benchmarks: Multi30k with German captions and MSCOCO with Japanese captions.",,2021,ACL,No,, Self-Alignment Pretraining for Biomedical Entity Representations,"Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.",,2021,ACL,No,, NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints,"Conditional text generation often requires lexical constraints, i.e., which words should or shouldn’t be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models – supervised or not – to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.",,2021,ACL,No,, Time-Stamped Language Model: Teaching Language Models to Understand The Flow of Events,"Tracking entities throughout a procedure described in a text is challenging due to the dynamic nature of the world described in the process. Firstly, we propose to formulate this task as a question answering problem. This enables us to use pre-trained transformer-based language models on other QA benchmarks by adapting those to the procedural text understanding. Secondly, since the transformer-based language models cannot encode the flow of events by themselves, we propose a Time-Stamped Language Model (TSLM) to encode event information in LMs architecture by introducing the timestamp encoding. Our model evaluated on the Propara dataset shows improvements on the published state-of-the-art results with a 3.1% increase in F1 score. Moreover, our model yields better results on the location prediction task on the NPN-Cooking dataset. This result indicates that our approach is effective for procedural text understanding in general.",,2021,ACL,No,, SPARTQA: A Textual Question Answering Benchmark for Spatial Reasoning,"This paper proposes a question-answering (QA) benchmark for spatial reasoning on natural language text which contains more realistic spatial phenomena not covered by prior work and is challenging for state-of-the-art language models (LM). We propose a distant supervision method to improve on this task. Specifically, we design grammar and reasoning rules to automatically generate a spatial description of visual scenes and corresponding QA pairs. Experiments show that further pretraining LMs on these automatically generated data significantly improves LMs’ capability on spatial understanding, which in turn helps to better solve two external datasets, bAbI, and boolQ. We hope that this work can foster investigations into more sophisticated models for spatial reasoning over text.",,2021,ACL,Yes,Language,Benchmark Factual Probing Is [MASK]: Learning vs. Learning to Recall,"Petroni et al. (2019) demonstrated that it is possible to retrieve world facts from a pre-trained language model by expressing them as cloze-style prompts and interpret the model’s prediction accuracy as a lower bound on the amount of factual information it encodes. Subsequent work has attempted to tighten the estimate by searching for better prompts, using a disjoint set of facts as training data. In this work, we make two complementary contributions to better understand these factual probing techniques. First, we propose OptiPrompt, a novel and efficient method which directly optimizes in continuous embedding space. We find this simple method is able to predict an additional 6.4% of facts in the LAMA benchmark. Second, we raise a more important question: Can we really interpret these probing results as a lower bound? Is it possible that these prompt-search methods learn from the training data too? We find, somewhat surprisingly, that the training data used by these methods contains certain regularities of the underlying fact distribution, and all the existing prompt methods, including ours, are able to exploit them for better fact prediction. We conduct a set of control experiments to disentangle “learning” from “learning to recall”, providing a more detailed picture of what different prompts can reveal about pre-trained language models.",,2021,ACL,No,, Revisiting Simple Neural Probabilistic Language Models,"Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (2003), which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM’s local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.",,2021,ACL,No,, AVA: an Automatic eValuation Approach for Question Answering Systems,"We introduce AVA, an automatic evaluation approach for Question Answering, which given a set of questions associated with Gold Standard answers (references), can estimate system Accuracy. AVA uses Transformer-based language models to encode question, answer, and reference texts. This allows for effectively assessing answer correctness using similarity between the reference and an automatic answer, biased towards the question semantics. To design, train, and test AVA, we built multiple large training, development, and test sets on public and industrial benchmarks. Our innovative solutions achieve up to 74.7% F1 score in predicting human judgment for single answers. Additionally, AVA can be used to evaluate the overall system Accuracy with an error lower than 7% at 95% of confidence when measured on several QA systems.",,2021,ACL,No,, "PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing","We present the first multi-task learning model – named PhoNLP – for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at https://github.com/VinAIResearch/PhoNLP",,2021,ACL,No,, Practical Transformer-based Multilingual Text Classification,"Transformer-based methods are appealing for multilingual text classification, but common research benchmarks like XNLI (Conneau et al., 2018) do not reflect the data availability and task variety of industry applications. We present an empirical comparison of transformer-based text classification models in a variety of practical monolingual and multilingual pretraining and fine-tuning settings. We evaluate these methods on two distinct tasks in five different languages. Departing from prior work, our results show that multilingual language models can outperform monolingual ones in some downstream tasks and target languages. We additionally show that practical modifications such as task- and domain-adaptive pretraining and data augmentation can improve classification performance without the need for additional labeled data.",,2021,ACL,No,, Benchmarking Commercial Intent Detection Services with Practice-Driven Evaluations,"Intent detection is a key component of modern goal-oriented dialog systems that accomplish a user task by predicting the intent of users’ text input. There are three primary challenges in designing robust and accurate intent detection models. First, typical intent detection models require a large amount of labeled data to achieve high accuracy. Unfortunately, in practical scenarios it is more common to find small, unbalanced, and noisy datasets. Secondly, even with large training data, the intent detection models can see a different distribution of test data when being deployed in the real world, leading to poor accuracy. Finally, a practical intent detection model must be computationally efficient in both training and single query inference so that it can be used continuously and re-trained frequently. We benchmark intent detection methods on a variety of datasets. Our results show that Watson Assistant’s intent detection model outperforms other commercial solutions and is comparable to large pretrained language models while requiring only a fraction of computational resources and training data. Watson Assistant demonstrates a higher degree of robustness when the training and test distributions differ.",,2021,ACL,No,, AdapLeR: Speeding up Inference by Adaptive Length Reduction,"Pre-trained language models have shown stellar performance in various downstream tasks. But, this usually comes at the cost of high latency and computation, hindering their usage in resource-limited settings. In this work, we propose a novel approach for reducing the computational cost of BERT with minimal loss in downstream performance. Our method dynamically eliminates less contributing tokens through layers, resulting in shorter lengths and consequently lower computational cost. To determine the importance of each token representation, we train a Contribution Predictor for each layer using a gradient-based saliency method. Our experiments on several diverse classification tasks show speedups up to 22x during inference time without much sacrifice in performance. We also validate the quality of the selected tokens in our method using human annotations in the ERASER benchmark. In comparison to other widely used strategies for selecting important tokens, such as saliency and attention, our proposed method has a significantly lower false positive rate in generating rationales. Our code is freely available at https://github.com/amodaresi/AdapLeR.",,2022,ACL,No,, AlephBERT: Language Model Pre-training and Evaluation from Sub-Word to Sentence Level,"Large Pre-trained Language Models (PLMs) have become ubiquitous in the development of language understanding technology and lie at the heart of many artificial intelligence advances. While advances reported for English using PLMs are unprecedented, reported advances using PLMs for Hebrew are few and far between. The problem is twofold. First, so far, Hebrew resources for training large language models are not of the same magnitude as their English counterparts. Second, most benchmarks available to evaluate progress in Hebrew NLP require morphological boundaries which are not available in the output of standard PLMs. In this work we remedy both aspects. We present AlephBERT, a large PLM for Modern Hebrew, trained on larger vocabulary and a larger dataset than any Hebrew PLM before. Moreover, we introduce a novel neural architecture that recovers the morphological segments encoded in contextualized embedding vectors. Based on this new morphological component we offer an evaluation suite consisting of multiple tasks and benchmarks that cover sentence-level, word-level and sub-word level analyses. On all tasks, AlephBERT obtains state-of-the-art results beyond contemporary Hebrew baselines. We make our AlephBERT model, the morphological extraction model, and the Hebrew evaluation suite publicly available, for evaluating future Hebrew PLMs.",,2022,ACL,Yes,Language,Technical Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm,"Conventional wisdom in pruning Transformer-based language models is that pruning reduces the model expressiveness and thus is more likely to underfit rather than overfit. However, under the trending pretrain-and-finetune paradigm, we postulate a counter-traditional hypothesis, that is: pruning increases the risk of overfitting when performed at the fine-tuning phase. In this paper, we aim to address the overfitting problem and improve pruning performance via progressive knowledge distillation with error-bound properties. We show for the first time that reducing the risk of overfitting can help the effectiveness of pruning under the pretrain-and-finetune paradigm. Ablation studies and experiments on the GLUE benchmark show that our method outperforms the leading competitors across different tasks.",,2022,ACL,No,, KaFSP: Knowledge-Aware Fuzzy Semantic Parsing for Conversational Question Answering over a Large-Scale Knowledge Base,"In this paper, we study two issues of semantic parsing approaches to conversational question answering over a large-scale knowledge base: (1) The actions defined in grammar are not sufficient to handle uncertain reasoning common in real-world scenarios. (2) Knowledge base information is not well exploited and incorporated into semantic parsing. To mitigate the two issues, we propose a knowledge-aware fuzzy semantic parsing framework (KaFSP). It defines fuzzy comparison operations in the grammar system for uncertain reasoning based on the fuzzy set theory. In order to enhance the interaction between semantic parsing and knowledge base, we incorporate entity triples from the knowledge base into a knowledge-aware entity disambiguation module. Additionally, we propose a multi-label classification framework to not only capture correlations between entity types and relations but also detect knowledge base information relevant to the current utterance. Both enhancements are based on pre-trained language models. Experiments on a large-scale conversational question answering benchmark demonstrate that the proposed KaFSP achieves significant improvements over previous state-of-the-art models, setting new SOTA results on 8 out of 10 question types, gaining improvements of over 10% F1 or accuracy on 3 question types, and improving overall F1 from 83.01% to 85.33%. The source code of KaFSP is available at https://github.com/tjunlp-lab/KaFSP.",,2022,ACL,No,, Meta-learning via Language Model In-context Tuning,"The goal of meta-learning is to learn to adapt to a new task with only a few labeled examples. Inspired by the recent progress in large language models, we propose \textit{in-context tuning} (ICT), which recasts task adaptation and prediction as a simple sequence prediction problem: to form the input sequence, we concatenate the task instruction, labeled in-context examples, and the target input to predict; to meta-train the model to learn from in-context examples, we fine-tune a pre-trained language model (LM) to predict the target label given the input sequence on a collection of tasks.We benchmark our method on two collections of text classification tasks: LAMA and BinaryClfs. Compared to MAML which adapts the model through gradient descent, our method leverages the inductive bias of pre-trained LMs to perform pattern matching, and outperforms MAML by an absolute 6% average AUC-ROC score on BinaryClfs, gaining more advantage with increasing model size. Compared to non-fine-tuned in-context learning (i.e. prompting a raw LM), in-context tuning meta-trains the model to learn from in-context examples. On BinaryClfs, ICT improves the average AUC-ROC score by an absolute 10%, and reduces the variance due to example ordering by 6x and example choices by 2x.",,2022,ACL,No,, Language-agnostic BERT Sentence Embedding,"While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM), dual encoder translation ranking, and additive margin softmax. We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5% achieved by LASER, while still performing competitively on monolingual transfer learning benchmarks. Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE.",,2022,ACL,No,, Multi-Granularity Structural Knowledge Distillation for Language Model Compression,"Transferring the knowledge to a small model through distillation has raised great interest in recent years. Prevailing methods transfer the knowledge derived from mono-granularity language units (e.g., token-level or sample-level), which is not enough to represent the rich semantics of a text and may lose some vital knowledge. Besides, these methods form the knowledge as individual representations or their simple dependencies, neglecting abundant structural relations among intermediate representations. To overcome the problems, we present a novel knowledge distillation framework that gathers intermediate representations from multiple semantic granularities (e.g., tokens, spans and samples) and forms the knowledge as more sophisticated structural relations specified as the pair-wise interactions and the triplet-wise geometric angles based on multi-granularity representations. Moreover, we propose distilling the well-organized multi-granularity structural knowledge to the student hierarchically across layers. Experimental results on GLUE benchmark demonstrate that our method outperforms advanced distillation methods.",,2022,ACL,No,, Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts,"Human-like biases and undesired social stereotypes exist in large pretrained language models. Given the wide adoption of these models in real-world applications, mitigating such biases has become an emerging and important task. In this paper, we propose an automatic method to mitigate the biases in pretrained language models. Different from previous debiasing work that uses external corpora to fine-tune the pretrained models, we instead directly probe the biases encoded in pretrained models through prompts. Specifically, we propose a variant of the beam search method to automatically search for biased prompts such that the cloze-style completions are the most different with respect to different demographic groups. Given the identified biased prompts, we then propose a distribution alignment loss to mitigate the biases. Experiment results on standard datasets and metrics show that our proposed Auto-Debias approach can significantly reduce biases, including gender and racial bias, in pretrained language models such as BERT, RoBERTa and ALBERT. Moreover, the improvement in fairness does not decrease the language models’ understanding abilities, as shown using the GLUE benchmark.",,2022,ACL,No,, Composable Sparse Fine-Tuning for Cross-Lingual Transfer,"Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.",,2022,ACL,No,, An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models,"Recent work has shown pre-trained language models capture social biases from the large amounts of text they are trained on. This has attracted attention to developing techniques that mitigate such biases. In this work, we perform an empirical survey of five recently proposed bias mitigation techniques: Counterfactual Data Augmentation (CDA), Dropout, Iterative Nullspace Projection, Self-Debias, and SentenceDebias. We quantify the effectiveness of each technique using three intrinsic bias benchmarks while also measuring the impact of these techniques on a model’s language modeling ability, as well as its performance on downstream NLU tasks. We experimentally find that: (1) Self-Debias is the strongest debiasing technique, obtaining improved scores on all bias benchmarks; (2) Current debiasing techniques perform less consistently when mitigating non-gender biases; And (3) improvements on bias benchmarks such as StereoSet and CrowS-Pairs by using debiasing strategies are often accompanied by a decrease in language modeling ability, making it difficult to determine whether the bias mitigation was effective.",,2022,ACL,No,, Enhancing Cross-lingual Natural Language Inference by Prompt-learning from Cross-lingual Templates,"Cross-lingual natural language inference (XNLI) is a fundamental task in cross-lingual natural language understanding. Recently this task is commonly addressed by pre-trained cross-lingual language models. Existing methods usually enhance pre-trained language models with additional data, such as annotated parallel corpora. These additional data, however, are rare in practice, especially for low-resource languages. Inspired by recent promising results achieved by prompt-learning, this paper proposes a novel prompt-learning based framework for enhancing XNLI. It reformulates the XNLI problem to a masked language modeling problem by constructing cloze-style questions through cross-lingual templates. To enforce correspondence between different languages, the framework augments a new question for every question using a sampled template in another language and then introduces a consistency loss to make the answer probability distribution obtained from the new question as similar as possible with the corresponding distribution obtained from the original question. Experimental results on two benchmark datasets demonstrate that XNLI models enhanced by our proposed framework significantly outperform original ones under both the full-shot and few-shot cross-lingual transfer settings.",,2022,ACL,No,, Enhancing Chinese Pre-trained Language Model via Heterogeneous Linguistics Graph,"Chinese pre-trained language models usually exploit contextual character information to learn representations, while ignoring the linguistics knowledge, e.g., word and sentence information. Hence, we propose a task-free enhancement module termed as Heterogeneous Linguistics Graph (HLG) to enhance Chinese pre-trained language models by integrating linguistics knowledge. Specifically, we construct a hierarchical heterogeneous graph to model the characteristics linguistics structure of Chinese language, and conduct a graph-based method to summarize and concretize information on different granularities of Chinese linguistics hierarchies. Experimental results demonstrate our model has the ability to improve the performance of vanilla BERT, BERTwwm and ERNIE 1.0 on 6 natural language processing tasks with 10 benchmark datasets. Further, the detailed experimental analyses have proven that this kind of modelization achieves more improvements compared with previous strong baseline MWA. Meanwhile, our model introduces far fewer parameters (about half of MWA) and the training/inference speed is about 7x faster than MWA.",,2022,ACL,No,, Are Prompt-based Models Clueless?,"Finetuning large pre-trained language models with a task-specific head has advanced the state-of-the-art on many natural language understanding benchmarks. However, models with a task-specific head require a lot of training data, making them susceptible to learning and exploiting dataset-specific superficial cues that do not generalize to other datasets. Prompting has reduced the data requirement by reusing the language model head and formatting the task input to match the pre-training objective. Therefore, it is expected that few-shot prompt-based models do not exploit superficial cues. This paper presents an empirical examination of whether few-shot prompt-based models also exploit superficial cues. Analyzing few-shot prompt-based models on MNLI, SNLI, HANS, and COPA has revealed that prompt-based models also exploit superficial cues. While the models perform well on instances with superficial cues, they often underperform or only marginally outperform random accuracy on instances without superficial cues.",,2022,ACL,No,, Things not Written in Text: Exploring Spatial Commonsense from Visual Signals,"Spatial commonsense, the knowledge about spatial position and relationship between objects (like the relative size of a lion and a girl, and the position of a boy relative to a bicycle when cycling), is an important part of commonsense knowledge. Although pretrained language models (PLMs) succeed in many NLP tasks, they are shown to be ineffective in spatial commonsense reasoning. Starting from the observation that images are more likely to exhibit spatial commonsense than texts, we explore whether models with visual signals learn more spatial commonsense than text-based PLMs. We propose a spatial commonsense benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions. We probe PLMs and models with visual signals, including vision-language pretrained models and image synthesis models, on this benchmark, and find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models. The spatial knowledge from image synthesis models also helps in natural language understanding tasks that require spatial commonsense.",,2022,ACL,Yes,Image, ExtEnD: Extractive Entity Disambiguation,"Local models for Entity Disambiguation (ED) have today become extremely powerful, in most part thanks to the advent of large pre-trained language models. However, despite their significant performance achievements, most of these approaches frame ED through classification formulations that have intrinsic limitations, both computationally and from a modeling perspective. In contrast with this trend, here we propose ExtEnD, a novel local formulation for ED where we frame this task as a text extraction problem, and present two Transformer-based architectures that implement it. Based on experiments in and out of domain, and training over two different data regimes, we find our approach surpasses all its competitors in terms of both data efficiency and raw performance. ExtEnD outperforms its alternatives by as few as 6 F1 points on the more constrained of the two data regimes and, when moving to the other higher-resourced regime, sets a new state of the art on 4 out of 4 benchmarks under consideration, with average improvements of 0.7 F1 points overall and 1.1 F1 points out of domain. In addition, to gain better insights from our results, we also perform a fine-grained evaluation of our performances on different classes of label frequency, along with an ablation study of our architectural choices and an error analysis. We release our code and models for research purposes at https://github.com/SapienzaNLP/extend.",,2022,ACL,No,, Contextual Representation Learning beyond Masked Language Modeling,"Currently, masked language modeling (e.g., BERT) is the prime choice to learn contextualized representations. Due to the pervasiveness, it naturally raises an interesting question: how do masked language models (MLMs) learn contextual representations? In this work, we analyze the learning dynamics of MLMs and find that it adopts sampled embeddings as anchors to estimate and inject contextual semantics to representations, which limits the efficiency and effectiveness of MLMs. To address these problems, we propose TACO, a simple yet effective representation learning approach to directly model global semantics. To be specific, TACO extracts and aligns contextual semantics hidden in contextualized representations to encourage models to attend global semantics when generating contextualized representations. Experiments on the GLUE benchmark show that TACO achieves up to 5x speedup and up to 1.2 points average improvement over MLM.",,2022,ACL,No,, Generated Knowledge Prompting for Commonsense Reasoning,"It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models. To investigate this question, we develop generated knowledge prompting, which consists of generating knowledge from a language model, then providing the knowledge as additional input when answering a question. Our method does not require task-specific supervision for knowledge integration, or access to a structured knowledge base, yet it improves performance of large-scale, state-of-the-art models on four commonsense reasoning tasks, achieving state-of-the-art results on numerical commonsense (NumerSense), general commonsense (CommonsenseQA 2.0), and scientific commonsense (QASC) benchmarks. Generated knowledge prompting highlights large-scale language models as flexible sources of external knowledge for improving commonsense reasoning. Our code is available at github.com/liujch1998/GKP",,2022,ACL,No,, TruthfulQA: Measuring How Models Mimic Human Falsehoods,"We propose a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. We crafted questions that some humans would answer falsely due to a false belief or misconception. To perform well, models must avoid generating false answers learned from imitating human texts. We tested GPT-3, GPT-Neo/J, GPT-2 and a T5-based model. The best model was truthful on 58% of questions, while human performance was 94%. Models generated many false answers that mimic popular misconceptions and have the potential to deceive humans. The largest models were generally the least truthful. This contrasts with other NLP tasks, where performance improves with model size. However, this result is expected if false answers are learned from the training distribution. We suggest that scaling up models alone is less promising for improving truthfulness than fine-tuning using training objectives other than imitation of text from the web.",,2022,ACL,Yes,Language,Benchmark Image Retrieval from Contextual Descriptions,"The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe.Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.",,2022,ACL,Yes,Multimodal, Multilingual Molecular Representation Learning via Contrastive Pre-training,"Molecular representation learning plays an essential role in cheminformatics. Recently, language model-based approaches have gained popularity as an alternative to traditional expert-designed features to encode molecules. However, these approaches only utilize a single molecular language for representation learning. Motivated by the fact that a given molecule can be described using different languages such as Simplified Molecular Line Entry System (SMILES), The International Union of Pure and Applied Chemistry (IUPAC), and The IUPAC International Chemical Identifier (InChI), we propose a multilingual molecular embedding generation approach called MM-Deacon (multilingual molecular domain embedding analysis via contrastive learning). MM-Deacon is pre-trained using SMILES and IUPAC as two different languages on large-scale molecules. We evaluated the robustness of our method on seven molecular property prediction tasks from MoleculeNet benchmark, zero-shot cross-lingual retrieval, and a drug-drug interaction prediction task.",,2022,ACL,No,, NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks,"Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4 %). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4 % on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.",,2022,ACL,Yes,Language,Benchmark An Investigation of the (In)effectiveness of Counterfactually Augmented Data,"While pretrained language models achieve excellent performance on natural language understanding benchmarks, they tend to rely on spurious correlations and generalize poorly to out-of-distribution (OOD) data. Recent work has explored using counterfactually-augmented data (CAD)—data generated by minimally perturbing examples to flip the ground-truth label—to identify robust features that are invariant under distribution shift. However, empirical results using CAD during training for OOD generalization have been mixed. To explain this discrepancy, through a toy theoretical example and empirical analysis on two crowdsourced CAD datasets, we show that: (a) while features perturbed in CAD are indeed robust features, it may prevent the model from learning unperturbed robust features; and (b) CAD may exacerbate existing spurious correlations in the data. Our results thus show that the lack of perturbation diversity limits CAD’s effectiveness on OOD generalization, calling for innovative crowdsourcing procedures to elicit diverse perturbation of examples.",,2022,ACL,No,, The Moral Integrity Corpus: A Benchmark for Ethical Dialogue Systems,"Conversational agents have come increasingly closer to human competence in open-domain dialogue settings; however, such models can reflect insensitive, hurtful, or entirely incoherent viewpoints that erode a user’s trust in the moral integrity of the system. Moral deviations are difficult to mitigate because moral judgments are not universal, and there may be multiple competing judgments that apply to a situation simultaneously. In this work, we introduce a new resource, not to authoritatively resolve moral ambiguities, but instead to facilitate systematic understanding of the intuitions, values and moral judgments reflected in the utterances of dialogue systems. The Moral Integrity Corpus, MIC, is such a resource, which captures the moral assumptions of 38k prompt-reply pairs, using 99k distinct Rules of Thumb (RoTs). Each RoT reflects a particular moral conviction that can explain why a chatbot’s reply may appear acceptable or problematic. We further organize RoTs with a set of 9 moral and social attributes and benchmark performance for attribute classification. Most importantly, we show that current neural language models can automatically generate new RoTs that reasonably describe previously unseen interactions, but they still struggle with certain scenarios. Our findings suggest that MIC will be a useful resource for understanding and language models’ implicit moral assumptions and flexibly benchmarking the integrity of conversational agents. To download the data, see https://github.com/GT-SALT/mic",,2022,ACL,Yes,Language,Benchmark ePiC: Employing Proverbs in Context as a Benchmark for Abstract Language Understanding,"While large language models have shown exciting progress on several NLP benchmarks, evaluating their ability for complex analogical reasoning remains under-explored. Here, we introduce a high-quality crowdsourced dataset of narratives for employing proverbs in context as a benchmark for abstract language understanding. The dataset provides fine-grained annotation of aligned spans between proverbs and narratives, and contains minimal lexical overlaps between narratives and proverbs, ensuring that models need to go beyond surface-level reasoning to succeed. We explore three tasks: (1) proverb recommendation and alignment prediction, (2) narrative generation for a given proverb and topic, and (3) identifying narratives with similar motifs. Our experiments show that neural language models struggle on these tasks compared to humans, and these tasks pose multiple learning challenges.",,2022,ACL,Yes,Language,Benchmark PromDA: Prompt-based Data Augmentation for Low-Resource NLU Tasks,"This paper focuses on the Data Augmentation for low-resource Natural Language Understanding (NLU) tasks. We propose Prompt-based Data Augmentation model (PromDA) which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) in the frozen Pre-trained Language Models (PLMs). This avoids human effort in collecting unlabeled in-domain data and maintains the quality of generated synthetic data. In addition, PromDA generates synthetic data via two different views and filters out the low-quality data using NLU models. Experiments on four benchmarks show that synthetic data produced by PromDA successfully boost up the performance of NLU models which consistently outperform several competitive baseline models, including a state-of-the-art semi-supervised model using unlabeled in-domain data. The synthetic data from PromDA are also complementary with unlabeled in-domain data. The NLU models can be further improved when they are combined for training.",,2022,ACL,No,, SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models,"Knowledge graph completion (KGC) aims to reason over known facts and infer the missing links. Text-based methods such as KGBERT (Yao et al., 2019) learn entity representations from natural language descriptions, and have the potential for inductive KGC. However, the performance of text-based methods still largely lag behind graph embedding-based methods like TransE (Bordes et al., 2013) and RotatE (Sun et al., 2019b). In this paper, we identify that the key issue is efficient contrastive learning. To improve the learning efficiency, we introduce three types of negatives: in-batch negatives, pre-batch negatives, and self-negatives which act as a simple form of hard negatives. Combined with InfoNCE loss, our proposed model SimKGC can substantially outperform embedding-based methods on several benchmark datasets. In terms of mean reciprocal rank (MRR), we advance the state-of-the-art by +19% on WN18RR, +6.8% on the Wikidata5M transductive setting, and +22% on the Wikidata5M inductive setting. Thorough analyses are conducted to gain insights into each component. Our code is available at https://github.com/intfloat/SimKGC .",,2022,ACL,No,, FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing,"We present a benchmark suite of four datasets for evaluating the fairness of pre-trained language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Switzerland, and China), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP.",,2022,ACL,Yes,Language,Benchmark SRL4E – Semantic Role Labeling for Emotions: A Unified Evaluation Framework,"In the field of sentiment analysis, several studies have highlighted that a single sentence may express multiple, sometimes contrasting, sentiments and emotions, each with its own experiencer, target and/or cause. To this end, over the past few years researchers have started to collect and annotate data manually, in order to investigate the capabilities of automatic systems not only to distinguish between emotions, but also to capture their semantic constituents. However, currently available gold datasets are heterogeneous in size, domain, format, splits, emotion categories and role labels, making comparisons across different works difficult and hampering progress in the area. In this paper, we tackle this issue and present a unified evaluation framework focused on Semantic Role Labeling for Emotions (SRL4E), in which we unify several datasets tagged with emotions and semantic roles by using a common labeling scheme. We use SRL4E as a benchmark to evaluate how modern pretrained language models perform and analyze where we currently stand in this task, hoping to provide the tools to facilitate studies in this complex area.",,2022,ACL,Yes,Language,Benchmark Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System,"Pre-trained language models have been recently shown to benefit task-oriented dialogue (TOD) systems. Despite their success, existing methods often formulate this task as a cascaded generation problem which can lead to error accumulation across different sub-tasks and greater data annotation overhead. In this study, we present PPTOD, a unified plug-and-play model for task-oriented dialogue. In addition, we introduce a new dialogue multi-task pre-training strategy that allows the model to learn the primary TOD task completion skills from heterogeneous dialog corpora. We extensively test our model on three benchmark TOD tasks, including end-to-end dialogue modelling, dialogue state tracking, and intent classification. Experimental results show that PPTOD achieves new state of the art on all evaluated tasks in both high-resource and low-resource scenarios. Furthermore, comparisons against previous SOTA methods show that the responses generated by PPTOD are more factually correct and semantically coherent as judged by human annotators.",,2022,ACL,No,, Rare and Zero-shot Word Sense Disambiguation using Z-Reweighting,"Word sense disambiguation (WSD) is a crucial problem in the natural language processing (NLP) community. Current methods achieve decent performance by utilizing supervised learning and large pre-trained language models. However, the imbalanced training dataset leads to poor performance on rare senses and zero-shot senses. There are more training instances and senses for words with top frequency ranks than those with low frequency ranks in the training dataset. We investigate the statistical relation between word frequency rank and word sense number distribution. Based on the relation, we propose a Z-reweighting method on the word level to adjust the training on the imbalanced dataset. The experiments show that the Z-reweighting strategy achieves performance gain on the standard English all words WSD benchmark. Moreover, the strategy can help models generalize better on rare and zero-shot senses.",,2022,ACL,No,, Nibbling at the Hard Core of Word Sense Disambiguation,"With state-of-the-art systems having finally attained estimated human performance, Word Sense Disambiguation (WSD) has now joined the array of Natural Language Processing tasks that have seemingly been solved, thanks to the vast amounts of knowledge encoded into Transformer-based pre-trained language models. And yet, if we look below the surface of raw figures, it is easy to realize that current approaches still make trivial mistakes that a human would never make. In this work, we provide evidence showing why the F1 score metric should not simply be taken at face value and present an exhaustive analysis of the errors that seven of the most representative state-of-the-art systems for English all-words WSD make on traditional evaluation benchmarks. In addition, we produce and release a collection of test sets featuring (a) an amended version of the standard evaluation benchmark that fixes its lexical and semantic inaccuracies, (b) 42D, a challenge set devised to assess the resilience of systems with respect to least frequent word senses and senses not seen at training time, and (c) hardEN, a challenge set made up solely of instances which none of the investigated state-of-the-art systems can solve. We make all of the test sets and model predictions available to the research community at https://github.com/SapienzaNLP/wsd-hard-benchmark.",,2022,ACL,Yes,Language,Benchmark Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models,"Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as the biomedical domain are vastly under-explored. To facilitate this, we release a well-curated biomedical knowledge probing benchmark, MedLAMA, constructed based on the Unified Medical Language System (UMLS) Metathesaurus. We test a wide spectrum of state-of-the-art PLMs and probing approaches on our benchmark, reaching at most 3% of acc@10. While highlighting various sources of domain-specific challenges that amount to this underwhelming performance, we illustrate that the underlying PLMs have a higher potential for probing tasks. To achieve this, we propose Contrastive-Probe, a novel self-supervised contrastive probing approach, that adjusts the underlying PLMs without using any probing data. While Contrastive-Probe pushes the acc@10 to 28%, the performance gap still remains notable. Our human expert evaluation suggests that the probing performance of our Contrastive-Probe is still under-estimated as UMLS still does not include the full spectrum of factual knowledge. We hope MedLAMA and Contrastive-Probe facilitate further developments of more suited probing techniques for this domain. Our code and dataset are publicly available at https://github.com/cambridgeltl/medlama.",,2022,ACL,Yes,Language,Methodological DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for Dialog Response Generation,"Dialog response generation in open domain is an important research topic where the main challenge is to generate relevant and diverse responses. In this paper, we propose a new dialog pre-training framework called DialogVED, which introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses. With the help of a large dialog corpus (Reddit), we pre-train the model using the following 4 tasks, used in training language models (LMs) and Variational Autoencoders (VAEs) literature: 1) masked language model; 2) response generation; 3) bag-of-words prediction; and 4) KL divergence reduction. We also add additional parameters to model the turn structure in dialogs to improve the performance of the pre-trained model. We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation. Experimental results show that our model achieves the new state-of-the-art results on all these datasets.",,2022,ACL,No,, SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer,"There has been growing interest in parameter-efficient methods to apply pre-trained language models to downstream tasks. Building on the Prompt Tuning approach of Lester et al. (2021), which learns task-specific soft prompts to condition a frozen pre-trained model to perform different tasks, we propose a novel prompt-based transfer learning approach called SPoT: Soft Prompt Transfer. SPoT first learns a prompt on one or more source tasks and then uses it to initialize the prompt for a target task. We show that SPoT significantly boosts the performance of Prompt Tuning across many tasks. More remarkably, across all model sizes, SPoT matches or outperforms standard Model Tuning (which fine-tunes all model parameters) on the SuperGLUE benchmark, while using up to 27,000× fewer task-specific parameters. To understand where SPoT is most effective, we conduct a large-scale study on task transferability with 26 NLP tasks in 160 combinations, and demonstrate that many tasks can benefit each other via prompt transfer. Finally, we propose an efficient retrieval approach that interprets task prompts as task embeddings to identify similar tasks and predict the most transferable source tasks for a novel target task.",,2022,ACL,No,, KinyaBERT: a Morphology-aware Kinyarwanda Language Model,"Pre-trained language models such as BERT have been successful at tackling many natural language processing tasks. However, the unsupervised sub-word tokenization methods commonly used in these models (e.g., byte-pair encoding - BPE) are sub-optimal at handling morphologically rich languages. Even given a morphological analyzer, naive sequencing of morphemes into a standard BERT architecture is inefficient at capturing morphological compositionality and expressing word-relative syntactic regularities. We address these challenges by proposing a simple yet effective two-tier BERT architecture that leverages a morphological analyzer and explicitly represents morphological compositionality.Despite the success of BERT, most of its evaluations have been conducted on high-resource languages, obscuring its applicability on low-resource languages. We evaluate our proposed method on the low-resource morphologically rich Kinyarwanda language, naming the proposed model architecture KinyaBERT. A robust set of experimental results reveal that KinyaBERT outperforms solid baselines by 2% in F1 score on a named entity recognition task and by 4.3% in average score of a machine-translated GLUE benchmark. KinyaBERT fine-tuning has better convergence and achieves more robust results on multiple tasks even in the presence of translation noise.",,2022,ACL,No,, HOLM: Hallucinating Objects with Language Models for Referring Expression Recognition in Partially-Observed Scenes,"AI systems embodied in the physical world face a fundamental challenge of partial observability; operating with only a limited view and knowledge of the environment. This creates challenges when AI systems try to reason about language and its relationship with the environment: objects referred to through language (e.g. giving many instructions) are not immediately visible. Actions by the AI system may be required to bring these objects in view. A good benchmark to study this challenge is Dynamic Referring Expression Recognition (dRER) task, where the goal is to find a target location by dynamically adjusting the field of view (FoV) in a partially observed 360 scenes. In this paper, we introduce HOLM, Hallucinating Objects with Language Models, to address the challenge of partial observability. HOLM uses large pre-trained language models (LMs) to infer object hallucinations for the unobserved part of the environment. Our core intuition is that if a pair of objects co-appear in an environment frequently, our usage of language should reflect this fact about the world. Based on this intuition, we prompt language models to extract knowledge about object affinities which gives us a proxy for spatial relationships of objects. Our experiments show that HOLM performs better than the state-of-the-art approaches on two datasets for dRER; allowing to study generalization for both indoor and outdoor settings.",,2022,ACL,Yes,Language,Methodological Toward Interpretable Semantic Textual Similarity via Optimal Transport-based Contrastive Sentence Learning,"Recently, finetuning a pretrained language model to capture the similarity between sentence embeddings has shown the state-of-the-art performance on the semantic textual similarity (STS) task. However, the absence of an interpretation method for the sentence similarity makes it difficult to explain the model output. In this work, we explicitly describe the sentence distance as the weighted sum of contextualized token distances on the basis of a transportation problem, and then present the optimal transport-based distance measure, named RCMD; it identifies and leverages semantically-aligned token pairs. In the end, we propose CLRCMD, a contrastive learning framework that optimizes RCMD of sentence pairs, which enhances the quality of sentence similarity and their interpretation. Extensive experiments demonstrate that our learning framework outperforms other baselines on both STS and interpretable-STS benchmarks, indicating that it computes effective sentence similarity and also provides interpretation consistent with human judgement.",,2022,ACL,No,, ReACC: A Retrieval-Augmented Code Completion Framework,"Code completion, which aims to predict the following code token(s) according to the code context, can improve the productivity of software development. Recent work has proved that statistical language modeling with transformers can greatly improve the performance in the code completion task via learning from large-scale source code datasets. However, current approaches focus only on code context within the file or project, i.e. internal context. Our distinction is utilizing ”external” context, inspired by human behaviors of copying from the related code snippets when writing code. Specifically, we propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval. We adopt a stage-wise training approach that combines a source code retriever and an auto-regressive language model for programming language. We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.",,2022,ACL,No,, UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning,"Recent parameter-efficient language model tuning (PELT) methods manage to match the performance of fine-tuning with much fewer trainable parameters and perform especially well when training data is limited. However, different PELT methods may perform rather differently on the same task, making it nontrivial to select the most appropriate method for a specific task, especially considering the fast-growing number of new PELT methods and tasks. In light of model diversity and the difficulty of model selection, we propose a unified framework, UniPELT, which incorporates different PELT methods as submodules and learns to activate the ones that best suit the current data or task setup via gating mechanism. On the GLUE benchmark, UniPELT consistently achieves 1 4% gains compared to the best individual PELT method that it incorporates and even outperforms fine-tuning under different setups. Moreover, UniPELT generally surpasses the upper bound that takes the best performance of all its submodules used individually on each task, indicating that a mixture of multiple PELT methods may be inherently more effective than single methods.",,2022,ACL,No,, Phrase-aware Unsupervised Constituency Parsing,"Recent studies have achieved inspiring success in unsupervised grammar induction using masked language modeling (MLM) as the proxy task. Despite their high accuracy in identifying low-level structures, prior arts tend to struggle in capturing high-level structures like clauses, since the MLM task usually only requires information from local context. In this work, we revisit LM-based constituency parsing from a phrase-centered perspective. Inspired by the natural reading process of human, we propose to regularize the parser with phrases extracted by an unsupervised phrase tagger to help the LM model quickly manage low-level structures. For a better understanding of high-level structures, we propose a phrase-guided masking strategy for LM to emphasize more on reconstructing non-phrase words. We show that the initial phrase regularization serves as an effective bootstrap, and phrase-guided masking improves the identification of high-level structures. Experiments on the public benchmark with two different backbone models demonstrate the effectiveness and generality of our method.",,2022,ACL,No,, Reinforcement Guided Multi-Task Learning Framework for Low-Resource Stereotype Detection,"As large Pre-trained Language Models (PLMs) trained on large amounts of data in an unsupervised manner become more ubiquitous, identifying various types of bias in the text has come into sharp focus. Existing ‘Stereotype Detection’ datasets mainly adopt a diagnostic approach toward large PLMs. Blodgett et. al. (2021) show that there are significant reliability issues with the existing benchmark datasets. Annotating a reliable dataset requires a precise understanding of the subtle nuances of how stereotypes manifest in text. In this paper, we annotate a focused evaluation set for ‘Stereotype Detection’ that addresses those pitfalls by de-constructing various ways in which stereotypes manifest in text. Further, we present a multi-task model that leverages the abundance of data-rich neighboring tasks such as hate speech detection, offensive language detection, misogyny detection, etc., to improve the empirical performance on ‘Stereotype Detection’. We then propose a reinforcement-learning agent that guides the multi-task learning model by learning to identify the training examples from the neighboring tasks that help the target task the most. We show that the proposed models achieve significant empirical gains over existing baselines on all the tasks.",,2022,ACL,No,, Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction,"In this paper, we propose an effective yet efficient model PAIE for both sentence-level and document-level Event Argument Extraction (EAE), which also generalizes well when there is a lack of training data. On the one hand, PAIE utilizes prompt tuning for extractive objectives to take the best advantages of Pre-trained Language Models (PLMs). It introduces two span selectors based on the prompt to select start/end tokens among input texts for each role. On the other hand, it captures argument interactions via multi-role prompts and conducts joint optimization with optimal span assignments via a bipartite matching loss. Also, with a flexible prompt design, PAIE can extract multiple arguments with the same role instead of conventional heuristic threshold tuning. We have conducted extensive experiments on three benchmarks, including both sentence- and document-level EAE. The results present promising improvements from PAIE (3.5% and 2.3% F1 gains in average on three benchmarks, for PAIE-base and PAIE-large respectively). Further analysis demonstrates the efficiency, generalization to few-shot settings, and effectiveness of different extractive prompt tuning strategies. Our code is available at https://github.com/mayubo2333/PAIE.",,2022,ACL,No,, CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing,"Model ensemble is a popular approach to produce a low-variance and well-generalized model. However, it induces large memory and inference costs, which is often not affordable for real-world deployment. Existing work has resorted to sharing weights among models. However, when increasing the proportion of the shared weights, the resulting models tend to be similar, and the benefits of using model ensemble diminish. To retain ensemble benefits while maintaining a low memory cost, we propose a consistency-regularized ensemble learning approach based on perturbed models, named CAMERO. Specifically, we share the weights of bottom layers across all models and apply different perturbations to the hidden representations for different models, which can effectively promote the model diversity. Meanwhile, we apply a prediction consistency regularizer across the perturbed models to control the variance due to the model diversity. Our experiments using large language models demonstrate that CAMERO significantly improves the generalization performance of the ensemble model. Specifically, CAMERO outperforms the standard ensemble of 8 BERT-base models on the GLUE benchmark by 0.7 with a significantly smaller model size (114.2M vs. 880.6M).",,2022,ACL,No,, VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena,"We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V&L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V&L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V&L models from a linguistic perspective, complementing the canonical task-centred V&L evaluations.",,2022,ACL,Yes,Multimodal, Pyramid-BERT: Reducing Complexity via Successive Core-set based Token Selection,"Transformer-based language models such as BERT (CITATION) have achieved the state-of-the-art performance on various NLP tasks, but are computationally prohibitive. A recent line of works use various heuristics to successively shorten sequence length while transforming tokens through encoders, in tasks such as classification and ranking that require a single token embedding for prediction. We present a novel solution to this problem, called Pyramid-BERT where we replace previously used heuristics with a core-set based token selection method justified by theoretical results. The core-set based token selection technique allows us to avoid expensive pre-training, gives a space-efficient fine tuning, and thus makes it suitable to handle longer sequence lengths. We provide extensive experiments establishing advantages of pyramid BERT over several baselines and existing works on the GLUE benchmarks and Long Range Arena (CITATION) datasets.",,2022,ACL,No,, Kronecker Decomposition for GPT Compression,"GPT is an auto-regressive Transformer-based pre-trained language model which has attracted a lot of attention in the natural language processing (NLP) domain. The success of GPT is mostly attributed to its pre-training on huge amount of data and its large number of parameters. Despite the superior performance of GPT, this overparameterized nature of GPT can be very prohibitive for deploying this model on devices with limited computational power or memory. This problem can be mitigated using model compression techniques; however, compressing GPT models has not been investigated much in the literature. In this work, we use Kronecker decomposition to compress the linear mappings of the GPT-2 model. Our Kronecker GPT-2 model (KnGPT2) is initialized based on the Kronecker decomposed version of the GPT-2 model and then is undergone a very light pre- training on only a small portion of the training data with intermediate layer knowledge distillation (ILKD). Finally, our KnGPT2 is fine-tuned on downstream tasks using ILKD as well. We evaluate our model on both language modeling and General Language Understanding Evaluation benchmark tasks and show that with more efficient pre-training and similar number of parameters, our KnGPT2 outperforms the existing DistilGPT2 model significantly.",,2022,ACL,No,, Exploiting Language Model Prompts Using Similarity Measures: A Case Study on the Word-in-Context Task,"As a recent development in few-shot learning, prompt-based techniques have demonstrated promising potential in a variety of natural language processing tasks. However, despite proving competitive on most tasks in the GLUE and SuperGLUE benchmarks, existing prompt-based techniques fail on the semantic distinction task of the Word-in-Context (WiC) dataset. Specifically, none of the existing few-shot approaches (including the in-context learning of GPT-3) can attain a performance that is meaningfully different from the random baseline. Trying to fill this gap, we propose a new prompting technique, based on similarity metrics, which boosts few-shot performance to the level of fully supervised methods. Our simple adaptation shows that the failure of existing prompt-based techniques in semantic distinction is due to their improper configuration, rather than lack of relevant knowledge in the representations. We also show that this approach can be effectively extended to other downstream tasks for which a single prompt is sufficient.",,2022,ACL,No,, NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better,"Effectively finetuning pretrained language models (PLMs) is critical for their success in downstream tasks. However, PLMs may have risks in overfitting the pretraining tasks and data, which usually have gap with the target downstream tasks. Such gap may be difficult for existing PLM finetuning methods to overcome and lead to suboptimal performance. In this paper, we propose a very simple yet effective method named NoisyTune to help better finetune PLMs on downstream tasks by adding some noise to the parameters of PLMs before fine-tuning. More specifically, we propose a matrix-wise perturbing method which adds different uniform noises to different parameter matrices based on their standard deviations. In this way, the varied characteristics of different types of parameters in PLMs can be considered. Extensive experiments on both GLUE English benchmark and XTREME multilingual benchmark show NoisyTune can consistently empower the finetuning of different PLMs on different downstream tasks.",,2022,ACL,No,, CoDA21: Evaluating Language Understanding Capabilities of NLP Models With Context-Definition Alignment,"Pretrained language models (PLMs) have achieved superhuman performance on many benchmarks, creating a need for harder tasks. We introduce CoDA21 (Context Definition Alignment), a challenging benchmark that measures natural language understanding (NLU) capabilities of PLMs: Given a definition and a context each for k words, but not the words themselves, the task is to align the k definitions with the k contexts. CoDA21 requires a deep understanding of contexts and definitions, including complex inference and world knowledge. We find that there is a large gap between human and PLM performance, suggesting that CoDA21 measures an aspect of NLU that is not sufficiently covered in existing benchmarks.",,2022,ACL,Yes,Language,Benchmark What do Models Learn From Training on More Than Text? Measuring Visual Commonsense Knowledge,"There are limitations in learning language from text alone. Therefore, recent focus has been on developing multimodal models. However, few benchmarks exist that can measure what language models learn about language from multimodal training. We hypothesize that training on a visual modality should improve on the visual commonsense knowledge in language models. Therefore, we introduce two evaluation tasks for measuring visual commonsense knowledge in language models (code publicly available at: github.com/lovhag/measure-visual-commonsense-knowledge) and use them to evaluate different multimodal models and unimodal baselines. Primarily, we find that the visual commonsense knowledge is not significantly different between the multimodal models and unimodal baseline models trained on visual text data.",,2022,ACL,Yes,Multimodal, TimeLMs: Diachronic Language Models from Twitter,"Despite its importance, the time variable has been largely neglected in the NLP and language model literature. In this paper, we present TimeLMs, a set of language models specialized on diachronic Twitter data. We show that a continual learning strategy contributes to enhancing Twitter-based language models’ capacity to deal with future and out-of-distribution tweets, while making them competitive with standardized and more monolithic benchmarks. We also perform a number of qualitative analyses showing how they cope with trends and peaks in activity involving specific named entities or concept drift. TimeLMs is available at github.com/cardiffnlp/timelms.",,2022,ACL,Yes,Language,Methodological Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content Dilutions,"As multimodal learning finds applications in a wide variety of high-stakes societal tasks, investigating their robustness becomes important. Existing work has focused on understanding the robustness of vision-and-language models to imperceptible variations on benchmark tasks. In this work, we investigate the robustness of multimodal classifiers to cross-modal dilutions – a plausible variation. We develop a model that, given a multimodal (image + text) input, generates additional dilution text that (a) maintains relevance and topical coherence with the image and existing text, and (b) when added to the original text, leads to misclassification of the multimodal input. Via experiments on Crisis Humanitarianism and Sentiment Detection tasks, we find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model. Metric-based comparisons with several baselines and human evaluations indicate that our dilutions show higher relevance and topical coherence, while simultaneously being more effective at demonstrating the brittleness of the multimodal classifiers. Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations, especially in human-facing societal applications.",,2022,ACL,No,, InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning,"Instruction tuning is an emergent paradigm in NLP wherein natural language instructions are leveraged with language models to induce zero-shot performance on unseen tasks. Dialogue is an especially interesting area in which to explore instruction tuning because dialogue systems perform multiple kinds of tasks related to language (e.g., natural language understanding and generation, domain-specific interaction), yet instruction tuning has not been systematically explored for dialogue-related tasks. We introduce InstructDial, an instruction tuning framework for dialogue, which consists of a repository of 48 diverse dialogue tasks in a unified text-to-text format created from 59 openly available dialogue datasets. We explore cross-task generalization ability on models tuned on InstructDial across diverse dialogue tasks. Our analysis reveals that InstructDial enables good zero-shot performance on unseen datasets and tasks such as dialogue evaluation and intent detection, and even better performance in a few-shot setting. To ensure that models adhere to instructions, we introduce novel meta-tasks. We establish benchmark zero-shot and few-shot performance of models trained using the proposed framework on multiple dialogue tasks.",,2022,ACL,Yes,Language,Methodological Unsupervised Boundary-Aware Language Model Pretraining for Chinese Sequence Labeling,"Boundary information is critical for various Chinese language processing tasks, such as word segmentation, part-of-speech tagging, and named entity recognition. Previous studies usually resorted to the use of a high-quality external lexicon, where lexicon items can offer explicit boundary information. However, to ensure the quality of the lexicon, great human effort is always necessary, which has been generally ignored. In this work, we suggest unsupervised statistical boundary information instead, and propose an architecture to encode the information directly into pre-trained language models, resulting in Boundary-Aware BERT (BABERT). We apply BABERT for feature induction of Chinese sequence labeling tasks. Experimental results on ten benchmarks of Chinese sequence labeling demonstrate that BABERT can provide consistent improvements on all datasets. In addition, our method can complement previous supervised lexicon exploration, where further improvements can be achieved when integrated with external lexicon information.",,2022,ACL,No,, RetroMAE: Pre-Training Retrieval-oriented Language Models Via Masked Auto-Encoder,"Despite pre-training’s progress in many important NLP tasks, it remains to explore effective pre-training strategies for dense retrieval. In this paper, we propose RetroMAE, a new retrieval oriented pre-training paradigm based on Masked Auto-Encoder (MAE). RetroMAE is highlighted by three critical designs. 1) A novel MAE workflow, where the input sentence is polluted for encoder and decoder with different masks. The sentence embedding is generated from the encoder’s masked input; then, the original sentence is recovered based on the sentence embedding and the decoder’s masked input via masked language modeling. 2) Asymmetric model structure, with a full-scale BERT like transformer as encoder, and a one-layer transformer as decoder. 3) Asymmetric masking ratios, with a moderate ratio for encoder: 15 30%, and an aggressive ratio for decoder: 50 70%. Our framework is simple to realize and empirically competitive: the pre-trained models dramatically improve the SOTA performances on a wide range of dense retrieval benchmarks, like BEIR and MS MARCO. The source code and pre-trained models are made publicly available at https://github.com/staoxiao/RetroMAE so as to inspire more interesting research.",,2022,ACL,No,, UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models,"Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.",,2022,ACL,Yes,Language,Methodological Generative Language Models for Paragraph-Level Question Generation,"Powerful generative models have led to recent progress in question generation (QG). However, it is difficult to measure advances in QG research since there are no standardized resources that allow a uniform comparison among approaches. In this paper, we introduce QG-Bench, a multilingual and multidomain benchmark for QG that unifies existing question answering datasets by converting them to a standard QG setting. It includes general-purpose datasets such as SQuAD for English, datasets from ten domains and two styles, as well as datasets in eight different languages. Using QG-Bench as a reference, we perform an extensive analysis of the capabilities of language models for the task. First, we propose robust QG baselines based on fine-tuning generative language models. Then, we complement automatic evaluation based on standard metrics with an extensive manual evaluation, which in turn sheds light on the difficulty of evaluating QG models. Finally, we analyse both the domain adaptability of these models as well as the effectiveness of multilingual models in languages other than English.QG-Bench is released along with the fine-tuned models presented in the paper (https://github.com/asahi417/lm-question-generation), which are also available as a demo (https://autoqg.net/).",,2022,ACL,Yes,Language,Benchmark Reasoning Like Program Executors,"Reasoning over natural language is a long-standing goal for the research community. However, studies have shown that existing language models are inadequate in reasoning. To address the issue, we present POET, a novel reasoning pre-training paradigm. Through pre-training language models with programs and their execution results, POET empowers language models to harvest the reasoning knowledge possessed by program executors via a data-driven approach. POET is conceptually simple and can be instantiated by different kinds of program executors. In this paper, we showcase two simple instances POET-Math and POET-Logic, in addition to a complex instance, POET-SQL. Experimental results on six benchmarks demonstrate that POET can significantly boost model performance in natural language reasoning, such as numerical reasoning, logical reasoning, and multi-hop reasoning. POET opens a new gate on reasoning-enhancement pre-training, and we hope our analysis would shed light on the future research of reasoning like program executors.",,2022,ACL,No,, Learning to Adapt to Low-Resource Paraphrase Generation,"Paraphrase generation is a longstanding NLP task and achieves great success with the aid of large corpora. However, transferring a paraphrasing model to another domain encounters the problem of domain shifting especially when the data is sparse. At the same time, widely using large pre-trained language models (PLMs) faces the overfitting problem when training on scarce labeled data. To mitigate these two issues, we propose, LAPA, an effective adapter for PLMs optimized by meta-learning. LAPA has three-stage training on three types of related resources to solve this problem: 1. pre-training PLMs on unsupervised corpora, 2. inserting an adapter layer and meta-training on source domain labeled data, and 3. fine-tuning adapters on a small amount of target domain labeled data. This method enables paraphrase generation models to learn basic language knowledge first, then learn the paraphrasing task itself later, and finally adapt to the target task. Our experimental results demonstrate that LAPA achieves state-of-the-art in supervised, unsupervised, and low-resource settings on three benchmark datasets. With only 2% of trainable parameters and 1% labeled data of the target task, our approach can achieve a competitive performance with previous work.",,2022,ACL,No,, Fine-grained Contrastive Learning for Relation Extraction,"Recent relation extraction (RE) works have shown encouraging improvements by conducting contrastive learning on silver labels generated by distant supervision before fine-tuning on gold labels. Existing methods typically assume all these silver labels are accurate and treat them equally; however, distant supervision is inevitably noisy–some silver labels are more reliable than others. In this paper, we propose fine-grained contrastive learning (FineCL) for RE, which leverages fine-grained information about which silver labels are and are not noisy to improve the quality of learned relationship representations for RE. We first assess the quality of silver labels via a simple and automatic approach we call “learning order denoising,” where we train a language model to learn these relations and record the order of learned training instances. We show that learning order largely corresponds to label accuracy–early-learned silver labels have, on average, more accurate labels than later-learned silver labels. Then, during pre-training, we increase the weights of accurate labels within a novel contrastive learning objective. Experiments on several RE benchmarks show that FineCL makes consistent and significant performance gains over state-of-the-art methods.",,2022,ACL,No,, Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations,"Pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which aims to infer a correct answer to a question even from the unreliable generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.",,2022,ACL,No,, COCO-DR: Combating the Distribution Shift in Zero-Shot Dense Retrieval with Contrastive and Distributionally Robust Learning,"We present a new zero-shot dense retrieval (ZeroDR) method, COCO-DR, to improve the generalization ability of dense retrieval by combating the distribution shifts between source training tasks and target scenarios. To mitigate the impact of document differences, COCO-DR continues pretraining the language model on the target corpora to adapt the model to target distributions via COtinuous COtrastive learning. To prepare for unseen target queries, COCO-DR leverages implicit Distributionally Robust Optimization (iDRO) to reweight samples from different source query clusters for improving model robustness over rare queries during fine-tuning. COCO-DR achieves superior average performance on BEIR, the zero-shot retrieval benchmark. At BERT_Base scale, COCO-DR Base outperforms other ZeroDR models with 60x larger size. At BERT_Large scale, COCO-DR Large outperforms the giant GPT-3 embedding model which has 500x more parameters. Our analysis shows the correlation between COCO-DR’s effectiveness in combating distribution shifts and improving zero-shot accuracy. Our code and model can be found at https://github.com/OpenMatch/COCO-DR.",,2022,ACL,No,, COST-EFF: Collaborative Optimization of Spatial and Temporal Efficiency with Slenderized Multi-exit Language Models,"Transformer-based pre-trained language models (PLMs) mostly suffer from excessive overhead despite their advanced capacity. For resource-constrained devices, there is an urgent need for a spatially and temporally efficient model which retains the major capacity of PLMs. However, existing statically compressed models are unaware of the diverse complexities between input instances, potentially resulting in redundancy and inadequacy for simple and complex inputs. Also, miniature models with early exiting encounter challenges in the trade-off between making predictions and serving the deeper layers. Motivated by such considerations, we propose a collaborative optimization for PLMs that integrates static model compression and dynamic inference acceleration. Specifically, the PLM is slenderized in width while the depth remains intact, complementing layer-wise early exiting to speed up inference dynamically. To address the trade-off of early exiting, we propose a joint training approach that calibrates slenderization and preserves contributive structures to each exit instead of only the final layer. Experiments are conducted on GLUE benchmark and the results verify the Pareto optimality of our approach at high compression and acceleration rate with 1/8 parameters and 1/19 FLOPs of BERT.",,2022,ACL,No,, EvEntS ReaLM: Event Reasoning of Entity States via Language Models,"This paper investigates models of event implications. Specifically, how well models predict entity state-changes, by targeting their understanding of physical attributes. Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world. Conversely, we also demonstrate that existing approaches often misrepresent the surprising abilities of LLMs via improper task encodings and that proper model prompting can dramatically improve performance of reported baseline results across multiple tasks. In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.",,2022,ACL,Yes,Language,Methodological Large language models are few-shot clinical information extractors,"A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT (Ouyang et al., 2022), perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset (Moon et al., 2014) for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.",,2022,ACL,Yes,Language,Benchmark GeoMLAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models,"Recent work has shown that Pre-trained Language Models (PLMs) store the relational knowledge learned from data and utilize it for performing downstream tasks. However, commonsense knowledge across different regions may vary. For instance, the color of bridal dress is white in American weddings whereas it is red in Chinese weddings. In this paper, we introduce a benchmark dataset, Geo-diverse Commonsense Multilingual Language Models Analysis (GeoMLAMA), for probing the diversity of the relational knowledge in multilingual PLMs. GeoMLAMA contains 3125 prompts in English, Chinese, Hindi, Persian, and Swahili, with a wide coverage of concepts shared by people from American, Chinese, Indian, Iranian and Kenyan cultures. We benchmark 11 standard multilingual PLMs on GeoMLAMA. Interestingly, we find that 1) larger multilingual PLMs variants do not necessarily store geo-diverse concepts better than its smaller variant; 2) multilingual PLMs are not intrinsically biased towards knowledge from the Western countries (the United States); 3) the native language of a country may not be the best language to probe its knowledge and 4) a language may better probe knowledge about a non-native country than its native country.",,2022,ACL,Yes,Language,Benchmark TaCube: Pre-computing Data Cubes for Answering Numerical-Reasoning Questions over Tabular Data,"Existing auto-regressive pre-trained language models (PLMs) like T5 and BART, have been well applied to table question answering by UNIFIEDSKG and TAPEX, respectively, and demonstrated state-of-the-art results on multiple benchmarks. However, auto-regressive PLMs are challenged by recent emerging numerical reasoning datasets, such as TAT-QA, due to the error-prone implicit calculation. In this paper, we present TaCube, to pre-compute aggregation/arithmetic results for the table in advance, so that they are handy and readily available for PLMs to answer numerical reasoning questions. TaCube systematically and comprehensively covers a collection of computational operations over table segments. By simply concatenating TaCube to the input sequence of PLMs, it shows significant experimental effectiveness. TaCube promotes the F1 score from 49.6% to 66.2% on TAT-QA and achieves new state-of-the-art results on WikiTQ (59.6% denotation accuracy). TaCube’s improvements on numerical reasoning cases are even more notable: on TAT-QA, TaCube promotes the exact match accuracy of BART-large by 39.6% on sum, 52.5% on average, 36.6% on substraction, and 22.2% on division. We believe that TaCube is a general and portable pre-computation solution that can be potentially integrated to various numerical reasoning frameworks",,2022,ACL,No,, When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain,"Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data will be made publicly available on Github and Huggingface.",,2022,ACL,Yes,Language,Benchmark SafeText: A Benchmark for Exploring Physical Safety in Language Models,"Understanding what constitutes safe text is an important issue in natural language processing and can often prevent the deployment of models deemed harmful and unsafe. One such type of safety that has been scarcely studied is commonsense physical safety, i.e. text that is not explicitly violent and requires additional commonsense knowledge to comprehend that it leads to physical harm. We create the first benchmark dataset, SafeText, comprising real-life scenarios with paired safe and physically unsafe pieces of advice. We utilize SafeText to empirically study commonsense physical safety across various models designed for text generation and commonsense reasoning tasks. We find that state-of-the-art large language models are susceptible to the generation of unsafe text and have difficulty rejecting unsafe advice. As a result, we argue for further studies of safety and the assessment of commonsense physical safety in models before release.",,2022,ACL,Yes,Language,Benchmark Navigating Connected Memories with a Task-oriented Dialog System,"Recent years have seen an increasing trend in the volume of personal media captured by users, thanks to the advent of smartphones and smart glasses, resulting in large media collections. Despite conversation being an intuitive human-computer interface, current efforts focus mostly on single-shot natural language based media retrieval to aid users query their media and re-live their memories. This severely limits the search functionality as users can neither ask follow-up queries nor obtain information without first formulating a single-turn query.In this work, we propose dialogs for connected memories as a powerful tool to empower users to search their media collection through a multi-turn, interactive conversation. Towards this, we collect a new task-oriented dialog dataset COMET, which contains 11.5k user↔assistant dialogs (totalling 103k utterances), grounded in simulated personal memory graphs. We employ a resource-efficient, two-phase data collection pipeline that uses: (1) a novel multimodal dialog simulator that generates synthetic dialog flows grounded in memory graphs, and, (2) manual paraphrasing to obtain natural language utterances. We analyze COMET, formulate four main tasks to benchmark meaningful progress, and adopt state-of-the-art language models as strong baselines, in order to highlight the multimodal challenges captured by our dataset.",,2022,ACL,Yes,Language,Methodological Multi-level Distillation of Semantic Knowledge for Pre-training Multilingual Language Model,"Pre-trained multilingual language models play an important role in cross-lingual natural language understanding tasks. However, existing methods did not focus on learning the semantic structure of representation, and thus could not optimize their performance. In this paper, we propose Multi-level Multilingual Knowledge Distillation (MMKD), a novel method for improving multilingual language models. Specifically, we employ a teacher-student framework to adopt rich semantic representation knowledge in English BERT. We propose token-, word-, sentence-, and structure-level alignment objectives to encourage multiple levels of consistency between source-target pairs and correlation similarity between teacher and student models. We conduct experiments on cross-lingual evaluation benchmarks including XNLI, PAWS-X, and XQuAD. Experimental results show that MMKD outperforms other baseline models of similar size on XNLI and XQuAD and obtains comparable performance on PAWS-X. Especially, MMKD obtains significant performance gains on low-resource languages.",,2022,ACL,No,, Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Processing,"There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work addresses two major problems in existing Arabic PLMs that limit the progress of the Arabic NLU and NLG fields. First, existing Arabic PLMs are not well-explored and their pre-training can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. We revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore the impact of the quality of the pretraining data, the size of the model, and the incorporation of character-level information on Arabic PLM. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE, a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the Arabic generative tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce results will be made available upon acceptance.",,2022,ACL,Yes,Language,Methodological KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive Question Answering,"Extractive Question Answering (EQA) is one of the most essential tasks in Machine Reading Comprehension (MRC), which can be solved by fine-tuning the span selecting heads of Pre-trained Language Models (PLMs). However, most existing approaches for MRC may perform poorly in the few-shot learning scenario. To solve this issue, we propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP). Instead of adding pointer heads to PLMs, we introduce a seminal paradigm for EQA that transforms the task into a non-autoregressive Masked Language Modeling (MLM) generation problem. Simultaneously, rich semantics from the external knowledge base (KB) and the passage context support enhancing the query’s representations. In addition, to boost the performance of PLMs, we jointly train the model by the MLM and contrastive learning objectives. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.",,2022,ACL,No,, Sentence Representation Learning with Generative Objective rather than Contrastive Objective,"Though offering amazing contextualized token-level representations, current pre-trained language models take less attention on accurately acquiring sentence-level representation during their self-supervised pre-training. However, contrastive objectives which dominate the current sentence representation learning bring little linguistic interpretability and no performance guarantee on downstream semantic tasks. We instead propose a novel generative self-supervised learning objective based on phrase reconstruction. To overcome the drawbacks of previous generative methods, we carefully model intra-sentence structure by breaking down one sentence into pieces of important phrases. Empirical studies show that our generative learning achieves powerful enough performance improvement and outperforms the current state-of-the-art contrastive methods not only on the STS benchmarks, but also on downstream semantic retrieval and reranking tasks. Our code is available at https://github.com/chengzhipanpan/PaSeR.",,2022,ACL,No,, PATS: Sensitivity-aware Noisy Learning for Pretrained Language Models,"A wide range of NLP tasks benefit from the fine-tuning of pretrained language models (PLMs). However, a number of redundant parameters which contribute less to the downstream task are observed in a directly fine-tuned model. We consider the gap between pretraining and downstream tasks hinders the training of these redundant parameters, and results in a suboptimal performance of the overall model. In this paper, we present PATS (Perturbation According To Sensitivity), a noisy training mechanism which considers each parameter’s importance in the downstream task to help fine-tune PLMs. The main idea of PATS is to add bigger noise to parameters with lower sensitivity and vice versa, in order to activate more parameters’ contributions to downstream tasks without affecting the sensitive ones much. Extensive experiments conducted on different tasks of the GLUE benchmark show PATS can consistently empower the fine-tuning of different sizes of PLMs, and the parameters in the well-performing models always have more concentrated distributions of sensitivities, which experimentally proves the effectiveness of our method.",,2022,ACL,No,, Sparse Teachers Can Be Dense with Knowledge,"Recent advances in distilling pretrained language models have discovered that, besides the expressiveness of knowledge, the student-friendliness should be taken into consideration to realize a truly knowledgeable teacher. Based on a pilot study, we find that over-parameterized teachers can produce expressive yet student-unfriendly knowledge and are thus limited in overall knowledgeableness. To remove the parameters that result in student-unfriendliness, we propose a sparse teacher trick under the guidance of an overall knowledgeable score for each teacher parameter. The knowledgeable score is essentially an interpolation of the expressiveness and student-friendliness scores. The aim is to ensure that the expressive parameters are retained while the student-unfriendly ones are removed. Extensive experiments on the GLUE benchmark show that the proposed sparse teachers can be dense with knowledge and lead to students with compelling performance in comparison with a series of competitive baselines.",,2022,ACL,No,, Mixed-effects transformers for hierarchical adaptation,"Language differs dramatically from context to context. To some degree, large language models like GPT-3 account for such variation by conditioning on strings of initial input text, or prompts. However, prompting can be ineffective when contexts are sparse, out-of-sample, or extra-textual. In this paper, we introduce the mixed-effects transformer (MET), a novel approach for learning hierarchically-structured prefixes— lightweight modules prepended to an input sequence— to account for structured variation in language use. Specifically, we show how the popular class of mixed-effects regression models may be extended to transformer-based architectures using a regularized prefix-tuning procedure with dropout. We evaluate this approach on several domain-adaptation benchmarks, finding that it learns contextual variation from minimal data while generalizing well to unseen contexts.",,2022,ACL,No,, Is a Question Decomposition Unit All We Need?,"Large Language Models (LMs) have achieved state-of-the-art performance on many Natural Language Processing (NLP) benchmarks. With the growing number of new benchmarks, we build bigger and more complex LMs. However, building new LMs may not be an ideal option owing to the cost, time and environmental impact associated with it. We explore an alternative route: can we modify data by expressing it in terms of the model’s strengths, so that a question becomes easier for models to answer? We investigate if humans can decompose a hard question into a set of simpler questions that are relatively easier for models to solve. We analyze a range of datasets involving various forms of reasoning and find that it is indeed possible to significantly improve model performance (24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calculator) via decomposition. Our approach provides a viable option to involve people in NLP research in a meaningful way. Our findings indicate that Human-in-the-loop Question Decomposition (HQD) can potentially provide an alternate path to building large LMs.",,2022,ACL,No,, SLING: Sino Linguistic Evaluation of Large Language Models,"To understand what kinds of linguistic knowledge are encoded by pretrained Chinese language models (LMs), we introduce the benchmark of Sino LINGuistics (SLING), which consists of 38K minimal sentence pairs in Mandarin Chinese grouped into 9 high-level linguistic phenomena. Each pair demonstrates the acceptability contrast of a specific syntactic or semantic phenomenon (e.g., The keys are lost vs. The keys is lost), and an LM should assign lower perplexity to the acceptable sentence. In contrast to the CLiMP dataset (Xiang et al., 2021), which also contains Chinese minimal pairs and was created by translating the vocabulary of the English BLiMP dataset, the minimal pairs in SLING are derived primarily by applying syntactic and lexical transformations to naturally-occurring, linguist-annotated sentences from the Chinese Treebank 9.0, thus addressing severe issues in CLiMP’s data generation process. We test 18 publicly available pretrained monolingual (e.g., BERT-base-zh, CPM) and multi-lingual (e.g., mT5, XLM) language models on SLING. Our experiments show that the average accuracy for LMs is far below human performance (69.7% vs. 97.1%), while BERT-base-zh achieves the highest accuracy (84.8%) of all tested LMs, even much larger ones. Additionally, we find that most LMs have a strong gender and number (singular/plural) bias, and they perform better on local phenomena than hierarchical ones.",,2022,ACL,Yes,Language,Benchmark MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure,"In this paper, we propose a comprehensive benchmark to investigate models’ logical reasoning capabilities in complex real-life scenarios. Current explanation datasets often employ synthetic data with simple reasoning structures. Therefore, it cannot express more complex reasoning processes, such as the rebuttal to a reasoning step and the degree of certainty of the evidence. To this end, we propose a comprehensive logical reasoning explanation form. Based on the multi-hop chain of reasoning, the explanation form includes three main components: (1) The condition of rebuttal that the reasoning node can be challenged; (2) Logical formulae that uncover the internal texture of reasoning nodes; (3) Reasoning strength indicated by degrees of certainty. The fine-grained structure conforms to the real logical reasoning scenario, better fitting the human cognitive process but, simultaneously, is more challenging for the current models. We evaluate the current best models’ performance on this new explanation form. The experimental results show that generating reasoning graphs remains a challenging task for current models, even with the help of giant pre-trained language models.",,2022,ACL,Yes,Language,Benchmark Sentiment-Aware Word and Sentence Level Pre-training for Sentiment Analysis,"Most existing pre-trained language representation models (PLMs) are sub-optimal in sentiment analysis tasks, as they capture the sentiment information from word-level while under-considering sentence-level information. In this paper, we propose SentiWSP, a novel Sentiment-aware pre-trained language model with combined Word-level and Sentence-level Pre-training tasks.The word level pre-training task detects replaced sentiment words, via a generator-discriminator framework, to enhance the PLM’s knowledge about sentiment words.The sentence level pre-training task further strengthens the discriminator via a contrastive learning framework, with similar sentences as negative samples, to encode sentiments in a sentence.Extensive experimental results show that SentiWSP achieves new state-of-the-art performance on various sentence-level and aspect-level sentiment classification benchmarks. We have made our code and model publicly available at https://github.com/XMUDM/SentiWSP.",,2022,ACL,No,, COPEN: Probing Conceptual Knowledge in Pre-trained Language Models,"Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.",,2022,ACL,Yes,Language,Benchmark DRLK: Dynamic Hierarchical Reasoning with Language Model and Knowledge Graph for Question Answering,"In recent years, Graph Neural Network (GNN) approaches with enhanced knowledge graphs (KG) perform well in question answering (QA) tasks. One critical challenge is how to effectively utilize interactions between the QA context and KG. However, existing work only adopts the identical QA context representation to interact with multiple layers of KG, which results in a restricted interaction. In this paper, we propose DRLK (Dynamic Hierarchical Reasoning with Language Model and Knowledge Graphs), a novel model that utilizes dynamic hierarchical interactions between the QA context and KG for reasoning. DRLK extracts dynamic hierarchical features in the QA context, and performs inter-layer and intra-layer interactions on each iteration, allowing the KG representation to be grounded with the hierarchical features of the QA context. We conduct extensive experiments on four benchmark datasets in medical QA and commonsense reasoning. The experimental results demonstrate that DRLK achieves state-of-the-art performances on two benchmark datasets and performs competitively on the others.",,2022,ACL,No,, Rethinking Style Transformer with Energy-based Interpretation: Adversarial Unsupervised Style Transfer using a Pretrained Model,"Style control, content preservation, and fluency determine the quality of text style transfer models. To train on a nonparallel corpus, several existing approaches aim to deceive the style discriminator with an adversarial loss. However, adversarial training significantly degrades fluency compared to the other two metrics. In this work, we explain this phenomenon using energy-based interpretation, and leverage a pretrained language model to improve fluency. Specifically, we propose a novel approach which applies the pretrained language model to the text style transfer framework by restructuring the discriminator and the model itself, allowing the generator and the discriminator to also take advantage of the power of the pretrained model. We evaluated our model on three public benchmarks GYAFC, Amazon, and Yelp and achieved state-of-the-art performance on the overall metrics.",,2022,ACL,No,, PLOG: Table-to-Logic Pretraining for Logical Table-to-Text Generation,"Logical table-to-text generation is a task that involves generating logically faithful sentences from tables, which requires models to derive logical-level facts from table records via logical inference. It raises a new challenge on the logical-level content planning of table-to-text models. However, directly learning the logical inference knowledge from table-text pairs is very difficult for neural models because of the ambiguity of natural language and the scarcity of parallel data. Hence even large-scale pre-trained language models present low logical fidelity on logical table-to-text. In this work, we propose a Pretrained Logical Form Generator (PLOG) framework to improve generation fidelity. Specifically, PLOG is first pretrained on a table-to-logical-form generation (table-to-logic) task, then finetuned on downstream table-to-text tasks. The logical forms are formally defined with unambiguous semantics. Hence we can collect a large amount of accurate logical forms from tables without human annotation. In addition, PLOG can learn logical inference from table-logic pairs much more reliably than from table-text pairs. To evaluate our model, we further collect a controlled logical table-to-text dataset CONTLOG based on an existing dataset. On two benchmarks, LOGICNLG and CONTLOG, PLOG outperforms strong baselines by a large margin on the logical fidelity, demonstrating the effectiveness of table-to-logic pretraining.",,2022,ACL,Yes,Language,Methodological Training Language Models with Memory Augmentation,"Recent work has improved language models (LMs) remarkably by equipping them with a non-parametric memory component. However, most existing approaches only introduce mem-ories at testing time or represent them using a separately trained encoder, resulting in suboptimal training of the language model. In this work, we present TRIME, a novel yet simple training approach designed for training LMs with memory augmentation. Our approach uses a training objective that directly takes in-batch examples as accessible memory. We also present new methods for memory construction and data batching, which are used for adapting to different sets of memories—local, long-term, and external memory—at testing time. We evaluate TRIME on multiple language modeling and machine translation benchmarks and show that it is able to achieve significant improvements across all the settings. Concretely, TRIME reduces the perplexity from 18.70 to 15.37 on WIKITEXT-103, by effectively leveraging a large memory set from the training corpus. Compared to standard LM training, TRIME adds negligible computational overhead and is compatible with different neural architectures, making it a versatile solution for training memory-augmented LMs.",,2022,ACL,No,, InforMask: Unsupervised Informative Masking for Language Model Pretraining,"Masked language modeling is widely used for pretraining large language models for natural language understanding (NLU). However, random masking is suboptimal, allocating an equal masking rate for all tokens. In this paper, we propose InforMask, a new unsupervised masking strategy for training masked language models. InforMask exploits Pointwise Mutual Information (PMI) to select the most informative tokens to mask. We further propose two optimizations for InforMask to improve its efficiency. With a one-off preprocessing step, InforMask outperforms random masking and previously proposed masking strategies on the factual recall benchmark LAMA and the question answering benchmark SQuAD v1 and v2.",,2022,ACL,No,, AX-MABSA: A Framework for Extremely Weakly Supervised Multi-label Aspect Based Sentiment Analysis,"Aspect Based Sentiment Analysis is a dominant research area with potential applications in social media analytics, business, finance, and health. Prior works in this area are primarily based on supervised methods, with a few techniques using weak supervision limited to predicting a single aspect category per review sentence. In this paper, we present an extremely weakly supervised multi-label Aspect Category Sentiment Analysis framework which does not use any labelled data. We only rely on a single word per class as an initial indicative information. We further propose an automatic word selection technique to choose these seed categories and sentiment words. We explore unsupervised language model post-training to improve the overall performance, and propose a multi-label generator model to generate multiple aspect category-sentiment pairs per review sentence. Experiments conducted on four benchmark datasets showcase our method to outperform other weakly supervised baselines by a significant margin.",,2022,ACL,No,, Transfer Learning with Synthetic Corpora for Spatial Role Labeling and Reasoning,"Recent research shows synthetic data as a source of supervision helps pretrained language models (PLM) transfer learning to new target tasks/domains. However, this idea is less explored for spatial language. We provide two new data resources on multiple spatial language processing tasks. The first dataset is synthesized for transfer learning on spatial question answering (SQA) and spatial role labeling (SpRL). Compared to previous SQA datasets, we include a larger variety of spatial relation types and spatial expressions. Our data generation process is easily extendable with new spatial expression lexicons. The second one is a real-world SQA dataset with human-generated questions built on an existing corpus with SPRL annotations. This dataset can be used to evaluate spatial language processing models in realistic situations. We show pretraining with automatically generated data significantly improves the SOTA results on several SQA and SPRL benchmarks, particularly when the training data in the target domain is small.",,2022,ACL,No,, Bernice: A Multilingual Pre-trained Encoder for Twitter,"The language of Twitter differs significantly from that of other domains commonly included in large language model training. While tweets are typically multilingual and contain informal language, including emoji and hashtags, most pre-trained language models for Twitter are either monolingual, adapted from other domains rather than trained exclusively on Twitter, or are trained on a limited amount of in-domain Twitter data.We introduce Bernice, the first multilingual RoBERTa language model trained from scratch on 2.5 billion tweets with a custom tweet-focused tokenizer. We evaluate on a variety of monolingual and multilingual Twitter benchmarks, finding that our model consistently exceeds or matches the performance of a variety of models adapted to social media data as well as strong multilingual baselines, despite being trained on less data overall.We posit that it is more efficient compute- and data-wise to train completely on in-domain data with a specialized domain-specific tokenizer.",,2022,ACL,No,, TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models,"Language Models (LMs) become outdated as the world changes; they often fail to perform tasks requiring recent factual information which was absent or different during training, a phenomenon called temporal misalignment. This is especially a challenging problem because the research community still lacks a coherent dataset for assessing the adaptability of LMs to frequently-updated knowledge corpus such as Wikipedia. To this end, we introduce TemporalWiki, a lifelong benchmark for ever-evolving LMs that utilizes the difference between consecutive snapshots of English Wikipedia and English Wikidata for training and evaluation, respectively. The benchmark hence allows researchers to periodically track an LM’s ability to retain previous knowledge and acquire updated/new knowledge at each point in time. We also find that training an LM on the diff data through continual learning methods achieves similar or better perplexity than on the entire snapshot in our benchmark with 12 times less computational cost, which verifies that factual knowledge in LMs can be safely updated with minimal training data via continual learning.",,2022,ACL,Yes,Language,Benchmark Improving Temporal Generalization of Pre-trained Language Models with Lexical Semantic Change,"Recent research has revealed that neural language models at scale suffer from poor temporal generalization capability, i.e., language model pre-trained on static data from past years performs worse over time on emerging data. Existing methods mainly perform continual training to mitigate such a misalignment. While effective to some extent but is far from being addressed on both the language modeling and downstream tasks. In this paper, we empirically observe that temporal generalization is closely affiliated with lexical semantic change, which is one of the essential phenomena of natural languages. Based on this observation, we propose a simple yet effective lexical-level masking strategy to post-train a converged language model. Experiments on two pre-trained language models, two different classification tasks, and four benchmark datasets demonstrate the effectiveness of our proposed method over existing temporal adaptation methods, i.e., continual training with new data. Our code is available at https://github.com/zhaochen0110/LMLM.",,2022,ACL,No,, Towards Unifying Reference Expression Generation and Comprehension,"Reference Expression Generation (REG) and Comprehension (REC) are two highly correlated tasks. Modeling REG and REC simultaneously for utilizing the relation between them is a promising way to improve both. However, the problem of distinct inputs, as well as building connections between them in a single model, brings challenges to the design and training of the joint model. To address the problems, we propose a unified model for REG and REC, named UniRef. It unifies these two tasks with the carefully-designed Image-Region-Text Fusion layer (IRTF), which fuses the image, region and text via the image cross-attention and region cross-attention. Additionally, IRTF could generate pseudo input regions for the REC task to enable a uniform way for sharing the identical representation space across the REC and REG. We further propose Vision-conditioned Masked Language Modeling (VMLM) and Text-Conditioned Region Prediction (TRP) to pre-train UniRef model on multi-granular corpora. The VMLM and TRP are directly related to REG and REC, respectively, but could help each other. We conduct extensive experiments on three benchmark datasets, RefCOCO, RefCOCO+ and RefCOCOg. Experimental results show that our model outperforms previous state-of-the-art methods on both REG and REC.",,2022,ACL,No,, Tiny-Attention Adapter: Contexts Are More Important Than the Number of Parameters,"Adapter-tuning is a paradigm that transfers a pretrained language model to downstream tasks by adding and tuning a small number of new parameters. Previously proposed adapter architectures are all feed-forward neural networks. In this paper, we investigate the effectiveness of using tiny-attention—i.e., attention with extremely small per-head dimensionality—as adapters. Our tiny-attention adapter learns to modify the hidden states at each position directly conditioned on the hidden states at all the other positions, which is missed by the previously proposed adapters. Moreover, we view its multiple attention heads as a mixture of experts and propose to average their weights during deployment, which further reduces its inference computation cost. On the GLUE benchmark, our tiny-attention adapter outperforms the other parameter-efficient transfer learning methods as well as full fine-tuning while only updating 0.05% of the parameters. On the FewGLUE benchmark, its performance is comparable to that of GPT-3 and PET.",,2022,ACL,No,, The Devil in Linear Transformer,"Linear transformers aim to reduce the quadratic space-time complexity of vanilla transformers. However, they usually suffer from degraded performances on various tasks and corpus. In this paper, we examine existing kernel-based linear transformers and identify two key issues that lead to such performance gaps: 1) unbounded gradients in the attention computation adversely impact the convergence of linear transformer models; 2) attention dilution which trivially distributes attention scores over long sequences while neglecting neighbouring structures. To address these issues, we first identify that the scaling of attention matrices is the devil in unbounded gradients, which turns out unnecessary in linear attention as we show theoretically and empirically. To this end, we propose a new linear attention that replaces the scaling operation with a normalization to stabilize gradients. For the issue of attention dilution, we leverage a diagonal attention to confine attention to only neighbouring tokens in early layers. Benefiting from the stable gradients and improved attention, our new linear transformer model, transNormer, demonstrates superior performance on text classification and language modeling tasks, as well as on the challenging Long-Range Arena benchmark, surpassing vanilla transformer and existing linear variants by a clear margin while being significantly more space-time efficient. The code is available at https://github.com/OpenNLPLab/Transnormer .",,2022,ACL,No,, "ParaTag: A Dataset of Paraphrase Tagging for Fine-Grained Labels, NLG Evaluation, and Data Augmentation","Paraphrase identification has been formulated as a binary classification task to decide whether two sentences hold a paraphrase relationship. Existing paraphrase datasets only annotate a binary label for each sentence pair. However, after a systematical analysis of existing paraphrase datasets, we found that the degree of paraphrase cannot be well characterized by a single binary label. And the criteria of paraphrase are not even consistent within the same dataset. We hypothesize that such issues would limit the effectiveness of paraphrase models trained on these data. To this end, we propose a novel fine-grained paraphrase annotation schema that labels the minimum spans of tokens in a sentence that don’t have the corresponding paraphrases in the other sentence. Under this setting, we frame paraphrasing as a sequence tagging task. We collect 30k sentence pairs in English with the new annotation schema, resulting in the ParaTag dataset. In addition to reporting baseline results on ParaTag using state-of-art language models, we show that ParaTag is especially useful for training an automatic scorer for language generation evaluation. Finally, we train a paraphrase generation model from ParaTag and achieve better data augmentation performance on the GLUE benchmark than other public paraphrasing datasets.",,2022,ACL,No,, Let the CAT out of the bag: Contrastive Attributed explanations for Text,"Contrastive explanations for understanding the behavior of black box models has gained a lot of attention recently as they provide potential for recourse. In this paper, we propose a method Contrastive Attributed explanations for Text (CAT) which provides contrastive explanations for natural language text data with a novel twist as we build and exploit attribute classifiers leading to more semantically meaningful explanations. To ensure that our contrastive generated text has the fewest possible edits with respect to the original text, while also being fluent and close to a human generated contrastive, we resort to a minimal perturbation approach regularized using a BERT language model and attribute classifiers trained on available attributes. We show through qualitative examples and a user study that our method not only conveys more insight because of these attributes, but also leads to better quality (contrastive) text. Quantitatively, we show that our method outperforms other state-of-the-art methods across four data sets on four benchmark metrics.",,2022,ACL,No,, Dial2vec: Self-Guided Contrastive Learning of Unsupervised Dialogue Embeddings,"In this paper, we introduce the task of learning unsupervised dialogue embeddings.Trivial approaches such as combining pre-trained word or sentence embeddings and encoding through pre-trained language models (PLMs) have been shown to be feasible for this task.However, these approaches typically ignore the conversational interactions between interlocutors, resulting in poor performance.To address this issue, we proposed a self-guided contrastive learning approach named dial2vec.Dial2vec considers a dialogue as an information exchange process.It captures the interaction patterns between interlocutors and leverages them to guide the learning of the embeddings corresponding to each interlocutor.Then the dialogue embedding is obtained by an aggregation of the embeddings from all interlocutors.To verify our approach, we establish a comprehensive benchmark consisting of six widely-used dialogue datasets.We consider three evaluation tasks: domain categorization, semantic relatedness, and dialogue retrieval.Dial2vec achieves on average 8.7, 9.0, and 13.8 points absolute improvements in terms of purity, Spearman’s correlation, and mean average precision (MAP) over the strongest baseline on the three tasks respectively.Further analysis shows that dial2vec obtains informative and discriminative embeddings for both interlocutors under the guidance of the conversational interactions and achieves the best performance when aggregating them through the interlocutor-level pooling strategy.All codes and data are publicly available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dial2vec.",,2022,ACL,Yes,Language,Methodological Tutoring Helps Students Learn Better: Improving Knowledge Distillation for BERT with Tutor Network,"Pre-trained language models have achieved remarkable successes in natural language processing tasks, coming at the cost of increasing model size. To address this issue, knowledge distillation (KD) has been widely applied to compress language models. However, typical KD approaches for language models have overlooked the difficulty of training examples, suffering from incorrect teacher prediction transfer and sub-efficient training. In this paper, we propose a novel KD framework, Tutor-KD, which improves the distillation effectiveness by controlling the difficulty of training examples during pre-training. We introduce a tutor network that generates samples that are easy for the teacher but difficult for the student, with training on a carefully designed policy gradient method. Experimental results show that Tutor-KD significantly and consistently outperforms the state-of-the-art KD methods with variously sized student models on the GLUE benchmark, demonstrating that the tutor can effectively generate training examples for the student.",,2022,ACL,No,, Efficient Pre-training of Masked Language Model via Concept-based Curriculum Masking,"Self-supervised pre-training has achieved remarkable success in extensive natural language processing tasks. Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations but comes at a substantial training cost. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a novel curriculum that evaluates the MLM difficulty of each token based on a carefully-designed linguistic difficulty criterion. Second, we construct a curriculum that masks easy words and phrases first and gradually masks related ones to the previously masked ones based on a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.",,2022,ACL,No,, TIARA: Multi-grained Retrieval for Robust Question Answering over Large Knowledge Base,"Pre-trained language models (PLMs) have shown their effectiveness in multiple scenarios. However, KBQA remains challenging, especially regarding coverage and generalization settings. This is due to two main factors: i) understanding the semantics of both questions and relevant knowledge from the KB; ii) generating executable logical forms with both semantic and syntactic correctness. In this paper, we present a new KBQA model, TIARA, which addresses those issues by applying multi-grained retrieval to help the PLM focus on the most relevant KB context, viz., entities, exemplary logical forms, and schema items. Moreover, constrained decoding is used to control the output space and reduce generation errors. Experiments over important benchmarks demonstrate the effectiveness of our approach. TIARA outperforms previous SOTA, including those using PLMs or oracle entity annotations, by at least 4.1 and 1.1 F1 points on GrailQA and WebQuestionsSP, respectively. Specifically on GrailQA, TIARA outperforms previous models in all categories, with an improvement of 4.7 F1 points in zero-shot generalization.",,2022,ACL,No,, IELM: An Open Information Extraction Benchmark for Pre-Trained Language Models,"We introduce a new open information extraction (OIE) benchmark for pre-trained language models (LM). Recent studies have demonstrated that pre-trained LMs, such as BERT and GPT, may store linguistic and relational knowledge. In particular, LMs are able to answer “fill-in-the-blank” questions when given a pre-defined relation category. Instead of focusing on pre-defined relations, we create an OIE benchmark aiming to fully examine the open relational information present in the pre-trained LMs. We accomplish this by turning pre-trained LMs into zero-shot OIE systems. Surprisingly, pre-trained LMs are able to obtain competitive performance on both standard OIE datasets (CaRB and Re-OIE2016) and two new large-scale factual OIE datasets (TAC KBP-OIE and Wikidata-OIE) that we establish via distant supervision. For instance, the zero-shot pre-trained LMs outperform the F1 score of the state-of-the-art supervised OIE methods on our factual OIE datasets without needing to use any training sets.",,2022,ACL,Yes,Language,Benchmark IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn Response Selection,"The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTualplus show that our method significantly improves the baseline of four pre-trained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.",,2022,ACL,No,, Contrastive Learning with Expectation-Maximization for Weakly Supervised Phrase Grounding,"Weakly supervised phrase grounding aims to learn an alignment between phrases in a caption and objects in a corresponding image using only caption-image annotations, i.e., without phrase-object annotations. Previous methods typically use a caption-image contrastive loss to indirectly supervise the alignment between phrases and objects, which hinders the maximum use of the intrinsic structure of the multimodal data and leads to unsatisfactory performance. In this work, we directly use the phrase-object contrastive loss in the condition that no positive annotation is available in the first place. Specifically, we propose a novel contrastive learning framework based on the expectation-maximization algorithm that adaptively refines the target prediction. Experiments on two widely used benchmarks, Flickr30K Entities and RefCOCO+, demonstrate the effectiveness of our framework. We obtain 63.05% top-1 accuracy on Flickr30K Entities and 59.51%/43.46% on RefCOCO+ TestA/TestB, outperforming the previous methods by a large margin, even surpassing a previous SoTA that uses a pre-trained vision-language model. Furthermore, we deliver a theoretical analysis of the effectiveness of our method from the perspective of the maximum likelihood estimate with latent variables.",,2022,ACL,No,, Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering,"Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent.We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.",,2022,ACL,No,, Few-shot Learning with Multilingual Generative Language Models,"Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples.",,2022,ACL,No,, RobustLR: A Diagnostic Benchmark for Evaluating Logical Robustness of Deductive Reasoners,"Transformers have been shown to be able to perform deductive reasoning on inputs containing rules and statements written in the English natural language. However, it is unclear if these models indeed follow rigorous logical reasoning to arrive at the prediction or rely on spurious correlation patterns in making decisions. A strong deductive reasoning model should consistently understand the semantics of different logical operators. To this end, we present RobustLR, a diagnostic benchmark that evaluates the robustness of language models to minimal logical edits in the inputs and different logical equivalence conditions. In our experiments with RoBERTa, T5, and GPT3 we show that the models trained on deductive reasoning datasets do not perform consistently on the RobustLR test set, thus showing that the models are not robust to our proposed logical perturbations. Further, we observe that the models find it especially hard to learn logical negation operators. Our results demonstrate the shortcomings of current language models in logical reasoning and call for the development of better inductive biases to teach the logical semantics to language models. All the datasets and code base have been made publicly available.",,2022,ACL,Yes,Language,Benchmark An Empirical Revisiting of Linguistic Knowledge Fusion in Language Understanding Tasks,"Though linguistic knowledge emerges during large-scale language model pretraining, recent work attempt to explicitly incorporate human-defined linguistic priors into task-specific fine-tuning. Infusing language models with syntactic or semantic knowledge from parsers has shown improvements on many language understanding tasks. To further investigate the effectiveness of structural linguistic priors, we conduct empirical study of replacing parsed graphs or trees with trivial ones (rarely carrying linguistic knowledge e.g., balanced tree) for tasks in the GLUE benchmark. Encoding with trivial graphs achieves competitive or even better performance in fully-supervised and few-shot settings. It reveals that the gains might not be significantly attributed to explicit linguistic priors but rather to more feature interactions brought by fusion layers. Hence we call for attention to using trivial graphs as necessary baselines to design advanced knowledge fusion methods in the future.",,2022,ACL,No,, DiscoSense: Commonsense Reasoning with Discourse Connectives,"We present DiscoSense, a benchmark for commonsense reasoning via understanding a wide variety of discourse connectives. We generate compelling distractors in DiscoSense using Conditional Adversarial Filtering, an extension of Adversarial Filtering that employs conditional generation. We show that state-of-the-art pre-trained language models struggle to perform well on DiscoSense, which makes this dataset ideal for evaluating next-generation commonsense reasoning systems.",,2022,ACL,Yes,Language,Benchmark AMAL: Meta Knowledge-Driven Few-Shot Adapter Learning,"NLP has advanced greatly together with the proliferation of Transformer-based pre-trained language models. To adapt to a downstream task, the pre-trained language models need to be fine-tuned with a sufficient supply of annotated examples. In recent years, Adapter-based fine-tuning methods have expanded the applicability of pre-trained language models by substantially lowering the required amount of annotated examples. However, existing Adapter-based methods still fail to yield meaningful results in the few-shot regime where only a few annotated examples are provided. In this study, we present a meta-learning-driven low-rank adapter pooling method, called AMAL, for leveraging pre-trained language models even with just a few data points. We evaluate our method on five text classification benchmark datasets. The results show that AMAL significantly outperforms previous few-shot learning methods and achieves a new state-of-the-art.",,2022,ACL,No,, A Generative Model for End-to-End Argument Mining with Reconstructed Positional Encoding and Constrained Pointer Mechanism,"Argument mining (AM) is a challenging task as it requires recognizing the complex argumentation structures involving multiple subtasks.To handle all subtasks of AM in an end-to-end fashion, previous works generally transform AM into a dependency parsing task.However, such methods largely require complex pre- and post-processing to realize the task transformation.In this paper, we investigate the end-to-end AM task from a novel perspective by proposing a generative framework, in which the expected outputs of AM are framed as a simple target sequence. Then, we employ a pre-trained sequence-to-sequence language model with a constrained pointer mechanism (CPM) to model the clues for all the subtasks of AM in the light of the target sequence. Furthermore, we devise a reconstructed positional encoding (RPE) to alleviate the order biases induced by the autoregressive generation paradigm.Experimental results show that our proposed framework achieves new state-of-the-art performance on two AM benchmarks.",,2022,ACL,No,, Rethinking Task-Specific Knowledge Distillation: Contextualized Corpus as Better Textbook,"Knowledge distillation has been proven effective when customizing small language models for specific tasks. Here, a corpus as ‘textbook’ plays an indispensable role, only through which the teacher can teach the student. Prevailing methods adopt a two-stage distillation paradigm: general distillation first with task-agnostic general corpus and task-specific distillation next with augmented task-specific corpus. We argue that such a paradigm may not be optimal. In general distillation, it’s extravagant to let the diverse but desultory general knowledge overwhelms the limited model capacity of the student. While in task-specific distillation, the task corpus is usually limited and narrow, preventing the student from learning enough knowledge. To mitigate the issues in the two gapped corpora, we present a better textbook for the student to learn: contextualized corpus that contextualizes task corpus with large-scale general corpus through relevance-based text retrieval. Experimental results on GLUE benchmark demonstrate that contextualized corpus is the better textbook compared with jointly using general corpus and augmented task-specific corpus. Surprisingly, it enables task-specific distillation from scratch without general distillation while maintaining comparable performance, making it more flexible to customize the student model with desired model size under various computation constraints.",,2022,ACL,No,, SLICER: Sliced Fine-Tuning for Low-Resource Cross-Lingual Transfer for Named Entity Recognition,"Large multilingual language models generally demonstrate impressive results in zero-shot cross-lingual transfer, yet often fail to successfully transfer to low-resource languages, even for token-level prediction tasks like named entity recognition (NER). In this work, we introduce a simple yet highly effective approach for improving zero-shot transfer for NER to low-resource languages. We observe that NER fine-tuning in the source language decontextualizes token representations, i.e., tokens increasingly attend to themselves. This increased reliance on token information itself, we hypothesize, triggers a type of overfitting to properties that NE tokens within the source languages share, but are generally not present in NE mentions of target languages. As a remedy, we propose a simple yet very effective sliced fine-tuning for NER (SLICER) that forces stronger token contextualization in the Transformer: we divide the transformed token representations and classifier into disjoint slices that are then independently classified during training. We evaluate SLICER on two standard benchmarks for NER that involve low-resource languages, WikiANN and MasakhaNER, and show that it (i) indeed reduces decontextualization (i.e., extent to which NE tokens attend to themselves), consequently (ii) yielding consistent transfer gains, especially prominent for low-resource target languages distant from the source language.",,2022,ACL,No,, FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue,"Task transfer, transferring knowledge contained in related tasks, holds the promise of reducing the quantity of labeled data required to fine-tune language models. Dialogue understanding encompasses many diverse tasks, yet task transfer has not been thoroughly studied in conversational AI. This work explores conversational task transfer by introducing FETA: a benchmark for FEw-sample TAsk transfer in open-domain dialogue.FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer; task transfer without domain adaptation. We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs and create a baseline for future work.We run experiments in the single- and multi-source settings and report valuable findings, e.g., most performance trends are model-specific, and span extraction and multiple-choice tasks benefit the most from task transfer.In addition to task transfer, FETA can be a valuable resource for future research into the efficiency and generalizability of pre-training datasets and model architectures, as well as for learning settings such as continual and multitask learning.",,2022,ACL,Yes,Language,Benchmark IndicXNLI: Evaluating Multilingual Inference for Indian Languages,"While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce INDICXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of INDICXNLI. By finetuning different pre-trained LMs on this INDICXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.",,2022,ACL,Yes,Language,Benchmark Instance Regularization for Discriminative Language Model Pre-training,"Discriminative pre-trained language models (PrLMs) can be generalized as denoising auto-encoders that work with two procedures, ennoising and denoising. First, an ennoising process corrupts texts with arbitrary noising functions to construct training instances. Then, a denoising language model is trained to restore the corrupted tokens. Existing studies have made progress by optimizing independent strategies of either ennoising or denosing. They treat training instances equally throughout the training process, with little attention on the individual contribution of those instances. To model explicit signals of instance contribution, this work proposes to estimate the complexity of restoring the original sentences from corrupted ones in language model pre-training. The estimations involve the corruption degree in the ennoising data construction process and the prediction confidence in the denoising counterpart. Experimental results on natural language understanding and reading comprehension benchmarks show that our approach improves pre-training efficiency, effectiveness, and robustness. Code is publicly available at https://github.com/cooelf/InstanceReg.",,2022,ACL,No,, Agent-Specific Deontic Modality Detection in Legal Language,"Legal documents are typically long and written in legalese, which makes it particularly difficult for laypeople to understand their rights and duties. While natural language understanding technologies can be valuable in supporting such understanding in the legal domain, the limited availability of datasets annotated for deontic modalities in the legal domain, due to the cost of hiring experts and privacy issues, is a bottleneck. To this end, we introduce, LEXDEMOD, a corpus of English contracts annotatedwith deontic modality expressed with respect to a contracting party or agent along with the modal triggers. We benchmark this dataset on two tasks: (i) agent-specific multi-label deontic modality classification, and (ii) agent-specific deontic modality and trigger span detection using Transformer-based (Vaswani et al., 2017) language models. Transfer learning experiments show that the linguistic diversity of modal expressions in LEXDEMOD generalizes reasonably from lease to employment andrental agreements. A small case study indicates that a model trained on LEXDEMOD can detect red flags with high recall. We believe our work offers a new research direction for deontic modality detection in the legal domain.",,2022,ACL,Yes,Language,Benchmark COLD: A Benchmark for Chinese Offensive Language Detection,"Offensive language detection is increasingly crucial for maintaining a civilized social media platform and deploying pre-trained language models. However, this task in Chinese is still under exploration due to the scarcity of reliable datasets. To this end, we propose a benchmark –COLD for Chinese offensive language analysis, including a Chinese Offensive Language Dataset –COLDATASET and a baseline detector –COLDETECTOR which is trained on the dataset. We show that the COLD benchmark contributes to Chinese offensive language detection which is challenging for existing resources. We then deploy the COLDETECTOR and conduct detailed analyses on popular Chinese pre-trained language models. We first analyze the offensiveness of existing generative models and show that these models inevitably expose varying degrees of offensive issues. Furthermore, we investigate the factors that influence the offensive generations, and we find that anti-bias contents and keywords referring to certain groups or revealing negative attitudes trigger offensive outputs easier.",,2022,ACL,Yes,Language,Benchmark Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings,"Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) language models sample-efficiently and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.",,2022,ACL,No,, MedJEx: A Medical Jargon Extraction Model with Wiki’s Hyperlink Span and Contextualized Masked Language Model Score,"This paper proposes a new natural language processing (NLP) application for identifying medical jargon terms potentially difficult for patients to comprehend from electronic health record (EHR) notes. We first present a novel and publicly available dataset with expert-annotated medical jargon terms from 18K+ EHR note sentences (MedJ). Then, we introduce a novel medical jargon extraction (MedJEx) model which has been shown to outperform existing state-of-the-art NLP models. First, MedJEx improved the overall performance when it was trained on an auxiliary Wikipedia hyperlink span dataset, where hyperlink spans provide additional Wikipedia articles to explain the spans (or terms), and then fine-tuned on the annotated MedJ data. Secondly, we found that a contextualized masked language model score was beneficial for detecting domain-specific unfamiliar jargon terms. Moreover, our results show that training on the auxiliary Wikipedia hyperlink span datasets improved six out of eight biomedical named entity recognition benchmark datasets. MedJEx is publicly available.",,2022,ACL,No,, Transforming Sequence Tagging Into A Seq2Seq Task,"Pretrained, large, generative language models (LMs) have had great success in a wide range of sequence tagging and structured prediction tasks. Casting a sequence tagging task as a Seq2Seq one requires deciding the formats of the input and output sequences. However, we lack a principled understanding of the trade-offs associated with these formats (such as the effect on model accuracy, sequence length, multilingual generalization, hallucination). In this paper, we rigorously study different formats one could use for casting input text sentences and their output labels into the input and target (i.e., output) of a Seq2Seq model. Along the way, we introduce a new format, which we show to to be both simpler and more effective. Additionally the new format demonstrates significant gains in the multilingual settings – both zero-shot transfer learning and joint training. Lastly, we find that the new format is more robust and almost completely devoid of hallucination – an issue we find common in existing formats. With well over a 1000 experiments studying 14 different formats, over 7 diverse public benchmarks – including 3 multilingual datasets spanning 7 languages – we believe our findings provide a strong empirical basis in understanding how we should tackle sequence tagging tasks.",,2022,ACL,No,, PCL: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised Sentence Embeddings,"Learning sentence embeddings in an unsupervised manner is fundamental in natural language processing. Recent common practice is to couple pre-trained language models with unsupervised contrastive learning, whose success relies on augmenting a sentence with a semantically-close positive instance to construct contrastive pairs. Nonetheless, existing approaches usually depend on a mono-augmenting strategy, which causes learning shortcuts towards the augmenting biases and thus corrupts the quality of sentence embeddings. A straightforward solution is resorting to more diverse positives from a multi-augmenting strategy, while an open question remains about how to unsupervisedly learn from the diverse positives but with uneven augmenting qualities in the text field. As one answer, we propose a novel Peer-Contrastive Learning (PCL) with diverse augmentations. PCL constructs diverse contrastive positives and negatives at the group level for unsupervised sentence embeddings. PCL performs peer-positive contrast as well as peer-network cooperation, which offers an inherent anti-bias ability and an effective way to learn from diverse augmentations. Experiments on STS benchmarks verify the effectiveness of PCL against its competitors in unsupervised sentence embeddings.",,2022,ACL,No,, LogiTorch: A PyTorch-based library for logical reasoning on natural language,"Logical reasoning on natural language is one of the most challenging tasks for deep learning models. There has been an increasing interest in developing new benchmarks to evaluate the reasoning capabilities of language models such as BERT. In parallel, new models based on transformers have emerged to achieve ever better performance on these datasets. However, there is currently no library for logical reasoning that includes such benchmarks and models. This paper introduces LogiTorch, a PyTorch-based library that includes different logical reasoning benchmarks, different models, as well as utility functions such as co-reference resolution. This makes it easy to directly use the preprocessed datasets, to run the models, or to finetune them with different hyperparameters. LogiTorch is open source and can be found on GitHub.",,2022,ACL,Yes,Language,Technical SEAL: Interactive Tool for Systematic Error Analysis and Labeling,"With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (SEAL) tool that uses a two-step approach to first identify high-error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features.SEAL is available at https://huggingface.co/spaces/nazneen/seal.",,2022,ACL,No,, Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM Performance,"Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800 GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks, while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at https://nlp.ics.uci.edu/snoopy.",,2022,ACL,No,, BMCook: A Task-agnostic Compression Toolkit for Big Models,"Recently, pre-trained language models (PLMs) have achieved great success on various NLP tasks and have shown a trend of exponential growth in model size. To alleviate the unaffordable computational costs brought by the size growth, model compression has been widely explored. Existing efforts have achieved promising results in compressing medium-sized models for specific tasks, while task-agnostic compression for big models with over billions of parameters is rarely studied. Task-agnostic compression can provide an efficient and versatile big model for both prompting and delta tuning, leading to a more general impact than task-specific compression. Hence, we introduce a task-agnostic compression toolkit BMCook for big models. In BMCook, we implement four representative compression methods, including quantization, pruning, distillation, and MoEfication. Developers can easily combine these methods towards better efficiency. To evaluate BMCook, we apply it to compress T5-3B (a PLM with 3 billion parameters). We achieve nearly 12x efficiency improvement while maintaining over 97% of the original T5-3B performance on three typical NLP benchmarks. Moreover, the final compressed model also significantly outperforms T5-base (a PLM with 220 million parameters), which has a similar computational cost. BMCook is publicly available at https://github.com/OpenBMB/BMCook.",,2022,ACL,No,, QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation,"Large Language Models (LLMs) have shown impressive results on a variety of text understanding tasks. Search queries though pose a unique challenge, given their short-length and lack of nuance or context. Complicated feature engineering efforts do not always lead to downstream improvements as their performance benefits may be offset by increased complexity of knowledge distillation. Thus, in this paper we make the following contributions: (1) We demonstrate that Retrieval Augmentation of queries provides LLMs with valuable additional context enabling improved understanding. While Retrieval Augmentation typically increases latency of LMs (thus hurting distillation efficacy), (2) we provide a practical and effective way of distilling Retrieval Augmentation LLMs. Specifically, we use a novel two-stage distillation approach that allows us to carry over the gains of retrieval augmentation, without suffering the increased compute typically associated with it. (3) We demonstrate the benefits of the proposed approach (QUILL) on a billion-scale, real-world query understanding system resulting in huge gains. Via extensive experiments, including on public benchmarks, we believe this work offers a recipe for practical use of retrieval-augmented query understanding.",,2022,ACL,No,, Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training,"Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.",,2022,ACL,No,, LEA: Meta Knowledge-Driven Self-Attentive Document Embedding for Few-Shot Text Classification,"Text classification has achieved great success with the prosperity of deep learning and pre-trained language models. However, we often encounter labeled data deficiency problems in real-world text-classification tasks. To overcome such challenging scenarios, interest in few-shot learning has increased, whereas most few-shot text classification studies suffer from a difficulty of utilizing pre-trained language models. In the study, we propose a novel learning method for learning how to attend, called LEA, through which meta-level attention aspects are derived based on our meta-learning strategy. This enables the generation of task-specific document embedding with leveraging pre-trained language models even though a few labeled data instances are given. We evaluate our proposed learning method on five benchmark datasets. The results show that the novel method robustly provides the competitive performance compared to recent few-shot learning methods for all the datasets.",,2022,ACL,No,, Knowledge-Grounded Dialogue Generation with a Unified Knowledge Representation,"Knowledge-grounded dialogue systems are challenging to build due to the lack of training data and heterogeneous knowledge sources. Existing systems perform poorly on unseen topics due to limited topics covered in the training data. In addition, it is challenging to generalize to the domains that require different types of knowledge sources. To address the above challenges, we present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation for knowledge-grounded dialogue generation tasks. We first retrieve relevant information from heterogeneous knowledge sources (e.g., wiki, dictionary, or knowledge graph); Then the retrieved knowledge is transformed into text and concatenated with dialogue history to feed into the language model for generating responses. PLUG is pre-trained on a large-scale knowledge-grounded dialogue corpus. The empirical evaluation on two benchmarks shows that PLUG generalizes well across different knowledge-grounded dialogue tasks. It achieves comparable performance with state-of-the-art methods in the fully-supervised setting and significantly outperforms other approaches in zero-shot and few-shot settings.",,2022,ACL,No,, Cooperative Self-training of Machine Reading Comprehension,"Pretrained language models have significantly improved the performance of downstream language understanding tasks, including extractive question answering, by providing high-quality contextualized word embeddings. However, training question answering models still requires large amounts of annotated data for specific domains. In this work, we propose a cooperative self-training framework, RGX, for automatically generating more non-trivial question-answer pairs to improve model performance. RGX is built upon a masked answer extraction task with an interactive learning environment containing an answer entity Recognizer, a question Generator, and an answer eXtractor. Given a passage with a masked entity, the generator generates a question around the entity, and the extractor is trained to extract the masked entity with the generated question and raw texts. The framework allows the training of question generation and answering models on any text corpora without annotation. We further leverage a self-training technique to improve the performance of both question generation and answer extraction models. Experiment results show that RGX outperforms the state-of-the-art (SOTA) pretrained language models and transfer learning approaches on standard question-answering benchmarks, and yields the new SOTA performance under given model size and transfer learning settings.",,2022,ACL,No,, Fine-tuning Pre-trained Language Models for Few-shot Intent Detection: Supervised Pre-training and Isotropization,"It is challenging to train a good intent classifier for a task-oriented dialogue system with only a few annotations. Recent studies have shown that fine-tuning pre-trained language models with a small set of labeled utterances from public benchmarks in a supervised manner is extremely helpful. However, we find that supervised pre-training yields an anisotropic feature space, which may suppress the expressive power of the semantic representations. Inspired by recent research in isotropization, we propose to improve supervised pre-training by regularizing the feature space towards isotropy. We propose two regularizers based on contrastive learning and correlation matrix respectively, and demonstrate their effectiveness through extensive experiments. Our main finding is that it is promising to regularize supervised pre-training with isotropization to further improve the performance of few-shot intent detection. The source code can be found at https://github.com/fanolabs/isoIntentBert-main.",,2022,ACL,No,, Label Anchored Contrastive Learning for Language Understanding,"Contrastive learning (CL) has achieved astonishing progress in computer vision, speech, and natural language processing fields recently with self-supervised learning. However, CL approach to the supervised setting is not fully explored, especially for the natural language understanding classification task. Intuitively, the class label itself has the intrinsic ability to perform hard positive/negative mining, which is crucial for CL. Motivated by this, we propose a novel label anchored contrastive learning approach (denoted as LaCon) for language understanding. Specifically, three contrastive objectives are devised, including a multi-head instance-centered contrastive loss (ICL), a label-centered contrastive loss (LCL), and a label embedding regularizer (LER). Our approach does not require any specialized network architecture or any extra data augmentation, thus it can be easily plugged into existing powerful pre-trained language models. Compared to the state-of-the-art baselines, LaCon obtains up to 4.1% improvement on the popular datasets of GLUE and CLUE benchmarks. Besides, LaCon also demonstrates significant advantages under the few-shot and data imbalance settings, which obtains up to 9.4% improvement on the FewGLUE and FewCLUE benchmarking tasks.",,2022,ACL,No,, Forecasting COVID-19 Caseloads Using Unsupervised Embedding Clusters of Social Media Posts,"We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these clustered embedding features against features extracted from other high-quality datasets. In a threshold-classification task, we show that they outperform all other feature types at predicting upward trend signals, a significant result for infectious disease modelling in areas where epidemiological data is unreliable. Subsequently, in a time-series forecasting task, we fully utilise the predictive power of the caseload and compare the relative strengths of using different supplementary datasets as covariate feature sets in a transformer-based time-series model.",,2022,ACL,No,, TIE: Topological Information Enhanced Structural Reading Comprehension on Web Pages,"Recently, the structural reading comprehension (SRC) task on web pages has attracted increasing research interests. Although previous SRC work has leveraged extra information such as HTML tags or XPaths, the informative topology of web pages is not effectively exploited. In this work, we propose a Topological Information Enhanced model (TIE), which transforms the token-level task into a tag-level task by introducing a two-stage process (i.e. node locating and answer refining). Based on that, TIE integrates Graph Attention Network (GAT) and Pre-trained Language Model (PLM) to leverage the topological information of both logical structures and spatial structures. Experimental results demonstrate that our model outperforms strong baselines and achieves state-of-the-art performances on the web-based SRC benchmark WebSRC at the time of writing. The code of TIE will be publicly available at https://github.com/X-LANCE/TIE.",,2022,ACL,No,, Bridging the Gap between Language Models and Cross-Lingual Sequence Labeling,"Large-scale cross-lingual pre-trained language models (xPLMs) have shown effective in cross-lingual sequence labeling tasks (xSL), such as machine reading comprehension (xMRC) by transferring knowledge from a high-resource language to low-resource languages. Despite the great success, we draw an empirical observation that there is an training objective gap between pre-training and fine-tuning stages: e.g., mask language modeling objective requires local understanding of the masked token and the span-extraction objective requires understanding and reasoning of the global input passage/paragraph and question, leading to the discrepancy between pre-training and xMRC. In this paper, we first design a pre-training task tailored for xSL named Cross-lingual Language Informative Span Masking (CLISM) to eliminate the objective gap in a self-supervised manner. Second, we present ContrAstive-Consistency Regularization (CACR), which utilizes contrastive learning to encourage the consistency between representations of input parallel sequences via unsupervised cross-lingual instance-wise training signals during pre-training. By these means, our methods not only bridge the gap between pretrain-finetune, but also enhance PLMs to better capture the alignment between different languages. Extensive experiments prove that our method achieves clearly superior results on multiple xSL benchmarks with limited pre-training data. Our methods also surpass the previous state-of-the-art methods by a large margin in few-shot data setting, where only a few hundred training examples are available.",,2022,ACL,No,, KroneckerBERT: Significant Compression of Pre-trained Language Models Through Kronecker Decomposition and Knowledge Distillation,"The development of over-parameterized pre-trained language models has made a significant contribution toward the success of natural language processing. While over-parameterization of these models is the key to their generalization power, it makes them unsuitable for deployment on low-capacity devices. We push the limits of state-of-the-art Transformer-based pre-trained language model compression using Kronecker decomposition. We present our KroneckerBERT, a compressed version of the BERT_BASE model obtained by compressing the embedding layer and the linear mappings in the multi-head attention, and the feed-forward network modules in the Transformer layers. Our KroneckerBERT is trained via a very efficient two-stage knowledge distillation scheme using far fewer data samples than state-of-the-art models like MobileBERT and TinyBERT. We evaluate the performance of KroneckerBERT on well-known NLP benchmarks. We show that our KroneckerBERT with compression factors of 7.7x and 21x outperforms state-of-the-art compression methods on the GLUE and SQuAD benchmarks. In particular, using only 13% of the teacher model parameters, it retain more than 99% of the accuracy on the majority of GLUE tasks.",,2022,ACL,No,, Data Augmentation with Dual Training for Offensive Span Detection,"Recognizing offensive text is an important requirement for every content management system, especially for social networks. While the majority of the prior work formulate this problem as text classification, i.e., if a text excerpt is offensive or not, in this work we propose a novel model for offensive span detection (OSD), whose goal is to identify the spans responsible for the offensive tone of the text. One of the challenges to train a model for this novel setting is the lack of enough training data. To address this limitation, in this work we propose a novel method in which the large-scale pre-trained language model GPT-2 is employed to generate synthetic training data for OSD. In particular, we propose to train the GPT-2 model in a dual-training setting using the REINFORCE algorithm to generate in-domain, natural and diverse training samples. Extensive experiments on the benchmark dataset for OSD reveal the effectiveness of the proposed method.",,2022,ACL,No,, MuCGEC: a Multi-Reference Multi-Source Evaluation Dataset for Chinese Grammatical Error Correction,"This paper presents MuCGEC, a multi-reference multi-source evaluation dataset for Chinese Grammatical Error Correction (CGEC), consisting of 7,063 sentences collected from three Chinese-as-a-Second-Language (CSL) learner sources. Each sentence is corrected by three annotators, and their corrections are carefully reviewed by a senior annotator, resulting in 2.3 references per sentence. We conduct experiments with two mainstream CGEC models, i.e., the sequence-to-sequence model and the sequence-to-edit model, both enhanced with large pretrained language models, achieving competitive benchmark performance on previous and our datasets. We also discuss CGEC evaluation methodologies, including the effect of multiple references and using a char-based metric. Our annotation guidelines, data, and code are available at https://github.com/HillZhang1999/MuCGEC.",,2022,ACL,Yes,Language,Benchmark Enhance Incomplete Utterance Restoration by Joint Learning Token Extraction and Text Generation,"This paper introduces a model for incomplete utterance restoration (IUR) called JET (Joint learning token Extraction and Text generation). Different from prior studies that only work on extraction or abstraction datasets, we design a simple but effective model, working for both scenarios of IUR. Our design simulates the nature of IUR, where omitted tokens from the context contribute to restoration. From this, we construct a Picker that identifies the omitted tokens. To support the picker, we design two label creation methods (soft and hard labels), which can work in cases of no annotation data for the omitted tokens. The restoration is done by using a Generator with the help of the Picker on joint learning. Promising results on four benchmark datasets in extraction and abstraction scenarios show that our model is better than the pretrained T5 and non-generative language model methods in both rich and limited training data settings.",,2022,ACL,No,, Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in Natural Language Understanding,"In the age of large transformer language models, linguistic evaluation play an important role in diagnosing models’ abilities and limitations on natural language understanding. However, current evaluation methods show some significant shortcomings. In particular, they do not provide insight into how well a language model captures distinct linguistic skills essential for language understanding and reasoning. Thus they fail to effectively map out the aspects of language understanding that remain challenging to existing models, which makes it hard to discover potential limitations in models and datasets. In this paper, we introduce Curriculum as a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena. Curriculum contains a collection of datasets that covers 36 types of major linguistic phenomena and an evaluation procedure for diagnosing how well a language model captures reasoning skills for distinct types of linguistic phenomena. We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing model behavior and verifying model learning quality. In addition, our experiments provide insight into the limitation of existing benchmark datasets and state-of-the-art models that may encourage future research on re-designing datasets, model architectures, and learning objectives.",,2022,ACL,Yes,Language,Benchmark Towards Efficient NLP: A Standard Evaluation and A Strong Baseline,"Supersized pre-trained language models have pushed the accuracy of various natural language processing (NLP) tasks to a new state-of-the-art (SOTA). Rather than pursuing the reachless SOTA accuracy, more and more researchers start paying attention to model efficiency and usability. Different from accuracy, the metric for efficiency varies across different studies, making them hard to be fairly compared. To that end, this work presents ELUE (Efficient Language Understanding Evaluation), a standard evaluation, and a public leaderboard for efficient NLP models. ELUE is dedicated to depicting the Pareto Frontier for various language understanding tasks, such that it can tell whether and how much a method achieves Pareto improvement. Along with the benchmark, we also release a strong baseline, ElasticBERT, which allows BERT to exit at any layer in both static and dynamic ways. We demonstrate the ElasticBERT, despite its simplicity, outperforms or performs on par with SOTA compressed and early exiting models. With ElasticBERT, the proposed ELUE has a strong Pareto Frontier and makes a better evaluation for efficient NLP models.",,2022,ACL,Yes,Language,Benchmark Benchmarking Intersectional Biases in NLP,"There has been a recent wave of work assessing the fairness of machine learning models in general, and more specifically, on natural language processing (NLP) models built using machine learning techniques. While much work has highlighted biases embedded in state-of-the-art language models, and more recent efforts have focused on how to debias, research assessing the fairness and performance of biased/debiased models on downstream prediction tasks has been limited. Moreover, most prior work has emphasized bias along a single dimension such as gender or race. In this work, we benchmark multiple NLP models with regards to their fairness and predictive performance across a variety of NLP tasks. In particular, we assess intersectional bias - fairness across multiple demographic dimensions. The results show that while current debiasing strategies fare well in terms of the fairness-accuracy trade-off (generally preserving predictive power in debiased models), they are unable to effectively alleviate bias in downstream tasks. Furthermore, this bias is often amplified across dimensions (i.e., intersections). We conclude by highlighting possible causes and making recommendations for future NLP debiasing research.",,2022,ACL,Yes,Language,Benchmark Multi2WOZ: A Robust Multilingual Dataset and Conversational Pretraining for Task-Oriented Dialog,"Research on (multi-domain) task-oriented dialog (TOD) has predominantly focused on the English language, primarily due to the shortage of robust TOD datasets in other languages, preventing the systematic investigation of cross-lingual transfer for this crucial NLP application area. In this work, we introduce Multi2WOZ, a new multilingual multi-domain TOD dataset, derived from the well-established English dataset MultiWOZ, that spans four typologically diverse languages: Chinese, German, Arabic, and Russian. In contrast to concurrent efforts, Multi2WOZ contains gold-standard dialogs in target languages that are directly comparable with development and test portions of the English dataset, enabling reliable and comparative estimates of cross-lingual transfer performance for TOD. We then introduce a new framework for multilingual conversational specialization of pretrained language models (PrLMs) that aims to facilitate cross-lingual transfer for arbitrary downstream TOD tasks. Using such conversational PrLMs specialized for concrete target languages, we systematically benchmark a number of zero-shot and few-shot cross-lingual transfer approaches on two standard TOD tasks: Dialog State Tracking and Response Retrieval. Our experiments show that, in most setups, the best performance entails the combination of (i) conversational specialization in the target language and (ii) few-shot transfer for the concrete TOD task. Most importantly, we show that our conversational specialization in the target language allows for an exceptionally sample-efficient few-shot transfer for downstream TOD tasks.",,2022,ACL,Yes,Language,Methodological Improving negation detection with negation-focused pre-training,"Negation is a common linguistic feature that is crucial in many language understanding tasks, yet it remains a hard problem due to diversity in its expression in different types of text. Recent works show that state-of-the-art NLP models underperform on samples containing negation in various tasks, and that negation detection models do not transfer well across domains. We propose a new negation-focused pre-training strategy, involving targeted data augmentation and negation masking, to better incorporate negation information into language models. Extensive experiments on common benchmarks show that our proposed approach improves negation detection performance and generalizability over the strong baseline NegBERT (Khandelwal and Sawant, 2020).",,2022,ACL,No,, Causal Distillation for Language Models,"Distillation efforts have led to language models that are more compact and efficient without serious drops in performance. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal dynamics of the teacher through a distillation interchange intervention training objective (DIITO). DIITO pushes the student model to become a causal abstraction of the teacher model – a faithful model with simpler causal structure. DIITO is fully differentiable, easily implemented, and combines flexibly with other objectives. Compared against standard distillation with the same setting, DIITO results in lower perplexity on the WikiText-103M corpus (masked language modeling) and marked improvements on the GLUE benchmark (natural language understanding), SQuAD (question answering), and CoNLL-2003 (named entity recognition).",,2022,ACL,No,, "Show, Don’t Tell: Demonstrations Outperform Descriptions for Schema-Guided Task-Oriented Dialogue","Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don’t Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.",,2022,ACL,No,, Quantifying Adaptability in Pre-trained Language Models with 500 Tasks,"When a neural language model (LM) is adapted to perform a new task, what aspects of the task predict the eventual performance of the model? In NLP, systematic features of LM generalization to individual examples are well characterized, but systematic aspects of LM adaptability to new tasks are not nearly as well understood. We present a large-scale empirical study of the features and limits of LM adaptability using a new benchmark, TaskBench500, built from 500 procedurally generated sequence modeling tasks. These tasks combine core aspects of language processing, including lexical semantics, sequence processing, memorization, logical reasoning, and world knowledge. Using TaskBench500, we evaluate three facets of adaptability, finding that: (1) adaptation procedures differ dramatically in their ability to memorize small datasets; (2) within a subset of task types, adaptation procedures exhibit compositional adaptability to complex tasks; and (3) failure to match training label distributions is explained by mismatches in the intrinsic difficulty of predicting individual labels. Our experiments show that adaptability to new tasks, like generalization to new examples, can be systematically described and understood, and we conclude with a discussion of additional aspects of adaptability that could be studied using the new benchmark.",,2022,ACL,Yes,Language,Benchmark Generalized Quantifiers as a Source of Error in Multilingual NLU Benchmarks,"Logical approaches to representing language have developed and evaluated computational models of quantifier words since the 19th century, but today’s NLU models still struggle to capture their semantics. We rely on Generalized Quantifier Theory for language-independent representations of the semantics of quantifier words, to quantify their contribution to the errors of NLU models. We find that quantifiers are pervasive in NLU benchmarks, and their occurrence at test time is associated with performance drops. Multilingual models also exhibit unsatisfying quantifier reasoning abilities, but not necessarily worse for non-English languages. To facilitate directly-targeted probing, we present an adversarial generalized quantifier NLI task (GQNLI) and show that pre-trained language models have a clear lack of robustness in generalized quantifier reasoning.",,2022,ACL,Yes,Language,Technical Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification,"Prompt-based learning (i.e., prompting) is an emerging paradigm for exploiting knowledge learned by a pretrained language model. In this paper, we propose Automatic Multi-Label Prompting (AMuLaP), a simple yet effective method to automatically select label mappings for few-shot text classification with prompting. Our method exploits one-to-many label mappings and a statistics-based algorithm to select label mappings given a prompt template. Our experiments demonstrate that AMuLaP achieves competitive performance on the GLUE benchmark without human effort or external resources.",,2022,ACL,No,, Few-shot Subgoal Planning with Language Models,"Pre-trained language models have shown successful progress in many text understanding benchmarks. This work explores the capability of these models to predict actionable plans in real-world environments. Given a text instruction, we show that language priors encoded in pre-trained models allow us to infer fine-grained subgoal sequences. In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences from few training sequences without any fine-tuning. We further propose a simple strategy to re-rank language model predictions based on interaction and feedback from the environment. Combined with pre-trained navigation and visual reasoning components, our approach demonstrates competitive performance on subgoal prediction and task completion in the ALFRED benchmark compared to prior methods that assume more subgoal supervision.",,2022,ACL,No,, LaMemo: Language Modeling with Look-Ahead Memory,"Although Transformers with fully connected self-attentions are powerful to model long-term dependencies, they are struggling to scale to long texts with thousands of words in language modeling. One of the solutions is to equip the model with a recurrence memory. However, existing approaches directly reuse hidden states from the previous segment that encodes contexts in a uni-directional way. As a result, this prohibits the memory to dynamically interact with the current context that provides up-to-date information for token prediction. To remedy this issue, we propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens and interpolating with the old memory states to maintain long-term information in the history. LaMemo embraces bi-directional attention and segment recurrence with an additional computation overhead only linearly proportional to the memory length. Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory mechanisms.",,2022,ACL,No,, Learning to Win Lottery Tickets in BERT Transfer via Task-agnostic Mask Training,"Recent studies on the lottery ticket hypothesis (LTH) show that pre-trained language models (PLMs) like BERT contain matching subnetworks that have similar transfer learning performance as the original PLM. These subnetworks are found using magnitude-based pruning. In this paper, we find that the BERT subnetworks have even more potential than these studies have shown. Firstly, we discover that the success of magnitude pruning can be attributed to the preserved pre-training performance, which correlates with the downstream transferability. Inspired by this, we propose to directly optimize the subnetwork structure towards the pre-training objectives, which can better preserve the pre-training performance. Specifically, we train binary masks over model weights on the pre-training tasks, with the aim of preserving the universal transferability of the subnetwork, which is agnostic to any specific downstream tasks. We then fine-tune the subnetworks on the GLUE benchmark and the SQuAD dataset. The results show that, compared with magnitude pruning, mask training can effectively find BERT subnetworks with improved overall performance on downstream tasks. Moreover, our method is also more efficient in searching subnetworks and more advantageous when fine-tuning within a certain range of data scarcity. Our code is available at https://github.com/llyx97/TAMT.",,2022,ACL,No,, Aligning to Social Norms and Values in Interactive Narratives,"We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games—environments wherein an agent perceives and interacts with a world through natural language. Such interactive agents are often trained via reinforcement learning to optimize task performance, even when such rewards may lead to agent behaviors that violate societal norms—causing harm either to the agent itself or other entities in the environment. Social value alignment refers to creating agents whose behaviors conform to expected moral and social norms for a given context and group of people—in our case, it means agents that behave in a manner that is less harmful and more beneficial for themselves and others. We build on the Jiminy Cricket benchmark (Hendrycks et al. 2021), a set of 25 annotated interactive narratives containing thousands of morally salient scenarios covering everything from theft and bodily harm to altruism. We introduce the GALAD (Game-value ALignment through Action Distillation) agent that uses the social commonsense knowledge present in specially trained language models to contextually restrict its action space to only those actions that are aligned with socially beneficial values. An experimental study shows that the GALAD agent makes decisions efficiently enough to improve state-of-the-art task performance by 4% while reducing the frequency of socially harmful behaviors by 25% compared to strong contemporary value alignment approaches.",,2022,ACL,No,, Natural Language to Code Generation in Interactive Data Science Notebooks,"Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1078 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions. Arcade is publicly available at https://github.com/google-research/arcade-nl2code/.",,2023,ACL,Yes,Language,Benchmark WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning,"A crucial issue of current text generation models is that they often uncontrollably generate text that is factually inconsistent with inputs. Due to lack of annotated data, existing factual consistency metrics usually train evaluation models on synthetic texts or directly transfer from other related tasks, such as question answering (QA) and natural language inference (NLI).Bias in synthetic text or upstream tasks makes them perform poorly on text actually generated by language models, especially for general evaluation for various tasks. To alleviate this problem, we propose a weakly supervised framework named WeCheck that is directly trained on actual generated samples from language models with weakly annotated labels.WeCheck first utilizes a generative model to infer the factual labels of generated samples by aggregating weak labels from multiple resources.Next, we train a simple noise-aware classification model as the target metric using the inferred weakly supervised information.Comprehensive experiments on various tasks demonstrate the strong performance of WeCheck, achieving an average absolute improvement of 3.3% on the TRUE benchmark over 11B state-of-the-art methods using only 435M parameters.Furthermore, it is up to 30 times faster than previous evaluation methods, greatly improving the accuracy and efficiency of factual consistency evaluation.",,2023,ACL,No,, ALERT: Adapt Language Models to Reasoning Tasks,"Recent advancements in large language models have enabled them to perform well on complex tasks that require step-by-step reasoning with few-shot learning. However, it is unclear whether these models are applying reasoning skills they have learnt during pre-training , or if they are simply memorizing their training corpus at finer granularity and have learnt to better understand their context. To address this question, we introduce {pasted macro ‘OUR’}model, a benchmark and suite of analyses for evaluating reasoning skills of language models. {pasted macro ‘OUR’}model enables comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. Our benchmark provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. By using {pasted macro ‘OUR’}model we further investigate the role of finetuning. Our extensive empirical analysis shows that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during the finetuning stage compared to pretraining stage. However, we also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.",,2023,ACL,Yes,Language,Benchmark Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe,"Privacy concerns have attracted increasing attention in data-driven products due to the tendency of machine learning models to memorize sensitive training data. Generating synthetic versions of such data with a formal privacy guarantee, such as differential privacy (DP), provides a promising path to mitigating these privacy concerns, but previous approaches in this direction have typically failed to produce synthetic data of high quality. In this work, we show that a simple and practical recipe in the text domain is effective: simply fine-tuning a pretrained generative language model with DP enables the model to generate useful synthetic text with strong privacy protection. Through extensive empirical analyses on both benchmark and private customer data, we demonstrate that our method produces synthetic text that is competitive in terms of utility with its non-private counterpart, meanwhile providing strong protection against potential privacy leakages.",,2023,ACL,No,, Elaboration-Generating Commonsense Question Answering at Scale,"In question answering requiring common sense, language models (e.g., GPT-3) have been used to generate text expressing background knowledge that helps improve performance. Yet the cost of working with such models is very high; in this work, we finetune smaller language models to generate useful intermediate context, referred to here as elaborations. Our framework alternates between updating two language models—an elaboration generator and an answer predictor—allowing each to influence the other. Using less than 0.5% of the parameters of GPT-3, our model outperforms alternatives with similar sizes and closes the gap with GPT-3 on four commonsense question answering benchmarks. Human evaluations show that the quality of the generated elaborations is high.",,2023,ACL,No,, White-Box Multi-Objective Adversarial Attack on Dialogue Generation,"Pre-trained transformers are popular in state-of-the-art dialogue generation (DG) systems. Such language models are, however, vulnerable to various adversarial samples as studied in traditional tasks such as text classification, which inspires our curiosity about their robustness in DG systems. One main challenge of attacking DG models is that perturbations on the current sentence can hardly degrade the response accuracy because the unchanged chat histories are also considered for decision-making. Instead of merely pursuing pitfalls of performance metrics such as BLEU, ROUGE, we observe that crafting adversarial samples to force longer generation outputs benefits attack effectiveness—the generated responses are typically irrelevant, lengthy, and repetitive. To this end, we propose a white-box multi-objective attack method called DGSlow. Specifically, DGSlow balances two objectives—generation accuracy and length, via a gradient-based multi-objective optimizer and applies an adaptive searching mechanism to iteratively craft adversarial samples with only a few modifications. Comprehensive experiments on four benchmark datasets demonstrate that DGSlow could significantly degrade state-of-the-art DG models with a higher success rate than traditional accuracy-based methods. Besides, our crafted sentences also exhibit strong transferability in attacking other models.",,2023,ACL,No,, Do language models have coherent mental models of everyday things?,"When people think of everyday things like an egg, they typically have a mental image associated with it. This allows them to correctly judge, for example, that “the yolk surrounds the shell” is a false statement. Do language models similarly have a coherent picture of such everyday things? To investigate this, we propose a benchmark dataset consisting of 100 everyday things, their parts, and the relationships between these parts, expressed as 11,720 “X relation Y?” true/false questions. Using these questions as probes, we observe that state-of-the-art pre-trained language models (LMs) like GPT-3 and Macaw have fragments of knowledge about these everyday things, but do not have fully coherent “parts mental models” (54-59% accurate, 19-43% conditional constraint violation). We propose an extension where we add a constraint satisfaction layer on top of the LM’s raw predictions to apply commonsense constraints. As well as removing inconsistencies, we find that this also significantly improves accuracy (by 16-20%), suggesting how the incoherence of the LM’s pictures of everyday things can be significantly reduced.",,2023,ACL,Yes,Language,Benchmark In-Context Analogical Reasoning with Pre-Trained Language Models,"Analogical reasoning is a fundamental capacity of human cognition that allows us to reason abstractly about novel situations by relating them to past experiences. While it is thought to be essential for robust reasoning in AI systems, conventional approaches require significant training and/or hard-coding of domain knowledge to be applied to benchmark tasks. Inspired by cognitive science research that has found connections between human language and analogy-making, we explore the use of intuitive language-based abstractions to support analogy in AI systems. Specifically, we apply large pre-trained language models (PLMs) to visual Raven’s Progressive Matrices (RPM), a common relational reasoning test. By simply encoding the perceptual features of the problem into language form, we find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods. We explore different encodings that vary the level of abstraction over task features, finding that higher-level abstractions further strengthen PLMs’ analogical reasoning. Our detailed analysis reveals insights on the role of model complexity, in-context learning, and prior knowledge in solving RPM tasks.",,2023,ACL,No,, Schema-Guided User Satisfaction Modeling for Task-Oriented Dialogues,"User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user’s task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to encode the user’s task goals. Existing studies on USM neglect explicitly modeling the user’s task goals fulfillment using the task schema. In this paper, we propose SG-USM, a novel schema-guided user satisfaction modeling framework. It explicitly models the degree to which the user’s preferences regarding the task attributes are fulfilled by the system for predicting the user’s satisfaction level. SG-USM employs a pre-trained language model for encoding dialogue context and task attributes. Further, it employs a fulfillment representation layer for learning how many task attributes have been fulfilled in the dialogue, an importance predictor component for calculating the importance of task attributes. Finally, it predicts the user satisfaction based on task attribute fulfillment and task attribute importance. Experimental results on benchmark datasets (i.e. MWOZ, SGD, ReDial, and JDDC) show that SG-USM consistently outperforms competitive existing methods. Our extensive analysis demonstrates that SG-USM can improve the interpretability of user satisfaction modeling, has good scalability as it can effectively deal with unseen tasks and can also effectively work in low-resource settings by leveraging unlabeled data. Code is available at https://github.com/amzn/user-satisfaction-modeling.",,2023,ACL,No,, Training-free Neural Architecture Search for RNNs and Transformers,"Neural architecture search (NAS) has allowed for the automatic creation of new and effective neural network architectures, offering an alternative to the laborious process of manually designing complex architectures. However, traditional NAS algorithms are slow and require immense amounts of computing power. Recent research has investigated training-free NAS metrics for image classification architectures, drastically speeding up search algorithms. In this paper, we investigate training-free NAS metrics for recurrent neural network (RNN) and BERT-based transformer architectures, targeted towards language modeling tasks. First, we develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture and significantly outperforms existing training-free metrics. We experimentally evaluate the effectiveness of the hidden covariance metric on the NAS-Bench-NLP benchmark. Second, we find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search. Instead, a simple qualitative analysis can effectively shrink the search space to the best performing architectures. This conclusion is based on our investigation of existing training-free metrics and new metrics developed from recent transformer pruning literature, evaluated on our own benchmark of trained BERT architectures. Ultimately, our analysis shows that the architecture search space and the training-free metric must be developed together in order to achieve effective results. Our source code is available at https://github.com/aaronserianni/training-free-nas.",,2023,ACL,No,, Bi-Phone: Modeling Inter Language Phonetic Influences in Text,"A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1).We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2.These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web.We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the SuperGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text.",,2023,ACL,Yes,Language,Benchmark RetroMAE-2: Duplex Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models,"To better support information retrieval tasks such as web search and open-domain question answering, growing effort is made to develop retrieval-oriented language models, e.g., RetroMAE and many others. Most of the existing works focus on improving the semantic representation capability for the contextualized embedding of the [CLS] token. However, recent study shows that the ordinary tokens besides [CLS] may provide extra information, which help to produce a better representation effect. As such, it’s necessary to extend the current methods where all contextualized embeddings can be jointly pre-trained for the retrieval tasks. In this work, we propose a novel pre-training method called Duplex Masked Auto-Encoder, a.k.a. DupMAE. It is designed to improve the quality of semantic representation where all contextualized embeddings of the pre-trained model can be leveraged. It takes advantage of two complementary auto-encoding tasks: one reconstructs the input sentence on top of the [CLS] embedding; the other one predicts the bag-of-words feature of the input sentence based on the ordinary tokens’ embeddings. The two tasks are jointly conducted to train a unified encoder, where the whole contextualized embeddings are aggregated in a compact way to produce the final semantic representation. DupMAE is simple but empirically competitive: it substantially improves the pre-trained model’s representation capability and transferability, where superior retrieval performances can be achieved on popular benchmarks, like MS MARCO and BEIR. We make our code publicly available at https://github.com/staoxiao/RetroMAE.",,2023,ACL,No,, Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step,"Chain-of-thought prompting (e.g., “Let’s think step-by-ste”) primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M—1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.",,2023,ACL,No,, DiffusEmp: A Diffusion Model-Based Framework with Multi-Grained Control for Empathetic Response Generation,"Empathy is a crucial factor in open-domain conversations, which naturally shows one’s caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.",,2023,ACL,No,, Dynamic and Efficient Inference for Text Generation via BERT Family,"Despite the excellent performance of Pre-trained Language Models on many text generation tasks, they suffer from inefficient inference on computation and memory due to their large-scale parameters and the universal autoregressive decoding paradigm. In this work, we propose a novel fine-tuning method DEER, which can make a single pre-trained model support Dynamic and Efficient infERence and achieve an adaptive trade-off between model performance and latency. In particular, our critical insight is to jointly utilize the non-autoregressive (NAR) generation and dynamic parameter pruning techniques, which can flexibly control the decoding iteration steps and model sizes according to memory and latency limitations. Besides, we also explore the effectiveness of the pre-trained MLMs (i.e., the BERT family) for text generation tasks since their bidirectional attention nature is more suitable for the NAR training objective. Extensive experiments on both monolingual and multilingual pre-trained MLMs demonstrate the effectiveness of our proposed DEER method by consistently achieving (1) higher BLEU scores than the strong autoregressive Transformer model on three neural machine translation tasks with 3 \to 12 times speedup, (2) competitive performance (but with much faster inference speed) compared with the BART model on four GLGE benchmark tasks. Our code will be publicly available at GitHub https://github.com/dropreg/DEER.",,2023,ACL,No,, A Survey on Zero Pronoun Translation,"Zero pronouns (ZPs) are frequently omitted in pro-drop languages (e.g. Chinese, Hungarian, and Hindi), but should be recalled in non-pro-drop languages (e.g. English). This phenomenon has been studied extensively in machine translation (MT), as it poses a significant challenge for MT systems due to the difficulty in determining the correct antecedent for the pronoun. This survey paper highlights the major works that have been undertaken in zero pronoun translation (ZPT) after the neural revolution so that researchers can recognize the current state and future directions of this field. We provide an organization of the literature based on evolution, dataset, method, and evaluation. In addition, we compare and analyze competing models and evaluation metrics on different benchmarks. We uncover a number of insightful findings such as: 1) ZPT is in line with the development trend of large language model; 2) data limitation causes learning bias in languages and domains; 3) performance improvements are often reported on single benchmarks, but advanced methods are still far from real-world use; 4) general-purpose metrics are not reliable on nuances and complexities of ZPT, emphasizing the necessity of targeted metrics; 5) apart from commonly-cited errors, ZPs will cause risks of gender bias.",,2023,ACL,No,, Dual-Alignment Pre-training for Cross-lingual Sentence Embedding,"Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at https://github.com/ChillingDream/DAP.",,2023,ACL,No,, "From the One, Judge of the Whole: Typed Entailment Graph Construction with Predicate Generation","Entailment Graphs (EGs) have been constructed based on extracted corpora as a strong and explainable form to indicate context-independent entailment relation in natural languages. However, EGs built by previous methods often suffer from the severe sparsity issues, due to limited corpora available and the long-tail phenomenon of predicate distributions. In this paper, we propose a multi-stage method, Typed Predicate-Entailment Graph Generator (TP-EGG), to tackle this problem. Given several seed predicates, TP-EGG builds the graphs by generating new predicates and detecting entailment relations among them. The generative nature of TP-EGG helps us leverage the recent advances from large pretrained language models (PLMs), while avoiding the reliance on carefully prepared corpora. Experiments on benchmark datasets show that TP-EGG can generate high-quality and scale-controllable entailment graphs, achieving significant in-domain improvement over state-of-the-art EGs and boosting the performance of down-stream inference tasks.",,2023,ACL,No,, MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling,"We present MatSci-NLP, a natural language benchmark for evaluating the performance of natural language processing (NLP) models on materials science text. We construct the benchmark from publicly available materials science text data to encompass seven different NLP tasks, including conventional NLP tasks like named entity recognition and relation classification, as well as NLP tasks specific to materials science, such as synthesis action retrieval which relates to creating synthesis procedures for materials. We study various BERT-based models pretrained on different scientific text corpora on MatSci-NLP to understand the impact of pretraining strategies on understanding materials science text. Given the scarcity of high-quality annotated data in the materials science domain, we perform our fine-tuning experiments with limited training data to encourage the generalize across MatSci-NLP tasks. Our experiments in this low-resource training setting show that language models pretrained on scientific text outperform BERT trained on general text. MatBERT, a model pretrained specifically on materials science journals, generally performs best for most tasks. Moreover, we propose a unified text-to-schema for multitask learning on {pasted macro ‘BENCHMARK’} and compare its performance with traditional fine-tuning methods. In our analysis of different training methods, we find that our proposed text-to-schema methods inspired by question-answering consistently outperform single and multitask NLP fine-tuning methods. The code and datasets are publicly available https://github.com/BangLab-UdeM-Mila/NLP4MatSci-ACL23.",,2023,ACL,Yes,Language,Benchmark ParaLS: Lexical Substitution via Pretrained Paraphraser,"Lexical substitution (LS) aims at finding appropriate substitutes for a target word in a sentence. Recently, LS methods based on pretrained language models have made remarkable progress, generating potential substitutes for a target word through analysis of its contextual surroundings. However, these methods tend to overlook the preservation of the sentence’s meaning when generating the substitutes. This study explores how to generate the substitute candidates from a paraphraser, as the generated paraphrases from a paraphraser contain variations in word choice and preserve the sentence’s meaning. Since we cannot directly generate the substitutes via commonly used decoding strategies, we propose two simple decoding strategies that focus on the variations of the target word during decoding. Experimental results show that our methods outperform state-of-the-art LS methods based on pre-trained language models on three benchmarks.",,2023,ACL,No,, Faithful Question Answering with Monte-Carlo Planning,"Although large language models demonstrate remarkable question-answering performances, revealing the intermediate reasoning steps that the models faithfully follow remains challenging. In this paper, we propose FAME (FAithful question answering with MontE-carlo planning) to answer questions based on faithful reasoning steps. The reasoning steps are organized as a structured entailment tree, which shows how premises are used to produce intermediate conclusions that can prove the correctness of the answer. We formulate the task as a discrete decision-making problem and solve it through the interaction of a reasoning environment and a controller. The environment is modular and contains several basic task-oriented modules, while the controller proposes actions to assemble the modules. Since the search space could be large, we introduce a Monte-Carlo planning algorithm to do a look-ahead search and select actions that will eventually lead to high-quality steps. FAME achieves advanced performance on the standard benchmark. It can produce valid and faithful reasoning steps compared with large language models with a much smaller model size.",,2023,ACL,No,, Social-Group-Agnostic Bias Mitigation via the Stereotype Content Model,"Existing bias mitigation methods require social-group-specific word pairs (e.g., “man” – “woman”) for each social attribute (e.g., gender), restricting the bias mitigation to only one specified social attribute. Further, this constraint renders such methods impractical and costly for mitigating bias in understudied and/or unmarked social groups. We propose that the Stereotype Content Model (SCM) — a theoretical framework developed in social psychology for understanding the content of stereotyping — can help debiasing efforts to become social-group-agnostic by capturing the underlying connection between bias and stereotypes. SCM proposes that the content of stereotypes map to two psychological dimensions of warmth and competence. Using only pairs of terms for these two dimensions (e.g., warmth: “genuine” – “fake”; competence: “smart” – “stupid”), we perform debiasing with established methods on both pre-trained word embeddings and large language models. We demonstrate that our social-group-agnostic, SCM-based debiasing technique performs comparably to group-specific debiasing on multiple bias benchmarks, but has theoretical and practical advantages over existing approaches.",,2023,ACL,No,, Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation,"Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators’ prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.",,2023,ACL,Yes,Language,Benchmark Parameter-Efficient Fine-Tuning without Introducing New Latency,"Parameter-efficient fine-tuning (PEFT) of pre-trained language models has recently demonstrated remarkable achievements, effectively matching the performance of full fine-tuning while utilizing significantly fewer trainable parameters, and consequently addressing the storage and communication constraints. Nonetheless, various PEFT methods are limited by their inherent characteristics. In the case of sparse fine-tuning, which involves modifying only a small subset of the existing parameters, the selection of fine-tuned parameters is task- and domain-specific, making it unsuitable for federated learning. On the other hand, PEFT methods with adding new parameters typically introduce additional inference latency. In this paper, we demonstrate the feasibility of generating a sparse mask in a task-agnostic manner, wherein all downstream tasks share a common mask. Our approach, which relies solely on the magnitude information of pre-trained parameters, surpasses existing methodologies by a significant margin when evaluated on the GLUE benchmark. Additionally, we introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation, thereby achieving identical inference speed to that of full fine-tuning. Through extensive experiments, our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.",,2023,ACL,No,, MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction,"Generative methods greatly promote aspect-based sentiment analysis via generating a sequence of sentiment elements in a specified format. However, existing studies usually predict sentiment elements in a fixed order, which ignores the effect of the interdependence of the elements in a sentiment tuple and the diversity of language expression on the results. In this work, we propose Multi-view Prompting (MVP) that aggregates sentiment elements generated in different orders, leveraging the intuition of human-like problem-solving processes from different views. Specifically, MVP introduces element order prompts to guide the language model to generate multiple sentiment tuples, each with a different element order, and then selects the most reasonable tuples by voting. MVP can naturally model multi-view and multi-task as permutations and combinations of elements, respectively, outperforming previous task-specific designed methods on multiple ABSA tasks with a single model. Extensive experiments show that MVP significantly advances the state-of-the-art performance on 10 datasets of 4 benchmark tasks, and performs quite effectively in low-resource settings. Detailed evaluation verified the effectiveness, flexibility, and cross-task transferability of MVP.",,2023,ACL,No,, "On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning","Generating a Chain of Thought (CoT) has been shown to consistently improve large language model (LLM) performance on a wide range of NLP tasks. However, prior work has mainly focused on logical reasoning tasks (e.g. arithmetic, commonsense QA); it remains unclear whether improvements hold for more diverse types of reasoning, especially in socially situated contexts. Concretely, we perform a controlled evaluation of zero-shot CoT across two socially sensitive domains: harmful questions and stereotype benchmarks. We find that zero-shot CoT reasoning in sensitive domains significantly increases a model’s likelihood to produce harmful or undesirable output, with trends holding across different prompt formats and model variants. Furthermore, we show that harmful CoTs increase with model size, but decrease with improved instruction following. Our work suggests that zero-shot CoT should be used with caution on socially important tasks, especially when marginalized groups or sensitive topics are involved.",,2023,ACL,No,, Exploring the Capacity of Pretrained Language Models for Reasoning about Actions and Change,"Reasoning about actions and change (RAC) is essential to understand and interact with the ever-changing environment. Previous AI research has shown the importance of fundamental and indispensable knowledge of actions, i.e., preconditions and effects. However, traditional methods rely on logical formalization which hinders practical applications. With recent transformer-based language models (LMs), reasoning over text is desirable and seemingly feasible, leading to the question of whether LMs can effectively and efficiently learn to solve RAC problems. We propose four essential RAC tasks as a comprehensive textual benchmark and generate problems in a way that minimizes the influence of other linguistic requirements (e.g., grounding) to focus on RAC. The resulting benchmark, TRAC, encompassing problems of various complexities, facilitates a more granular evaluation of LMs, precisely targeting the structural generalization ability much needed for RAC. Experiments with three high-performing transformers indicate that additional efforts are needed to tackle challenges raised by TRAC.",,2023,ACL,Yes,Language,Benchmark Pre-Training to Learn in Context,"In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context. To this end, we propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models’ in-context learning ability by pre-training the model on a large collection of “intrinsic tasks” in the general plain-text corpus using the simple language modeling objective. PICL encourages the model to infer and perform tasks by conditioning on the contexts while maintaining task generalization of pre-trained models. We evaluate the in-context learning performance of the model trained with PICL on seven widely-used text classification datasets and the Super-NaturalInstrctions benchmark, which contains 100+ NLP tasks formulated to text generation. Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters. The code is publicly available at https://github.com/thu-coai/PICL.",,2023,ACL,No,, Revisiting non-English Text Simplification: A Unified Multilingual Benchmark,"Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.",,2023,ACL,Yes,Language,Benchmark Randomized Smoothing with Masked Inference for Adversarially Robust Text Classifications,"Large-scale pre-trained language models have shown outstanding performance in a variety of NLP tasks. However, they are also known to be significantly brittle against specifically crafted adversarial examples, leading to increasing interest in probing the adversarial robustness of NLP systems. We introduce RSMI, a novel two-stage framework that combines randomized smoothing (RS) with masked inference (MI) to improve the adversarial robustness of NLP systems. RS transforms a classifier into a smoothed classifier to obtain robust representations, whereas MI forces a model to exploit the surrounding context of a masked token in an input sequence. RSMI improves adversarial robustness by 2 to 3 times over existing state-of-the-art methods on benchmark datasets. We also perform in-depth qualitative analysis to validate the effectiveness of the different stages of RSMI and probe the impact of its components through extensive ablations. By empirically proving the stability of RSMI, we put it forward as a practical method to robustly train large-scale NLP models. Our code and datasets are available at https://github.com/Han8931/rsmi_nlp",,2023,ACL,No,, Making Language Models Better Reasoners with Step-Aware Verifier,"Few-shot learning is a challenging task that requires language models to generalize from limited examples. Large language models like GPT-3 and PaLM have made impressive progress in this area, but they still face difficulties in reasoning tasks such as GSM8K, a benchmark for arithmetic problems. To improve their reasoning skills, previous work has proposed to guide the language model with prompts that elicit a series of reasoning steps before giving the final answer, achieving a significant improvement on GSM8K from 17.9% to 58.1% in problem-solving rate. In this paper, we present DiVeRSe (Diverse Verifier on Reasoning Step), a novel approach that further enhances the reasoning capability of language models. DiVeRSe has three main components: first, it generates diverse prompts to explore different reasoning paths for the same question; second, it uses a verifier to filter out incorrect answers based on a weighted voting scheme; and third, it verifies each reasoning step individually instead of the whole chain. We evaluate DiVeRSe on the latest language model code-davinci-002 and show that it achieves new state-of-the-art results on six of eight reasoning benchmarks (e.g., GSM8K 74.4% to 83.2%).",,2023,ACL,No,, Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment,"Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., ‘mug in grass’) with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the language attention from ‘mug’ to ‘grass’ (capturing the semantic relation ‘in’) to match the visual attention from the mug to the grass (capturing the corresponding physical relation). Tokens and their corresponding objects are softly identified using a weighted mean of cross-modal attention. We prove that this notion of soft cross-modal equivalence is equivalent to enforcing congruence between vision and language attention matrices under a ‘change of basis’ provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to fine-tune UNITER and improve its Winoground Group score by 5.75 points.",,2023,ACL,No,, Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge,"Pre-trained language models (LMs) are used for knowledge intensive tasks like question answering, but their knowledge gets continuously outdated as the world changes. Prior work has studied targeted updates to LMs, injecting individual facts and evaluating whether the model learns these facts while not changing predictions on other contexts. We take a step forward and study LMs’ abilities to make inferences based on injected facts (or propagate those facts): for example, after learning that something is a TV show, does an LM predict that you can watch it? We study this with two cloze-style tasks: an existing dataset of real-world sentences about novel entities (ECBD) as well as a new controlled benchmark with manually designed templates requiring varying levels of inference about injected knowledge. Surprisingly, we find that existing methods for updating knowledge (gradient-based fine-tuning and modifications of this approach) show little propagation of injected knowledge. These methods improve performance on cloze instances only when there is lexical overlap between injected facts and target inferences. Yet, prepending entity definitions in an LM’s context improves performance across all settings, suggesting that there is substantial headroom for parameter-updating approaches for knowledge injection.",,2023,ACL,Yes,Language,Methodological Evaluating Open-Domain Question Answering in the Era of Large Language Models,"Lexical matching remains the de facto evaluation method for open-domain question answering (QA). Unfortunately, lexical matching fails completely when a plausible candidate answer does not appear in the list of gold answers, which is increasingly the case as we shift from extractive to generative models. The recent success of large language models (LLMs) for QA aggravates lexical matching failures since candidate answers become longer, thereby making matching with the gold answers even more challenging. Without accurate evaluation, the true progress in open-domain QA remains unknown. In this paper, we conduct a thorough analysis of various open-domain QA models, including LLMs, by manually evaluating their answers on a subset of NQ-open, a popular benchmark. Our assessments reveal that while the true performance of all models is significantly underestimated, the performance of the InstructGPT (zero-shot) LLM increases by nearly +60%, making it on par with existing top models, and the InstructGPT (few-shot) model actually achieves a new state-of-the-art on NQ-open. We also find that more than 50% of lexical matching failures are attributed to semantically equivalent answers. We further demonstrate that regex matching ranks QA models consistent with human judgments, although still suffering from unnecessary strictness. Finally, we demonstrate that automated evaluation models are a reasonable surrogate for lexical matching in some circumstances, but not for long-form answers generated by LLMs. The automated models struggle in detecting hallucinations in LLM answers and are thus unable to evaluate LLMs. At this time, there appears to be no substitute for human evaluation.",,2023,ACL,No,, Cross-View Language Modeling: Towards Unified Cross-Lingual Cross-Modal Pre-training,"In this paper, we introduce Cross-View Language Modeling, a simple and effective pre-training framework that unifies cross-lingual and cross-modal pre-training with shared architectures and objectives. Our approach is motivated by a key observation that cross-lingual and cross-modal pre-training share the same goal of aligning two different views of the same object into a common semantic space. To this end, the cross-view language modeling framework considers both multi-modal data (i.e., image-caption pairs) and multi-lingual data (i.e., parallel sentence pairs) as two different views of the same object, and trains the model to align the two views by maximizing the mutual information between them with conditional masked language modeling and contrastive learning. We pre-train CCLM, a Cross-lingual Cross-modal Language Model, with the cross-view language modeling framework. Empirical results on IGLUE, a multi-lingual multi-modal benchmark, and two multi-lingual image-text retrieval datasets show that while conceptually simpler, CCLM significantly outperforms the prior state-of-the-art with an average absolute improvement of over 10%. Moreover, CCLM is the first multi-lingual multi-modal pre-trained model that surpasses the translate-test performance of representative English vision-language models by zero-shot cross-lingual transfer.",,2023,ACL,No,, RobuT: A Systematic Study of Table QA Robustness Against Human-Annotated Adversarial Perturbations,"Despite significant progress having been made in question answering on tabular data (Table QA), it’s unclear whether, and to what extent existing Table QA models are robust to task-specific perturbations, e.g., replacing key question entities or shuffling table columns. To systematically study the robustness of Table QA models, we propose a benchmark called RobuT, which builds upon existing Table QA datasets (WTQ, WikiSQL-Weak, and SQA) and includes human-annotated adversarial perturbations in terms of table header, table content, and question. Our results indicate that both state-of-the-art Table QA models and large language models (e.g., GPT-3) with few-shot learning falter in these adversarial sets. We propose to address this problem by using large language models to generate adversarial examples to enhance training, which significantly improves the robustness of Table QA models.",,2023,ACL,Yes,Language,Methodological ContraCLM: Contrastive Learning For Causal Language Model,"Despite exciting progress in causal language models, the expressiveness of their representations is largely limited due to poor discrimination ability. To remedy this issue, we present CONTRACLM, a novel contrastive learning framework at both the token-level and the sequence-level. We assess CONTRACLM on a variety of downstream tasks. We show that CONTRACLM enhances the discrimination of representations and bridges the gap with encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain 44% relative improvement on the Semantic Textual Similarity tasks and 34% on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of representations, CONTRACLM also boosts the source code generation capability with 9% relative improvement on execution accuracy on the HumanEval benchmark.",,2023,ACL,No,, "Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis","Monetary policy pronouncements by Federal Open Market Committee (FOMC) are a major driver of financial market returns. We construct the largest tokenized and annotated dataset of FOMC speeches, meeting minutes, and press conference transcripts in order to understand how monetary policy influences financial markets. In this study, we develop a novel task of hawkish-dovish classification and benchmark various pre-trained language models on the proposed dataset. Using the best-performing model (RoBERTa-large), we construct a measure of monetary policy stance for the FOMC document release days. To evaluate the constructed measure, we study its impact on the treasury market, stock market, and macroeconomic indicators. Our dataset, models, and code are publicly available on Huggingface and GitHub under CC BY-NC 4.0 license.",,2023,ACL,Yes,Language,Methodological Dynamic Transformers Provide a False Sense of Efficiency,"Despite much success in natural language processing (NLP), pre-trained language models typically lead to a high computational cost during inference. Multi-exit is a mainstream approach to address this issue by making a trade-off between efficiency and accuracy, where the saving of computation comes from an early exit. However, whether such saving from early-exiting is robust remains unknown. Motivated by this, we first show that directly adapting existing adversarial attack approaches targeting model accuracy cannot significantly reduce inference efficiency. To this end, we propose a simple yet effective attacking framework, SAME, a novel slowdown attack framework on multi-exit models, which is specially tailored to reduce the efficiency of the multi-exit models. By leveraging the multi-exit models’ design characteristics, we utilize all internal predictions to guide the adversarial sample generation instead of merely considering the final prediction. Experiments on the GLUE benchmark show that SAME can effectively diminish the efficiency gain of various multi-exit models by 80% on average, convincingly validating its effectiveness and generalization ability.",,2023,ACL,No,, VisText: A Benchmark for Semantically Rich Chart Captioning,"Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts’ construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph—a hierarchical representation of a chart’s visual elements akin to a web page’s Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.",,2023,ACL,Yes,Image, Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text,"Self-supervised representation learning has proved to be a valuable component for out-of-distribution (OoD) detection with only the texts of in-distribution (ID) examples. These approaches either train a language model from scratch or fine-tune a pre-trained language model using ID examples, and then take the perplexity output by the language model as OoD scores. In this paper, we analyze the complementary characteristic of both methods and propose a multi-level knowledge distillation approach that integrates their strengths while mitigating their limitations. Specifically, we use a fine-tuned model as the teacher to teach a randomly initialized student model on the ID examples. Besides the prediction layer distillation, we present a similarity-based intermediate layer distillation method to thoroughly explore the representation space of the teacher model. In this way, the learned student can better represent the ID data manifold while gaining a stronger ability to map OoD examples outside the ID data manifold with the regularization inherited from pre-training. Besides, the student model sees only ID examples during parameter learning, further promoting more distinguishable features for OoD detection. We conduct extensive experiments over multiple benchmark datasets, i.e., CLINC150, SST, ROSTD, 20 NewsGroups, and AG News; showing that the proposed method yields new state-of-the-art performance. We also explore its application as an AIGC detector to distinguish answers generated by ChatGPT and human experts. It is observed that our model exceeds human evaluators in the pair-expert task on the Human ChatGPT Comparison Corpus.",,2023,ACL,No,, Large Language Models Meet NL2Code: A Survey,"The task of generating code from a natural language description, or NL2Code, is considered a pressing and significant challenge in code intelligence. Thanks to the rapid development of pre-training techniques, surging large language models are being proposed for code, sparking the advances in NL2Code. To facilitate further research and applications in this field, in this paper, we present a comprehensive survey of 27 existing large language models for NL2Code, and also review benchmarks and metrics. We provide an intuitive comparison of all existing models on the HumanEval benchmark. Through in-depth observation and analysis, we provide some insights and conclude that the key factors contributing to the success of large language models for NL2Code are “Large Size, Premium Data, Expert Tuning”. In addition, we discuss challenges and opportunities regarding the gap between models and humans. We also create a website https://nl2code.github.io to track the latest progress through crowd-sourcing. To the best of our knowledge, this is the first survey of large language models for NL2Code, and we believe it will contribute to the ongoing development of the field.",,2023,ACL,No,, Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk,"Language is the principal tool for human communication, in which humor is one of the most attractive parts. Producing natural language like humans using computers, a.k.a, Natural Language Generation (NLG), has been widely used for dialogue systems, chatbots, machine translation, as well as computer-aid creation e.g., idea generations, scriptwriting. However, the humor aspect of natural language is relatively under-investigated, especially in the age of pre-trained language models. In this work, we aim to preliminarily test *whether NLG can generate humor as humans do*. We build a largest dataset consisting of numerous **C**hinese **C**omical **C**rosstalk scripts (called **C**3 in short), which is for a popular Chinese performing art called ‘Xiangsheng’ or ‘相声’ since 1800s.We benchmark various generation approaches including training-from-scratch Seq2seq, fine-tuned middle-scale PLMs, and large-scale PLMs (with and without fine-tuning). Moreover, we also conduct a human assessment, showing that 1) *large-scale pretraining largely improves crosstalk generation quality*; and 2) *even the scripts generated from the best PLM is far from what we expect*. We conclude humor generation could be largely improved using large-scaled PLMs, but it is still in its infancy. The data and benchmarking code are publicly available in [https://github.com/anonNo2/crosstalk-generation](https://github.com/anonNo2/crosstalk-generation).",,2023,ACL,Yes,Language,Benchmark READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input Noises,"For many real-world applications, the user-generated inputs usually contain various noises due to speech recognition errors caused by linguistic variations or typographical errors (typos). Thus, it is crucial to test model performance on data with realistic input noises to ensure robustness and fairness. However, little study has been done to construct such benchmarks for Chinese, where various language-specific input noises happen in the real world. In order to fill this important gap, we construct READIN: a Chinese multi-task benchmark with REalistic And Diverse Input Noises. READIN contains four diverse tasks and requests annotators to re-enter the original test data with two commonly used Chinese input methods: Pinyin input and speech input. We designed our annotation pipeline to maximize diversity, for example by instructing the annotators to use diverse input method editors (IMEs) for keyboard noises and recruiting speakers from diverse dialectical groups for speech noises. We experiment with a series of strong pretrained language models as well as robust training methods, we find that these models often suffer significant performance drops on READIN even with robustness methods like data augmentation. As the first large-scale attempt in creating a benchmark with noises geared towards user-generated inputs, we believe that READIN serves as an important complement to existing Chinese NLP benchmarks. The source code and dataset can be obtained from https://github.com/thunlp/READIN.",,2023,ACL,Yes,Language,Benchmark AD-KD: Attribution-Driven Knowledge Distillation for Language Model Compression,"Knowledge distillation has attracted a great deal of interest recently to compress large language models. However, existing knowledge distillation methods suffer from two limitations. First, the student model simply imitates the teacher’s behavior while ignoring the reasoning behind it. Second, these methods usually focus on the transfer of sophisticated model-specific knowledge but overlook data-specific knowledge. In this paper, we present a novel attribution-driven knowledge distillation approach, which explores the token-level rationale behind the teacher model based on Integrated Gradients (IG) and transfers attribution knowledge to the student model. To enhance the knowledge transfer of model reasoning and generalization, we further explore multi-view attribution distillation on all potential decisions of the teacher. Comprehensive experiments are conducted with BERT on the GLUE benchmark. The experimental results demonstrate the superior performance of our approach to several state-of-the-art methods.",,2023,ACL,No,, HiFi: High-Information Attention Heads Hold for Parameter-Efficient Model Adaptation,"To fully leverage the advantages of large-scale pre-trained language models (PLMs) on downstream tasks, it has become a ubiquitous adaptation paradigm to fine-tune the entire parameters of PLMs. However, this paradigm poses issues of inefficient updating and resource over-consuming for fine-tuning in data-scarce and resource-limited scenarios, because of the large scale of parameters in PLMs. To alleviate these concerns, in this paper, we propose a parameter-efficient fine-tuning method HiFi, that is, only the highly informative and strongly correlated attention heads for the specific task are fine-tuned. To search for those significant attention heads, we develop a novel framework to analyze the effectiveness of heads. Specifically, we first model the relationship between heads into a graph from two perspectives of information richness and correlation, and then apply PageRank algorithm to determine the relative importance of each head. Extensive experiments on the GLUE benchmark demonstrate the effectiveness of our method, and show that HiFi obtains state-of-the-art performance over the prior baselines.",,2023,ACL,No,, Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method,"Automatic summarization generates concise summaries that contain key ideas of source documents. As the most mainstream datasets for the news sub-domain, CNN/DailyMail and BBC XSum have been widely used for performance benchmarking. However, the reference summaries of those datasets turn out to be noisy, mainly in terms of factual hallucination and information redundancy. To address this challenge, we first annotate new expert-writing Element-aware test sets following the “Lasswell Communication Model” proposed by Lasswell, allowing reference summaries to focus on more fine-grained news elements objectively and comprehensively. Utilizing the new test sets, we observe the surprising zero-shot summary ability of LLMs, which addresses the issue of the inconsistent results between human preference and automatic evaluation metrics of LLMs’ zero-shot summaries in prior work. Further, we propose a Summary Chain-of-Thought (SumCoT) technique to elicit LLMs to generate summaries step by step, which helps them integrate more fine-grained details of source documents into the final summaries that correlate with the human writing mindset. Experimental results show our method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs by +4.33/+4.77 in ROUGE-L on the two datasets, respectively. Dataset and code are publicly available at https://github.com/Alsace08/SumCoT.",,2023,ACL,Yes,Language,Methodological bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark,"We present bgGLUE (Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io, and we hope that it will enable further advancements in developing NLU models for Bulgarian.",,2023,ACL,Yes,Language,Benchmark FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction,"The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.",,2023,ACL,No,, WinoQueer: A Community-in-the-Loop Benchmark for Anti-LGBTQ+ Bias in Large Language Models,"We present WinoQueer: a benchmark specifically designed to measure whether large language models (LLMs) encode biases that are harmful to the LGBTQ+ community. The benchmark is community-sourced, via application of a novel method that generates a bias benchmark from a community survey. We apply our benchmark to several popular LLMs and find that off-the-shelf models generally do exhibit considerable anti-queer bias. Finally, we show that LLM bias against a marginalized community can be somewhat mitigated by finetuning on data written about or by members of that community, and that social media text written by community members is more effective than news text written about the community by non-members. Our method for community-in-the-loop benchmark development provides a blueprint for future researchers to develop community-driven, harms-grounded LLM benchmarks for other marginalized communities.",,2023,ACL,Yes,Language,Benchmark Benchmarking Large Language Model Capabilities for Conditional Generation,"Pre-trained large language models (PLMs) underly most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM and associated techniques like fewshot learning, have additionally shifted the output modality to generation instead of classification or regression. Despite their ubiquitous use, the generation quality of language models is rarely evaluated when these models are introduced. Additionally, it is unclear how existing generation tasks–while they can be used to compare systems at a high level–relate to the real world use cases for which people have been adopting them. In this work, we discuss how to adapt existing application-specific generation benchmarks to PLMs and provide an in-depth, empirical study of the limitations and capabilities of PLMs in natural language generation tasks along dimensions such as scale, architecture, input and output language. Our results show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages. They further inform practitioners as to which PLMs to use for a given generation task setup. We share best practices to be taken into consideration when benchmarking generation capabilities during the development of upcoming PLMs.",,2023,ACL,No,, GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator,"Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.",,2023,ACL,No,, PromptRank: Unsupervised Keyphrase Extraction Using Prompt,"The keyphrase extraction task refers to the automatic selection of phrases from a given document to summarize its core content. State-of-the-art (SOTA) performance has recently been achieved by embedding-based algorithms, which rank candidates according to how similar their embeddings are to document embeddings. However, such solutions either struggle with the document and candidate length discrepancies or fail to fully utilize the pre-trained language model (PLM) without further fine-tuning. To this end, in this paper, we propose a simple yet effective unsupervised approach, PromptRank, based on the PLM with an encoder-decoder architecture. Specifically, PromptRank feeds the document into the encoder and calculates the probability of generating the candidate with a designed prompt by the decoder. We extensively evaluate the proposed PromptRank on six widely used benchmarks. PromptRank outperforms the SOTA approach MDERank, improving the F1 score relatively by 34.18%, 24.87%, and 17.57% for 5, 10, and 15 returned results, respectively. This demonstrates the great potential of using prompt for unsupervised keyphrase extraction. We release our code at https://github.com/HLT-NLP/PromptRank.",,2023,ACL,No,, SeeGULL: A Stereotype Benchmark with Broad Geo-Cultural Coverage Leveraging Generative Models,"Stereotype benchmark datasets are crucial to detect and mitigate social stereotypes about groups of people in NLP models. However, existing datasets are limited in size and coverage, and are largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies gain hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, built by utilizing generative capabilities of large language models such as PaLM, and GPT-3, and leveraging a globally diverse rater pool to validate the prevalence of those stereotypes in society. SeeGULL is in English, and contains stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents, as well as state-level identities within the US and India. We also include fine-grained offensiveness scores for different stereotypes and demonstrate their global disparities. Furthermore, we include comparative annotations about the same groups by annotators living in the region vs. those that are based in North America, and demonstrate that within-region stereotypes about groups differ from those prevalent in North America.",,2023,ACL,Yes,Language,Benchmark An Inner Table Retriever for Robust Table Question Answering,"Recent years have witnessed the thriving of pretrained Transformer-based language models for understanding semi-structured tables, with several applications, such as Table Question Answering (TableQA).These models are typically trained on joint tables and surrounding natural language text, by linearizing table content into sequences comprising special tokens and cell information. This yields very long sequences which increase system inefficiency, and moreover, simply truncating long sequences results in information loss for downstream tasks. We propose Inner Table Retriever (ITR), a general-purpose approach for handling long tables in TableQA that extracts sub-tables to preserve the most relevant information for a question. We show that ITR can be easily integrated into existing systems to improve their accuracy with up to 1.3-4.8% and achieve state-of-the-art results in two benchmarks, i.e., 63.4% in WikiTableQuestions and 92.1% in WikiSQL. Additionally, we show that ITR makes TableQA systems more robust to reduced model capacity and to different ordering of columns and rows. We make our code available at: https://github.com/amazon-science/robust-tableqa.",,2023,ACL,No,, Rethinking Masked Language Modeling for Chinese Spelling Correction,"In this paper, we study Chinese Spelling Correction (CSC) as a joint decision made by two separate models: a language model and an error model. Through empirical analysis, we find that fine-tuning BERT tends to over-fit the error model while under-fit the language model, resulting in poor generalization to out-of-distribution error patterns. Given that BERT is the backbone of most CSC models, this phenomenon has a significant negative impact. To address this issue, we are releasing a multi-domain benchmark LEMON, with higher quality and diversity than existing benchmarks, to allow a comprehensive assessment of the open domain generalization of CSC models. Then, we demonstrate that a very simple strategy – randomly masking 20% non-error tokens from the input sequence during fine-tuning – is sufficient for learning a much better language model without sacrificing the error model. This technique can be applied to any model architecture and achieves new state-of-the-art results on SIGHAN, ECSpell, and LEMON.",,2023,ACL,Yes,Language,Methodological A Synthetic Data Generation Framework for Grounded Dialogues,"Training grounded response generation models often requires a large collection of grounded dialogues. However, it is costly to build such dialogues. In this paper, we present a synthetic data generation framework (SynDG) for grounded dialogues. The generation process utilizes large pre-trained language models and freely available knowledge data (e.g., Wikipedia pages, persona profiles, etc.). The key idea of designing SynDG is to consider dialogue flow and coherence in the generation process. Specifically, given knowledge data, we first heuristically determine a dialogue flow, which is a series of knowledge pieces. Then, we employ T5 to incrementally turn the dialogue flow into a dialogue. To ensure coherence of both the dialogue flow and the synthetic dialogue, we design a two-level filtering strategy, at the flow-level and the utterance-level respectively. Experiments on two public benchmarks show that the synthetic grounded dialogue data produced by our framework is able to significantly boost model performance in both full training data and low-resource scenarios.",,2023,ACL,No,, MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning,"Instruction tuning, a new learning paradigm that fine-tunes pre-trained language models on tasks specified through instructions, has shown promising zero-shot performance on various natural language processing tasks. However, it has yet to be explored for vision and multimodal tasks. In this work, we introduce MultiInstruct, the first multimodal instruction tuning benchmark dataset that consists of 62 diverse multimodal tasks in a unified seq-to-seq format covering 10 broad categories. The tasks are derived from 21 existing open-source datasets and each task is equipped with 5 expert-written instructions. We take OFA as the base pre-trained model for multimodal instruction tuning, and to further improve its zero-shot performance, we explore multiple transfer learning strategies to leverage the large-scale Natural Instructions dataset. Experimental results demonstrate strong zero-shot performance on various unseen multimodal tasks and the benefit of transfer learning from a text-only instruction dataset. We also design a new evaluation metric – Sensitivity, to evaluate how sensitive the model is to the variety of instructions. Our results indicate that fine-tuning the model on a diverse set of tasks and instructions leads to a reduced sensitivity to variations in instructions for each task.",,2023,ACL,Yes,Multimodal, SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control,"Despite the growing success of diffusion models in continuous-valued domains (e.g., images), similar efforts for discrete domains such as text have yet to match the performance of autoregressive language models. In this work, we present SSD-LM—a diffusion-based language model with two key design choices. First, SSD-LM is semi-autoregressive, iteratively generating blocks of text, allowing for flexible output length at decoding time while enabling local bidirectional context updates. Second, it is simplex-based, performing diffusion on the natural vocabulary space rather than a learned latent space, allowing us to incorporate classifier guidance and modular control using off-the-shelf classifiers without any adaptation. We evaluate SSD-LM on unconstrained text generation benchmarks, and show that it matches or outperforms strong autoregressive GPT-2 models across standard quality and diversity metrics, while vastly outperforming diffusion-based baselines. On controlled text generation, SSD-LM also outperforms competitive baselines, with an extra advantage in modularity.",,2023,ACL,No,, GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding,"Addressing the issues of who saying what to whom in multi-party conversations (MPCs) has recently attracted a lot of research attention. However, existing methods on MPC understanding typically embed interlocutors and utterances into sequential information flows, or utilize only the superficial of inherent graph structures in MPCs. To this end, we present a plug-and-play and lightweight method named graph-induced fine-tuning (GIFT) which can adapt various Transformer-based pre-trained language models (PLMs) for universal MPC understanding. In detail, the full and equivalent connections among utterances in regular Transformer ignore the sparse but distinctive dependency of an utterance on another in MPCs. To distinguish different relationships between utterances, four types of edges are designed to integrate graph-induced signals into attention mechanisms to refine PLMs originally designed for processing sequential texts. We evaluate GIFT by implementing it into three PLMs, and test the performance on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that GIFT can significantly improve the performance of three PLMs on three downstream tasks and two benchmarks with only 4 additional parameters per encoding layer, achieving new state-of-the-art performance on MPC understanding.",,2023,ACL,No,, BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting,"The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages. To extend the benefits of BLOOM to other languages without incurring prohibitively large costs, it is desirable to adapt BLOOM to new languages not seen during pretraining. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages in a resource-constrained setting. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, we find that adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling.",,2023,ACL,No,, ESCOXLM-R: Multilingual Taxonomy-driven Pre-training for the Job Market Domain,"The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the job market domain, there is a lack of generalized, multilingual models and benchmarks for these tasks. In this study, we introduce a language model called ESCOXLM-R, based on XLM-R-large, which uses domain-adaptive pre-training on the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy, covering 27 languages. The pre-training objectives for ESCOXLM-R include dynamic masked language modeling and a novel additional objective for inducing multilingual taxonomical ESCO relations. We comprehensively evaluate the performance of ESCOXLM-R on 6 sequence labeling and 3 classification tasks in 4 languages and find that it achieves state-of-the-art results on 6 out of 9 datasets. Our analysis reveals that ESCOXLM-R performs better on short spans and outperforms XLM-R-large on entity-level and surface-level span-F1, likely due to ESCO containing short skill and occupation titles, and encoding information on the entity-level.",,2023,ACL,Yes,Language,Technical DSRM: Boost Textual Adversarial Training with Distribution Shift Risk Minimization,"Adversarial training is one of the best-performing methods in improving the robustness of deep language models. However, robust models come at the cost of high time consumption, as they require multi-step gradient ascents or word substitutions to obtain adversarial samples. In addition, these generated samples are deficient in grammatical quality and semantic consistency, which impairs the effectiveness of adversarial training. To address these problems, we introduce a novel, effective procedure for instead adversarial training with only clean data. Our procedure, distribution shift risk minimization (DSRM), estimates the adversarial loss by perturbing the input data’s probability distribution rather than their embeddings. This formulation results in a robust model that minimizes the expected global loss under adversarial attacks. Our approach requires zero adversarial samples for training and reduces time consumption by up to 70% compared to current best-performing adversarial training methods. Experiments demonstrate that DSRM considerably improves BERT’s resistance to textual adversarial attacks and achieves state-of-the-art robust accuracy on various benchmarks.",,2023,ACL,No,, "Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages","Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT.",,2023,ACL,Yes,Language,Benchmark What’s the Meaning of Superhuman Performance in Today’s NLU?,"In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks.",,2023,ACL,No,, ETHICIST: Targeted Training Data Extraction Through Loss Smoothed Soft Prompting and Calibrated Confidence Estimation,"Large pre-trained language models achieve impressive results across many tasks. However, recent works point out that pre-trained language models may memorize a considerable fraction of their training data, leading to the privacy risk of information leakage. In this paper, we propose a method named Ethicist for targeted training data extraction through loss smoothed soft prompting and calibrated confidence estimation, investigating how to recover the suffix in the training data when given a prefix. To elicit memorization in the attacked model, we tune soft prompt embeddings while keeping the model fixed. We further propose a smoothing loss that smooths the loss distribution of the suffix tokens to make it easier to sample the correct suffix. In order to select the most probable suffix from a collection of sampled suffixes and estimate the prediction confidence, we propose a calibrated confidence estimation method, which normalizes the confidence of the generated suffixes with a local estimation. We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark. We also investigate several factors influencing the data extraction performance, including decoding strategy, model scale, prefix length, and suffix length. Our code is availabel at https://github.com/thu-coai/Targeted-Data-Extraction.",,2023,ACL,No,, MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering,"Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models’ capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.",,2023,ACL,No,, MVP-Tuning: Multi-View Knowledge Retrieval with Prompt Tuning for Commonsense Reasoning,"Recent advances in pre-trained language models (PLMs) have facilitated the development ofcommonsense reasoning tasks. However, existing methods rely on multi-hop knowledgeretrieval and thus suffer low accuracy due toembedded noise in the acquired knowledge. In addition, these methods often attain highcomputational costs and nontrivial knowledgeloss because they encode the knowledge independently of the PLM, making it less relevant to the task and thus resulting in a poorlocal optimum. In this work, we propose MultiView Knowledge Retrieval with Prompt Tuning (MVP-Tuning). MVP-Tuning leveragessimilar question-answer pairs in the training setto improve knowledge retrieval and employsa single prompt-tuned PLM to model knowledge and input text jointly. We conduct our experiments on five commonsense reasoning QAbenchmarks to show that MVP-Tuning outperforms all other baselines in 4 out of 5 datasetswith less than 2% trainable parameters. MVPTuning even gets a new state-of-the-art resulton OpenBookQA and is number one on theleaderboard.",,2023,ACL,No,, Uncovering and Categorizing Social Biases in Text-to-SQL,"Large pre-trained language models are acknowledged to carry social bias towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and mitigate social bias in Text-to-SQL models. We summarize the categories of social bias that may occur in structural data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social bias at very different rates. We show how to take advantage of our methodology to assess and mitigate social bias in the downstream Text-to-SQL task.",,2023,ACL,Yes,Language,Methodological Minding Language Models’ (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker,"Theory of Mind (ToM)—the ability to reason about the mental states of other people—is a key element of our social intelligence. Yet, despite their ever more impressive performance, large-scale neural language models still lack basic theory of mind capabilities out-of-the-box. We posit that simply scaling up models will not imbue them with theory of mind due to the inherently symbolic and implicit nature of the phenomenon, and instead investigate an alternative: can we design a decoding-time algorithm that enhances theory of mind of off-the-shelf neural language models without explicit supervision? We present SymbolicToM, a plug-and-play approach to reason about the belief states of multiple characters in reading comprehension tasks via explicit symbolic representation. More concretely, our approach tracks each entity’s beliefs, their estimation of other entities’ beliefs, and higher-order levels of reasoning, all through graphical representations, allowing for more precise and interpretable reasoning than previous approaches. Empirical results on the well-known ToMi benchmark (Le et al., 2019) demonstrate that SymbolicToM dramatically enhances off-the-shelf neural networks’ theory of mind in a zero-shot setting while showing robust out-of-distribution performance compared to supervised baselines. Our work also reveals spurious patterns in existing theory of mind benchmarks, emphasizing the importance of out-of-distribution evaluation and methods that do not overfit a particular dataset.",,2023,ACL,No,, LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion,"We present LLM-Blender, an ensembling framework designed to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). Our framework consists of two modules: PairRanker and GenFuser, addressing the observation that optimal LLMs for different examples can significantly vary. PairRanker employs a specialized pairwise comparison method to distinguish subtle differences between candidate outputs. It jointly encodes the input text and a pair of candidates, using cross-attention encoders to determine the superior one. Our results demonstrate that PairRanker exhibits the highest correlation with ChatGPT-based ranking. Then, GenFuser aims to merge the top-ranked candidates, generating an improved output by capitalizing on their strengths and mitigating their weaknesses. To facilitate large-scale evaluation, we introduce a benchmark dataset, MixInstruct, which is a mixture of multiple instruction datasets featuring oracle pairwise comparisons. Our LLM-Blender significantly outperform individual LLMs and baseline methods across various metrics, establishing a substantial performance gap.",,2023,ACL,Yes,Language,Methodological "Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A Two-Stage Approach to Mitigate Social Biases","As the representation capability of Pre-trained Language Models (PLMs) improve, there is growing concern that they will inherit social biases from unprocessed corpora. Most previous debiasing techniques used Counterfactual Data Augmentation (CDA) to balance the training corpus. However, CDA slightly modifies the original corpus, limiting the representation distance between different demographic groups to a narrow range. As a result, the debiasing model easily fits the differences between counterfactual pairs, which affects its debiasing performance with limited text resources. In this paper, we propose an adversarial training-inspired two-stage debiasing model using Contrastive learning with Continuous Prompt Augmentation (named CCPA) to mitigate social biases in PLMs’ encoding. In the first stage, we propose a data augmentation method based on continuous prompt tuning to push farther the representation distance between sample pairs along different demographic groups. In the second stage, we utilize contrastive learning to pull closer the representation distance between the augmented sample pairs and then fine-tune PLMs’ parameters to get debiased encoding. Our approach guides the model to achieve stronger debiasing performance by adding difficulty to the training process. Extensive experiments show that CCPA outperforms baselines in terms of debiasing performance. Meanwhile, experimental results on the GLUE benchmark show that CCPA retains the language modeling capability of PLMs.",,2023,ACL,No,, Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor,"Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.",,2023,ACL,No,, A Survey of Deep Learning for Mathematical Reasoning,"Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems in language has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.",,2023,ACL,No,, Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models,"Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset TempReason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach.",,2023,ACL,Yes,Language,Benchmark FERMAT: An Alternative to Accuracy for Numerical Reasoning,"While pre-trained language models achieve impressive performance on various NLP benchmarks, they still struggle with tasks that require numerical reasoning. Recent advances in improving numerical reasoning are mostly achieved using very large language models that contain billions of parameters and are not accessible to everyone. In addition, numerical reasoning is measured using a single score on existing datasets. As a result, we do not have a clear understanding of the strengths and shortcomings of existing models on different numerical reasoning aspects and therefore, potential ways to improve them apart from scaling them up. Inspired by CheckList (Ribeiro et al., 2020), we introduce a multi-view evaluation set for numerical reasoning in English, called FERMAT. Instead of reporting a single score on a whole dataset, FERMAT evaluates models on various key numerical reasoning aspects such as number understanding, mathematical operations, and training dependency. Apart from providing a comprehensive evaluation of models on different numerical reasoning aspects, FERMAT enables a systematic and automated generation of an arbitrarily large training or evaluation set for each aspect. The datasets and codes are publicly available to generate further multi-view data for ulterior tasks and languages.",,2023,ACL,Yes,Language,Methodological Exploring Large Language Models for Classical Philology,"Recent advances in NLP have led to the creation of powerful language models for many languages including Ancient Greek and Latin. While prior work on Classical languages unanimously uses BERT, in this work we create four language models for Ancient Greek that vary along two dimensions to study their versatility for tasks of interest for Classical languages: we explore (i) encoder-only and encoder-decoder architectures using RoBERTa and T5 as strong model types, and create for each of them (ii) a monolingual Ancient Greek and a multilingual instance that includes Latin and English. We evaluate all models on morphological and syntactic tasks, including lemmatization, which demonstrates the added value of T5’s decoding abilities. We further define two probing tasks to investigate the knowledge acquired by models pre-trained on Classical texts. Our experiments provide the first benchmarking analysis of existing models of Ancient Greek. Results show that our models provide significant improvements over the SoTA. The systematic analysis of model types can inform future research in designing language models for Classical languages, including the development of novel generative tasks. We make all our models available as community resources, along with a large curated pre-training corpus for Ancient Greek, to support the creation of a larger, comparable model zoo for Classical Philology.",,2023,ACL,Yes,Language,Benchmark CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors,"Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks.",,2023,ACL,No,, LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development,"In this work, we conduct a detailed analysis on the performance of legal-oriented pre-trained language models (PLMs). We examine the interplay between their original objective, acquired knowledge, and legal language understanding capacities which we define as the upstream, probing, and downstream performance, respectively. We consider not only the models’ size but also the pre-training corpora used as important dimensions in our study. To this end, we release a multinational English legal corpus (LeXFiles) and a legal knowledge probing benchmark (LegalLAMA) to facilitate training and detailed analysis of legal-oriented PLMs. We release two new legal PLMs trained on LeXFiles and evaluate them alongside others on LegalLAMA and LexGLUE. We find that probing performance strongly correlates with upstream performance in related legal topics. On the other hand, downstream performance is mainly driven by the model’s size and prior legal knowledge which can be estimated by upstream and probing performance. Based on these findings, we can conclude that both dimensions are important for those seeking the development of domain-specific PLMs.",,2023,ACL,Yes,Language,Methodological Pre-trained Language Models Can be Fully Zero-Shot Learners,"How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, paraphrasing, and multiple-choice question answering. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 15.6% on the GLUE benchmark. Our source code is available at https://anonymous.4open.science/r/NPPrompt.",,2023,ACL,No,, A Comparative Study on the Impact of Model Compression Techniques on Fairness in Language Models,"Compression techniques for deep learning have become increasingly popular, particularly in settings where latency and memory constraints are imposed. Several methods, such as pruning, distillation, and quantization, have been adopted for compressing models, each providing distinct advantages. However, existing literature demonstrates that compressing deep learning models could affect their fairness. Our analysis involves a comprehensive evaluation of pruned, distilled, and quantized language models, which we benchmark across a range of intrinsic and extrinsic metrics for measuring bias in text classification. We also investigate the impact of using multilingual models and evaluation measures. Our findings highlight the significance of considering both the pre-trained model and the chosen compression strategy in developing equitable language technologies. The results also indicate that compression strategies can have an adverse effect on fairness measures.",,2023,ACL,No,, XSemPLR: Cross-Lingual Semantic Parsing in Multiple Natural Languages and Meaning Representations,"Cross-Lingual Semantic Parsing (CLSP) aims to translate queries in multiple natural languages (NLs) into meaning representations (MRs) such as SQL, lambda calculus, and logic forms. However, existing CLSP models are separately proposed and evaluated on datasets of limited tasks and applications, impeding a comprehensive and unified evaluation of CLSP on a diverse range of NLs and MRs. To this end, we present XSemPLR, a unified benchmark for cross-lingual semantic parsing featured with 22 natural languages and 8 meaning representations by examining and selecting 9 existing datasets to cover 5 tasks and 164 domains. We use XSemPLR to conduct a comprehensive benchmark study on a wide range of multilingual language models including encoder-based models (mBERT, XLM-R), encoder-decoder models (mBART, mT5), and decoder-based models (Codex, BLOOM). We design 6 experiment settings covering various lingual combinations (monolingual, multilingual, cross-lingual) and numbers of learning samples (full dataset, few-shot, and zero-shot). Our experiments show that encoder-decoder models (mT5) achieve the highest performance compared with other popular models, and multilingual training can further improve the average performance. Notably, multilingual large language models (e.g., BLOOM) are still inadequate to perform CLSP tasks. We also find that the performance gap between monolingual training and cross-lingual transfer learning is still significant for multilingual models, though it can be mitigated by cross-lingual few-shot training. Our dataset and code are available at https://github.com/psunlpgroup/XSemPLR.",,2023,ACL,Yes,Language,Benchmark What Do NLP Researchers Believe? Results of the NLP Community Metasurvey,"We present the results of the NLP Community Metasurvey. Run from May to June 2022, it elicited opinions on controversial issues, including industry influence in the field, concerns about AGI, and ethics. Our results put concrete numbers to several controversies: For example, respondents are split in half on the importance of artificial general intelligence, whether language models understand language, and the necessity of linguistic structure and inductive bias for solving NLP problems. In addition, the survey posed meta-questions, asking respondents to predict the distribution of survey responses. This allows us to uncover false sociological beliefs where the community’s predictions don’t match reality. Among other results, we find that the community greatly overestimates its own belief in the usefulness of benchmarks and the potential for scaling to solve real-world problems, while underestimating its belief in the importance of linguistic structure, inductive bias, and interdisciplinary science.",,2023,ACL,No,, LENS: A Learnable Evaluation Metric for Text Simplification,"Training learnable metrics using modern language models has recently emerged as a promising method for the automatic evaluation of machine translation. However, existing human evaluation datasets for text simplification have limited annotations that are based on unitary or outdated models, making them unsuitable for this approach. To address these issues, we introduce the SimpEval corpus that contains: SimpEval_past, comprising 12K human ratings on 2.4K simplifications of 24 past systems, and SimpEval_2022, a challenging simplification benchmark consisting of over 1K human ratings of 360 simplifications including GPT-3.5 generated text. Training on SimpEval, we present LENS, a Learnable Evaluation Metric for Text Simplification. Extensive empirical results show that LENS correlates much better with human judgment than existing metrics, paving the way for future progress in the evaluation of text simplification. We also introduce Rank & Rate, a human evaluation framework that rates simplifications from several models in a list-wise manner using an interactive interface, which ensures both consistency and accuracy in the evaluation process and is used to create the SimpEval datasets.",,2023,ACL,Yes,Language,Methodological UniEX: An Effective and Efficient Framework for Unified Information Extraction via a Span-extractive Perspective,"We propose a new paradigm for universal information extraction (IE) that is compatible with any schema format and applicable to a list of IE tasks, such as named entity recognition, relation extraction, event extraction and sentiment analysis. Our approach converts the text-based IE tasks as the token-pair problem, which uniformly disassembles all extraction targets into joint span detection, classification and association problems with a unified extractive framework, namely UniEX. UniEX can synchronously encode schema-based prompt and textual information, and collaboratively learn the generalized knowledge from pre-defined information using the auto-encoder language models. We develop a traffine attention mechanism to integrate heterogeneous factors including tasks, labels and inside tokens, and obtain the extraction target via a scoring matrix. Experiment results show that UniEX can outperform generative universal IE models in terms of performance and inference-speed on 14 benchmarks IE datasets with the supervised setting. The state-of-the-art performance in low-resource scenarios also verifies the transferability and effectiveness of UniEX.",,2023,ACL,No,, HiPool: Modeling Long Documents Using Graph Neural Networks,"Encoding long sequences in Natural Language Processing (NLP) is a challenging problem. Though recent pretraining language models achieve satisfying performances in many NLP tasks, they are still restricted by a pre-defined maximum length, making them challenging to be extended to longer sequences. So some recent works utilize hierarchies to model long sequences. However, most of them apply sequential models for upper hierarchies, suffering from long dependency issues. In this paper, we alleviate these issues through a graph-based method. We first chunk the sequence with a fixed length to model the sentence-level information. We then leverage graphs to model intra- and cross-sentence correlations with a new attention mechanism. Additionally, due to limited standard benchmarks for long document classification (LDC), we propose a new challenging benchmark, totaling six datasets with up to 53k samples and 4034 average tokens’ length. Evaluation shows our model surpasses competitive baselines by 2.6% in F1 score, and 4.8% on the longest sequence dataset. Our method is shown to outperform hierarchical sequential models with better performance and scalability, especially for longer sequences.",,2023,ACL,Yes,Language,Methodological PLUE: Language Understanding Evaluation Benchmark for Privacy Policies in English,"Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We evaluate several generic pre-trained language models and continue pre-training them on the collected corpus. We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks. The code and models are released at https://github.com/JFChi/PLUE.",,2023,ACL,Yes,Language,Benchmark BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering,"Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry.",,2023,ACL,No,, Measuring the Effect of Influential Messages on Varying Personas,"Predicting how a user responds to news events enables important applications such as allowing intelligent agents or content producers to estimate the effect on different communities and revise unreleased messages to prevent unexpected bad outcomes such as social conflict and moral injury. We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona (characterizing an individual or a group) might have upon seeing a news message. Compared to the previous efforts which only predict generic comments to news, the proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response. This enables more accurate and comprehensive inference on the mental state of the persona. Meanwhile, the generated sentiment dimensions make the evaluation and application more reliable. We create the first benchmark dataset, which consists of 13,357 responses to 3,847 news headlines from Twitter. We further evaluate the SOTA neural language models with our dataset. The empirical results suggest that the included persona attributes are helpful for the performance of all response dimensions. Our analysis shows that the best-performing models are capable of predicting responses that are consistent with the personas, and as a byproduct, the task formulation also enables many interesting applications in the analysis of social network groups and their opinions, such as the discovery of extreme opinion groups.",,2023,ACL,Yes,Language,Benchmark LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning,"In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.",,2023,ACL,No,, Exploring Continual Learning for Code Generation Models,"Large-scale code generation models such as Copilot and CodeT5 have achieved impressive performance. However, libraries are upgraded or deprecated very frequently and re-training large-scale language models is computationally expensive. Therefore, Continual Learning (CL) is an important aspect that remains under-explored in the code domain. In this paper, we introduce a benchmark called CodeTask-CL that covers a wide range of tasks, including code generation, translation, summarization, and refinement, with different input and output programming languages. Next, on our CodeTask-CL benchmark, we compare popular CL techniques from NLP and Vision domains. We find that effective methods like Prompt Pooling (PP) suffer from catastrophic forgetting due to the unstable training of the prompt selection mechanism caused by stark distribution shifts in coding tasks. We address this issue with our proposed method, Prompt Pooling with Teacher Forcing (PP-TF), that stabilizes training by enforcing constraints on the prompt selection mechanism and leads to a 21.54% improvement over Prompt Pooling. Along with the benchmark, we establish a training pipeline that can be used for CL on code models, which we believe can motivate further development of CL methods for code models.",,2023,ACL,Yes,Language,Methodological Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?,"Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.",,2023,ACL,No,, "With a Little Push, NLI Models can Robustly and Efficiently Predict Faithfulness","Conditional language models still generate unfaithful output that is not supported by their input. These unfaithful generations jeopardize trust in real-world applications such as summarization or human-machine interaction, motivating a need for automatic faithfulness metrics. To implement such metrics, NLI models seem attractive, since they solve a strongly related task that comes with a wealth of prior research and data. But recent research suggests that NLI models require costly additional machinery to perform reliably across datasets, e.g., by running inference on a cartesian product of input and generated sentences, or supporting them with a question-generation/answering step. In this work we show that pure NLI models _can_ outperform more complex metrics when combining task-adaptive data augmentation with robust inference procedures. We propose: (1) Augmenting NLI training data toadapt NL inferences to the specificities of faithfulness prediction in dialogue;(2) Making use of both entailment and contradiction probabilities in NLI, and(3) Using Monte-Carlo dropout during inference. Applied to the TRUE benchmark, which combines faithfulness datasets across diverse domains and tasks, our approach strongly improves a vanilla NLI model and significantly outperforms previous work, while showing favourable computational cost.",,2023,ACL,No,, A Better Way to Do Masked Language Model Scoring,"Estimating the log-likelihood of a given sentence under an autoregressive language model is straightforward: one can simply apply the chain rule and sum the log-likelihood values for each successive token. However, for masked language models (MLMs), there is no direct way to estimate the log-likelihood of a sentence. To address this issue, Salazar et al. (2020) propose to estimate sentence pseudo-log-likelihood (PLL) scores, computed by successively masking each sentence token, retrieving its score using the rest of the sentence as context, and summing the resulting values. Here, we demonstrate that the original PLL method yields inflated scores for out-of-vocabulary words and propose an adapted metric, in which we mask not only the target token, but also all within-word tokens to the right of the target. We show that our adapted metric (PLL-word-l2r) outperforms both the original PLL metric and a PLL metric in which all within-word tokens are masked. In particular, it better satisfies theoretical desiderata and better correlates with scores from autoregressive models. Finally, we show that the choice of metric affects even tightly controlled, minimal pair evaluation benchmarks (such as BLiMP), underscoring the importance of selecting an appropriate scoring metric for evaluating MLM properties.",,2023,ACL,No,, ReAugKD: Retrieval-Augmented Knowledge Distillation For Pre-trained Language Models,"Knowledge Distillation (KD) is one of the most effective approaches to deploying large-scale pre-trained language models in low-latency environments by transferring the knowledge contained in the large-scale models to smaller student models. Prior KD approaches use the soft labels and intermediate activations generated by the teacher to transfer knowledge to the student model parameters alone. In this paper, we show that having access to non-parametric memory in the form of a knowledge base with the teacher’s soft labels and predictions can further improve student generalization. To enable the student to retrieve from the knowledge base effectively, we propose a new framework and loss function that preserves the semantic similarities of teacher and student training examples. We show through extensive experiments that our retrieval mechanism can achieve state-of-the-art performance for task-specific knowledge distillation on the GLUE benchmark.",,2023,ACL,No,, Self-Distilled Quantization: Achieving High Compression Rates in Transformer-Based Language Models,"We investigate the effects of post-training quantization and quantization-aware training on the generalization of Transformer language models. We present a new method called self-distilled quantization (SDQ) that minimizes accumulative quantization errors and outperforms baselines. We apply SDQ to multilingual models XLM-R_{\text{Base}} and InfoXLM_{\text{Base}} and demonstrate that both models can be reduced from 32-bit floating point weights to 8-bit integer weights while maintaining a high level of performance on the XGLUE benchmark. Our results also highlight the challenges of quantizing multilingual models, which must generalize to languages they were not fine-tuned on.",,2023,ACL,No,, Understanding Demonstration-based Learning from a Causal Perspective,"Demonstration-based learning has shown impressive performance in exploiting pretrained language models under few-shot learning settings. It is interesting to see that demonstrations, even those composed of random tokens, can still improve performance. In this paper, we build a Structural Causal Model (SCM) to understand demonstration-based learning from causal perspectives and interpret random demonstrations as interventions on the demonstration variable within the causal model. We investigate the causal effects and find that the concurrence of specific words in the demonstration will induce bias, while randomly sampled tokens in the demonstration do not. Based on this finding, we further propose simple ways to construct random demonstrations, which even outperform hand-crafted, meaningful demonstrations on public sequence labeling benchmarks.",,2023,ACL,No,, Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning,"Large Language Models (LLMs) are known to memorize significant portions of their training data. Parts of this memorized content have been shown to be extractable by simply querying the model, which poses a privacy risk. We present a novel approach which uses prompt-tuning to control the extraction rates of memorized content in LLMs. We present two prompt training strategies to increase and decrease extraction rates, which correspond to an attack and a defense, respectively. We demonstrate the effectiveness of our techniques by using models from the GPT-Neo family on a public benchmark. For the 1.3B parameter GPT-Neo model, our attack yields a 9.3 percentage point increase in extraction rate compared to our baseline. Our defense can be tuned to achieve different privacy-utility trade-offs by a user-specified hyperparameter. We achieve an extraction rate reduction of up to 97.7% relative to our baseline, with a perplexity increase of 16.9%.",,2023,ACL,No,, A Simple and Effective Framework for Strict Zero-Shot Hierarchical Classification,"In recent years, large language models (LLMs) have achieved strong performance on benchmark tasks, especially in zero or few-shot settings. However, these benchmarks often do not adequately address the challenges posed in the real-world, such as that of hierarchical classification. In order to address this challenge, we propose refactoring conventional tasks on hierarchical datasets into a more indicative long-tail prediction task. We observe LLMs are more prone to failure in these cases. To address these limitations, we propose the use of entailment-contradiction prediction in conjunction with LLMs, which allows for strong performance in a strict zero-shot setting. Importantly, our method does not require any parameter updates, a resource-intensive process and achieves strong performance across multiple datasets.",,2023,ACL,No,, ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning,"A number of recent benchmarks seek to assess how well models handle natural language negation. However, these benchmarks lack the controlled example paradigms that would allow us to infer whether a model had truly learned how negation morphemes semantically scope. To fill these analytical gaps, we present the Scoped Negation NLI (ScoNe-NLI) benchmark, which contains contrast sets of six examples with up to two negations where either zero, one, or both negative morphemes affect the NLI label. We use ScoNe-NLI to assess fine-tuning and in-context learning strategies. We find that RoBERTa and DeBERTa models solve ScoNe-NLI after many shot fine-tuning. For in-context learning, we test the latest InstructGPT models and find that most prompt strategies are not successful, including those using step-by-step reasoning. To better understand this result, we extend ScoNe with ScoNe-NLG, a sentence completion test set that embeds negation reasoning in short narratives. Here, InstructGPT is successful, which reveals the model can correctly reason about negation, but struggles to do so on NLI examples outside of its core pretraining regime.",,2023,ACL,Yes,Language,Benchmark LAVIS: A One-stop Library for Language-Vision Intelligence,"We introduce LAVIS, an open-source deep learning library for LAnguage-VISion research and applications. LAVIS aims to serve as a one-stop comprehensive library that brings recent advancements in the language-vision field accessible for researchers and practitioners, as well as fertilizing future research and development. It features a unified interface to easily access state-of-the-art image-language, video-language models and common datasets. LAVIS supports training, evaluation and benchmarking on a rich variety of tasks, including multimodal classification, retrieval, captioning, visual question answering, dialogue and pre-training. In the meantime, the library is also highly extensible and configurable, facilitating future development and customization. In this technical report, we describe design principles, key components and functionalities of the library, and also present benchmarking results across common language-vision tasks.",,2023,ACL,No,, Finspector: A Human-Centered Visual Inspection Tool for Exploring and Comparing Biases among Foundation Models,"Pre-trained transformer-based language models are becoming increasingly popular due to their exceptional performance on various benchmarks. However, concerns persist regarding the presence of hidden biases within these models, which can lead to discriminatory outcomes and reinforce harmful stereotypes. To address this issue, we propose Finspector, a human-centered visual inspection tool designed to detect biases in different categories through log-likelihood scores generated by language models. The goal of the tool is to enable researchers to easily identify potential biases using visual analytics, ultimately contributing to a fairer and more just deployment of these models in both academic and industrial settings. Finspector is available at https://github.com/IBM/finspector.",,2023,ACL,No,, PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development,"The field of Question Answering (QA) has made remarkable progress in recent years, thanks to the advent of large pre-trained language models, newer realistic benchmark datasets with leaderboards, and novel algorithms for key components such as retrievers and readers. In this paper, we introduce PrimeQA: a one-stop and open-source QA repository with an aim to democratize QA research and facilitate easy replication of state-of-the-art (SOTA) QA methods. PrimeQA supports core QA functionalities like retrieval and reading comprehension as well as auxiliary capabilities such as question generation. It has been designed as an end-to-end toolkit for various use cases: building front-end applications, replicating SOTA methods on public benchmarks, and expanding pre-existing methods. PrimeQA is available at: https://github.com/primeqa.",,2023,ACL,No,, UINAUIL: A Unified Benchmark for Italian Natural Language Understanding,"This paper introduces the Unified Interactive Natural Understanding of the Italian Language (UINAUIL), a benchmark of six tasks for Italian Natural Language Understanding. We present a description of the tasks and software library that collects the data from the European Language Grid, harmonizes the data format, and exposes functionalities to facilitates data manipulation and the evaluation of custom models. We also present the results of tests conducted with available Italian and multilingual language models on UINAUIL, providing an updated picture of the current state of the art in Italian NLU.",,2023,ACL,Yes,Language,Benchmark Zshot: An Open-source Framework for Zero-Shot Named Entity Recognition and Relation Extraction,"The Zero-Shot Learning (ZSL) task pertains to the identification of entities or relations in texts that were not seen during training. ZSL has emerged as a critical research area due to the scarcity of labeled data in specific domains, and its applications have grown significantly in recent years. With the advent of large pretrained language models, several novel methods have been proposed, resulting in substantial improvements in ZSL performance. There is a growing demand, both in the research community and industry, for a comprehensive ZSL framework that facilitates the development and accessibility of the latest methods and pretrained models. In this study, we propose a novel ZSL framework called Zshot that aims to address the aforementioned challenges. Our primary objective is to provide a platform that allows researchers to compare different state-of-the-art ZSL methods with standard benchmark datasets. Additionally, we have designed our framework to support the industry with readily available APIs for production under the standard SpaCy NLP pipeline. Our API is extendible and evaluable, moreover, we include numerous enhancements such as boosting the accuracy with pipeline ensembling and visualization utilities available as a SpaCy extension.",,2023,ACL,No,, Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models,"Natural Language Inference (NLI) tasks involving temporal inference remain challenging for pre-trained language models (LMs). Although various datasets have been created for this task, they primarily focus on English and do not address the need for resources in other languages. It is unclear whether current LMs realize the generalization capacity for temporal inference across languages. In this paper, we present Jamp, a Japanese NLI benchmark focused on temporal inference. Our dataset includes a range of temporal inference patterns, which enables us to conduct fine-grained analysis. To begin the data annotation process, we create diverse inference templates based on the formal semantics test suites. We then automatically generate diverse NLI examples by using the Japanese case frame dictionary and well-designed templates while controlling the distribution of inference patterns and gold labels. We evaluate the generalization capacities of monolingual/multilingual LMs by splitting our dataset based on tense fragments (i.e., temporal inference patterns). Our findings demonstrate that LMs struggle with specific linguistic phenomena, such as habituality, indicating that there is potential for the development of more effective NLI models across languages.",,2023,ACL,Yes,Language,Benchmark The Turing Quest: Can Transformers Make Good NPCs?,"In this paper, we study the viability of the deployment of language models towards non-playable character (NPC) scripts, by introducing a novel pipeline for the automatic construction of NPC scripts using Transformer-based believable scripts for a variety of game genres and specifications. In addition, we propose a self-diagnosis method inspired by previous work to develop language models, tailored specifically to desirable NPC qualities such as coherency, believability, and degree of repetition. Finally, we propose a new benchmark, called The Turing Quest, which we use to show that the pipeline, when applied to GPT-3, can generate for a variety of game genres and contexts, NPC scripts that can fool judges in thinking they have been written by humans. We believe that these findings can greatly benefit both the gaming industry and its global community of users, since many current games continue to base their NPCs on manually-curated scripts that are resource-demanding and may curb the immersiveness and enjoyment of the user.",,2023,ACL,Yes,Language,Methodological Data Selection for Fine-tuning Large Language Models Using Transferred Shapley Values,"Although Shapley values have been shown to be highly effective for identifying harmful training instances, dataset size and model complexity constraints limit the ability to apply Shapley-based data valuation to fine-tuning large pre-trained language models. To address this, we propose TS-DShapley, an algorithm that reduces computational cost of Shapley-based data valuation through: 1) an efficient sampling-based method that aggregates Shapley values computed from subsets for valuation of the entire training set, and 2) a value transfer method that leverages value information extracted from a simple classifier trained using representations from the target language model. Our experiments applying TS-DShapley to select data for fine-tuning BERT-based language models on benchmark natural language understanding (NLU) datasets show that TS-DShapley outperforms existing data selection methods. Further, TS-DShapley can filter fine-tuning data to increase language model performance compared to training with the full fine-tuning dataset.",,2023,ACL,No,, Semantic Accuracy in Natural Language Generation: A Thesis Proposal,"With the fast-growing popularity of current large pre-trained language models (LLMs), it is necessary to dedicate efforts to making them more reliable. In this thesis proposal, we aim to improve the reliability of natural language generation systems (NLG) by researching the semantic accuracy of their outputs. We look at this problem from the outside (evaluation) and from the inside (interpretability). We propose a novel method for evaluating semantic accuracy and discuss the importance of working towards a unified and objective benchmark for NLG metrics. We also review interpretability approaches which could help us pinpoint the sources of inaccuracies within the models and explore potential mitigation strategies.",,2023,ACL,No,, CWSeg: An Efficient and General Approach to Chinese Word Segmentation,"In this work, we report our efforts in advancing Chinese Word Segmentation for the purpose of rapid deployment in different applications. The pre-trained language model (PLM) based segmentation methods have achieved state-of-the-art (SOTA) performance, whereas this paradigm also poses challenges in the deployment. It includes the balance between performance and cost, segmentation ambiguity due to domain diversity and vague words boundary, and multi-grained segmentation. In this context, we propose a simple yet effective approach, namely CWSeg, to augment PLM-based schemes by developing cohort training and versatile decoding strategies. Extensive experiments on benchmark datasets demonstrate the efficiency and generalization of our approach. The corresponding segmentation system is also implemented for practical usage and the demo is recorded.",,2023,ACL,No,, Boosting Transformers and Language Models for Clinical Prediction in Immunotherapy,"Clinical prediction is an essential task in the healthcare industry. However, the recent success of transformers, on which large language models are built, has not been extended to this domain. In this research, we explore the use of transformers and language models in prognostic prediction for immunotherapy using real-world patients’ clinical data and molecular profiles. This paper investigates the potential of transformers to improve clinical prediction compared to conventional machine learning approaches and addresses the challenge of few-shot learning in predicting rare disease areas. The study benchmarks the efficacy of baselines and language models on prognostic prediction across multiple cancer types and investigates the impact of different pretrained language models under few-shot regimes. The results demonstrate significant improvements in accuracy and highlight the potential of NLP in clinical research to improve early detection and intervention for different diseases.",,2023,ACL,No,, A Static Evaluation of Code Completion by Large Language Models,"Large language models trained on code have shown great potential to increase productivity of software developers. Several execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems. Nevertheless, it is expensive to perform the same evaluation on complex real-world projects considering the execution cost. On the other hand, static analysis tools such as linters, which can detect errors without running the program, haven’t been well explored for evaluating code generation models. In this work, we propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees. Compared with execution-based evaluation, our method is not only more efficient, but also applicable to code in the wild. For experiments, we collect code context from open source repos to generate one million function bodies using public models. Our static analysis reveals that Undefined Name and Unused Variable are the most common errors among others made by language models. Through extensive studies, we also show the impact of sampling temperature, model size, and context on static errors in code completions.",,2023,ACL,No,, SaFER: A Robust and Efficient Framework for Fine-tuning BERT-based Classifier with Noisy Labels,"Learning on noisy datasets is a challenging problem when pre-trained language models are applied to real-world text classification tasks. In numerous industrial applications, acquiring task-specific datasets with 100% accurate labels is difficult, thus many datasets are accompanied by label noise at different levels. Previous work has shown that existing noise-handling methods could not improve the peak performance of BERT on noisy datasets, and might even deteriorate it. In this paper, we propose SaFER, a robust and efficient fine-tuning framework for BERT-based text classifiers, combating label noises without access to any clean data for training or validation. Utilizing a label-agnostic early-stopping strategy and self-supervised learning, our proposed framework achieves superior performance in terms of both accuracy and speed on multiple text classification benchmarks. The trained model is finally fully deployed in several industrial biomedical literature mining tasks and demonstrates high effectiveness and efficiency.",,2023,ACL,No,, Chemical Language Understanding Benchmark,"In this paper, we introduce the benchmark datasets named CLUB (Chemical Language Understanding Benchmark) to facilitate NLP research in the chemical industry. We have 4 datasets consisted of text and token classification tasks. As far as we have recognized, it is one of the first examples of chemical language understanding benchmark datasets consisted of tasks for both patent and literature articles provided by industrial organization. All the datasets are internally made by chemists from scratch. Finally, we evaluate the datasets on the various language models based on BERT and RoBERTa, and demonstrate the model performs better when the domain of the pretrained models are closer to chemistry domain. We provide baselines for our benchmark as 0.8054 in average, and we hope this benchmark is used by many researchers in both industry and academia.",,2023,ACL,Yes,Language,Benchmark HyperT5: Towards Compute-Efficient Korean Language Modeling,"Pretraining and fine-tuning language models have become the standard practice in industrial natural language processing (NLP), but developing and deploying general-purpose language models without the abundant computation or data resources is a real-world issue faced by smaller organizations or communities whose main focus is languages with less accessible resources (e.g., non-English). This paper explores the sequence-to-sequence (seq2seq) language model architecture as a more practical and compute-efficient alternative to the decoder-oriented approach (e.g., GPT-3), accompanied by novel findings in compute-optimality analyses. We successfully trained billion-scale Korean-language seq2seq language models that strongly outperform other competitive models in Korean benchmarks. Moreover, we demonstrate that such language models can be more efficiently utilized by employing a heavy pre-finetuning strategy, by showcasing a case study on dialog-task adaptation. Our case study shows that adopting language models with more readily available domain-specific unlabeled data greatly improves fine-tuning data efficiency in low-resource settings.",,2023,ACL,No,, BADGE: Speeding Up BERT Inference after Deployment via Block-wise Bypasses and Divergence-based Early Exiting,"Early exiting can reduce the average latency of pre-trained language models (PLMs) via its adaptive inference mechanism and work with other inference speed-up methods like model pruning, thus drawing much attention from the industry. In this work, we propose a novel framework, BADGE, which consists of two off-the-shelf methods for improving PLMs’ early exiting. We first address the issues of training a multi-exit PLM, the backbone model for early exiting. We propose the novel architecture of block-wise bypasses, which can alleviate the conflicts in jointly training multiple intermediate classifiers and thus improve the overall performances of multi-exit PLM while introducing negligible additional flops to the model. Second, we propose a novel divergence-based early exiting (DGE) mechanism, which obtains early exiting signals by comparing the predicted distributions of two adjacent layers’ exits. Extensive experiments on three proprietary datasets and three GLUE benchmark tasks demonstrate that our method can obtain a better speedup-performance trade-off than the existing baseline methods.\footnote{Code will be made publicly available to the research community upon acceptance.}",,2023,ACL,No,, Evaluating Embedding APIs for Information Retrieval,"The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval.",,2023,ACL,No,, KAFA: Rethinking Image Ad Understanding with Knowledge-Augmented Feature Adaptation of Vision-Language Models,"Image ad understanding is a crucial task with wide real-world applications. Although highly challenging with the involvement of diverse atypical scenes, real-world entities, and reasoning over scene-texts, how to interpret image ads is relatively under-explored, especially in the era of foundational vision-language models (VLMs) featuring impressive generalizability and adaptability. In this paper, we perform the first empirical study of image ad understanding through the lens of pre-trained VLMs. We benchmark and reveal practical challenges in adapting these VLMs to image ad understanding. We propose a simple feature adaptation strategy to effectively fuse multimodal information for image ads and further empower it with knowledge of real-world entities. We hope our study draws more attention to image ad understanding which is broadly relevant to the advertising industry.",,2023,ACL,No,, Let’s Think Frame by Frame with VIP: A Video Infilling and Prediction Dataset for Evaluating Video Chain-of-Thought,"Despite exciting recent results showing vision-language systems’ capacity to reason about images using natural language, their capacity for video reasoning remains underexplored. We motivate framing video reasoning as the sequential understanding of a small number of keyframes, thereby leveraging the power and robustness of vision-language while alleviating the computational complexities of processing videos. To evaluate this novel application, we introduce VIP, an inference-time challenge dataset designed to explore models’ reasoning capabilities through video chain-of-thought. Inspired by visually descriptive scene plays, we propose two formats for keyframe description: unstructured dense captions and structured scene descriptions that identify the focus, action, mood, objects, and setting (FAMOuS) of the keyframe. To evaluate video reasoning, we propose two tasks: Video Infilling and Video Prediction, which test abilities to generate multiple intermediate keyframes and predict future keyframes, respectively. We benchmark GPT-4, GPT-3, and VICUNA on VIP, demonstrate the performance gap in these complex video reasoning tasks, and encourage future work to prioritize language models for efficient and generalized video reasoning.",,2023,ACL,Yes,Video, Parameter-efficient Tuning for Large Language Model without Calculating Its Gradients,"Fine-tuning all parameters of large language models (LLMs) requires significant computational resources and is time-consuming. Recent parameter-efficient tuning methods such as Adapter tuning, Prefix tuning, and LoRA allow for updating a small subset of parameters in large language models. However, they can only save approximately 30% of the training memory requirements, due to the problem that gradient computation and backpropagation are still necessary for these methods. This paper proposes a novel parameter-efficient tuning method for LLMs without calculating their gradients. Leveraging the discernible similarities between the parameter-efficient modules of the same task learned by both large and small language models, we put forward a strategy for transferring the parameter-efficient modules, originally derived from small language models to much larger ones. To ensure a smooth and effective adaptation process, we further introduce a Bridge model to guarantee dimensional consistency while also stimulating a dynamic interaction between the models. We demonstrate the effectiveness of our method using the T5 and GPT-2 series of language models on the SuperGLUE benchmark. Our method achieves comparable performance to both fine-tuning and parameter-efficient tuning on large language models without needing gradient-based optimization. Additionally, our method achieves up to 5.7x memory reduction compared to parameter-efficient tuning.",,2023,ACL,No,, Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning,"Temporal knowledge graph (TKG) forecasting benchmarks challenge models to predict future facts using knowledge of past facts. In this paper, we develop an approach to use in-context learning (ICL) with large language models (LLMs) for TKG forecasting. Our extensive evaluation compares diverse baselines, including both simple heuristics and state-of-the-art (SOTA) supervised models, against pre-trained LLMs across several popular benchmarks and experimental settings. We observe that naive LLMs perform on par with SOTA models, which employ carefully designed architectures and supervised training for the forecasting task, falling within the (-3.6%, +1.5%) Hits@1 margin relative to the median performance. To better understand the strengths of LLMs for forecasting, we explore different approaches for selecting historical facts, constructing prompts, controlling information propagation, and parsing outputs into a probability distribution. A surprising finding from our experiments is that LLM performance endures (\pm0.4% Hit@1) even when semantic information is removed by mapping entities/relations to arbitrary numbers, suggesting that prior semantic knowledge is unnecessary; rather, LLMs can leverage the symbolic patterns in the context to achieve such a strong performance. Our analysis also reveals that ICL enables LLMs to learn irregular patterns from the historical context, going beyond frequency and recency biases",,2023,ACL,No,, We’re Afraid Language Models Aren’t Modeling Ambiguity,"Ambiguity is an intrinsic feature of natural language. Managing ambiguity is a key part of human language understanding, allowing us to anticipate misunderstanding as communicators and revise our interpretations as listeners. As language models are increasingly employed as dialogue interfaces and writing aids, handling ambiguous language is critical to their success. We capture ambiguity in a sentence through its effect on entailment relations with another sentence, and collect AmbiEnt, a linguist-annotated benchmark of 1,645 examples with diverse kinds of ambiguity. We design a suite of tests based on AmbiEnt, presenting the first evaluation of pretrained LMs to recognize ambiguity and disentangle possible meanings. We find that the task remains extremely challenging, including for GPT-4, whose generated disambiguations are considered correct only 32% of the time in crowdworker evaluation, compared to 90% for disambiguations in our dataset. Finally, to illustrate the value of ambiguity-sensitive tools, we show that a multilabel NLI model can flag political claims in the wild that are misleading due to ambiguity. We encourage the field to rediscover the importance of ambiguity for NLP.",,2023,ACL,Yes,Language,Benchmark Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for Improved Vision-Language Compositionality,"Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning. However, recent research has highlighted severe limitations of these models in their ability to perform compositional reasoning over objects, attributes, and relations. Scene graphs have emerged as an effective way to understand images compositionally. These are graph-structured semantic representations of images that contain objects, their attributes, and relations with other objects in a scene. In this work, we consider the scene graph parsed from text as a proxy for the image scene graph and propose a graph decomposition and augmentation framework along with a coarse-to-fine contrastive learning objective between images and text that aligns sentences of various complexities to the same image. We also introduce novel negative mining techniques in the scene graph space for improving attribute binding and relation understanding. Through extensive experiments, we demonstrate the effectiveness of our approach that significantly improves attribute binding, relation understanding, systematic generalization, and productivity on multiple recently proposed benchmarks (For example, improvements up to \mathbf{18}% for systematic generalization, \mathbf{16.5}% for relation understanding over a strong baseline), while achieving similar or better performance than CLIP on various general multimodal tasks.",,2023,ACL,No,, "Reading Books is Great, But Not if You Are Driving! Visually Grounded Reasoning about Defeasible Commonsense Norms","Commonsense norms are defeasible by context: reading books is usually great, but not when driving a car. While contexts can be explicitly described in language, in embodied scenarios, contexts are often provided visually. This type of visually grounded reasoning about defeasible commonsense norms is generally easy for humans, but (as we show) poses a challenge for machines, as it necessitates both visual understanding and reasoning about commonsense norms. We construct a new multimodal benchmark for studying commonsense norms: NormLens. NormLens consists of 10K human judgments accompanied by free-form explanations covering 2K multimodal situations, and serves as a probe to address two questions: (1) to what extent can models align with average human judgment? and (2) how well can models explain their predicted judgments? We find that state-of-the-art model judgments and explanations are not well-aligned with human annotation. Additionally, we present a simple yet effective approach to better align models with humans by distilling social commonsense knowledge from large language models. The data and code will be released.",,2023,ACL,Yes,Multimodal, FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual Knowledge,"Evaluating the factual consistency of automatically generated summaries is essential for the progress and adoption of reliable summarization systems. Despite recent advances, existing factuality evaluation models are not robust, being especially prone to entity and relation errors in new domains. We propose FactKB—a simple new approach to factuality evaluation that is generalizable across domains, in particular with respect to entities and relations. FactKB is based on language models pretrained using facts extracted from external knowledge bases. We introduce three types of complementary factuality pretraining objectives based on entity-specific facts, facts extracted from auxiliary knowledge about entities, and facts constructed compositionally through knowledge base walks. The resulting factuality evaluation model achieves state-of-the-art performance on two in-domain news summarization benchmarks as well as on three out-of-domain scientific literature datasets. Further analysis of FactKB shows improved ability to detect erroneous entities and relations in summaries and is robust and easily generalizable across domains.",,2023,ACL,Yes,Language,Methodological Symbol tuning improves in-context learning in language models,"We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., “positive/negative sentiment”) are replaced with arbitrary symbols (e.g., “foo/bar”). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior knowledge.",,2023,ACL,No,, CodeT5+: Open Code Large Language Models for Code Understanding and Generation,"Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks, lacking the flexibility to operate in the optimal architecture for a specific task. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some tasks and hence result in substantial performance degrade. To address these limitations, we propose “CodeT5+”, a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives, which cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) performance on various code-related tasks, and our instruction-tuned CodeT5+ 16B achieves new SoTA results of 35.0% pass@1 and 54.5% pass@10 on the HumanEval code generation task against other open code LLMs, even surpassing the OpenAI code-cushman-001 model.",,2023,ACL,No,, QTSumm: Query-Focused Summarization over Tabular Data,"People primarily consult tables to conduct data analysis or answer specific questions. Text generation systems that can provide accurate table summaries tailored to users’ information needs can facilitate more efficient access to relevant data insights. Motivated by this, we define a new query-focused table summarization task, where text generation models have to perform human-like reasoning and analysis over the given table to generate a tailored summary. We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables covering diverse topics. We investigate a set of strong baselines on QTSumm, including text generation, table-to-text generation, and large language models. Experimental results and manual analysis reveal that the new task presents significant challenges in table-to-text generation for future research. Moreover, we propose a new approach named ReFactor, to retrieve and reason over query-relevant information from tabular data to generate several natural language facts. Experimental results demonstrate that ReFactor can bring effective improvements to baselines by concatenating the generated facts to the model input. Our data and code are publicly available at https://github.com/yale-nlp/QTSumm.",,2023,ACL,Yes,Language,Benchmark Length is a Curse and a Blessing for Document-level Semantics,"In recent years, contrastive learning (CL) has been extensively utilized to recover sentence and document-level encoding capability from pre-trained language models. In this work, we question the length generalizability of CL-based models, i.e., their vulnerability towards length-induced semantic shift. We verify not only that length vulnerability is a significant yet overlooked research gap, but we can devise unsupervised CL methods solely depending on the semantic signal provided by document length. We first derive the theoretical foundations underlying length attacks, showing that elongating a document would intensify the high intra-document similarity that is already brought by CL. Moreover, we found that isotropy promised by CL is highly dependent on the length range of text exposed in training. Inspired by these findings, we introduce a simple yet universal document representation learning framework, **LA(SER)^3**: length-agnostic self-reference for semantically robust sentence representation learning, achieving state-of-the-art unsupervised performance on the standard information retrieval benchmark. [Our code is publicly available.](https://github.com/gowitheflow-1998/LA-SER-cubed)",,2023,ACL,No,, ALCUNA: Large Language Models Meet New Knowledge,"With the rapid development of NLP, large-scale language models (LLMs) excel in various tasks across multiple domains now. However, existing benchmarks may not adequately measure these models’ capabilities, especially when faced with new knowledge. In this paper, we address the lack of benchmarks to evaluate LLMs’ ability to handle new knowledge, an important and challenging aspect in the rapidly evolving world. We propose an approach called KnowGen that generates new knowledge by altering existing entity attributes and relationships, resulting in artificial entities that are distinct from real-world entities. With KnowGen, we introduce a benchmark named ALCUNA to assess LLMs’ abilities in knowledge understanding, differentiation, and association. We benchmark several LLMs, reveals that their performance in face of new knowledge is not satisfactory, particularly in reasoning between new and internal knowledge. We also explore the impact of entity similarity on the model’s understanding of entity knowledge and the influence of contextual entities. We appeal to the need for caution when using LLMs in new scenarios or with new knowledge, and hope that our benchmarks can help drive the development of LLMs in face of new knowledge.",,2023,ACL,Yes,Language,Benchmark Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs,"Recent work in Natural Language Processing and Computer Vision has been using textual information – e.g., entity names and descriptions – available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Completion (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.",,2023,ACL,Yes,Language,Methodological Knowledge-Augmented Language Model Verification,"Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since their knowledge may be inaccurate, incomplete, and outdated. To address this problem, previous works propose to augment LMs with the knowledge retrieved from an external knowledge source. However, such approaches often show suboptimal text generation performance due to two reasons: 1) the model may fail to retrieve the knowledge relevant to the given query, or 2) the model may not faithfully reflect the retrieved knowledge in the generated text. To overcome these, we propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier, which is a small LM that is trained to detect those two types of errors through instruction-finetuning. Then, when the verifier recognizes an error, we can rectify it by either retrieving new knowledge or generating new text. Further, we use an ensemble of the outputs from different instructions with a single verifier to enhance the reliability of the verification processes. We validate the effectiveness of the proposed verification steps on multiple question answering benchmarks, whose results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs. Our code is available at https://github.com/JinheonBaek/KALMV.",,2023,ACL,No,, Augmenting Zero-Shot Dense Retrievers with Plug-in Mixture-of-Memories,"In this paper we improve the zero-shot generalization ability of language models via Mixture-Of-Memory Augmentation (MoMA), a mechanism that retrieves augmentation documents from multiple information corpora (external memories), with the option to “plug in” unseen memory at inference time. We develop a joint learning mechanism that trains the augmentation component with latent labels derived from the end retrieval task, paired with hard negatives from the memory mixture. We instantiate the model in a zero-shot dense retrieval setting by augmenting strong T5-based retrievers with MoMA. With only T5-base, our model obtains strong zero-shot retrieval accuracy on the eighteen tasks included in the standard BEIR benchmark, outperforming some systems with larger model sizes. As a plug-in-play model, our model can efficiently generalize to any unseen corpus, meanwhile achieving comparable or even better performance than methods relying on target-specific pretraining. Our analysis further illustrates the necessity of augmenting with mixture-of-memory for robust generalization, the benefits of augmentation learning, and how MoMA utilizes the plug-in memory at inference time without changing its parameters. Our code can be found at https://github.com/gesy17/MoMA.",,2023,ACL,No,, DUnE: Dataset for Unified Editing,"Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model’s knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. “Messi plays for Inter Miami” confining the definition of an edit to a knowledge triplet i.e. (subject, object, relation). However, as the applications of language models expand, so do the diverse ways in which we wish to edit and refine their outputs. In this study, we broaden the scope of the editing problem to include an array of editing cases such as debiasing and rectifying reasoning errors and define an edit as any natural language expression that solicits a change in the model’s outputs. We are introducing DUnE, an editing benchmark where edits are natural language sentences and propose that DUnE presents a challenging yet relevant task. To substantiate this claim, we conduct an extensive series of experiments testing various editing approaches to address DUnE, demonstrating their respective strengths and weaknesses. We argue that retrieval-augmented language modeling can outperform specialized editing techniques and neither set of approaches has fully solved the generalized editing problem covered by our benchmark.",,2023,ACL,Yes,Language,Benchmark OpenAsp: A Benchmark for Multi-document Open Aspect-based Summarization,"The performance of automatic summarization models has improved dramatically in recent years. Yet, there is still a gap in meeting specific information needs of users in real-world scenarios, particularly when a targeted summary is sought, such as in the useful aspect-based summarization setting targeted in this paper. Previous datasets and studies for this setting have predominantly concentrated on a limited set of pre-defined aspects, focused solely on single document inputs, or relied on synthetic data. To advance research on more realistic scenarios, we introduce OpenAsp, a benchmark for multi-document open aspect-based summarization. This benchmark is created using a novel and cost-effective annotation protocol, by which an open aspect dataset is derived from existing generic multi-document summarization datasets. We analyze the properties of OpenAsp showcasing its high-quality content. Further, we show that the realistic open-aspect setting realized in OpenAsp poses a challenge for current state-of-the-art summarization models, as well as for large language models.",,2023,ACL,Yes,Language,Benchmark TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models,"Factual consistency evaluation is often conducted using Natural Language Inference (NLI) models, yet these models exhibit limited success in evaluating summaries. Previous work improved such models with synthetic training data. However, the data is typically based on perturbed human-written summaries, which often differ in their characteristics from real model-generated summaries and have limited coverage of possible factual errors. Alternatively, large language models (LLMs) have recently shown promising results in directly evaluating generative tasks, but are too computationally expensive for practical use. Motivated by these limitations, we introduce TrueTeacher, a method for generating synthetic data by annotating diverse model-generated summaries using a LLM. Unlike prior work, TrueTeacher does not rely on human-written summaries, and is multilingual by nature. Experiments on the TRUE benchmark show that a student model trained using our data, substantially outperforms both the state-of-the-art model with similar capacity, and the LLM teacher. In a systematic study, we compare TrueTeacher to existing synthetic data generation methods and demonstrate its superiority and robustness to domain-shift. We also show that our method generalizes to multilingual scenarios. Lastly, we release our large scale synthetic dataset (1.4M examples), generated using TrueTeacher, and a checkpoint trained on this data.",,2023,ACL,No,, Larger Probes Tell a Different Story: Extending Psycholinguistic Datasets Via In-Context Learning,"Language model probing is often used to test specific capabilities of models. However, conclusions from such studies may be limited when the probing benchmarks are small and lack statistical power. In this work, we introduce new, larger datasets for negation (NEG-1500-SIMP) and role reversal (ROLE-1500) inspired by psycholinguistic studies. We dramatically extend existing NEG-136 and ROLE-88 benchmarks using GPT3, increasing their size from 18 and 44 sentence pairs to 750 each. We also create another version of extended negation dataset (NEG-1500-SIMP-TEMP), created using template-based generation. It consists of 770 sentence pairs. We evaluate 22 models on the extended datasets, seeing model performance dip 20-57% compared to the original smaller benchmarks. We observe high levels of negation sensitivity in models like BERT and ALBERT demonstrating that previous findings might have been skewed due to smaller test sets. Finally, we observe that while GPT3 has generated all the examples in ROLE-1500 is only able to solve 24.6% of them during probing. The datasets and code are available on Github.",,2023,ACL,Yes,Language,Benchmark Counter Turing Test (CT2): AI-Generated Text Detection is Not as Easy as You May Think - Introducing AI Detectability Index (ADI),"With the rise of prolific ChatGPT, the risk and consequences of AI-generated text has increased alarmingly. This triggered a series of events, including an open letter, signed by thousands of researchers and tech leaders in March 2023, demanding a six-month moratorium on the training of AI systems more sophisticated than GPT-4. To address the inevitable question of ownership attribution for AI-generated artifacts, the US Copyright Office released a statement stating that “if the content is traditional elements of authorship produced by a machine, the work lacks human authorship and the office will not register it for copyright”. Furthermore, both the US and the EU governments have recently drafted their initial proposals regarding the regulatory framework for AI. Given this cynosural spotlight on generative AI, AI-generated text detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by the emergence of techniques to bypass detection. This paper introduces the Counter Turing Test (CT2), a benchmark consisting of techniques aiming to offer a comprehensive evaluation of the robustness of existing AGTD techniques. Our empirical findings unequivocally highlight the fragility of the proposed AGTD methods under scrutiny. Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess the detectability of content generated by LLMs. Thus, to establish a quantifiable spectrum facilitating the evaluation and ranking of LLMs according to their detectability levels, we propose the AI Detectability Index (ADI). We conduct a thorough examination of 15 contemporary LLMs, empirically demonstrating that larger LLMs tend to have a lower ADI, indicating they are less detectable compared to smaller LLMs. We firmly believe that ADI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making.",,2023,ACL,Yes,Language,Benchmark The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions,"Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between academic research in NLP and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as “design” and “planning” are prevalent in user interactions but largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges, and provide insights toward a roadmap to make LLMs better aligned with user needs.",,2023,ACL,No,, TempTabQA: Temporal Question Answering for Semi-Structured Tables,"Semi-structured data, such as Infobox tables, often include temporal information about entities, either implicitly or explicitly. Can current NLP systems reason about such information in semi-structured tables? To tackle this question, we introduce the task of temporal question answering on semi-structured tables. We present a dataset, TEMPTABQA, which comprises 11,454 question-answer pairs extracted from 1,208 Wikipedia Infobox tables spanning more than 90 distinct domains. Using this dataset, we evaluate several state-of-the-art models for temporal reasoning. We observe that even the top-performing LLMs lag behind human performance by more than 13.5 F1 points. Given these results, our dataset has the potential to serve as a challenging benchmark to improve the temporal reasoning capabilities of NLP models.",,2023,ACL,Yes,Language,Benchmark RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation,"The task of repository-level code completion is to continue writing the unfinished code based on a broader context of the repository. While for automated code completion tools, it is difficult to utilize the useful information scattered in different files. We propose RepoCoder, a simple, generic, and effective framework to address the challenge. It streamlines the repository-level code completion process by incorporating a similarity-based retriever and a pre-trained code language model in an iterative retrieval-generation pipeline. RepoCoder makes effective utilization of repository-level information for code completion and has the ability to generate code at various levels of granularity. Moreover, we propose a new benchmark RepoBench, which consists of the latest and high-quality real-world repositories covering line, API invocation, and function body completion scenarios. Experimental results indicate that RepoCoder significantly improves the In-File completion baseline by over 10% in all settings and consistently outperforms the vanilla retrieval-augmented code completion approach. Furthermore, we validate the effectiveness of RepoCoder through comprehensive analysis, providing valuable insights for future research. Our source code and benchmark will be publicly available after the paper review.",,2023,ACL,Yes,Language,Methodological Analyzing Modular Approaches for Visual Question Decomposition,"Modular neural networks without additional training have recently been shown to surpass end-to-end neural networks on challenging vision–language tasks. The latest such methods simultaneously introduce LLM-based code generation to build programs and a number of skill-specific, task-oriented modules to execute them. In this paper, we focus on ViperGPT and ask where its additional performance comes from and how much is due to the (state-of-art, end-to-end) BLIP-2 model it subsumes vs. additional symbolic components. To do so, we conduct a controlled study (comparing end-to-end, modular, and prompting-based methods across several VQA benchmarks). We find that ViperGPT’s reported gains over BLIP-2 can be attributed to its selection of task-specific modules, and when we run ViperGPT using a more task-agnostic selection of modules, these gains go away. ViperGPT retains much of its performance if we make prominent alterations to its selection of modules: e.g. removing or retaining only BLIP-2. We also compare ViperGPT against a prompting-based decomposition strategy and find that, on some benchmarks, modular approaches significantly benefit by representing subtasks with natural language, instead of code. Our code is fully available at https://github.com/brown-palm/visual-question-decomposition.",,2023,ACL,No,, The Skipped Beat: A Study of Sociopragmatic Understanding in LLMs for 64 Languages,"Instruction tuned large language models (LLMs), such as ChatGPT, demonstrate remarkable performance in a wide range of tasks. Despite numerous recent studies that examine the performance of instruction-tuned LLMs on various NLP benchmarks, there remains a lack of comprehensive investigation into their ability to understand cross-lingual sociopragmatic meaning (SM), i.e., meaning embedded within social and interactive contexts. This deficiency arises partly from SM not being adequately represented in any of the existing benchmarks. To address this gap, we present SPARROW, an extensive multilingual benchmark specifically designed for SM understanding. SPARROW comprises 169 datasets covering 13 task types across six primary categories (e.g., anti-social language detection, emotion recognition). SPARROW datasets encompass 64 different languages originating from 12 language families representing 16 writing scripts. We evaluate the performance of various multilingual pretrained language models (e.g., mT5) and instruction-tuned LLMs (e.g., BLOOMZ, ChatGPT) on SPARROW through fine-tuning, zero-shot, and/or few-shot learning. Our comprehensive analysis reveals that existing open-source instruction tuned LLMs still struggle to understand SM across various languages, performing close to a random baseline in some cases. We also find that although ChatGPT outperforms many LLMs, it still falls behind task-specific finetuned models with a gap of 12.19 SPARROW score. Our benchmark is available at: https://github.com/UBC-NLP/SPARROW",,2023,ACL,Yes,Language,Benchmark Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Languages,"Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths, thus promoting reasoning accuracy and attracting increasing attention. Specifically, zero-shot CoT achieves remarkable improvements in a wide range of reasoning tasks by simply instructing the LLM with the prompt “Let’s think step by step!”. Despite the success of zero-shot CoT, the existing zero-shot prompting techniques remain limited to a single language, making it challenging to generalize to other languages and hindering global development. In this work, we introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages. Specifically, CLP consists of two main components: (1) cross-lingual alignment prompting and (2) task-specific solver prompting. The cross-lingual alignment prompting is responsible for aligning representations across different languages, whereas the task-specific solver prompting is used to generate the final chain of thoughts and results for the reasoning task. In addition, we further introduce cross-lingual self-consistent prompting (CLSP) to ensemble different reasoning paths across languages. Our experimental evaluations on several benchmarks demonstrate that CLP and CLSP significantly outperform the existing prompting methods and achieve state-of-the-art performance. We hope this work will inspire further breakthroughs in cross-lingual CoT.",,2023,ACL,No,, Critic-Driven Decoding for Mitigating Hallucinations in Data-to-text Generation,"Hallucination of text ungrounded in the input is a well-known problem in neural data-to-text generation. Many methods have been proposed to mitigate it, but they typically require altering model architecture or collecting additional data, and thus cannot be easily applied to an existing model. In this paper, we explore a new way to mitigate hallucinations by combining the probabilistic output of a generator language model (LM) with the output of a special “text critic” classifier, which guides the generation by assessing the match between the input data and the text generated so far. Our method does not need any changes to the underlying LM’s architecture or training procedure and can thus be combined with any model and decoding operating on word probabilities. The critic does not need any additional training data, using the base LM’s training data and synthetic negative examples. Our experimental results show that our method improves over the baseline on the WebNLG and OpenDialKG benchmarks.",,2023,ACL,No,, API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs,"Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs’ ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs’ capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca’s tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.",,2023,ACL,Yes,Language,Benchmark Lion: Adversarial Distillation of Proprietary Large Language Models,"The practice of transferring knowledge from a sophisticated, proprietary large language model (LLM) to a compact, open-source LLM has garnered considerable attention. Previous works have focused on a unidirectional knowledge distillation way by aligning the responses of the student model with those of the teacher model to a set of instructions. Nevertheless, they overlooked the possibility of incorporating any “feedback”–identifying challenging instructions where the student model’s performance falls short–to boost the student model’s proficiency iteratively. To this end, we propose a novel adversarial distillation framework for a more efficient knowledge transfer. Leveraging the versatile role adaptability of LLMs, we prompt the teacher model to identify “hard” instructions and generate new “hard” instructions for the student model, creating a three-stage adversarial loop of imitation, discrimination, and generation. By applying this adversarial framework, we successfully transfer knowledge from ChatGPT to a student model (named Lion), using a mere 70k training data. Our results show that Lion-13B not only achieves comparable open-ended generation capabilities to ChatGPT but surpasses conventional state-of-the-art (SOTA) instruction-tuned models like Vicuna-13B by 55.4% in challenging zero-shot reasoning benchmarks such as BIG-Bench Hard (BBH) and 16.7% on AGIEval.",,2023,ACL,No,, Evaluating Large Language Models on Controlled Generation Tasks,"While recent studies have looked into the abilities of large language models in various benchmark tasks, including question generation, reading comprehension, multilingual and etc, there have been few studies looking into the controllability of large language models on generation tasks. We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities. After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models. We conclude that *large language models struggle at meeting fine-grained hard constraints*.",,2023,ACL,No,, "DeSIQ: Towards an Unbiased, Challenging Benchmark for Social Intelligence Understanding","Social intelligence is essential for understanding and reasoning about human expressions, intents and interactions. One representative benchmark for its study is Social Intelligence Queries (Social-IQ), a dataset of multiple-choice questions on videos of complex social interactions. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. Our analysis reveals that Social-IQ contains substantial biases, which can be exploited by a moderately strong language model to learn spurious correlations to achieve perfect performance without being given the context or even the question. We introduce DeSIQ, a new challenging dataset, constructed by applying simple perturbations to Social-IQ. Our empirical analysis shows De-SIQ significantly reduces the biases in the original Social-IQ dataset. Furthermore, we examine and shed light on the effect of model size, model style, learning settings, commonsense knowledge, and multi-modality on the new benchmark performance. Our new dataset, observations and findings open up important research questions for the study of social intelligence.",,2023,ACL,Yes,Video, Oolong: Investigating What Makes Transfer Learning Hard with Controlled Studies,"When we transfer a pretrained language model to a new language, there are many axes of variation that change at once. To disentangle the impact of different factors like syntactic similarity and vocabulary similarity, we propose a set of controlled transfer studies: we systematically transform the language of the GLUE benchmark, altering one axis of crosslingual variation at a time, and then measure the resulting drops in a pretrained model’s downstream performance. We find that models can largely recover from syntactic-style shifts, but cannot recover from vocabulary misalignment and embedding matrix re-initialization, even with continued pretraining on 15 million tokens. Moreover, good-quality tokenizers in the transfer language do not make vocabulary alignment easier. Our experiments provide insights into the factors of cross-lingual transfer that researchers should most focus on when designing language transfer scenarios.",,2023,ACL,No,, TOD-Flow: Modeling the Structure of Task-Oriented Dialogues,"Task-Oriented Dialogue (TOD) systems have become crucial components in interactive artificial intelligence applications. While recent advances have capitalized on pre-trained language models (PLMs), they exhibit limitations regarding transparency and controllability. To address these challenges, we propose a novel approach focusing on inferring the TOD-flow graph from dialogue data annotated with dialog acts, uncovering the underlying task structure in the form of a graph. The inferred TOD-flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability. Our TOD-flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model’s prediction. We show that the proposed TOD-flow graph better resemble human-annotated graphs compared to prior approaches. Furthermore, when combined with several dialogue policies and end-to-end dialogue models, we demonstrate that our approach significantly improves dialog act classification and end-to-end response generation performance in the MultiWOZ and SGD benchmarks.",,2023,ACL,No,, Knowledge Rumination for Pre-trained Language Models,"Previous studies have revealed that vanilla pre-trained language models (PLMs) lack the capacity to handle knowledge-intensive NLP tasks alone; thus, several works have attempted to integrate external knowledge into PLMs. However, despite the promising outcome, we empirically observe that PLMs may have already encoded rich knowledge in their pre-trained parameters but fails to fully utilize them when applying to knowledge-intensive tasks. In this paper, we propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize that related latent knowledge without retrieving them from the external corpus. By simply adding a prompt like “As far as I know” to the PLMs, we try to review related latent knowledge and inject them back into the model for knowledge consolidation. We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3. Experimental results on six commonsense reasoning tasks and GLUE benchmarks demonstrate the effectiveness of our proposed approach, which proves that the knowledge stored in PLMs can be better exploited to enhance performance.",,2023,ACL,No,, Struct-XLM: A Structure Discovery Multilingual Language Model for Enhancing Cross-lingual Transfer through Reinforcement Learning,"Cross-lingual transfer learning heavily relies on well-aligned cross-lingual representations. The syntactic structure is recognized as beneficial for cross-lingual transfer, but limited researches utilize it for aligning representation in multilingual pre-trained language models (PLMs). Additionally, existing methods require syntactic labels that are difficult to obtain and of poor quality for low-resource languages. To address this gap, we propose Struct-XLM, a novel multilingual language model that leverages reinforcement learning (RL) to autonomously discover universal syntactic structures for improving the cross-lingual representation alignment of PLM. Struct-XLM integrates a policy network (PNet) and a translation ranking task. The PNet is designed to discover structural information and integrate it into the last layer of the PLM through the structural multi-head attention module to obtain structural representation. The translation ranking task obtains a delayed reward based on the structural representation to optimize the PNet while improving the alignment of cross-lingual representation. Experiments show the effectiveness of the proposed approach for enhancing cross-lingual transfer of multilingual PLM on the XTREME benchmark.",,2023,ACL,No,, ToViLaG: Your Visual-Language Generative Model is Also An Evildoer,"Recent large-scale Visual-Language Generative Models (VLGMs) have achieved unprecedented improvement in multimodal image/text generation. However, these models might also generate toxic content, e.g., offensive text and pornography images, raising significant ethical risks. Despite exhaustive studies on toxic degeneration of language models, this problem remains largely unexplored within the context of visual-language generation. This work delves into the propensity for toxicity generation and susceptibility to toxic data across various VLGMs. For this purpose, we built ToViLaG, a dataset comprising 32K co-toxic/mono-toxic text-image pairs and 1K innocuous but evocative text that tends to stimulate toxicity. Furthermore, we propose WInToRe, a novel toxicity metric tailored to visual-language generation, which theoretically reflects different aspects of toxicity considering both input and output. On such a basis, we benchmarked the toxicity of a diverse spectrum of VLGMs and discovered that some models do more evil than expected while some are more vulnerable to infection, underscoring the necessity of VLGMs detoxification. Therefore, we develop an innovative bottleneck-based detoxification method. Our method could reduce toxicity while maintaining comparable generation quality, providing a promising initial solution to this line of research.",,2023,ACL,Yes,Multimodal, INFORM : Information eNtropy based multi-step reasoning FOR large language Models,"Large language models (LLMs) have demonstrated exceptional performance in reasoning tasks with dedicated Chain-of-Thought (CoT) prompts. Further enhancing CoT prompts with exquisite exemplars can significantly improve reasoning performance.However, the effectiveness of CoT prompts may fluctuate dramatically with different choices of in-context examples. Additionally, manual construction of rationale steps can be time-consuming, presenting challenges for the widespread adoption of CoT prompting. In this work, we propose a novel approach by introducing information entropy (IE) as a criteria on for CoT prompt selection. We extend this criterion to the CoT generation and inference stages, automatically generating CoT prompts with higher information entropy scores and adaptively determining the number of samples. These three stages together form our proposed information- entropy-based multi-step reasoning for large language models, named INFORM. Our experiments across seven reasoning benchmarks utilizing two language models(GPT-3.5-Turbo and text-davinci-003) demonstrate the superiority of INFORM both in performance and efficiency.",,2023,ACL,No,, Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval,"Pre-trained language models (PLMs) have achieved the preeminent position in dense retrieval due to their powerful capacity in modeling intrinsic semantics. However, most existing PLM-based retrieval models encounter substantial computational costs and are infeasible for processing long documents. In this paper, a novel retrieval model Longtriever is proposed to embrace three core challenges of long document retrieval: substantial computational cost, incomprehensive document understanding, and scarce annotations. Longtriever splits long documents into short blocks and then efficiently models the local semantics within a block and the global context semantics across blocks in a tightly-coupled manner. A pre-training phase is further proposed to empower Longtriever to achieve a better understanding of underlying semantic correlations. Experimental results on two popular benchmark datasets demonstrate the superiority of our proposal.",,2023,ACL,No,, Revisiting De-Identification of Electronic Medical Records: Evaluation of Within- and Cross-Hospital Generalization,"The de-identification task aims to detect and remove the protected health information from electronic medical records (EMRs). Previous studies generally focus on the within-hospital setting and achieve great successes, while the cross-hospital setting has been overlooked. This study introduces a new de-identification dataset comprising EMRs from three hospitals in China, creating a benchmark for evaluating both within- and cross-hospital generalization. We find significant domain discrepancy between hospitals. A model with almost perfect within-hospital performance struggles when transferred across hospitals. Further experiments show that pretrained language models and some domain generalization methods can alleviate this problem. We believe that our data and findings will encourage investigations on the generalization of medical NLP models.",,2023,ACL,Yes,Language,Benchmark ROBBIE: Robust Bias Evaluation of Large Generative Language Models,"As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.",,2023,ACL,Yes,Language,Benchmark MEGA: Multilingual Evaluation of Generative AI,"Generative AI models have shown impressive performance on many Natural Language Processing tasks such as language understanding, reasoning, and language generation. An important question being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative LLMs have been restricted to English and it is unclear how capable these models are at understanding and generating text in other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 16 NLP datasets across 70 typologically diverse languages. We compare the performance of generative LLMs including Chat-GPT and GPT-4 to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and tasks and discuss challenges in improving the performance of generative LLMs on low-resource languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.",,2023,ACL,Yes,Language,Benchmark Large Language Models are Temporal and Causal Reasoners for Video Question Answering,"Large Language Models (LLMs) have shown remarkable performances on a wide range of natural language understanding and generation tasks. We observe that the LLMs provide effective priors in exploiting \textit{linguistic shortcuts} for temporal and causal reasoning in Video Question Answering (VideoQA). However, such priors often cause suboptimal results on VideoQA by leading the model to over-rely on questions, \textit{i.e.}, \textit{linguistic bias}, while ignoring visual content. This is also known as ‘ungrounded guesses’ or ‘hallucinations’. To address this problem while leveraging LLMs’ prior on VideoQA, we propose a novel framework, Flipped-VQA, encouraging the model to predict all the combinations of \langleV, Q, A\rangle triplet by flipping the source pair and the target label to understand their complex relationships, \textit{i.e.}, predict A, Q, and V given a VQ, VA, and QA pairs, respectively. In this paper, we develop LLaMA-VQA by applying Flipped-VQA to LLaMA, and it outperforms both LLMs-based and non-LLMs-based models on five challenging VideoQA benchmarks. Furthermore, our Flipped-VQA is a general framework that is applicable to various LLMs (OPT and GPT-J) and consistently improves their performances. We empirically demonstrate that Flipped-VQA not only enhances the exploitation of linguistic shortcuts but also mitigates the linguistic bias, which causes incorrect answers over-relying on the question. Code is available at https://github.com/mlvlab/Flipped-VQA.",,2023,ACL,No,, Merging Generated and Retrieved Knowledge for Open-Domain QA,"Open-domain question answering (QA) systems are often built with retrieval modules. However, retrieving passages from a given source is known to suffer from insufficient knowledge coverage. Alternatively, prompting large language models (LLMs) to generate contextual passages based on their parametric knowledge has been shown to improve QA performance. Yet, LLMs tend to “hallucinate” content that conflicts with the retrieved knowledge. Based on the intuition that answers supported by both sources are more likely to be correct, we propose COMBO, a Compatibility-Oriented knowledge Merging for Better Open-domain QA framework, to effectively leverage the two sources of information. Concretely, we match LLM-generated passages with retrieved counterparts into compatible pairs, based on discriminators trained with silver compatibility labels. Then a Fusion-in-Decoder-based reader model handles passage pairs to arrive at the final answer. Experiments show that COMBO outperforms competitive baselines on three out of four tested open-domain QA benchmarks. Further analysis reveals that our proposed framework demonstrates greater efficacy in scenarios with a higher degree of knowledge conflicts.",,2023,ACL,No,, Best of Both Worlds: Towards Improving Temporal Knowledge Base Question Answering via Targeted Fact Extraction,"Temporal question answering (QA) is a special category of complex question answering task that requires reasoning over facts asserting time intervals of events. Previous works have predominately relied on Knowledge Base Question Answering (KBQA) for temporal QA. One of the major challenges faced by these systems is their inability to retrieve all relevant facts due to factors such as incomplete KB and entity/relation linking errors. A failure to fetch even a single fact will block KBQA from computing the answer. Such cases of KB incompleteness are even more profound in the temporal context. To address this issue, we explore an interesting direction where a targeted temporal fact extraction technique is used to assist KBQA whenever it fails to retrieve temporal facts from the KB. We model the extraction problem as an open-domain question answering task using off-the-shelf language models. This way, we target to extract from textual resources those facts that failed to get retrieved from the KB. Experimental results on two temporal QA benchmarks show promising ~30% & ~10% relative improvements in answer accuracies without any additional training cost.",,2023,ACL,No,, Text encoders bottleneck compositionality in contrastive vision-language models,"Performant vision-language (VL) models like CLIP represent captions using a single vector. How much information about language is lost in this bottleneck? We first curate CompPrompts, a set of increasingly compositional image captions that VL models should be able to capture (e.g., single object, to object+property, to multiple interacting objects). Then, we train text-only recovery probes that aim to reconstruct captions from single-vector text representations produced by several VL models. This approach does not require images, allowing us to test on a broader range of scenes compared to prior work. We find that: 1) CLIP’s text encoder falls short on more compositional inputs, including object relationships, attribute-object association, counting, and negations; 2) some text encoders work significantly better than others; and 3) text-only recovery performance predicts multimodal matching performance on ControlledImCaps: a new evaluation benchmark we collect and release consisting of fine-grained compositional images and captions. Specifically, our results suggest text-only recoverability is a necessary (but not sufficient) condition for modeling compositional factors in contrastive VL models. We release our datasets and code.",,2023,ACL,Yes,Language,Methodological DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context Tuning,"Dialogue State Tracking (DST), a key component of task-oriented conversation systems, represents user intentions by determining the values of pre-defined slots in an ongoing dialogue. Existing approaches use hand-crafted templates and additional slot information to fine-tune and prompt large pre-trained language models and elicit slot values from the dialogue context. Significant manual effort and domain knowledge is required to design effective prompts, limiting the generalizability of these approaches to new domains and tasks. In this work, we propose DiSTRICT, a generalizable in-context tuning approach for DST that retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates. Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings using a much smaller model, thereby providing an important advantage for real-world deployments that often have limited resource availability.",,2023,ACL,No,, Harnessing Black-Box Control to Boost Commonsense in LM’s Generation,"Large language models (LLMs) such as GPT-3 have demonstrated a strong capability to generate coherent and contextually relevant text. However, amidst their successes, a crucial issue persists: their generated outputs still lack commonsense at times. Moreover, fine-tuning the entire LLM towards more commonsensical outputs is computationally expensive if not infeasible. In this paper, we present a computation-efficient framework that steers a frozen Pre-Trained Language Model (PTLM) towards more commonsensical generation (i.e., producing a plausible output that incorporates a list of concepts in a meaningful way). Specifically, we first construct a reference-free evaluator that assigns a sentence with a commonsensical score by grounding the sentence to a dynamic commonsense knowledge base from four different relational aspects. We then use the scorer as the oracle for commonsense knowledge, and extend the controllable generation method called NADO to train an auxiliary head that guides a fixed PTLM to better satisfy the oracle. We test our framework on a series of GPT-2-, Flan-T5-, and Alpaca-based language models (LMs) on two constrained concept-to-sentence benchmarks. Human evaluation results demonstrate that our method consistently leads to the most commonsensical outputs.",,2023,ACL,No,, Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback,"A trustworthy real-world prediction system should produce well-calibrated confidence scores; that is, its confidence in an answer should be indicative of the likelihood that the answer is correct, enabling deferral to an expert in cases of low-confidence predictions. Recent studies have shown that unsupervised pre-training produces large language models (LMs) whose conditional probabilities are remarkably well-calibrated. However, the most widely-used LMs are fine-tuned with reinforcement learning from human feedback (RLHF-LMs), and some studies have suggested that RLHF-LMs produce conditional probabilities that are very poorly calibrated. In light of this perceived weakness, we conduct a broad evaluation of methods for extracting confidence scores from RLHF-LMs. For RLHF-LMs such as ChatGPT, GPT-4, and Claude, we find that verbalized confidences emitted as output tokens are typically better-calibrated than the model’s conditional probabilities on the TriviaQA, SciQ, and TruthfulQA benchmarks, often reducing the expected calibration error by a relative 50%.",,2023,ACL,No,, "Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata","While large language models (LLMs) can answer many questions correctly, they can also hallucinate and give wrong answers. Wikidata, with its over 12 billion facts, can be used to ground LLMs to improve their factuality. This paper presents WikiWebQuestions, a high-quality question answering benchmark for Wikidata. Ported over from WebQuestions for Freebase, it consists of real-world data with SPARQL annotation. This paper presents a few-shot sequence-to-sequence semantic parser for Wikidata. We modify SPARQL to use the unique domain and property names instead of their IDs. We train the parser to use either the results from an entity linker or mentions in the query. We fine-tune LLaMA by adding the few-shot training data to that used to fine-tune Alpaca. Our experimental results demonstrate the effectiveness of this methodology, establishing a strong baseline of 76% and 65% answer accuracy in the dev and test sets of WikiWebQuestions, respectively. By pairing our semantic parser with GPT-3, we combine verifiable results with qualified GPT-3 guesses to provide useful answers to 96% of the questions in dev. We also show that our method outperforms the state-of-the-art for the QALD-7 Wikidata dataset by 3.6% in F1 score.",,2023,ACL,Yes,Language,Methodological Ditto: A Simple and Efficient Approach to Improve Sentence Embeddings,"Prior studies diagnose the anisotropy problem in sentence representations from pre-trained language models, e.g., BERT, without fine-tuning. Our analysis reveals that the sentence embeddings from BERT suffer from a bias towards uninformative words, limiting the performance in semantic textual similarity (STS) tasks. To address this bias, we propose a simple and efficient unsupervised approach, Diagonal Attention Pooling (Ditto), which weights words with model-based importance estimations and computes the weighted average of word representations from pre-trained models as sentence embeddings. Ditto can be easily applied to any pre-trained language model as a postprocessing operation. Compared to prior sentence embedding approaches, Ditto does not add parameters nor requires any learning. Empirical evaluations demonstrate that our proposed Ditto can alleviate the anisotropy problem and improve various pre-trained models on the STS benchmarks.",,2023,ACL,No,, Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction,"The robustness to distribution changes ensures that NLP models can be successfully applied in the realistic world, especially for information extraction tasks. However, most prior evaluation benchmarks have been devoted to validating pairwise matching correctness, ignoring the crucial validation of robustness. In this paper, we present the first benchmark that simulates the evaluation of open information extraction models in the real world, where the syntactic and expressive distributions under the same knowledge meaning may drift variously. We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique that consists of sentences with structured knowledge of the same meaning but with different syntactic and expressive forms. By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques. We perform experiments on typical models published in the last decade as well as a representative large language model, and the results show that the existing successful models exhibit a frustrating degradation, with a maximum drop of 23.43 F_1 score. Our resources and code will be publicly available.",,2023,ACL,Yes,Language,Benchmark Towards Interpretable Mental Health Analysis with Large Language Models,"The latest large language models (LLMs) such as ChatGPT, exhibit strong capabilities in automated mental health analysis. However, existing relevant studies bear several limitations, including inadequate evaluations, lack of prompting strategies, and ignorance of exploring LLMs for explainability. To bridge these gaps, we comprehensively evaluate the mental health analysis and emotional reasoning ability of LLMs on 11 datasets across 5 tasks. We explore the effects of different prompting strategies with unsupervised and distantly supervised emotional information. Based on these prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions. We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations. We benchmark existing automatic evaluation metrics on this dataset to guide future related works. According to the results, ChatGPT shows strong in-context learning ability but still has a significant gap with advanced task-specific methods. Careful prompt engineering with emotional cues and expert-written few-shot examples can also effectively improve performance on mental health analysis. In addition, ChatGPT generates explanations that approach human performance, showing its great potential in explainable mental health analysis.",,2023,ACL,No,, Spoiler Detection as Semantic Text Matching,"Engaging with discussion of TV shows online often requires individuals to refrain from consuming show-related content for extended periods to avoid spoilers. While existing research on spoiler detection shows promising results in safeguarding viewers from general spoilers, it fails to address the issue of users abstaining from show-related content during their watch. This is primarily because the definition of a spoiler varies depending on the viewer’s progress in the show, and conventional spoiler detection methods lack the granularity to capture this complexity. To tackle this challenge, we propose the task of spoiler matching, which involves assigning an episode number to a spoiler given a specific TV show. We frame this task as semantic text matching and introduce a dataset comprised of comments and episode summaries to evaluate model performance. Given the length of each example, our dataset can also serve as a benchmark for long-range language models.",,2023,ACL,Yes,Language,Methodological SentiStream: A Co-Training Framework for Adaptive Online Sentiment Analysis in Evolving Data Streams,"Online sentiment analysis has emerged as a crucial component in numerous data-driven applications, including social media monitoring, customer feedback analysis, and online reputation management. Despite their importance, current methodologies falter in effectively managing the continuously evolving nature of data streams, largely due to their reliance on substantial, pre-existing labelled datasets. This paper presents \textbf{sentistream}, a novel co-training framework specifically designed for efficient sentiment analysis within dynamic data streams. Comprising unsupervised, semi-supervised, and stream merge modules, \textbf{ sentistream} guarantees constant adaptability to evolving data landscapes. This research delves into the continuous adaptation of language models for online sentiment analysis, focusing on real-world applications. Experimental evaluations using data streams derived from three benchmark sentiment analysis datasets confirm that our proposed methodology surpasses existing approaches in terms of both accuracy and computational efficiency.",,2023,ACL,No,, HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models,"Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation for Large Language Models (HaluEval) benchmark, a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, i.e., sampling-then-filtering. Besides, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT is likely to generate hallucinated content in specific topics by fabricating unverifiable information (i.e., about 19.5% user queries). Moreover, existing LLMs face great challenges in recognizing the hallucinations in texts. While, our experiments also prove that the hallucination recognition can be improved by providing external knowledge or adding reasoning steps.",,2023,ACL,Yes,Language,Benchmark Enabling Large Language Models to Generate Text with Citations,"Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, our aim is to allow LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs’ Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We develop automatic metrics along three dimensions—fluency, correctness, and citation quality—and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvement—For example, on the ELI5 dataset, even the best models lack complete citation support 50% of the time. Our analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.",,2023,ACL,Yes,Language,Benchmark Do Language Models Have a Common Sense regarding Time? Revisiting Temporal Commonsense Reasoning in the Era of Large Language Models,"Temporal reasoning represents a vital component of human communication and understanding, yet remains an underexplored area within the context of Large Language Models (LLMs). Despite LLMs demonstrating significant proficiency in a range of tasks, a comprehensive, large-scale analysis of their temporal reasoning capabilities is missing. Our paper addresses this gap, presenting the first extensive benchmarking of LLMs on temporal reasoning tasks. We critically evaluate 8 different LLMs across 6 datasets using 3 distinct prompting strategies. Additionally, we broaden the scope of our evaluation by including in our analysis 2 Code Generation LMs. Beyond broad benchmarking of models and prompts, we also conduct a fine-grained investigation of performance across different categories of temporal tasks. We further analyze the LLMs on varying temporal aspects, offering insights into their proficiency in understanding and predicting the continuity, sequence, and progression of events over time. Our findings reveal a nuanced depiction of the capabilities and limitations of the models within temporal reasoning, offering a comprehensive reference for future research in this pivotal domain.",,2023,ACL,Yes,Language,Benchmark An Investigation of LLMs’ Inefficacy in Understanding Converse Relations,"Large Language Models (LLMs) have achieved remarkable success in many formal language oriented tasks, such as structural data-to-text and semantic parsing. However current benchmarks mostly follow the data distribution of the pre-training data of LLMs. Therefore, a natural question rises that do LLMs really understand the structured semantics of formal languages. In this paper, we investigate this problem on a special case, converse binary relation. We introduce a new benchmark ConvRe focusing on converse relations, which contains 17 relations and 1240 triples extracted from popular knowledge graph completion datasets. Our ConvRE features two tasks, Re2Text and Text2Re, which are formulated as multi-choice question answering to evaluate LLMs’ ability to determine the matching between relations and associated text. For the evaluation protocol, apart from different prompting methods, we further introduce variants to the test text and few-shot example text. We conduct experiments on three popular LLM families and have observed various scaling trends. The results suggest that LLMs often resort to shortcut learning and still face challenges on our proposed benchmark.",,2023,ACL,Yes,Language,Benchmark Towards Low-Resource Automatic Program Repair with Meta-Learning and Pretrained Language Models,"Automatic program repair (APR) has gained increasing attention as an essential technique in software development to reduce manual debugging efforts and boost developers’ productivity. Recent advances in deep learning (DL) based models have demonstrated promising results by learning from large-scale bug-fix examples in a data-driven manner. However, in practical scenarios, software bugs have an imbalanced distribution, and the fixing knowledge learned by APR models often only capture the patterns of frequent error types, making it inapplicable to handle the rare error types. To address this limitation, we investigate a novel task of low-resource APR, and propose Meta-APR, a new meta-learning framework integrated with code pretrained language models to generate fixes for low-resource bugs with limited training samples. Our Meta-APR learns better error-specific knowledge from high-resource bugs through efficient first-order meta-learning optimization, which allows for a faster adaptation to the target low-resource bugs. Besides, while we adopt CodeT5, a pretrained code-aware encoder-decoder Transformer, as the backbone model for Meta-APR, it is a model-agnostic framework that can be integrated with any neural models. Extensive experimental results on three benchmarks in various programming languages verify the superiority of our method over existing DL-based APR approaches.",,2023,ACL,No,, Benchmarking and Improving Text-to-SQL Generation under Ambiguity,"Research in Text-to-SQL conversion has been largely benchmarked against datasets where each text query corresponds to one correct SQL. However, natural language queries over real-life databases frequently involve significant ambiguity about the intended SQL due to overlapping schema names and multiple confusing relationship paths. To bridge this gap, we develop a novel benchmark called AmbiQT with over 3000 examples where each text is interpretable as two plausible SQLs due to lexical and/or structural ambiguity. When faced with ambiguity, an ideal top-k decoder should generate all valid interpretations for possible disambiguation by the user. We evaluate several Text-to-SQL systems and decoding algorithms, including those employing state-of-the-art LLMs, and find them to be far from this ideal. The primary reason is that the prevalent beam search algorithm and its variants, treat SQL queries as a string and produce unhelpful token-level diversity in the top-k. We propose LogicalBeam, a new decoding algorithm that navigates the SQL logic space using a blend of plan-based template generation and constrained infilling. Counterfactually generated plans diversify templates while in-filling with a beam-search that branches solely on schema names provides value diversity. LogicalBeam is up to 2.5 times more effective than state-of-the-art models at generating all candidate SQLs in the top-k ranked outputs. It also enhances the top-5 Exact and Execution Match Accuracies on SPIDER and Kaggle DBQA.",,2023,ACL,Yes,Language,Benchmark CaseEncoder: A Knowledge-enhanced Pre-trained Model for Legal Case Encoding,"Legal case retrieval is a critical process for modern legal information systems. While recent studies have utilized pre-trained language models (PLMs) based on the general domain self-supervised pre-training paradigm to build models for legal case retrieval, there are limitations in using general domain PLMs as backbones. Specifically, these models may not fully capture the underlying legal features in legal case documents. To address this issue, we propose CaseEncoder, a legal document encoder that leverages fine-grained legal knowledge in both the data sampling and pre-training phases. In the data sampling phase, we enhance the quality of the training data by utilizing fine-grained law article information to guide the selection of positive and negative examples. In the pre-training phase, we design legal-specific pre-training tasks that align with the judging criteria of relevant legal cases. Based on these tasks, we introduce an innovative loss function called Biased Circle Loss to enhance the model’s ability to recognize case relevance in fine grains. Experimental results on multiple benchmarks demonstrate that CaseEncoder significantly outperforms both existing general pre-training models and legal-specific pre-training models in zero-shot legal case retrieval. The source code of CaseEncoder can be found at https://github.com/Anonymous-EMNLP2023/CaseEncoder.",,2023,ACL,No,, Causal Document-Grounded Dialogue Pre-training,"The goal of document-grounded dialogue (DocGD) is to generate a response by anchoring the evidence in a supporting document in accordance with the dialogue context. This entails four causally interconnected variables. While task-specific pre-training has significantly enhanced performances on numerous downstream tasks, existing DocGD methods still rely on general pre-trained language models without a specifically tailored pre-training approach that explicitly captures the causal relationships. To address this, we present the first causally-complete dataset construction strategy for developing million-scale DocGD pre-training corpora. Additionally, we propose a causally-perturbed pre-training strategy to better capture causality by introducing perturbations on the variables and optimizing the overall causal effect. Experiments conducted on three benchmark datasets demonstrate that our causal pre-training yields substantial and consistent improvements in fully-supervised, low-resource, few-shot, and zero-shot settings.",,2023,ACL,Yes,Language,Methodological DUMB: A Benchmark for Smart Evaluation of Dutch Models,"We introduce the Dutch Model Benchmark: DUMB. The benchmark includes a diverse set of datasets for low-, medium- and high-resource tasks. The total set of nine tasks includes four tasks that were previously not available in Dutch. Instead of relying on a mean score across tasks, we propose Relative Error Reduction (RER), which compares the DUMB performance of language models to a strong baseline which can be referred to in the future even when assessing different sets of language models. Through a comparison of 14 pre-trained language models (mono- and multi-lingual, of varying sizes), we assess the internal consistency of the benchmark tasks, as well as the factors that likely enable high performance. Our results indicate that current Dutch monolingual models under-perform and suggest training larger Dutch models with other architectures and pre-training objectives. At present, the highest performance is achieved by DeBERTaV3 (large), XLM-R (large) and mDeBERTaV3 (base). In addition to highlighting best strategies for training larger Dutch models, DUMB will foster further research on Dutch. A public leaderboard is available at https://dumbench.nl.",,2023,ACL,Yes,Language,Benchmark Faithful Model Evaluation for Model-Based Metrics,"Statistical significance testing is used in natural language processing (NLP) to determine whether the results of a study or experiment are likely to be due to chance or if they reflect a genuine relationship. A key step in significance testing is the estimation of confidence interval which is a function of sample variance. Sample variance calculation is straightforward when evaluating against ground truth. However, in many cases, a metric model is often used for evaluation. For example, to compare toxicity of two large language models, a toxicity classifier is used for evaluation. Existing works usually do not consider the variance change due to metric model errors, which can lead to wrong conclusions. In this work, we establish the mathematical foundation of significance testing for model-based metrics. With experiments on public benchmark datasets and a production system, we show that considering metric model errors to calculate sample variances for model-based metrics changes the conclusions in certain experiments.",,2023,ACL,No,, Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models,"The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.",,2023,ACL,Yes,Language,Benchmark GLEN: Generative Retrieval via Lexical Index Learning,"Generative retrieval shed light on a new paradigm of document retrieval, aiming to directly generate the identifier of a relevant document for a query. While it takes advantage of bypassing the construction of auxiliary index structures, existing studies face two significant challenges: (i) the discrepancy between the knowledge of pre-trained language models and identifiers and (ii) the gap between training and inference that poses difficulty in learning to rank. To overcome these challenges, we propose a novel generative retrieval method, namely Generative retrieval via LExical iNdex learning (GLEN). For training, GLEN effectively exploits a dynamic lexical identifier using a two-phase index learning strategy, enabling it to learn meaningful lexical identifiers and relevance signals between queries and documents. For inference, GLEN utilizes collision-free inference, using identifier weights to rank documents without additional overhead. Experimental results prove that GLEN achieves state-of-the-art or competitive performance against existing generative retrieval methods on various benchmark datasets, e.g., NQ320k, MS MARCO, and BEIR. The code is available at https://github.com/skleee/GLEN.",,2023,ACL,No,, Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study,"Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT across different model sizes. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: https://github.com/NVIDIA/Megatron-LM/tree/main/tools/retro.",,2023,ACL,No,, SCITAB: A Challenging Benchmark for Compositional Reasoning and Claim Verification on Scientific Tables,"Current scientific fact-checking benchmarks exhibit several shortcomings, such as biases arising from crowd-sourced claims and an over-reliance on text-based evidence. We present SCITAB, a challenging evaluation dataset consisting of 1.2K expert-verified scientific claims that 1) originate from authentic scientific publications and 2) require compositional reasoning for verification. The claims are paired with evidence-containing scientific tables annotated with labels. Through extensive evaluations, we demonstrate that SCITAB poses a significant challenge to state-of-the-art models, including table-based pretraining models and large language models. All models except GPT-4 achieved performance barely above random guessing. Popular prompting techniques, such as Chain-of-Thought, do not achieve much performance gains on SCITAB. Our analysis uncovers several unique challenges posed by SCITAB, including table grounding, claim ambiguity, and compositional reasoning. Our codes and data are publicly available at https://github.com/XinyuanLu00/SciTab.",,2023,ACL,Yes,Other, TheoremQA: A Theorem-driven Question Answering Dataset,"The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models’ capabilities to apply theorems to solve challenging science problems. TheoremQA is curated by domain experts containing 800 high-quality questions covering 350 theorems from Math, Physics, EE&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4’s capabilities to solve these problems are unparalleled, achieving an accuracy of 51% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of TheoremQA, we believe it can be used as a better benchmark to evaluate LLMs’ capabilities to solve challenging science problems.",,2023,ACL,Yes,Language,Benchmark Empirical Study of Zero-Shot NER with ChatGPT,"Large language models (LLMs) exhibited powerful capability in various natural language processing tasks. This work focuses on exploring LLM performance on zero-shot information extraction, with a focus on the ChatGPT and named entity recognition (NER) task. Inspired by the remarkable reasoning capability of LLM on symbolic and arithmetic reasoning, we adapt the prevalent reasoning methods to NER and propose reasoning strategies tailored for NER. First, we explore a decomposed question-answering paradigm by breaking down the NER task into simpler subproblems by labels. Second, we propose syntactic augmentation to stimulate the model’s intermediate thinking in two ways: syntactic prompting, which encourages the model to analyze the syntactic structure itself, and tool augmentation, which provides the model with the syntactic information generated by a parsing tool. Besides, we adapt self-consistency to NER by proposing a two-stage majority voting strategy, which first votes for the most consistent mentions, then the most consistent types. The proposed methods achieve remarkable improvements for zero-shot NER across seven benchmarks, including Chinese and English datasets, and on both domain-specific and general-domain scenarios. In addition, we present a comprehensive analysis of the error types with suggestions for optimization directions. We also verify the effectiveness of the proposed methods on the few-shot setting and other LLMs.",,2023,ACL,No,, Automatic Prompt Optimization with “Gradient Descent” and Beam Search,"Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Prompt Optimization with Textual Gradients (ProTeGi), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language “gradients” that criticize the current prompt, much like how numerical gradients point in the direction of error ascent. The natural language gradients are then “propagated” into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt’s performance by up to 31%, by using data to rewrite vague task descriptions into more precise annotation instructions.",,2023,ACL,No,, Superlim: A Swedish Language Understanding Evaluation Benchmark,"We present Superlim, a multi-task NLP benchmark and analysis platform for evaluating Swedish language models, a counterpart to the English-language (Super)GLUE suite. We describe the dataset, the tasks, the leaderboard and report the baseline results yielded by a reference implementation. The tested models do not approach ceiling performance on any of the tasks, which suggests that Superlim is truly difficult, a desirable quality for a benchmark. We address methodological challenges, such as mitigating the Anglocentric bias when creating datasets for a less-resourced language; choosing the most appropriate measures; documenting the datasets and making the leaderboard convenient and transparent. We also highlight other potential usages of the dataset, such as, for instance, the evaluation of cross-lingual transfer learning.",,2023,ACL,Yes,Language,Benchmark FedID: Federated Interactive Distillation for Large-Scale Pretraining Language Models,"The growing concerns and regulations surrounding the protection of user data privacy have necessitated decentralized training paradigms. To this end, federated learning (FL) is widely studied in user-related natural language processing (NLP). However, it suffers from several critical limitations including extensive communication overhead, inability to handle heterogeneity, and vulnerability to white-box inference attacks. Federated distillation (FD) is proposed to alleviate these limitations, but its performance is faded by confirmation bias. To tackle this issue, we propose Federated Interactive Distillation (FedID), which utilizes a small amount of labeled data retained by the server to further rectify the local models during knowledge transfer. Additionally, based on the GLUE benchmark, we develop a benchmarking framework across multiple tasks with diverse data distributions to contribute to the research of FD in NLP community. Experiments show that our proposed FedID framework achieves the best results in homogeneous and heterogeneous federated scenarios. The code for this paper is available at: https://github.com/maxinge8698/FedID.",,2023,ACL,Yes,Language,Methodological This is not a Dataset: A Large Negation Benchmark to Challenge Large Language Models,"Although large language models (LLMs) have apparently acquired a certain level of grammatical knowledge and the ability to make generalizations, they fail to interpret negation, a crucial step in Natural Language Processing. We try to clarify the reasons for the sub-optimal performance of LLMs understanding negation. We introduce a large semi-automatically generated dataset of circa 400,000 descriptive sentences about commonsense knowledge that can be true or false in which negation is present in about 2/3 of the corpus in different forms. We have used our dataset with the largest available open LLMs in a zero-shot approach to grasp their generalization and inference capability and we have also fine-tuned some of the models to assess whether the understanding of negation can be trained. Our findings show that, while LLMs are proficient at classifying affirmative sentences, they struggle with negative sentences and lack a deep understanding of negation, often relying on superficial cues. Although fine-tuning the models on negative sentences improves their performance, the lack of generalization in handling negation is persistent, highlighting the ongoing challenges of LLMs regarding negation understanding and generalization. The dataset and code are publicly available.",,2023,ACL,Yes,Language,Benchmark "MedEval: A Multi-Level, Multi-Task, and Multi-Domain Medical Benchmark for Language Model Evaluation","Curated datasets for healthcare are often limited due to the need of human annotations from experts. In this paper, we present MedEval, a multi-level, multi-task, and multi-domain medical benchmark to facilitate the development of language models for healthcare. MedEval is comprehensive and consists of data from several healthcare systems and spans 35 human body regions from 8 examination modalities. With 22,779 collected sentences and 21,228 reports, we provide expert annotations at multiple levels, offering a granular potential usage of the data and supporting a wide range of tasks. Moreover, we systematically evaluated 10 generic and domain-specific language models under zero-shot and finetuning settings, from domain-adapted baselines in healthcare to general-purposed state-of-the-art large language models (e.g., ChatGPT). Our evaluations reveal varying effectiveness of the two categories of language models across different tasks, from which we notice the importance of instruction tuning for few-shot usage of large language models. Our investigation paves the way toward benchmarking language models for healthcare and provides valuable insights into the strengths and limitations of adopting large language models in medical domains, informing their practical applications and future advancements.",,2023,ACL,Yes,Language,Benchmark Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large Language Models on Sequence to Sequence Tasks,"Large Language Models (LLMs) evaluation is a patchy and inconsistent landscape, and it is becoming clear that the quality of automatic evaluation metrics is not keeping up with the pace of development of generative models. We aim to improve the understanding of current models’ performance by providing a preliminary and hybrid evaluation on a range of open and closed-source generative LLMs on three NLP benchmarks: text summarisation, text simplification and grammatical error correction (GEC), using both automatic and human evaluation. We also explore the potential of the recently released GPT-4 to act as an evaluator. We find that ChatGPT consistently outperforms many other popular models according to human reviewers on the majority of metrics, while scoring much more poorly when using classic automatic evaluation metrics. We also find that human reviewers rate the gold reference as much worse than the best models’ outputs, indicating the poor quality of many popular benchmarks. Finally, we find that GPT-4 is capable of ranking models’ outputs in a way which aligns reasonably closely to human judgement despite task-specific variations, with a lower alignment in the GEC task.",,2023,ACL,No,, Understanding the Role of Input Token Characters in Language Models: How Does Information Loss Affect Performance?,"Understanding how and what pre-trained language models (PLMs) learn about language is an open challenge in natural language processing. Previous work has focused on identifying whether they capture semantic and syntactic information, and how the data or the pre-training objective affects their performance. However, to the best of our knowledge, no previous work has specifically examined how information loss in input token characters affects the performance of PLMs. In this study, we address this gap by pre-training language models using small subsets of characters from individual tokens. Surprisingly, we find that pre-training even under extreme settings, i.e. using only one character of each token, the performance retention in standard NLU benchmarks and probing tasks compared to full-token models is high. For instance, a model pre-trained only on single first characters from tokens achieves performance retention of approximately 90% and 77% of the full-token model in SuperGLUE and GLUE tasks, respectively.",,2023,ACL,No,, APrompt: Attention Prompt Tuning for Efficient Adaptation of Pre-trained Language Models,"With the continuous growth of large language models, the process of fine-tuning these models for new tasks has become increasingly parameter-intensive. Prompt tuning, a method that involves tuning a small set of soft prompts, has emerged as an effective and efficient approach for adapting large pre-trained language models. However, most existing prompt tuning approaches only introduce prompts at the input layer, limiting their performance and leaving large rooms for improvement. In this work, we propose a novel Attention Prompt tuning method, namely APrompt, for efficient adaptation of pre-trained language models. We first demonstrate that existing prompt tuning can be considered as a special case of attention prompt tuning. We then formally introduce APrompt, which incorporates query, key, and value prompts into the attention layer to guide the attention computation during fine-tuning. Experimental results on the SuperGLUE benchmark consistently demonstrate that our proposed approach outperforms state-of-the-art baselines and full fine-tuning method with pre-trained models at different scales. In addition, a comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.",,2023,ACL,No,, What’s “up” with vision-language models? Investigating their struggle with spatial reasoning,"Recent vision-language (VL) models are powerful, but can they reliably distinguish “right” from “left”? We curate three new corpora to quantify model comprehension of such basic spatial relations. These tests isolate spatial reasoning more precisely than existing datasets like VQAv2, e.g., our What’sUp benchmark contains sets of photographs varying only the spatial relations of objects, keeping their identity fixed (see Figure 1: models must comprehend not only the usual case of a dog under a table, but also, the same dog on top of the same table). We evaluate 18 VL models, finding that all perform poorly, e.g., BLIP finetuned on VQAv2, which nears human parity on VQAv2, achieves 56% accuracy on our benchmarks vs. humans at 99%. We conclude by studying causes of this surprising behavior, finding: 1) that popular vision-language pretraining corpora like LAION-2B contain little reliable data for learning spatial relationships; and 2) that basic modeling interventions like up-weighting preposition-containing instances or fine-tuning on our corpora are not sufficient to address the challenges our benchmarks pose. We are hopeful that these corpora will facilitate further research, and we release our data and code at https://github.com/amitakamath/whatsup_vlms.",,2023,ACL,Yes,Image, Learning Preference Model for LLMs via Automatic Preference Data Generation,"Despite the advanced capacities of the state-of-the-art large language models (LLMs), they suffer from issues of hallucination, stereotype, etc. Preference models play an important role in LLM alignment, yet training preference models predominantly rely on human-annotated data. This reliance limits their versatility and scalability. In this paper, we propose learning the preference model for LLMs via automatic preference data generation (AutoPM). Our approach involves both In-Breadth Data Generation, which elicits pairwise preference data from LLMs following the helpful-honest-harmless (HHH) criteria, and In-Depth Data Generation, which enriches the dataset with responses spanning a wide quality range. With HHH-guided preference data, our approach simultaneously enables the LLMs to learn human preferences and align with human values. Quantitative assessments on five benchmark datasets demonstrate the reliability and potential of AutoPM, pointing out a more general and scalable way to improve LLM performance.",,2023,ACL,No,, Model-tuning Via Prompts Makes NLP Models Adversarially Robust,"In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token’s hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters.",,2023,ACL,No,, ORCHID: A Chinese Debate Corpus for Target-Independent Stance Detection and Argumentative Dialogue Summarization,"Dialogue agents have been receiving increasing attention for years, and this trend has been further boosted by the recent progress of large language models (LLMs). Stance detection and dialogue summarization are two core tasks of dialogue agents in application scenarios that involve argumentative dialogues. However, research on these tasks is limited by the insufficiency of public datasets, especially for non-English languages. To address this language resource gap in Chinese, we present ORCHID (Oral Chinese Debate), the first Chinese dataset for benchmarking target-independent stance detection and debate summarization. Our dataset consists of 1,218 real-world debates that were conducted in Chinese on 476 unique topics, containing 2,436 stance-specific summaries and 14,133 fully annotated utterances. Besides providing a versatile testbed for future research, we also conduct an empirical study on the dataset and propose an integrated task. The results show the challenging nature of the dataset and suggest a potential of incorporating stance detection in summarization for argumentative dialogue.",,2023,ACL,Yes,Language,Benchmark EpiK-Eval: Evaluation for Language Models as Epistemic Models,"In the age of artificial intelligence, the role of large language models (LLMs) is becoming increasingly central. Despite their growing prevalence, their capacity to consolidate knowledge from different training documents—a crucial ability in numerous applications—remains unexplored. This paper presents the first study examining the capability of LLMs to effectively combine such information within their parameter space. We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs’ proficiency in formulating a coherent and consistent knowledge representation from segmented narratives. Evaluations across various LLMs reveal significant weaknesses in this domain. We contend that these shortcomings stem from the intrinsic nature of prevailing training objectives. Consequently, we advocate for refining the approach towards knowledge consolidation, as it harbors the potential to dramatically improve their overall effectiveness and performance. The findings from this study offer insights for developing more robust and reliable LLMs. Our code and benchmark are available at https://github.com/chandar-lab/EpiK-Eval",,2023,ACL,Yes,Language,Benchmark On Bilingual Lexicon Induction with Large Language Models,"Bilingual Lexicon Induction (BLI) is a core task in multilingual NLP that still, to a large extent, relies on calculating cross-lingual word representations. Inspired by the global paradigm shift in NLP towards Large Language Models (LLMs), we examine the potential of the latest generation of LLMs for the development of bilingual lexicons. We ask the following research question: Is it possible to prompt and fine-tune multilingual LLMs (mLLMs) for BLI, and how does this approach compare against and complement current BLI approaches? To this end, we systematically study 1) zero-shot prompting for unsupervised BLI and 2) few-shot in-context prompting with a set of seed translation pairs, both without any LLM fine-tuning, as well as 3) standard BLI-oriented fine-tuning of smaller LLMs. We experiment with 18 open-source text-to-text mLLMs of different sizes (from 0.3B to 13B parameters) on two standard BLI benchmarks covering a range of typologically diverse languages. Our work is the first to demonstrate strong BLI capabilities of text-to-text mLLMs. The results reveal that few-shot prompting with in-context examples from nearest neighbours achieves the best performance, establishing new state-of-the-art BLI scores for many language pairs. We also conduct a series of in-depth analyses and ablation studies, providing more insights on BLI with (m)LLMs, also along with their limitations.",,2023,ACL,No,, SummEdits: Measuring LLM Ability at Factual Reasoning Through The Lens of Summarization,"With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8% below estimated human performance, highlighting the gaps in LLMs’ ability to reason about facts and detect inconsistencies when they occur.",,2023,ACL,Yes,Language,Benchmark A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In Zero Shot,"Multimedia content, such as advertisements and story videos, exhibit a rich blend of creativity and multiple modalities. They incorporate elements like text, visuals, audio, and storytelling techniques, employing devices like emotions, symbolism, and slogans to convey meaning. There is a dearth of large annotated training datasets in the multimedia domain hindering the development of supervised learning models with satisfactory performance for real-world applications. On the other hand, the rise of large language models (LLMs) has witnessed remarkable zero-shot performance in various natural language processing (NLP) tasks, such as emotion classification, question answering, and topic classification. To leverage such advanced techniques to bridge this performance gap in multimedia understanding, we propose verbalizing long videos to generate their descriptions in natural language, followed by performing video-understanding tasks on the generated story as opposed to the original video. Through extensive experiments on fifteen video-understanding tasks, we demonstrate that our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding. Furthermore, to alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.",,2023,ACL,Yes,Video, Prompting Scientific Names for Zero-Shot Species Recognition,"Trained on web-scale image-text pairs, Vision-Language Models (VLMs) such as CLIP can recognize images of common objects in a zero-shot fashion. However, it is underexplored how to use CLIP for zero-shot recognition of highly specialized concepts, e.g., species of birds, plants, and animals, for which their scientific names are written in Latin or Greek. Indeed, CLIP performs poorly for zero-shot species recognition with prompts that use scientific names, e.g., “a photo of Lepus Timidus” (which is a scientific name in Latin). This is because these names are usually not included in CLIP’s training set. To improve performance, we explore using large-language models (LLMs) to generate descriptions (e.g., of species color and shape) and additionally use them in prompts. However, this method improves only marginally. Instead, we are motivated to translate scientific names (e.g., Lepus Timidus) to common English names (e.g., mountain hare) and use such in the prompts. We find that common names are more likely to be included in CLIP’s training set, and prompting them achieves 2~5 times higher accuracy on benchmarking datasets of fine-grained species recognition.",,2023,ACL,No,, Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models,"Language models have graduated from being research prototypes to commercialized products offered as web APIs, and recent works have highlighted the multilingual capabilities of these products. The API vendors charge their users based on usage, more specifically on the number of “tokens” processed or generated by the underlying language models. What constitutes a token, however, is training data and model dependent with a large variance in the number of tokens required to convey the same information in different languages. In this work, we analyze the effect of this non-uniformity on the fairness of an API’s pricing policy across languages. We conduct a systematic analysis of the cost and utility of OpenAI’s language model API on multilingual benchmarks in 22 typologically diverse languages. We show evidence that speakers of a large number of the supported languages are overcharged while obtaining poorer results. These speakers tend to also come from regions where the APIs are less affordable, to begin with. Through these analyses, we aim to increase transparency around language model APIs’ pricing policies and encourage the vendors to make them more equitable.",,2023,ACL,No,, MULTITuDE: Large-Scale Multilingual Machine-Generated Text Detection Benchmark,"There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.",,2023,ACL,Yes,Language,Benchmark Instruct and Extract: Instruction Tuning for On-Demand Information Extraction,"Large language models with instruction-following capabilities open the door to a wider group of users. However, when it comes to information extraction – a classic task in natural language processing – most task-specific systems cannot align well with long-tail ad hoc extraction use cases for non-expert users. To address this, we propose a novel paradigm, termed On-Demand Information Extraction, to fulfill the personalized demands of real-world users. Our task aims to follow the instructions to extract the desired content from the associated text and present it in a structured tabular format. The table headers can either be user-specified or inferred contextually by the model. To facilitate research in this emerging area, we present a benchmark named InstructIE, inclusive of both automatically generated training data, as well as the human-annotated test set. Building on InstructIE, we further develop an On-Demand Information Extractor, ODIE. Comprehensive evaluations on our benchmark reveal that ODIE substantially outperforms the existing open-source models of similar size.",,2023,ACL,Yes,Language,Methodological "Editing Large Language Models: Problems, Methods, and Opportunities","Despite the ability to train capable LLMs, the methodology for maintaining their relevancy and rectifying errors remains elusive. To this end, the past few years have witnessed a surge in techniques for editing LLMs, the objective of which is to alter the behavior of LLMs efficiently within a specific domain without negatively impacting performance across other inputs. This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs. In particular, we provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal. We also build a new benchmark dataset to facilitate a more robust evaluation and pinpoint enduring issues intrinsic to existing techniques. Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.",,2023,ACL,Yes,Language,Methodological Simple and Effective Input Reformulations for Translation,"Foundation language models learn from their finetuning input context in different ways. In this paper, we reformulate inputs during finetuning for challenging translation tasks, leveraging model strengths from pretraining in novel ways to improve downstream performance. These reformulations are simple data level modifications, require no additional collection of training data or modification of data at inference time. They can be applied either on single language pair translation tasks or massively multilingual translation tasks. Experiments with these techniques demonstrate significant performance improvements up to 3.5 chrF++ on the Flores200 translation benchmark. We hope our research accessibly improves finetuning data efficiency, enabling more effective training to scalably improve state-of-the-art performance. Our code is released here.",,2023,ACL,No,, Conceptor-Aided Debiasing of Large Language Models,"Pre-trained large language models (LLMs) reflect the inherent social biases of their training corpus. Many methods have been proposed to mitigate this issue, but they often fail to debias or they sacrifice model accuracy. We use *conceptors*–a soft projection method–to identify and remove the bias subspace in LLMs such as BERT and GPT. We propose two methods of applying conceptors (1) bias subspace projection by post-processing by the conceptor NOT operation; and (2) a new architecture, conceptor-intervened BERT (CI-BERT), which explicitly incorporates the conceptor projection into all layers during training. We find that conceptor post-processing achieves state-of-the-art (SoTA) debiasing results while maintaining LLMs’ performance on the GLUE benchmark. Further, it is robust in various scenarios and can mitigate intersectional bias efficiently by its AND operation on the existing bias subspaces. Although CI-BERT’s training takes all layers’ bias into account and can beat its post-processing counterpart in bias mitigation, CI-BERT reduces the language model accuracy. We also show the importance of carefully constructing the bias subspace. The best results are obtained by removing outliers from the list of biased words, combining them (via the OR operation), and computing their embeddings using the sentences from a cleaner corpus.",,2023,ACL,No,, Systematic word meta-sense extension,"The meaning of polysemous words often varies in a highly productive yet predictable way. Generalizing the regularity between conventional senses to derive novel word meaning is crucial for automated processing of non-literal language uses such as figurative expressions. We introduce a novel task called systematic word meta-sense extension (SWORME) to test and improve language models’ ability to extend word meaning to denote new semantic domains (also called meta-senses) that bear regular semantic relations with existing senses. We found that language models prefer incremental lexical semantic change toward conceptually similar meta-senses such as logical metonymy, and are much worse at predicting highly non-literal meaning extensions such as metaphors. We propose a novel analogy-based method of word meaning extension, and show that it effectively improves language model systematicity in making both gradual and radical types of meta-sense extension. We further demonstrate that learning systematic meta-sense extensions benefits language models on multiple benchmarks of figurative language understanding.",,2023,ACL,Yes,Language,Methodological Data Similarity is Not Enough to Explain Language Model Performance,"Large language models achieve high performance on many but not all downstream tasks. The interaction between pretraining data and task data is commonly assumed to determine this variance: a task with data that is more similar to a model’s pretraining data is assumed to be easier for that model. We test whether distributional and example-specific similarity measures (embedding-, token- and model-based) correlate with language model performance through a large-scale comparison of the Pile and C4 pretraining datasets with downstream benchmarks. Similarity correlates with performance for multilingual datasets, but in other benchmarks, we surprisingly find that similarity metrics are not correlated with accuracy or even each other. This suggests that the relationship between pretraining data and downstream tasks is more complex than often assumed.",,2023,ACL,No,, Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark,"Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand social language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The resources are released at https://github.com/minjechoi/SOCKET.",,2023,ACL,Yes,Language,Benchmark TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative Language Models,"Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.",,2023,ACL,Yes,Language,Benchmark CESAR: Automatic Induction of Compositional Instructions for Multi-turn Dialogs,"Instruction-based multitasking has played a critical role in the success of large language models (LLMs) in multi-turn dialog applications. While publicly available LLMs have shown promising performance, when exposed to complex instructions with multiple constraints, they lag against state-of-the-art models like ChatGPT. In this work, we hypothesize that the availability of large-scale complex demonstrations is crucial in bridging this gap. Focusing on dialog applications, we propose a novel framework, CESAR, that unifies a large number of dialog tasks in the same format and allows programmatic induction of complex instructions without any manual effort. We apply CESAR on InstructDial, a benchmark for instruction-based dialog tasks. We further enhance InstructDial with new datasets and tasks and utilize CESAR to induce complex tasks with compositional instructions. This results in a new benchmark called InstructDial++, which includes 63 datasets with 86 basic tasks and 68 composite tasks. Through rigorous experiments, we demonstrate the scalability of CESAR in providing rich instructions. Models trained on InstructDial++ can follow compositional prompts, such as prompts that ask for multiple stylistic constraints.",,2023,ACL,Yes,Language,Methodological Can Language Models Understand Physical Concepts?,"Language models (LMs) gradually become general-purpose interfaces in the interactive and embodied world, where the understanding of physical concepts is an essential prerequisite. However, it is unclear whether LMs can understand physical concepts in the human world. To investigate this, we design a benchmark VEC that covers the tasks of (i) Visual concepts, such as the shape and material of objects, and (ii) Embodied Concepts, learned from the interaction with the world such as the temperature of objects. Our zero (few)-shot prompting results show that the understanding of certain visual concepts emerges as scaling up LMs, but there are still basic concepts to which the scaling law does not apply. For example, OPT-175B performs close to humans with a zero-shot accuracy of 85% on the material concept, yet behaves like random guessing on the mass concept. Instead, vision-augmented LMs such as CLIP and BLIP achieve a human-level understanding of embodied concepts. Analysis indicates that the rich semantics in visual representation can serve as a valuable source of embodied knowledge. Inspired by this, we propose a distillation method to transfer embodied knowledge from VLMs to LMs, achieving performance gain comparable with that by scaling up parameters of LMs 134\times. Our dataset is available at https://github.com/TobiasLee/VEC.",,2023,ACL,Yes,Multimodal, PAC-tuning: Fine-tuning Pre-trained Language Models with PAC-driven Perturbed Gradient Descent,"Fine-tuning pretrained language models (PLMs) for downstream tasks is a large-scale optimization problem, in which the choice of the training algorithm critically determines how well the trained model can generalize to unseen test data, especially in the context of few-shot learning. To achieve good generalization performance and avoid overfitting, techniques such as data augmentation and pruning are often applied. However, adding these regularizations necessitates heavy tuning of the hyperparameters of optimization algorithms, such as the popular Adam optimizer. In this paper, we propose a two-stage fine-tuning method, PAC-tuning, to address this optimization challenge. First, based on PAC-Bayes training, PAC-tuning directly minimizes the PAC-Bayes generalization bound to learn proper parameter distribution. Second, PAC-tuning modifies the gradient by injecting noise with the variance learned in the first stage into the model parameters during training, resulting in a variant of perturbed gradient descent (PGD). In the past, the few-shot scenario posed difficulties for PAC-Bayes training because the PAC-Bayes bound, when applied to large models with limited training data, might not be stringent. Our experimental results across 5 GLUE benchmark tasks demonstrate that PAC-tuning successfully handles the challenges of fine-tuning tasks and outperforms strong baseline methods by a visible margin, further confirming the potential to apply PAC training for any other settings where the Adam optimizer is currently used for training.",,2023,ACL,No,, Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in Language Models,"The prompt-based learning paradigm, which bridges the gap between pre-training and fine-tuning, achieves state-of-the-art performance on several NLP tasks, particularly in few-shot settings. Despite being widely applied, prompt-based learning is vulnerable to backdoor attacks. Textual backdoor attacks are designed to introduce targeted vulnerabilities into models by poisoning a subset of training samples through trigger injection and label modification. However, they suffer from flaws such as abnormal natural language expressions resulting from the trigger and incorrect labeling of poisoned samples. In this study, we propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt, which uses the prompt itself as a trigger. Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack. With extensive experiments on rich-resource and few-shot text classification tasks, we empirically validate ProAttack’s competitive performance in textual backdoor attacks. Notably, in the rich-resource setting, ProAttack achieves state-of-the-art attack success rates in the clean-label backdoor attack benchmark without external triggers.",,2023,ACL,No,, Large Language Models Only Pass Primary School Exams in Indonesia: A Comprehensive Test on IndoMMLU,"Although large language models (LLMs) are often pre-trained on large-scale multilingual texts, their reasoning abilities and real-world knowledge are mainly evaluated based on English datasets. Assessing LLM capabilities beyond English is increasingly vital but hindered due to the lack of suitable datasets. In this work, we introduce IndoMMLU, the first multi-task language understanding benchmark for Indonesian culture and languages, which consists of questions from primary school to university entrance exams in Indonesia. By employing professional teachers, we obtain 14,981 questions across 64 tasks and education levels, with 46% of the questions focusing on assessing proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia. Our empirical evaluations show that GPT-3.5 only manages to pass the Indonesian primary school level, with limited knowledge of local Indonesian languages and culture. Other smaller models such as BLOOMZ and Falcon perform at even lower levels.",,2023,ACL,Yes,Language,Benchmark Pre-training Language Models for Comparative Reasoning,"Comparative reasoning is a process of comparing objects, concepts, or entities to draw conclusions, which constitutes a fundamental cognitive ability. In this paper, we propose a novel framework to pre-train language models for enhancing their abilities of comparative reasoning over texts. While there have been approaches for NLP tasks that require comparative reasoning, they suffer from costly manual data labeling and limited generalizability to different tasks. Our approach introduces a novel method of collecting scalable data for text-based entity comparison, which leverages both structured and unstructured data. Moreover, we present a framework of pre-training language models via three novel objectives on comparative reasoning. Evaluation on downstream tasks including comparative question answering, question generation, and summarization shows that our pre-training framework significantly improves the comparative reasoning abilities of language models, especially under low-resource conditions. This work also releases the first integrated benchmark for comparative reasoning.",,2023,ACL,Yes,Language,Methodological Multilingual Large Language Models Are Not (Yet) Code-Switchers,"Multilingual Large Language Models (LLMs) have recently shown great capabilities in a wide range of tasks, exhibiting state-of-the-art performance through zero-shot or few-shot prompting methods. While there have been extensive studies on their abilities in monolingual tasks, the investigation of their potential in the context of code-switching (CSW), the practice of alternating languages within an utterance, remains relatively uncharted. In this paper, we provide a comprehensive empirical analysis of various multilingual LLMs, benchmarking their performance across four tasks: sentiment analysis, machine translation, summarization and word-level language identification. Our results indicate that despite multilingual LLMs exhibiting promising outcomes in certain tasks using zero or few-shot prompting, they still underperform in comparison to fine-tuned models of much smaller scales. We argue that current “multilingualism’ in LLMs does not inherently imply proficiency with code-switching texts, calling for future research to bridge this discrepancy.",,2023,ACL,Yes,Language,Benchmark LM vs LM: Detecting Factual Errors via Cross Examination,"A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.",,2023,ACL,No,, PIEClass: Weakly-Supervised Text Classification with Prompting and Noise-Robust Iterative Ensemble Training,"Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks.",,2023,ACL,No,, The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning,"Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.",,2023,ACL,Yes,Language,Methodological Doolittle: Benchmarks and Corpora for Academic Writing Formalization,"Improving the quality of academic writing is a meaningful but challenging task. Conventional methods of language refinement focus on narrow, specific linguistic features within isolated sentences, such as grammatical errors and improper word use. We propose a more general task, Academic Writing Formalization (AWF), to improve the overall quality of formal academic writing at the paragraph level. We formulate this language refinement task as a formal text style transfer task which transfers informal-academic text to formal-academic and contribute a large-scale non-parallel dataset, Doolittle, for this purpose. Concurrently, we apply a method named metric-oriented reinforcement learning (MORL) to two large language models (LLM) where we incorporate different levels of automatic feedback into the training process. Our experiments reveal that existing text transfer models and grammatical error correction models address certain aspects of AWF but still have a significant performance gap compared to human performance. Meanwhile, language models fine-tuned with our MORL method exhibit considerably improved performance, rivaling the latest chatbot ChatGPT, but still have a non-negligible gap compared to the ground truth formal-academic texts in Doolittle.",,2023,ACL,Yes,Language,Benchmark NameGuess: Column Name Expansion for Tabular Data,"Recent advances in large language models have revolutionized many sectors, including the database industry. One common challenge when dealing with large volumes of tabular data is the pervasive use of abbreviated column names, which can negatively impact performance on various data search, access, and understanding tasks. To address this issue, we introduce a new task, called NameGuess, to expand column names (used in database schema) as a natural language generation problem. We create a training dataset of 384K abbreviated-expanded column pairs using a new data fabrication method and a human-annotated evaluation benchmark that includes 9.2K examples from real-world tables. To tackle the complexities associated with polysemy and ambiguity in NameGuess, we enhance auto-regressive language models by conditioning on table content and column header names – yielding a fine-tuned model (with 2.7B parameters) that matches human performance. Furthermore, we conduct a comprehensive analysis (on multiple LLMs) to validate the effectiveness of table content in NameGuess and identify promising future opportunities. Code has been made available at https://github.com/amazon-science/nameguess.",,2023,ACL,Yes,Language,Methodological BLESS: Benchmarking Large Language Models on Sentence Simplification,"We present BLESS, a comprehensive performance benchmark of the most recent state-of-the-art Large Language Models (LLMs) on the task of text simplification (TS). We examine how well off-the-shelf LLMs can solve this challenging task, assessing a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting. Our analysis considers a suite of automatic metrics, as well as a large-scale quantitative investigation into the types of common edit operations performed by the different models. Furthermore, we perform a manual qualitative analysis on a subset of model outputs to better gauge the quality of the generated simplifications. Our evaluation indicates that the best LLMs, despite not being trained on TS perform comparably with state-of-the-art TS baselines. Additionally, we find that certain LLMs demonstrate a greater range and diversity of edit operations. Our performance benchmark will be available as a resource for the development of future TS methods and evaluation metrics.",,2023,ACL,Yes,Language,Benchmark PTP: Boosting Stability and Performance of Prompt Tuning with Perturbation-Based Regularizer,"Recent studies show that prompt tuning can better leverage the power of large language models than fine-tuning on downstream natural language understanding tasks. However, the existing prompt tuning methods have training instability issues, as the variance of scores under different random seeds is quite large. To address this critical problem, we first investigate and find that the loss landscape of vanilla prompt tuning is precipitous when it is visualized, where a slight change of input data can cause a big fluctuation in the loss landscape. This is an essential factor that leads to the instability of prompt tuning. Based on this observation, we introduce perturbation-based regularizers, which can smooth the loss landscape, into prompt tuning. We propose a new algorithm, called Prompt Tuning with Perturbation-based regularizer (PTP), which can not only alleviate training instability dramatically but also boost the performance of prompt tuning. We design two kinds of perturbation-based regularizers, including random-noise-based and adversarial-based. In particular, our proposed perturbations are flexible on both text space and embedding space. Extensive experiments show the effectiveness of our proposed methods in stabilizing the training. Our new algorithms improve the state-of-the-art prompt tuning methods by 1.94% and 2.34% on SuperGLUE and FewGLUE benchmarks, respectively.",,2023,ACL,No,, SEER : A Knapsack approach to Exemplar Selection for In-Context HybridQA,"Question answering over hybrid contexts is a complex task, which requires the combination of information extracted from unstructured texts and structured tables in various ways. Recently, In-Context Learning demonstrated significant performance advances for reasoning tasks. In this paradigm, a large language model performs predictions based on a small set of supporting exemplars. The performance of In-Context Learning depends heavily on the selection procedure of the supporting exemplars, particularly in the case of HybridQA, where considering the diversity of reasoning chains and the large size of the hybrid contexts becomes crucial. In this work, we present Selection of ExEmplars for hybrid Reasoning (SEER), a novel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SEER is that it formulates exemplar selection as a Knapsack Integer Linear Program. The Knapsack framework provides the flexibility to incorporate diversity constraints that prioritize exemplars with desirable attributes, and capacity constraints that ensure that the prompt size respects the provided capacity budgets. The effectiveness of SEER is demonstrated on FinQA and TAT-QA, two real-world benchmarks for HybridQA, where it outperforms previous exemplar selection methods.",,2023,ACL,No,, Aligning Large Language Models through Synthetic Feedback,"Aligning large language models (LLMs) to human values has become increasingly important as it enables sophisticated steering of LLMs. However, it requires significant human demonstrations and feedback or distillation from proprietary LLMs such as ChatGPT. In this work, we propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations and proprietary LLMs. First, we perform reward modeling (RM) with synthetic feedback by contrasting responses from vanilla LLMs with various sizes and prompts. Then, we use the RM to simulate high-quality demonstrations to train a supervised policy and further optimize the model with reinforcement learning. Our resulting model, Aligned Language Model with Synthetic Training dataset (ALMoST), outperforms recent open-sourced models, which are trained on the outputs of InstructGPT or human-annotated demonstrations, in alignment benchmarks. In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively. Further analyses demonstrate the efficacy and importance of synthetic feedback in our framework.",,2023,ACL,No,, Can We Edit Multimodal Large Language Models?,"In this paper, we focus on editing multimodal Large Language Models (LLMs). Compared to editing single-modal LLMs, multimodal model editing is more challenging, which demands a higher level of scrutiny and careful consideration in the editing process. To facilitate research in this area, we construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite of innovative metrics for evaluation. We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components for multimodal LLMs. Empirically, we notice that previous baselines can implement editing multimodal LLMs to some extent, but the effect is still barely satisfactory, indicating the potential difficulty of this task. We hope that our work can provide the NLP community with insights.",,2023,ACL,Yes,Multimodal, Syllogistic Reasoning for Legal Judgment Analysis,"Legal judgment assistants are developing fast due to impressive progress of large language models (LLMs). However, people can hardly trust the results generated by a model without reliable analysis of legal judgement. For legal practitioners, it is common practice to utilize syllogistic reasoning to select and evaluate the arguments of the parties as part of the legal decision-making process. But the development of syllogistic reasoning for legal judgment analysis is hindered by the lack of resources: (1) there is no large-scale syllogistic reasoning dataset for legal judgment analysis, and (2) there is no set of established benchmarks for legal judgment analysis. In this paper, we construct and manually correct a syllogistic reasoning dataset for legal judgment analysis. The dataset contains 11,239 criminal cases which cover 4 criminal elements, 80 charges and 124 articles. We also select a set of large language models as benchmarks, and conduct a in-depth analysis of the capacity of their legal judgment analysis.",,2023,ACL,Yes,Language,Methodological CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL,"Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual documents. In response, we propose a two-stage process for effective coverage during retrieval. First, we use an LLM to hallucinate a minimal DB schema that it deems adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination — generally considered a nuisance — turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce two benchmarks: (1) A semi-synthetic dataset of 4502 schema elements, by taking a union of schema on the well-known SPIDER dataset, and (2) A real-life benchmark called SocialDB sourced from an actual large data warehouse comprising of 17844 schema elements. We show that our method leads to significantly higher recall than SOTA retrieval-based augmentation methods.",,2023,ACL,Yes,Language,Methodological BRAINTEASER: Lateral Thinking Puzzles for Large Language Models,"The success of language models has inspired the NLP community to attend to tasks that require implicit and complex reasoning, relying on human-like commonsense mechanisms. While such vertical thinking tasks have been relatively popular, lateral thinking puzzles have received little attention. To bridge this gap, we devise BrainTeaser: a multiple-choice Question Answering task designed to test the model’s ability to exhibit lateral thinking and defy default commonsense associations. We design a three-step procedure for creating the first lateral thinking benchmark, consisting of data collection, distractor generation, and generation of adversarial examples, leading to 1,100 puzzles with high-quality annotations. To assess the consistency of lateral reasoning by models, we enrich BrainTeaser based on a semantic and contextual reconstruction of its questions. Our experiments with state-of-the-art instruction- and commonsense language models reveal a significant gap between human and model performance, which is further widened when consistency across adversarial formats is considered. We make all of our code and data available to stimulate work on developing and evaluating lateral thinking models.",,2023,ACL,Yes,Language,Benchmark Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise Generation,"In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model’s weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles, such as knowledge tracing and personalized learning. Concretely, we let GPT-3 be a math tutor and run two steps iteratively: 1) assessing the student model’s current learning status on a GPT-generated exercise book, and 2) improving the student model by training it with tailored exercise samples generated by GPT-3. Experimental results reveal that our approach outperforms LLMs (e.g., GPT-3 and PaLM) in accuracy across three distinct benchmarks while employing significantly fewer parameters. Furthermore, we provide a comprehensive analysis of the various components within our methodology to substantiate their efficacy.",,2023,ACL,No,, FANToM: A Benchmark for Stress-testing Machine Theory of Mind in Interactions,"Theory of mind (ToM) evaluations currently focus on testing models using passive narratives that inherently lack interactivity. We introduce FANToM, a new benchmark designed to stress-test ToM within information-asymmetric conversational contexts via question answering. Our benchmark draws upon important theoretical requisites from psychology and necessary empirical considerations when evaluating large language models (LLMs). In particular, we formulate multiple types of questions that demand the same underlying reasoning to identify illusory or false sense of ToM capabilities in LLMs. We show that FANToM is challenging for state-of-the-art LLMs, which perform significantly worse than humans even with chain-of-thought reasoning or fine-tuning.",,2023,ACL,Yes,Language,Benchmark FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models,"Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.",,2023,ACL,No,, Merging Experts into One: Improving Computational Efficiency of Mixture of Experts,"Scaling the size of language models usually leads to remarkable advancements in NLP tasks. But it often comes with a price of growing computational cost. Although a sparse Mixture of Experts (MoE) can reduce the cost by activating a small subset of parameters (e.g., one expert) for each input, its computation escalates significantly if increasing the number of activated experts, limiting its practical utility. Can we retain the advantages of adding more experts without substantially increasing the computational costs? In this paper, we first demonstrate the superiority of selecting multiple experts and then propose a computation-efficient approach called Merging Experts into One (MEO), which reduces the computation cost to that of a single expert. Extensive experiments show that MEO significantly improves computational efficiency, e.g., FLOPS drops from 72.0G of vanilla MoE to 28.6G (MEO). Moreover, we propose a token-level attention block that further enhances the efficiency and performance of token-level MEO, e.g., 83.3% (MEO) vs. 82.6% (vanilla MoE) average score on the GLUE benchmark. Our code will be released upon acceptance. Code will be released at: https://github.com/Shwai-He/MEO.",,2023,ACL,No,, R2H: Building Multimodal Navigation Helpers that Respond to Help Requests,"Intelligent navigation-helper agents are critical as they can navigate users in unknown areas through environmental awareness and conversational ability, serving as potential accessibility tools for individuals with disabilities. In this work, we first introduce a novel benchmark, Respond to Help Requests (R2H), to promote the development of multi-modal navigation helpers capable of responding to requests for help, utilizing existing dialog-based embodied datasets. R2H mainly includes two tasks: (1) Respond to Dialog History (RDH), which assesses the helper agent’s ability to generate informative responses based on a given dialog history, and (2) Respond during Interaction (RdI), which evaluates the effectiveness and efficiency of the response during consistent cooperation with a task performer. Furthermore, we explore two approaches to construct the navigation-helper agent, including fine-tuning a novel task-oriented multi-modal response generation model that can see and respond, named SeeRee, and employing a multi-modal large language model in a zero-shot manner. Analysis of the task and method was conducted based on both automatic benchmarking and human evaluations.",,2023,ACL,Yes,Multimodal, Speech-enriched Memory for Inference-time Adaptation of ASR Models to Word Dictionaries,"Despite the impressive performance of ASR models on mainstream benchmarks, their performance on rare words is unsatisfactory. In enterprise settings, often a focused list of entities (such as locations, names, etc) are available which can be used to adapt the model to the terminology of specific domains. In this paper, we present a novel inference algorithm that improves the prediction of state-of-the-art ASR models using nearest-neighbor-based matching on an inference-time word list. We consider both the Transducer architecture that is useful in the streaming setting, and state-of-the-art encoder-decoder models such as Whisper. In our approach, a list of rare entities is indexed in a memory by synthesizing speech for each entry, and then storing the internal acoustic and language model states obtained from the best possible alignment on the ASR model. The memory is organized as a trie which we harness to perform a stateful lookup during inference. A key property of our extension is that we prevent spurious matches by restricting to only word-level matches. In our experiments on publicly available datasets and private benchmarks, we show that our method is effective in significantly improving rare word recognition.",,2023,ACL,No,, Unveiling the Essence of Poetry: Introducing a Comprehensive Dataset and Benchmark for Poem Summarization,"While research in natural language processing has progressed significantly in creative language generation, the question of whether language models can interpret the intended meaning of creative language largely remains unanswered. Poetry as a creative art form has existed for generations, and summarization of such content requires deciphering the figurative patterns to find out the actual intent and message of the poet. This task can provide the researchers an opportunity to evaluate the creative language interpretation capacity of the language models. Unlike typical text, summarization of poems is a challenging task as poems carry a deeper meaning, which can be easily lost if only the literal meaning is considered. That being said, we propose a new task in the field of natural language understanding called ‘Poem Summarization’. As a starting, we propose the first-ever dataset for this task, named ‘PoemSum’, consisting of 3011 samples of poetry and its corresponding summarized interpretation in the English language. We have benchmarked the performance of different state-of-the-art summarization models and provided observations on their limitations. The dataset and all relevant code used in this work have been made publicly available.",,2023,ACL,Yes,Language,Benchmark Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents,"Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks, including search engines. However, existing work utilizes the generative ability of LLMs for Information Retrieval (IR) rather than direct passage ranking. The discrepancy between the pre-training objectives of LLMs and the ranking objective poses another challenge. In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR. Surprisingly, our experiments reveal that properly instructed LLMs can deliver competitive, even superior results to state-of-the-art supervised methods on popular IR benchmarks. Furthermore, to address concerns about data contamination of LLMs, we collect a new test set called NovelEval, based on the latest knowledge and aiming to verify the model’s ability to rank unknown knowledge. Finally, to improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models using a permutation distillation scheme. Our evaluation results turn out that a distilled 440M model outperforms a 3B supervised model on the BEIR benchmark. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.",,2023,ACL,Yes,Language,Technical CRAB: Assessing the Strength of Causal Relationships Between Real-world Events,"Understanding narratives requires reasoning about the cause-and-effect relationships between events mentioned in the text. While existing foundation models yield impressive results in many NLP tasks requiring reasoning, it is unclear whether they understand the complexity of the underlying network of causal relationships of events in narratives. In this work, we present CRAB, a new Causal Reasoning Assessment Benchmark designed to evaluate causal understanding of events in real-world narratives. CRAB contains fine-grained, contextual causality annotations for ~2.7K pairs of real-world events that describe various newsworthy event timelines (e.g., the acquisition of Twitter by Elon Musk). Using CRAB, we measure the performance of several large language models, demonstrating that most systems achieve poor performance on the task. Motivated by classical causal principles, we also analyze the causal structures of groups of events in CRAB, and find that models perform worse on causal reasoning when events are derived from complex causal structures compared to simple linear causal chains. We make our dataset and code available to the research community.",,2023,ACL,Yes,Language,Benchmark CorefPrompt: Prompt-based Event Coreference Resolution by Measuring Event Type and Argument Compatibilities,"Event coreference resolution (ECR) aims to group event mentions referring to the same real-world event into clusters. Most previous studies adopt the “encoding first, then scoring” framework, making the coreference judgment rely on event encoding. Furthermore, current methods struggle to leverage human-summarized ECR rules, e.g., coreferential events should have the same event type, to guide the model. To address these two issues, we propose a prompt-based approach, CorefPrompt, to transform ECR into a cloze-style MLM (masked language model) task. This allows for simultaneous event modeling and coreference discrimination within a single template, with a fully shared context. In addition, we introduce two auxiliary prompt tasks, event-type compatibility and argument compatibility, to explicitly demonstrate the reasoning process of ECR, which helps the model make final predictions. Experimental results show that our method CorefPrompt performs well in a state-of-the-art (SOTA) benchmark.",,2023,ACL,No,, Rationale-Enhanced Language Models are Better Continual Relation Learners,"Continual relation extraction (CRE) aims to solve the problem of catastrophic forgetting when learning a sequence of newly emerging relations. Recent CRE studies have found that catastrophic forgetting arises from the model’s lack of robustness against future analogous relations. To address the issue, we introduce rationale, i.e., the explanations of relation classification results generated by Large Language Models (LLM), into CRE task. Specifically, we design the multi-task rationale tuning strategy to help the model learn current relations robustly. We also conduct contrastive rationale replay to further distinguish analogous relations. Experimental results on two standard benchmarks demonstrate that our method outperforms the state-of-the-art CRE models.",,2023,ACL,No,, MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter,"Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception — a critical ability of human professionals in comprehending molecules’ topological structures. To bridge this gap, we propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. MolCA enables an LM (i.e., Galactica) to understand both text- and graph-based molecular contents via the cross-modal projector. Specifically, the cross-modal projector is implemented as a Q-Former to connect a graph encoder’s representation space and an LM’s text space. Further, MolCA employs a uni-modal adapter (i.e., LoRA) for the LM’s efficient adaptation to downstream tasks. Unlike previous studies that couple an LM with a graph encoder via cross-modal contrastive learning, MolCA retains the LM’s ability of open-ended text generation and augments it with 2D graph information. To showcase its effectiveness, we extensively benchmark MolCA on tasks of molecule captioning, IUPAC name prediction, and molecule-text retrieval, on which MolCA significantly outperforms the baselines.",,2023,ACL,No,, MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions,"The information stored in large language models (LLMs) falls out of date quickly, and retraining from scratch is often not an option. This has recently given rise to a range of techniques for injecting new facts through updating model weights. Current evaluation paradigms are extremely limited, mainly validating the recall of edited facts, but changing one fact should cause rippling changes to the model’s related beliefs. If we edit the UK Prime Minister to now be Rishi Sunak, then we should get a different answer to Who is married to the British Prime Minister? In this work, we present a benchmark MQuAKE (Multi-hop Question Answering for Knowledge Editing) comprising multi-hop questions that assess whether edited models correctly answer questions where the answer should change as an entailed consequence of edited facts. While we find that current knowledge-editing approaches can recall edited facts accurately, they fail catastrophically on the constructed multi-hop questions. We thus propose a simple memory-based approach, MeLLo, which stores all edited facts externally while prompting the language model iteratively to generate answers that are consistent with the edited facts. While MQuAKE remains challenging, we show that MeLLo scales well with LLMs (up to 175B) and outperforms previous model editors by a large margin.",,2023,ACL,Yes,Language,Benchmark AnyTOD: A Programmable Task-Oriented Dialog System,"We propose AnyTOD, an end-to-end, zero-shot task-oriented dialog (TOD) system capable of zero-shot adaptation onto unseen tasks or domains. We view TOD as a program executed by a language model (LM), where program logic and ontology is provided by a designer as a schema. To enable generalization to unseen schemas and programs without prior training, AnyTOD adopts a neuro-symbolic approach. A neural LM keeps track of events that occur during a conversation, and a symbolic program implementing dialog policy is executed to recommend actions AnyTOD should take. This approach drastically reduces data annotation and model training requirements, addressing the enduring challenge of rapidly adapting a TOD system to unseen tasks and domains. We demonstrate state-of-the-art results on STAR, ABCD and SGD benchmarks. We also demonstrate strong zero-shot transfer ability in low-resource settings, such as zero-shot transfer onto MultiWOZ. In addition, we release STARv2, an updated version of the STAR dataset with richer annotations, for benchmarking zero-shot task transfer for end-to-end TOD models.",,2023,ACL,No,, Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization,"Recent pre-trained language models (PLMs) achieve promising results in existing abstractive summarization datasets. However, existing summarization benchmarks overlap in time with the standard pre-training corpora and finetuning datasets. Hence, the strong performance of PLMs may rely on the parametric knowledge that is memorized during pre-training and fine-tuning. Moreover, the knowledge memorized by PLMs may quickly become outdated, which affects the generalization performance of PLMs on future data. In this work, we propose TempoSum, a novel benchmark that contains data samples from 2010 to 2022, to understand the temporal generalization ability of abstractive summarization models. Through extensive human evaluation, we show that parametric knowledge stored in summarization models significantly affects the faithfulness of the generated summaries on future data. Moreover, existing faithfulness enhancement methods cannot reliably improve the faithfulness of summarization models on future data. Finally, we discuss several recommendations to the research community on how to evaluate and improve the temporal generalization capability of text summarization models.",,2023,ACL,Yes,Language,Benchmark TaskDiff: A Similarity Metric for Task-Oriented Conversations,"The popularity of conversational digital assistants has resulted in the availability of large amounts of conversational data which can be utilized for improved user experience and personalized response generation. Building these assistants using popular large language models like ChatGPT also require additional emphasis on prompt engineering and evaluation methods. Textual similarity metrics are a key ingredient for such analysis and evaluations. While many similarity metrics have been proposed in the literature, they have not proven effective for task-oriented conversations as they do not take advantage of unique conversational features. To address this gap, we present TaskDiff, a novel conversational similarity metric that utilizes different dialogue components (utterances, intents, and slots) and their distributions to compute similarity. Extensive experimental evaluation of TaskDiff on a benchmark dataset demonstrates its superior performance and improved robustness over other related approaches.",,2023,ACL,No,, A Benchmark for Reasoning with Spatial Prepositions,"Spatial reasoning is a fundamental building block of human cognition, used in representing, grounding, and reasoning about physical and abstract concepts. We propose a novel benchmark focused on assessing inferential properties of statements with spatial prepositions. The benchmark includes original datasets in English and Romanian and aims to probe the limits of reasoning about spatial relations in large language models. We use prompt engineering to study the performance of two families of large language models, PaLM and GPT-3, on our benchmark. Our results show considerable variability in the performance of smaller and larger models, as well as across prompts and languages. However, none of the models reaches human performance.",,2023,ACL,Yes,Language,Benchmark Can language models learn analogical reasoning? Investigating training objectives and comparisons to human performance,"While analogies are a common way to evaluate word embeddings in NLP, it is also of interest to investigate whether or not analogical reasoning is a task in itself that can be learned. In this paper, we test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans than those in commonly used NLP benchmarks. Our experiments find that models are able to learn analogical reasoning, even with a small amount of data. We additionally compare our models to a dataset with a human baseline, and find that after training models approach human performance.",,2023,ACL,No,, A Picture is Worth a Thousand Words: Language Models Plan from Pixels,"Planning is an important capability of artificial agents that perform long-horizon tasks in real-world environments. In this work, we explore the use of pre-trained language models (PLMs) to reason about plan sequences from text instructions in embodied visual environments. Prior PLM based approaches for planning either assume observations are available in the form of text by a captioning model, reason about plans from the instruction alone, or incorporate information about the visual environment in limited ways (such as a pre-trained affordance function). In contrast, we show that the PLM can accurately plan even when observations are directly encoded as input prompts for the PLM. We show this simple approach outperforms prior approaches in experiments on the ALFWorld and VirtualHome benchmarks.",,2023,ACL,No,, Document-Level Machine Translation with Large Language Models,"Large language models (LLMs) such as ChatGPT can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks. Taking document-level machine translation (MT) as a testbed, this paper provides an in-depth evaluation of LLMs’ ability on discourse modeling. The study focuses on three aspects: 1) Effects of Context-Aware Prompts, where we investigate the impact of different prompts on document-level translation quality and discourse phenomena; 2) Comparison of Translation Models, where we compare the translation performance of ChatGPT with commercial MT systems and advanced document-level MT methods; 3) Analysis of Discourse Modelling Abilities, where we further probe discourse knowledge encoded in LLMs and shed light on impacts of training techniques on discourse modeling. By evaluating on a number of benchmarks, we surprisingly find that LLMs have demonstrated superior performance and show potential to become a new paradigm for document-level translation: 1) leveraging their powerful long-text modeling capabilities, GPT-3.5 and GPT-4 outperform commercial MT systems in terms of human evaluation; 2) GPT-4 demonstrates a stronger ability for probing linguistic knowledge than GPT-3.5. This work highlights the challenges and opportunities of LLMs for MT, which we hope can inspire the future design and evaluation of LLMs (We release our data and annotations at https://github.com/longyuewangdcu/Document-MT-LLM).",,2023,ACL,No,, JASMINE: Arabic GPT Models for Few-Shot Learning,"Scholarship on generative pretraining (GPT) remains acutely Anglocentric, leaving serious gaps in our understanding of the whole class of autoregressive models. For example, we have little knowledge about the potential of these models and their societal impacts in diverse linguistic and cultural settings. We alleviate this issue for Arabic, a wide collection of languages and dialectal varieties with more than 400 million population, by introducing JASMINE. JASMINE is a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-6.7 billion parameters pretrained on a large and diverse dataset ( 235 GB of text). We also carefully design and release a comprehensive benchmark for both automated and human evaluation of Arabic autoregressive models, with coverage of potential social biases, harms, and toxicity. Using our novel benchmark, we evaluate JASMINE extensively showing powerful performance intrinsically as well as in few-shot learning on a wide range of NLP tasks. We aim to responsibly release our models and evaluation benchmark with interested researchers, along with code for experimenting with them.",,2023,ACL,Yes,Language,Benchmark Koala: An Index for Quantifying Overlaps with Pre-training Corpora,"In very recent years more attention has been placed on probing the role of pre-training data in Large Language Models (LLMs) downstream behaviour. Despite the importance, there is no public tool that supports such analysis of pre-training corpora at large scale. To help research in this space, we launch Koala, a searchable index over large pre-training corpora using lossless compressed suffix arrays with highly efficient compression rate and search support. In its first release we index the public proportion of OPT 175B, GPT-3, GPT-Neo, GPT-Neo, LLaMA, BERT, ELECTRA, RoBERTA, XLNet pre-training corpora. Koala provides a framework to do forensic analysis on the current and future benchmarks as well as to assess the degree of memorization in the output from the LLMs. Koala is available for public use at https://koala-index.erc.monash.edu/.",,2023,ACL,No,, CLEVA: Chinese Language Models EVAluation Platform,"With the continuous emergence of Chinese Large Language Models (LLMs), how to evaluate a model’s capabilities has become an increasingly significant issue. The absence of a comprehensive Chinese benchmark that thoroughly assesses a model’s performance, the unstandardized and incomparable prompting procedure, and the prevalent risk of contamination pose major challenges in the current evaluation of Chinese LLMs. We present CLEVA, a user-friendly platform crafted to holistically evaluate Chinese LLMs. Our platform employs a standardized workflow to assess LLMs’ performance across various dimensions, regularly updating a competitive leaderboard. To alleviate contamination, CLEVA curates a significant proportion of new data and develops a sampling strategy that guarantees a unique subset for each leaderboard round. Empowered by an easy-to-use interface that requires just a few mouse clicks and a model API, users can conduct a thorough evaluation with minimal coding. Large-scale experiments featuring 23 Chinese LLMs have validated CLEVA’s efficacy.",,2023,ACL,Yes,Language,Benchmark Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback,"A key technology for large language models (LLMs) involves instruction tuning that helps align the models’ responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are applied to produce the best commercial LLMs. To improve the accessibility of LLMs, various instruction-tuned open-source LLMs have also been introduced recently. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their accessibility to many other languages in the world. In addition, SFT has been used as the only approach to instruction-tune open-source LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework with created resources, fine-tuned LLMs, interaction scripts are released at https://github.com/nlp-uoregon/Okapi. A demo video to show our framework can also be found at: https://youtu.be/QFV2fkPwvi0.",,2023,ACL,Yes,Language,Methodological LM-Polygraph: Uncertainty Estimation for Language Models,"Recent advancements in the capabilities of large language models (LLMs) have paved the way for a myriad of groundbreaking applications in various fields. However, a significant challenge arises as these models often “hallucinate”, i.e., fabricate facts without providing users an apparent means to discern the veracity of their statements. Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of LLMs. However, to date, research on UE methods for LLMs has been focused primarily on theoretical rather than engineering contributions. In this work, we tackle this issue by introducing LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python. Additionally, it introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores, empowering end-users to discern unreliable responses. LM-Polygraph is compatible with the most recent LLMs, including BLOOMz, LLaMA-2, ChatGPT, and GPT-4, and is designed to support future releases of similarly-styled LMs.",,2023,ACL,Yes,Language,Technical "ZhuJiu: A Multi-dimensional, Multi-faceted Chinese Benchmark for Large Language Models","The unprecedented performance of LLMs requires comprehensive and accurate evaluation. We argue that for LLMs evaluation, benchmarks need to be comprehensive and systematic. To this end, we propose the Zhujiu benchmark, which has the following strengths: (1) Multi-dimensional ability coverage: We comprehensively evaluate LLMs across 7 ability dimensions covering 51 tasks. Especially, we also propose a new benchmark that focus on knowledge ability of LLMs. (2) Multi-faceted evaluation methods collaboration: We use 3 different yet complementary evaluation methods to comprehensively evaluate LLMs, which can ensure the authority and accuracy of the evaluation results. (3) Comprehensive Chinese benchmark: ZhuJiu is the pioneering benchmark that fully assesses LLMs in Chinese, while also providing equally robust evaluation abilities in English. (4) Avoiding potential data leakage: To avoid data leakage, we construct evaluation data specifically for 37 tasks. We evaluate 10 current mainstream LLMs, and conduct an in-depth discussion and analysis of their results. The ZhuJiu benchmark and open-participation leaderboard are publicly released at http://www.zhujiu-benchmark.com and we also provide a demo video at https://youtu.be/qypkJ89L1Ic.",,2023,ACL,Yes,Language,Benchmark Unveiling Identity Biases in Toxicity Detection : A Game-Focused Dataset and Reactivity Analysis Approach,"Identity biases arise commonly from annotated datasets, can be propagated in language models and can cause further harm to marginal groups. Existing bias benchmarking datasets are mainly focused on gender or racial biases and are made to pinpoint which class the model is biased towards. They also are not designed for the gaming industry, a concern for models built for toxicity detection in videogames’ chat. We propose a dataset and a method to highlight oversensitive terms using reactivity analysis and the model’s performance. We test our dataset against ToxBuster, a language model developed by Ubisoft fine-tuned for toxicity detection on multiplayer videogame’s written chat, and Perspective API. We find that these toxicity models often automatically tag terms related to a community’s identity as toxic, which prevents members of already marginalized groups to make their presence known or have a mature / normal conversation. Through this process, we have generated an interesting list of terms that trigger the models to varying degrees, along with insights on establishing a baseline through human annotations.",,2023,ACL,Yes,Language,Methodological Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering,"Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.",,2023,ACL,Yes,Language,Methodological Coordinated Replay Sample Selection for Continual Federated Learning,"Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is forgetting what was learned from past data. While replay-based algorithms that keep a small pool of past training data are effective to reduce forgetting, only simple replay sample selection strategies have been applied to CFL in prior work, and no previous work has explored coordination among clients for better sample selection. To bridge this gap, we adapt a replay sample selection objective based on loss gradient diversity to CFL and propose a new relaxation-based selection of samples to optimize the objective. Next, we propose a practical algorithm to coordinate gradient-based replay sample selection across clients without communicating private data. We benchmark our coordinated and uncoordinated replay sample selection algorithms against random sampling-based baselines with language models trained on a large scale de-identified real-world text dataset. We show that gradient-based sample selection methods both boost performance and reduce forgetting compared to random sampling methods, with our coordination method showing gains early in the low replay size regime (when the budget for storing past data is small).",,2023,ACL,No,, Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? A Study on Several Typical Tasks,"The most recent large language models (LLMs) such as ChatGPT and GPT-4 have shown exceptional capabilities of generalist models, achieving state-of-the-art performance on a wide range of NLP tasks with little or no adaptation. How effective are such models in the finance domain? Understanding this basic question would have a significant impact on many downstream financial analytical tasks. In this paper, we conduct empirical studies and provide experimental evidences of their performance on a wide variety of financial text analytical problems, using eight benchmark datasets from five categories of tasks. We report both the strengths and limitations of the current models by comparing them to the state-of-the-art fine-tuned approaches and the recently released domain-specific pretrained models. We hope our study can help to understand the capability of the existing models in the financial domain and facilitate further improvements.",,2023,ACL,No,, BUSTER: a “BUSiness Transaction Entity Recognition” dataset,"Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER.",,2023,ACL,Yes,Language,Benchmark "ViGPTQA - State-of-the-Art LLMs for Vietnamese Question Answering: System Overview, Core Models Training, and Evaluations","Large language models (LLMs) and their applications in low-resource languages (such as in Vietnamese) are limited due to lack of training data and benchmarking datasets. This paper introduces a practical real-world implementation of a question answering system for Vietnamese, called ViGPTQA, leveraging the power of LLM. Since there is no effective LLM in Vietnamese to date, we also propose, evaluate, and open-source an instruction-tuned LLM for Vietnamese, named ViGPT. ViGPT demonstrates exceptional performances, especially on real-world scenarios. We curate a new set of benchmark datasets that encompass both AI and human-generated data, providing a comprehensive evaluation framework for Vietnamese LLMs. By achieving state-of-the-art results and approaching other multilingual LLMs, our instruction-tuned LLM underscores the need for dedicated Vietnamese-specific LLMs. Our open-source model supports customized and privacy-fulfilled Vietnamese language processing systems.",,2023,ACL,Yes,Language,Technical PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models,"The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present PrivLM-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage. PrivLM-Bench first clearly defines multi-faceted privacy objectives. Then, PrivLM-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, PrivLM-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.",,2024,ACL,Yes,Language,Benchmark GenTranslate: Large Language Models are Generative Multilingual Speech and Machine Translators,"Recent advances in large language models (LLMs) have stepped forward the development of multilingual speech and machine translation by its reduced representation errors and incorporated external knowledge. However, both translation tasks typically utilize beam search decoding and top-1 hypothesis selection for inference. These techniques struggle to fully exploit the rich information in the diverse N-best hypotheses, making them less optimal for translation tasks that require a single, high-quality output sequence. In this paper, we propose a new generative paradigm for translation tasks, namely GenTranslate, which builds upon LLMs to generate better results from the diverse translation versions in N-best list. Leveraging the rich linguistic knowledge and strong reasoning abilities of LLMs, our new paradigm can integrate the diverse N-best candidates to generate a higher-quality translation result. Furthermore, to support LLM finetuning, we build and release a HypoTranslate dataset that contains over 592K hypotheses-translation pairs in 11 languages. Experiments on various speech and machine translation benchmarks (e.g., FLEURS, CoVoST-2, WMT) demonstrate that our GenTranslate significantly outperforms the state-of-the-art model.",,2024,ACL,No,, BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation,"The upscaling of Large Language Models (LLMs) has yielded impressive advances in natural language processing, yet it also poses significant deployment challenges. Weight quantization has emerged as a widely embraced solution to reduce memory and computational demands. This paper introduces BitDistiller, a framework that synergizes Quantization-Aware Training (QAT) with Knowledge Distillation (KD) to boost the performance of LLMs at ultra-low precisions (sub-4-bit). Specifically, BitDistiller first incorporates a tailored asymmetric quantization and clipping technique to maximally preserve the fidelity of quantized weights, and then proposes a novel Confidence-Aware Kullback-Leibler Divergence (CAKLD) objective, which is employed in a self-distillation manner to enable faster convergence and superior model performance. Empirical evaluations demonstrate that BitDistiller significantly surpasses existing methods in both 3-bit and 2-bit configurations on general language understanding and complex reasoning benchmarks. Notably, BitDistiller is shown to be more cost-effective, demanding fewer data and training resources. The code is available at https://github.com/DD-DuDa/BitDistiller.",,2024,ACL,No,, MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering,"Recent advances in few-shot question answering (QA) mostly rely on the power of pre-trained large language models (LLMs) and fine-tuning in specific settings. Although the pre-training stage has already equipped LLMs with powerful reasoning capabilities, LLMs still need to be fine-tuned to adapt to specific domains to achieve the best results. In this paper, we propose to select the most informative data for fine-tuning, thereby improving the efficiency of the fine-tuning process with comparative or even better accuracy on the open-domain QA task. We present MinPrompt, a minimal data augmentation framework for open-domain QA based on an approximate graph algorithm and unsupervised question generation. We transform the raw text into a graph structure to build connections between different factual sentences, then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text. We then generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model. Empirical results on several benchmark datasets and theoretical analysis show that MinPrompt is able to achieve comparable or better results than baselines with a high degree of efficiency, bringing consistent improvements in F-1 scores.",,2024,ACL,No,, SportsMetrics: Blending Text and Numerical Data to Understand Information Fusion in LLMs,"Large language models hold significant potential for integrating various data types, such as text documents and database records, for advanced analytics. However, blending text and numerical data presents substantial challenges. LLMs need to process and cross-reference entities and numbers, handle data inconsistencies and redundancies, and develop planning capabilities such as building a working memory for managing complex data queries. In this paper, we introduce four novel tasks centered around sports data analytics to evaluate the numerical reasoning and information fusion capabilities of LLMs. These tasks involve providing LLMs with detailed, play-by-play sports game descriptions, then challenging them with adversarial scenarios such as new game rules, longer durations, scrambled narratives, and analyzing key statistics in game summaries. We conduct extensive experiments on NBA and NFL games to assess the performance of LLMs on these tasks. Our benchmark, SportsMetrics, introduces a new mechanism for assessing LLMs’ numerical reasoning and fusion skills.",,2024,ACL,Yes,Multimodal, Mementos: A Comprehensive Benchmark for Multimodal Large Language Model Reasoning over Image Sequences,"Multimodal Large Language Models (MLLMs) have demonstrated proficiency in handling a variety of visual-language tasks. However, current MLLM benchmarks are predominantly designed to evaluate reasoning based on static information about a single image, and the ability of modern MLLMs to extrapolate from image sequences, which is essential for understanding our ever-changing world, has been less investigated. To address this challenge, this paper introduces Mementos, a new benchmark designed to assess MLLMs’ sequential image reasoning abilities. Mementos features 4,761 diverse image sequences with varying lengths. We also employ a GPT-4 assisted method to evaluate MLLM reasoning performance. Through a careful evaluation of nine recent MLLMs on Mementos, including GPT-4V and Gemini, we find that they struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects and their corresponding behaviors. Our quantitative analysis and case studies identify three key factors impacting MLLMs’ sequential image reasoning: the correlation between object and behavioral hallucinations, the influence of co-occurring behaviors, and the compounding impact of behavioral hallucinations.",,2024,ACL,Yes,Image, Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders,"Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don’t particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks– (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model’s understanding of two semantic concepts paramount in real-world conversational systems– negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics.",,2024,ACL,Yes,Language,Methodological FOFO: A Benchmark to Evaluate LLMs’ Format-Following Capability,"This paper presents FoFo, a pioneering benchmark for evaluating large language models’ (LLMs) ability to follow complex, domain-specific formats, a crucial yet under-examined capability for their application as AI agents. Despite LLMs’ advancements, existing benchmarks fail to assess their format-following proficiency adequately. FoFo fills this gap with a diverse range of real-world formats and instructions, developed through an AI-Human collaborative method. Our evaluation across both open-source (e.g., Llama 2, WizardLM) and closed-source (e.g., GPT-4, PALM2, Gemini) LLMs highlights three key findings: open-source models significantly lag behind closed-source ones in format adherence; LLMs’ format-following performance is independent of their content generation quality; and LLMs’ format proficiency varies across different domains. These insights suggest the need for specialized tuning for format-following skills and highlight FoFo’s role in guiding the selection of domain-specific AI agents. FoFo will be publicly released, contributing a critical tool for advancing LLM evaluation and application.",,2024,ACL,Yes,Language,Benchmark The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants,"We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the FLORES-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and findings, notably that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.",,2024,ACL,Yes,Language,Benchmark Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach,"In this paper, we primarily address the issue of dialogue-form context query within the interactive text-to-image retrieval task. Our methodology, PlugIR, actively utilizes the general instruction-following capability of LLMs in two ways. First, by reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data, thereby enabling the use of any arbitrary black-box model. Second, we construct the LLM questioner to generate non-redundant questions about the attributes of the target image, based on the information of retrieval candidate images in the current context. This approach mitigates the issues of noisiness and redundancy in the generated questions. Beyond our methodology, we propose a novel evaluation metric, Best log Rank Integral (BRI), for a comprehensive assessment of the interactive retrieval system. PlugIR demonstrates superior performance compared to both zero-shot and fine-tuned baselines in various benchmarks. Additionally, the two methodologies comprising PlugIR can be flexibly applied together or separately in various situations.",,2024,ACL,No,, VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks,"Autonomous agents capable of planning, reasoning, and executing actions on the web offer a promising avenue for automating computer tasks. However, the majority of existing benchmarks primarily focus on text-based agents, neglecting many natural tasks that require visual information to effectively solve. Given that most computer interfaces cater to human perception, visual information often augments textual data in ways that text-only models struggle to harness effectively. To bridge this gap, we introduce VisualWebArena, a benchmark designed to assess the performance of multimodal web agents on *realistic visually grounded tasks*. VisualWebArena comprises of a set of diverse and complex web-based tasks that evaluate various capabilities of autonomous multimodal agents. To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives. We conduct an extensive evaluation of state-of-the-art LLM-based autonomous agents, including several multimodal models. Through extensive quantitative and qualitative analysis, we identify several limitations of text-only LLM agents, and reveal gaps in the capabilities of state-of-the-art multimodal language agents. VisualWebArena provides a framework for evaluating multimodal autonomous language agents, and offers insights towards building stronger autonomous agents for the web.",,2024,ACL,Yes,Multimodal, FineSurE: Fine-grained Summarization Evaluation using LLMs,"Automated evaluation is crucial for streamlining text summarization benchmarking and model development, given the costly and time-consuming nature of human evaluation. Traditional methods like ROUGE do not correlate well with human judgment, while recently proposed LLM-based metrics provide only summary-level assessment using Likert-scale scores. This limits deeper model analysis, e.g., we can only assign one hallucination score at the summary level, while at the sentence level, we can count sentences containing hallucinations. To remedy those limitations, we propose FineSurE, a fine-grained evaluator specifically tailored for the summarization task using large language models (LLMs). It also employs completeness and conciseness criteria, in addition to faithfulness, enabling multi-dimensional assessment. We compare various open-source and proprietary LLMs as backbones for FineSurE. In addition, we conduct extensive benchmarking of FineSurE against SOTA methods including NLI-, QA-, and LLM-based methods, showing improved performance especially on the completeness and conciseness dimensions. The code is available at https://github.com/DISL-Lab/FineSurE.",,2024,ACL,Yes,Language,Methodological Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback,"Recent advancements in large language models have influenced the development of video large multimodal models (VLMMs). Previous approaches for VLMMs involve Supervised Fine-Tuning (SFT) with instruction-tuned datasets, integrating LLM with visual encoders, and additional learnable parameters. Here, aligning video with text, and vice versa, remains a challenge, primarily due to the insufficient quality and quantity of multimodal instruction-tune data compared to that of text-only. This discrepancy often results in alignments that poorly ground the video content. To address this, we present a novel alignment strategy that employs a multimodal AI system equipped with Reinforcement Learning from AI Feedback (RLAIF), providing self-preference feedback to refine itself and facilitating the alignment of video and text modalities. Our approach uniquely integrates detailed video descriptions as context into a multimodal AI system during the preference feedback generation to enrich the understanding of video content, a process we call context-aware reward modeling. Empirical evaluations on various video benchmarks demonstrate that our VLM-RLAIF outperforms existing approaches, including the SFT model. We commit to open-sourcing our code, models, and datasets to foster further research in this area.",,2024,ACL,No,, Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation,"In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.",,2024,ACL,Yes,Language,Benchmark Reflect-RL: Two-Player Online RL Fine-Tuning for LMs,"As language models (LMs) demonstrate their capabilities in various fields, their application to tasks requiring multi-round interactions has become increasingly popular. These tasks usually have complex dynamics, so supervised fine-tuning (SFT) on a limited offline dataset does not yield good performance. However, only a few works attempted to directly train the LMs within interactive decision-making environments. We aim to create an effective approach to fine-tune LMs with online reinforcement learning (RL) in these environments. We propose Reflect-RL, a two-player system to fine-tune an LM using SFT and online RL, where a frozen reflection model (player) assists the policy model (player). To generate data for the warm-up SFT stage, we use negative example generation to enhance the error-correction ability of the reflection model. Furthermore, we designed single-prompt action enumeration and applied curriculum learning to allow the policy model to learn more efficiently. Empirically, we verify that Reflect-RL outperforms SFT and online RL without reflection. Testing results indicate GPT-2 XL 1.56B fine-tuned with Reflect-RL outperforms larger open-source LMs, such as Mistral 7B. The benchmarks, dataset, and code involved in this work are publicly available: https://github.com/zhourunlong/Reflect-RL.",,2024,ACL,Yes,Language,Methodological Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning,"The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.",,2024,ACL,No,, Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents,"Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users’ implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires about user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency.",,2024,ACL,Yes,Language,Methodological TimeBench: A Comprehensive Evaluation of Temporal Reasoning Abilities in Large Language Models,"Grasping the concept of time is a fundamental facet of human cognition, indispensable for truly comprehending the intricacies of the world.Previous studies typically focus on specific aspects of time, lacking a comprehensive temporal reasoning benchmark.To address this, we propose TimeBench, a comprehensive hierarchical temporal reasoning benchmark that covers a broad spectrum of temporal reasoning phenomena.TimeBench provides a thorough evaluation for investigating the temporal reasoning capabilities of large language models.We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings.Our experimental results indicate a significant performance gap between the state-of-the-art LLMs and humans, highlighting that there is still a considerable distance to cover in temporal reasoning.Besides, LLMs exhibit capability discrepancies across different reasoning categories.Furthermore, we thoroughly analyze the impact of multiple aspects on temporal reasoning and emphasize the associated challenges.We aspire for TimeBench to serve as a comprehensive benchmark, fostering research in temporal reasoning.Code and data are available at https://github.com/zchuz/TimeBench.",,2024,ACL,Yes,Language,Benchmark Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency,"Large language models (LLMs) have exhibited remarkable ability in code generation. However, generating the correct solution in a single attempt still remains a challenge. Prior works utilize verification properties in software engineering to verify and re-rank solutions in a majority voting manner. But the assumption behind them that generated verification properties have better qualities than solutions may not always hold. In this paper, we treat them equally as different perspectives of LLMs’ reasoning processes. We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency across outputs from multiple perspectives. Specifically, we prompt LLMs to generate diverse outputs from three perspectives, Solution, Specification and Test case, constructing a 3-partite graph. With two measure functions of consistency, we embed both inter- and intra-consistency information into the graph. The optimal choice of solutions is then determined based on analysis in the graph.MPSC significantly boosts performance of foundation models (ChatGPT in this paper) on various benchmarks, including HumanEval (+15.91%), MBPP (+6.43%) and CodeContests (+9.37%), even surpassing GPT-4.",,2024,ACL,No,, Citation-Enhanced Generation for LLM-based Chatbots,"Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our code and datasets can be found at https://github.com/Tsinghua-dhy/CEG.",,2024,ACL,No,, WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models,"To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method’s hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.",,2024,ACL,Yes,Language,Benchmark Probing Language Models for Pre-training Data Detection,"Large Language Models (LLMs) have shown their impressive capabilities, while also raising concerns about the data contamination problems due to privacy issues and leakage of benchmark datasets in the pre-training phase. Therefore, it is vital to detect the contamination by checking whether an LLM has been pre-trained on the target texts. Recent studies focus on the generated texts and compute perplexities, which are superficial features and not reliable. In this study, we propose to utilize the probing technique for pre-training data detection by examining the model’s internal activations. Our method is simple and effective and leads to more trustworthy pre-training data detection. Additionally, we propose ArxivMIA, a new challenging benchmark comprising arxiv abstracts from Computer Science and Mathematics categories. Our experiments demonstrate that our method outperforms all baselines, and achieves state-of-the-art performance on both WikiMIA and ArxivMIA, with additional experiments confirming its efficacy.",,2024,ACL,Yes,Language,Methodological "Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding","The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events.We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.",,2024,ACL,Yes,Language,Benchmark LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression,"In long context scenarios, large language models (LLMs) face three main challenges: higher computational cost, performance reduction, and position bias. Research indicates that LLM performance hinges on the density and position of key information in the input prompt. Inspired by these findings, we propose LongLLMLingua for prompt compression towards improving LLMs’ perception of the key information to simultaneously address the three challenges. Our extensive evaluation across various long context scenarios demonstrates that LongLLMLingua not only enhances performance but also significantly reduces costs and latency. For instance, in the NaturalQuestions benchmark, LongLLMLingua boosts performance by up to 21.4% with around 4x fewer tokens in GPT-3.5-Turbo, leading to substantial cost savings. It achieves a 94.0% cost reduction in the LooGLE benchmark. Moreover, when compressing prompts of about 10k tokens at ratios of 2x-6x, LongLLMLingua can accelerate end-to-end latency by 1.4x-2.6x.",,2024,ACL,No,, Selene: Pioneering Automated Proof in Software Verification,"Ensuring correctness is a pivotal aspect of software engineering. Among the various strategies available, software verification offers a definitive assurance of correctness. Nevertheless, writing verification proofs is resource-intensive and manpower-consuming, and there is a great need to automate this process. We introduce Selene in this paper, which is the first project-level automated proof benchmark constructed based on the real-world industrial-level operating system microkernel, seL4. Selene provides a comprehensive framework for end-to-end proof generation and a lightweight verification environment. Our experimental results with advanced large language models (LLMs), such as GPT-3.5-turbo and GPT-4, highlight the capabilities of LLMs in the domain of automated proof generation. Additionally, our further proposed augmentations indicate that the challenges presented by Selene can be mitigated in future research endeavors.",,2024,ACL,Yes,Language,Benchmark AoE: Angle-optimized Embeddings for Semantic Textual Similarity,"Text embedding is pivotal in semantic textual similarity (STS) tasks, which are crucial components in Large Language Model (LLM) applications. STS learning largely relies on the cosine function as the optimization objective to reflect semantic similarity. However, the cosine has saturation zones rendering vanishing gradients and hindering learning subtle semantic differences in text embeddings. To address this issue, we propose a novel Angle-optimized Embedding model, AoE. It optimizes angle differences in complex space to explore similarity in saturation zones better. To set up a comprehensive evaluation, we experimented with existing short-text STS, our newly collected long-text STS, and downstream task datasets. Extensive experimental results on STS and MTEB benchmarks show that AoE significantly outperforms popular text embedding models neglecting cosine saturation zones. It highlights that AoE can produce high-quality text embeddings and broadly benefit downstream tasks.",,2024,ACL,No,, Towards Faithful and Robust LLM Specialists for Evidence-Based Question-Answering,"Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.",,2024,ACL,Yes,Language,Methodological AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension,"Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as automatic speech recognition, and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement.In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research. Dataset and evaluation code are available at https://github.com/OFA-Sys/AIR-Bench.",,2024,ACL,Yes,Audio, ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models,"Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks.",,2024,ACL,Yes,Language,Benchmark A synthetic data approach for domain generalization of NLI models,"Natural Language Inference (NLI) remains an important benchmark task for LLMs. NLI datasets are a springboard for transfer learning to other semantic tasks, and NLI models are standard tools for identifying the faithfulness of model-generated text. There are several large scale NLI datasets today, and models have improved greatly by hill-climbing on these collections. Yet their realistic performance on out-of-distribution/domain data is less well-understood. We explore the opportunity for synthetic high-quality datasets to adapt NLI models for zero-shot use in downstream applications across new and unseen text domains. We demonstrate a new approach for generating NLI data in diverse domains and lengths, so far not covered by existing training sets. The resulting examples have meaningful premises, the hypotheses are formed in creative ways rather than simple edits to a few premise tokens, and the labels have high accuracy. We show that models trained on this data (685K synthetic examples) have the best generalization to completely new downstream test settings. On the TRUE benchmark, a T5-small model trained with our data improves around 7% on average compared to training on the best alternative dataset. The improvements are more pronounced for smaller models, while still meaningful on a T5 XXL model. We also demonstrate gains on test sets when in-domain training data is augmented with our domain-general synthetic data.",,2024,ACL,No,, Benchmarking Knowledge Boundary for Large Language Models: A Different Perspective on Model Evaluation,"In recent years, substantial advancements have been made in the development of large language models, achieving remarkable performance across diverse tasks.To evaluate the knowledge ability of language models, previous studies have proposed lots of benchmarks based on question-answering pairs.We argue that it is not reliable and comprehensive to evaluate language models with a fixed question or limited paraphrases as the query, since language models are sensitive to prompt.Therefore, we introduce a novel concept named knowledge boundary to encompass both prompt-agnostic and prompt-sensitive knowledge within language models.Knowledge boundary avoids prompt sensitivity in language model evaluations, rendering them more dependable and robust.To explore the knowledge boundary for a given model, we propose projected gradient descent method with semantic constraints, a new algorithm designed to identify the optimal prompt for each piece of knowledge.Experiments demonstrate a superior performance of our algorithm in computing the knowledge boundary compared to existing methods.Furthermore, we evaluate the ability of multiple language models in several domains with knowledge boundary.",,2024,ACL,Yes,Language,Methodological Exploring the Potential of Large Language Models in Computational Argumentation,"Computational argumentation has become an essential tool in various domains, including law, public policy, and artificial intelligence. It is an emerging research field in natural language processing that attracts increasing attention. Research on computational argumentation mainly involves two types of tasks: argument mining and argument generation. As large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language, it is worthwhile to evaluate the performance of LLMs on diverse computational argumentation tasks. This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings. We organize existing tasks into six main categories and standardize the format of fourteen openly available datasets. In addition, we present a new benchmark dataset on counter speech generation that aims to holistically evaluate the end-to-end performance of LLMs on argument mining and argument generation. Extensive experiments show that LLMs exhibit commendable performance across most of the datasets, demonstrating their capabilities in the field of argumentation. Our analysis offers valuable suggestions for evaluating computational argumentation and its integration with LLMs in future research endeavors.",,2024,ACL,Yes,Language,Benchmark Making Long-Context Language Models Better Multi-Hop Reasoners,"Recent advancements in long-context modeling have enhanced language models (LMs) for complex tasks across multiple NLP applications. Despite this progress, we find that these models struggle with multi-hop reasoning and exhibit decreased performance in the presence of noisy contexts. In this paper, we introduce Reasoning with Attributions, a novel approach that prompts LMs to supply attributions for each assertion during their reasoning. We validate our approach through experiments on three multi-hop datasets, employing both proprietary and open-source models, and demonstrate its efficacy and resilience. Furthermore, we explore methods to augment reasoning capabilities via fine-tuning and offer an attribution-annotated dataset and a specialized training strategy. Our fine-tuned model achieves competitive performance on multi-hop reasoning benchmarks, closely paralleling proprietary LMs such as ChatGPT and Claude-instant.",,2024,ACL,No,, MELA: Multilingual Evaluation of Linguistic Acceptability,"In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability—MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language—Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks.",,2024,ACL,Yes,Language,Benchmark ItD: Large Language Models Can Teach Themselves Induction through Deduction,"Although Large Language Models (LLMs) are showing impressive performance on a wide range of Natural Language Processing tasks, researchers have found that they still have limited ability to conduct induction. Recent works mainly adopt “post processes” paradigms to improve the performance of LLMs on induction (e.g., the hypothesis search & refinement methods), but their performance is still constrained by the inherent inductive capability of the LLMs. In this paper, we propose a novel framework, Induction through Deduction (ItD), to enable the LLMs to teach themselves induction through deduction. The ItD framework is composed of two main components: a Deductive Data Generation module to generate induction data and a Naive Bayesian Induction module to optimize the fine-tuning and decoding of LLMs. Our empirical results showcase the effectiveness of ItD on two induction benchmarks, achieving relative performance improvement of 36% and 10% compared with previous state-of-the-art, respectively. Our ablation study verifies the effectiveness of two key modules of ItD. We also verify the effectiveness of ItD across different LLMs and deductors. The data and code of this paper can be found at https://github.com/forangel2014/ItD.",,2024,ACL,No,, On Context Utilization in Summarization with Large Language Models,"Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries. Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens. However, in question answering, language models exhibit uneven utilization of their input context. They tend to favor the initial and final segments, resulting in a U-shaped performance pattern concerning where the answer is located within the input. This bias raises concerns, particularly in summarization where crucial content may be dispersed throughout the source document(s). Besides, in summarization, mapping facts from the source to the summary is not trivial as salient content is usually re-phrased. In this paper, we conduct the first comprehensive study on context utilization and position bias in summarization. Our analysis encompasses 6 LLMs, 10 datasets, and 5 evaluation metrics. We introduce a new evaluation benchmark called MiddleSum on the which we benchmark two alternative inference methods to alleviate position bias: hierarchical summarization and incremental summarization. Our code and data can be found here: https://github.com/ntunlp/MiddleSum.",,2024,ACL,Yes,Language,Methodological Improving Event Definition Following For Zero-Shot Event Detection,"Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types, and prompt them with unseen event definitions. These approaches yield sporadic successes, yet generally fall short of expectations.In this work, we aim to improve zero-shot event detection by training models to better follow event definitions. We hypothesize that a diverse set of event types and definitions are the key for models to learn to follow event definitions while existing event extraction datasets focus on annotating many high-quality examples for a few event types. To verify our hypothesis, we construct an automatically generated Diverse Event Definition (DivED) dataset and conduct comparative studies. Our experiments reveal that a large number of event types (200) and diverse event definitions can significantly boost event extraction performance; on the other hand, the performance does not scale with over ten examples per event type.Beyond scaling, we incorporate event ontology information and hard-negative samples during training, further boosting the performance. Based on these findings, we fine-tuned a LLaMA-2-7B model on our DivED dataset, yielding performance that surpasses SOTA large language models like GPT-3.5 across three open benchmarks on zero-shot event detection.",,2024,ACL,Yes,Language,Methodological Training Language Models to Generate Text with Citations via Fine-grained Rewards,"While recent Large Language Models (LLMs) have proven useful in answering user queries, they are prone to hallucination, and their responses often lack credibility due to missing references to reliable sources. An intuitive solution to these issues would be to include in-text citations referring to external documents as evidence. While previous works have directly prompted LLMs to generate in-text citations, their performances are far from satisfactory, especially when it comes to smaller LLMs. In this work, we propose an effective training framework using fine-grained rewards to teach LLMs to generate highly supportive and relevant citations, while ensuring the correctness of their responses. We also conduct a systematic analysis of applying these fine-grained rewards to common LLM training strategies, demonstrating its advantage over conventional practices. We conduct extensive experiments on Question Answering (QA) datasets taken from the ALCE benchmark and validate the model’s generalizability using EXPERTQA. On LLaMA-2-7B, the incorporation of fine-grained rewards achieves the best performance among the baselines, even surpassing that of GPT-3.5-turbo.",,2024,ACL,No,, GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers,"Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks. However, there are increasing debates regarding whether these models truly understand and apply mathematical knowledge or merely rely on shortcuts for mathematical reasoning. One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly. This motivates us to evaluate the robustness of LLMs’ math reasoning capability by testing a wide range of question variations. We introduce the adversarial grade school math (GSM-Plus) dataset, an extension of GSM8K augmented with various mathematical perturbations. Our experiments on 25 LLMs and 4 prompting techniques show that while LLMs exhibit different levels of math reasoning abilities, their performances are far from robust. In particular, even for problems that have been solved in GSM8K, LLMs can make mistakes when new statements are added or the question targets are altered. We also explore whether more robust performance can be achieved by composing existing prompting methods, in which we try an iterative method that generates and verifies each intermediate thought based on its reasoning goal and calculation result.",,2024,ACL,Yes,Language,Benchmark Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to Boost for Reasoning,"Large language models (LLMs) have demonstrated striking reasoning capability. Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning?This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs’ errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet.",,2024,ACL,Yes,Language,Methodological Detoxifying Large Language Models via Knowledge Editing,"This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to efficiently detoxify LLMs with limited impact on general performance. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxifying approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs.",,2024,ACL,Yes,Language,Methodological "LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding","Although large language models (LLMs) demonstrate impressive performance for many language tasks, most of them can only handle texts a few thousand tokens long, limiting their applications on longer sequence inputs, such as books, reports, and codebases. Recent works have proposed methods to improve LLMs’ long context capabilities by extending context windows and more sophisticated memory mechanisms. However, comprehensive benchmarks tailored for evaluating long context understanding are lacking. In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding. LongBench comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese). These tasks cover key long-text application areas including single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code completion. All datasets in LongBench are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Upon comprehensive evaluation of 8 LLMs on LongBench, we find that: (1) Commercial model (GPT-3.5-Turbo-16k) outperforms other open-sourced models, but still struggles on longer contexts. (2) Scaled position embedding and fine-tuning on longer sequences lead to substantial improvement on long context understanding. (3) Context compression technique such as retrieval brings improvement for model with weak ability on long contexts, but the performance still lags behind models that have strong long context understanding capability.",,2024,ACL,Yes,Language,Benchmark Dr.Academy: A Benchmark for Evaluating Questioning Capability in Education for Large Language Models,"Teachers are important to imparting knowledge and guiding learners, and the role of large language models (LLMs) as potential educators is emerging as an important area of study. Recognizing LLMs’ capability to generate educational content can lead to advances in automated and personalized learning. While LLMs have been tested for their comprehension and problem-solving skills, their capability in teaching remains largely unexplored.In teaching, questioning is a key skill that guides students to analyze, evaluate, and synthesize core concepts and principles.Therefore, our research introduces a benchmark to evaluate the questioning capability in education as a teacher of LLMs through evaluating their generated educational questions, utilizing Anderson and Krathwohl’s taxonomy across general, monodisciplinary, and interdisciplinary domains. We shift the focus from LLMs as learners to LLMs as educators, assessing their teaching capability through guiding them to generate questions. We apply four metrics, including relevance, coverage, representativeness, and consistency, to evaluate the educational quality of LLMs’ outputs. Our results indicate that GPT-4 demonstrates significant potential in teaching general, humanities, and science courses; Claude2 appears more apt as an interdisciplinary teacher. Furthermore, the automatic scores align with human perspectives.",,2024,ACL,Yes,Language,Benchmark Open Ko-LLM Leaderboard: Evaluating Large Language Models in Korean with Ko-H5 Benchmark,"This paper introduces the Open Ko-LLM Leaderboard and the Ko-H5 Benchmark as vital tools for evaluating Large Language Models (LLMs) in Korean. Incorporating private test sets while mirroring the English Open LLM Leaderboard, we establish a robust evaluation framework that has been well integrated in the Korean LLM community. We perform data leakage analysis that shows the benefit of private test sets along with a correlation study within the Ko-H5 benchmark and temporal analyses of the Ko-H5 score. Moreover, we present empirical support for the need to expand beyond set benchmarks. We hope the Open Ko-LLM Leaderboard sets precedent for expanding LLM evaluation to foster more linguistic diversity.",,2024,ACL,Yes,Language,Benchmark Unified Hallucination Detection for Multimodal Large Language Models,"Despite significant strides in multimodal tasks, Multimodal Large Language Models (MLLMs) are plagued by the critical issue of hallucination. The reliable detection of such hallucinations in MLLMs has, therefore, become a vital aspect of model evaluation and the safeguarding of practical application deployment. Prior research in this domain has been constrained by a narrow focus on singular tasks, an inadequate range of hallucination categories addressed, and a lack of detailed granularity. In response to these challenges, our work expands the investigative horizons of hallucination detection. We present a novel meta-evaluation benchmark, MHaluBench, meticulously crafted to facilitate the evaluation of advancements in hallucination detection methods. Additionally, we unveil a novel unified multimodal hallucination detection framework, UNIHD, which leverages a suite of auxiliary tools to validate the occurrence of hallucinations robustly. We demonstrate the effectiveness of UNIHD through meticulous evaluation and comprehensive analysis. We also provide strategic insights on the application of specific tools for addressing various categories of hallucinations.",,2024,ACL,Yes,Language,Methodological GrowOVER: How Can LLMs Adapt to Growing Real-World Knowledge?,"In the real world, knowledge is constantly evolving, which can render existing knowledge-based datasets outdated. This unreliability highlights the critical need for continuous updates to ensure both accuracy and relevance in knowledge-intensive tasks. To address this, we propose GrowOVER-QA and GrowOVER-Dialogue, dynamic open-domain QA and dialogue benchmarks that undergo a continuous cycle of updates, keeping pace with the rapid evolution of knowledge. Our research indicates that retrieval-augmented language models (RaLMs) struggle with knowledge that has not been trained on or recently updated. Consequently, we introduce a novel retrieval-interactive language model framework, where the language model evaluates and reflects on its answers for further re-retrieval. Our exhaustive experiments demonstrate that our training-free framework significantly improves upon existing methods, performing comparably to or even surpassing continuously trained language models.",,2024,ACL,Yes,Language,Methodological OceanGPT: A Large Language Model for Ocean Science Tasks,"Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet’s surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reason may be the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever LLM in the ocean domain, which is expert in various ocean science tasks. We propose DoInstruct, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.",,2024,ACL,Yes,Language,Technical Llama2Vec: Unsupervised Adaptation of Large Language Models for Dense Retrieval,"Dense retrieval calls for discriminative embeddings to represent the semantic relationship between query and document. It may benefit from the using of large language models (LLMs), given LLMs’ strong capability on semantic understanding. However, the LLMs are learned by auto-regression, whose working mechanism is completely different from representing whole text as one discriminative embedding. Thus, it is imperative to study how to adapt LLMs properly so that they can be effectively initialized as the backbone encoder for dense retrieval. In this paper, we propose a novel approach, called Llama2Vec, which performs unsupervised adaptation of LLM for its dense retrieval application. Llama2Vec consists of two pretext tasks: EBAE (Embedding-Based Auto-Encoding) and EBAR (Embedding-Based Auto-Regression), where the LLM is prompted to reconstruct the input sentence and predict the next sentence based on its text embeddings. Llama2Vec is simple, lightweight, but highly effective. It is used to adapt LLaMA-2-7B on the Wikipedia corpus. With a moderate steps of adaptation, it substantially improves the model’s fine-tuned performances on a variety of dense retrieval benchmarks. Notably, it results in the new state-of-the-art performances on popular benchmarks, such as passage and document retrieval on MSMARCO, and zero-shot retrieval on BEIR. The model and source code will be made publicly available to facilitate the future research. Our model is available at https://github.com/FlagOpen/FlagEmbedding.",,2024,ACL,No,, Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference,"The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.",,2024,ACL,Yes,Language,Methodological OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems,"Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench",,2024,ACL,Yes,Multimodal, Instruction Fusion: Advancing Prompt Evolution through Hybridization,"The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.",,2024,ACL,No,, M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection,"The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain and multi-generator corpus of MGTs — M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.",,2024,ACL,Yes,Language,Benchmark MAVEN-ARG: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation,"Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and codes can be obtained from https://github.com/THU-KEG/MAVEN-Argument.",,2024,ACL,Yes,Language,Benchmark NPHardEval: Dynamic Benchmark on Reasoning Ability of Large Language Models via Complexity Classes,"Complex reasoning ability is one of the most important features of Large Language Models (LLMs). Numerous benchmarks have been established to assess the reasoning abilities of LLMs. However, they are inadequate in offering a rigorous evaluation and prone to the risk of overfitting, as these publicly accessible and static benchmarks allow models to potentially tailor their responses to specific benchmark metrics, thereby inflating their performance. Addressing these limitations, we introduce a new benchmark NPHardEval. It contains a broad spectrum of 900 algorithmic questions belonging up to the NP-Hard complexity class, offering a rigorous measure of the reasoning ability of LLMs utilizing computational complexity. Moreover, this benchmark is designed with a dynamic update mechanism, where the datapoints are refreshed on a monthly basis. Such regular updates play a crucial role in mitigating the risk of LLMs overfitting to the benchmark, promoting a more accurate and reliable assessment of their reasoning capabilities. The benchmark dataset and code of NPHardEval are available at https://github.com/casmlab/NPHardEval.",,2024,ACL,Yes,Language,Benchmark Intuitive or Dependent? Investigating LLMs’ Behavior Style to Conflicting Prompts,"This study investigates the behaviors of Large Language Models (LLMs) when faced with conflicting prompts versus their internal memory. This will not only help to understand LLMs’ decision mechanism but also benefit real-world applications, such as retrieval-augmented generation (RAG).Drawing on cognitive theory, we target the first scenario of decision-making styles where there is no superiority in the conflict and categorize LLMs’ preference into dependent, intuitive, and rational/irrational styles.Another scenario of factual robustness considers the correctness of prompt and memory in knowledge-intensive tasks, which can also distinguish if LLMs behave rationally or irrationally in the first scenario.To quantify them, we establish a complete benchmarking framework including a dataset, a robustness evaluation pipeline, and corresponding metrics. Extensive experiments with seven LLMs reveal their varying behaviors. And, with role play intervention, we can change the styles, but different models present distinct adaptivity and upper-bound. One of our key takeaways is to optimize models or the prompts according to the identified style. For instance, RAG models with high role play adaptability may dynamically adjust the interventions according to the quality of retrieval results — being dependent to better leverage informative context; and, being intuitive when external prompt is noisy.",,2024,ACL,Yes,Language,Methodological Interpretability of Language Models via Task Spaces,"The usual way to interpret language models (LMs) is to test their performance on different benchmarks and subsequently infer their internal processes.In this paper, we present an alternative approach, concentrating on the _quality_ of LM processing, with a focus on their language abilities.To this end, we construct ‘linguistic task spaces’ – representations of an LM’s language conceptualisation – that shed light on the connections LMs draw between language phenomena.Task spaces are based on the interactions of the learning signals from different linguistic phenomena, which we assess via a method we call ‘similarity probing’.To disentangle the learning signals of linguistic phenomena, we further introduce a method called ‘fine-tuning via gradient differentials’ (FTGD).We apply our methods to language models of three different scales and find that larger models generalise better to overarching general concepts for linguistic tasks, making better use of their shared structure. Further, the distributedness of linguistic processing increases with pre-training through increased parameter sharing between related linguistic tasks. The overall generalisation patterns are mostly stable throughout training and not marked by incisive stages, potentially explaining the lack of successful curriculum strategies for LMs.",,2024,ACL,No,, StepCoder: Improving Code Generation with Reinforcement Learning from Compiler Feedback,"The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks. The code and dataset will be made available upon publication.",,2024,ACL,No,, One-Shot Learning as Instruction Data Prospector for Large Language Models,"Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance. To address this challenge, we introduce Nuggets, a novel and efficient methodology that leverages one-shot learning to discern and select high-quality instruction data from extensive datasets. Nuggets assesses the potential of individual instruction examples to act as effective one-shot learning instances, thereby identifying those that can significantly improve performance across diverse tasks. Nuggets utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most advantageous data for instruction tuning. Through rigorous evaluations on two benchmarks, namely MT-Bench and Alpaca-Eval, our study illustrates that instruction tuning with the top 1% of examples curated by Nuggets substantially outperforms conventional methods employing the entire dataset.",,2024,ACL,No,, A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains,"Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains - in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/ .",,2024,ACL,Yes,Language,Benchmark FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models,"The ability to follow instructions is crucial for Large Language Models (LLMs) to handle various real-world applications. Existing benchmarks primarily focus on evaluating pure response quality, rather than assessing whether the response follows constraints stated in the instruction. To fill this research gap, in this paper, we propose FollowBench, a Multi-level Fine-grained Constraints Following Benchmark for LLMs. FollowBench comprehensively includes five different types (i.e., Content, Situation, Style, Format, and Example) of fine-grained constraints. To enable a precise constraint following estimation on diverse difficulties, we introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level. To assess whether LLMs’ outputs have satisfied every individual constraint, we propose to prompt strong LLMs with constraint-evolution paths to handle challenging open-ended instructions. By evaluating 13 closed-source and open-source popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work. The data and code are publicly available at https://github.com/YJiangcm/FollowBench.",,2024,ACL,Yes,Language,Benchmark Learning to Edit: Aligning LLMs with Knowledge Editing,"Knowledge editing techniques, aiming to efficiently modify a minor proportion of knowledge in large language models (LLMs) without negatively impacting performance across other inputs, have garnered widespread attention. However, existing methods predominantly rely on memorizing the updated knowledge, impeding LLMs from effectively combining the new knowledge with their inherent knowledge when answering questions. To this end, we propose a Learning to Edit (LTE) framework, focusing on teaching LLMs to apply updated knowledge into input questions, inspired by the philosophy of “Teach a man to fish.” LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits while preserving out-of-scope information and linguistic proficiency; and (ii) the Inference Phase, which employs a retrieval-based mechanism for real-time and mass knowledge editing. By comparing our approach with seven advanced baselines across four popular knowledge editing benchmarks and two LLM architectures, we demonstrate LTE’s superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds. The data and code are publicly available at https://github.com/YJiangcm/LTE.",,2024,ACL,No,, DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning,"Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Various instruction finetuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model DolphCoder with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with more distinct reasoning paths increases the code capability of LLMs. (2) Improving one’s ability to evaluate the correctness of code also enhances their ability to create it.",,2024,ACL,No,, MapCoder: Multi-Agent Code Generation for Competitive Problem Solving,"Code synthesis, which requires a deep understanding of complex natural language (NL) problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. Thus, while large language models (LLMs) demonstrate impressive proficiency in natural language processing (NLP), their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging the multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLMs ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks—MapCoder showcases remarkable code generation capabilities, achieving their new state-of-the-art (pass@1) results—(HumanEval 93.9%, MBPP 83.1%, APPS 22.0%, CodeContests 28.5%, and xCodeEval 45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.",,2024,ACL,No,, Open Grounded Planning: Challenges and Benchmark Construction,"The emergence of large language models (LLMs) has increasingly drawn attention to the use of LLMs for human-like planning. Existing work on LLM-based planning either focuses on leveraging the inherent language generation capabilities of LLMs to produce free-style plans, or employs reinforcement learning approaches to learn decision-making for a limited set of actions within restricted environments. However, both approaches exhibit significant discrepancies from the open and executable requirements in real-world planning. In this paper, we propose a new planning task–open grounded planning. The primary objective of open grounded planning is to ask the model to generate an executable plan based on a variable action set, thereby ensuring the executability of the produced plan. To this end, we establishes a benchmark for open grounded planning spanning a wide range of domains. Then we test current state-of-the-art LLMs along with five planning approaches, revealing that existing LLMs and methods still struggle to address the challenges posed by grounded planning in open domains. The outcomes of this paper define and establish a foundational dataset for open grounded planning, and shed light on the potential challenges and future directions of LLM-based planning.",,2024,ACL,Yes,Language,Benchmark Quantifying Uncertainty in Answers from any Language Model and Enhancing their Trustworthiness,"We introduce BSDetector, a method for detecting bad and speculative answers from a pretrained Large Language Model by estimating a numeric confidence score for any output it generated. Our uncertainty quantification technique works for any LLM accessible only via a black-box API, whose training data remains unknown. By expending a bit of extra computation, users of any LLM API can now get the same response as they would ordinarily, as well as a confidence estimate that cautions when not to trust this response. Experiments on both closed and open-form Question-Answer benchmarks reveal that BSDetector more accurately identifies incorrect LLM responses than alternative uncertainty estimation procedures (for both GPT-3 and ChatGPT). By sampling multiple responses from the LLM and considering the one with the highest confidence score, we can additionally obtain more accurate responses from the same LLM, without extra training steps. In applications involving automated evaluation with LLMs, accounting for our confidence scores leads to more reliable evaluation in both human-in-the-loop and fully-automated settings (across both GPT 3.5 and 4).",,2024,ACL,No,, Marathon: A Race Through the Realm of Long Context with Large Language Models,"With the advancement of large language models (LLMs) and the expansion of their context windows, existing long-context benchmarks fall short in effectively evaluating the models’ comprehension and reasoning abilities in extended texts. Moreover, conventional benchmarks relying on F1 metrics often inaccurately score responses: they may undervalue correct answers that differ from the reference responses and overvalue incorrect ones that resemble the reference texts. In response to these limitations, we introduce Marathon, a novel evaluation benchmark that adopts a multiple-choice question format. It is specifically designed to overcome the constraints of previous benchmarks and provide a rapid, precise, and unbiased appraisal of the long-context comprehension skills of large language models. We conducted comprehensive evaluations on the Marathon benchmark with a range of state-of-the-art LLMs and assessed the effectiveness of various optimization strategies tailored for long-context generation. We anticipate that the Marathon benchmark and its associated leaderboard will enable a more precise and equitable evaluation of LLMs’ capabilities in understanding and reasoning over extended contexts.",,2024,ACL,Yes,Language,Benchmark UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation,"Large language models (LLMs) produce hallucinated text, compromising their practical utility in professional contexts. To assess the reliability of LLMs, numerous initiatives have developed benchmark evaluations for hallucination phenomena. However, they often employ constrained generation techniques to produce the evaluation dataset due to cost and time limitations. For instance, this may involve employing directed hallucination induction or deliberately modifying authentic text to generate hallucinations. These are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, containing hallucinations generated by LLMs with minimal restrictions. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also evaluated prominent Chinese LLMs and the GPT series models to derive insights regarding hallucination.",,2024,ACL,Yes,Language,Benchmark CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation,"Large Language Models (LLMs) have demonstrated remarkable performance on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are insufficient as they focus on a narrow range of popular programming languages and specific tasks, whereas real-world software development scenarios show a critical need to implement systems with multilingual and multitask programming environments to satisfy diverse requirements. Second, most benchmarks fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce **CodeScope**, an execution-based, multilingual, multitask, multidimensional evaluation benchmark for comprehensively measuring LLM capabilities on coding tasks. CodeScope covers **43 programming languages** and **eight coding tasks**. It evaluates the coding performance of LLMs from three dimensions (perspectives): **length**, **difficulty**, and **efficiency**. To facilitate execution-based evaluations of code generation, we develop **MultiCodeEngine**, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze eight mainstream LLMs and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and code are publicly available at https://github.com/WeixiangYAN/CodeScope.",,2024,ACL,Yes,Language,Benchmark SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding,"As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, which aim to provoke unintended and unsafe behaviors from LLMs, remain a significant LLM safety threat. We analyze tokens, which are the smallest unit of text that can be processed by LLMs and make the following observations: (1) probabilities of tokens representing harmful responses are higher than those of harmless responses, and (2) responses containing safety disclaimers appear among the top tokens when token probabilities are sorted in descending order. In this paper, we leverage (1) and (2) to develop SafeDecoding, a safety-aware decoding strategy for LLMs, to defend against jailbreak attacks. We perform extensive experiments to evaluate SafeDecoding against six SOTA jailbreak attacks (GCG, AutoDAN, PAIR, DeepInception, SAP30, and template based attack) on five LLMs (Vicuna, Llama2, Guanaco, falcon, and Dolphin) using four benchmark datasets (AdvBench, HEx-PHI, MT-Bench, and Just-Eval). Our results show that SafeDecoding significantly reduces attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries while outperforming six defense methods (Perpelexity, Paraphrase, Retokenization, Self-Reminder, ICD, and Self-Examination).",,2024,ACL,No,, Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?,"Large language models (LLMs) are typically prompted to follow a single instruction per inference call. In this work, we analyze whether LLMs also hold the capability to handle multiple instructions simultaneously, denoted as Multi-Task Inference. For this purpose, we introduce the MTI Bench (Multi-Task Inference Benchmark), a comprehensive evaluation benchmark encompassing 5,000 instances across 25 tasks. Each task in the MTI Bench involves 2 to 3 sub-tasks. As expected, we first demonstrate that Multi-Task Inference reduces the total inference time by \times 1.46 times in average since it does not require multiple inference calls. Interestingly, contrary to the expectation that LLMs would perform better when tasks are divided, we find that state-of-the-art LLMs, such as Llama-2-Chat-70B and GPT-4, show up to 7.3% and 12.4% improved performance with Multi-Task Inference compared to Single-Task Inference on the MTI Bench. We release the MTI Bench dataset and our code at this [link](https://anonymous.4open.science/r/MTI-Bench-6F01).",,2024,ACL,Yes,Language,Benchmark Learning Geometry-Aware Representations for New Intent Discovery,"New intent discovery (NID) is an important problem for deploying practical dialogue systems, which trains intent classifiers on a semi-supervised corpus where unlabeled user utterances contain both known and novel intents. Most existing NID algorithms place hope on the sample similarity to cluster unlabeled corpus to known or new samples. Lacking supervision on new intents, we experimentally find the intent classifier fails to fully distinguish new intents since they tend to assemble into intertwined centers.To address this problem, we propose a novel GeoID framework that learns geometry-aware representations to maximally separate all intents. Specifically, we are motivated by the recent findings on Neural Collapse (NC) in classification tasks to derive optimal intent center structure. Meanwhile, we devise a dual pseudo-labeling strategy based on optimal transport assignments and semi-supervised clustering, ensuring proper utterances-to-center arrangement.Extensive results show that our GeoID method establishes a new state-of-the-art performance, achieving a +3.49% average accuracy improvement on three standardized benchmarking datasets. We also verify its usefulness in assisting large language models for improved in-context performance.",,2024,ACL,No,, Benchmarking Data Science Agents,"In the era of data-driven decision-making, the complexity of data analysis necessitates advanced expertise and tools of data science, presenting significant challenges even for specialists. Large Language Models (LLMs) have emerged as promising aids as data science agents, assisting humans in data analysis and processing. Yet their practical efficacy remains constrained by the varied demands of real-world applications and complicated analytical process. In this paper, we introduce DSEval – a novel evaluation paradigm, as well as a series of innovative benchmarks tailored for assessing the performance of these agents throughout the entire data science lifecycle. Incorporating a novel bootstrapped annotation method, we streamline dataset preparation, improve the evaluation coverage, and expand benchmarking comprehensiveness. Our findings uncover prevalent obstacles and provide critical insights to inform future advancements in the field.",,2024,ACL,Yes,Language,Benchmark PRP-Graph: Pairwise Ranking Prompting to LLMs with Graph Aggregation for Effective Text Re-ranking,"Pairwise Ranking Prompting (PRP) demonstrates impressive effectiveness in zero-shot document re-ranking tasks with large language models (LLMs). However, in the existing methods, PRP only outputs the same label for the comparison results of different confidence intervals without considering the uncertainty of pairwise comparison, which implies an underutilization of the generation probability information of LLMs. To bridge this gap, we propose PRP-Graph, a novel pairwise re-ranking approach, based on a refined scoring PRP unit that exploits the output probabilities of target labels to capture the degree of certainty of the comparison results. Specifically, the PRP-Graph consists of two stages, namely ranking graph construction and ranking graph aggregation. Extensive experiments conducted on the BEIR benchmark demonstrate the superiority of our approach over existing PRP-based methods. Comprehensive analysis reveals that the PRP-Graph displays strong robustness towards the initial ranking order and delivers exceptional re-ranking results with acceptable efficiency. Our code and data are available at https://github.com/Memelank/PRP-Graph.",,2024,ACL,No,, ProtT3: Protein-to-Text Generation for Text-based Protein Understanding,"Language Models (LMs) excel in understanding textual descriptions of proteins, as evident in biomedical question-answering tasks. However, their capability falters with raw protein data, such as amino acid sequences, due to a deficit in pretraining on such data. Conversely, Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts. To address their limitations, we introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding. ProtT3 empowers an LM to understand protein sequences of amino acids by incorporating a PLM as its protein understanding module, enabling effective protein-to-text generation. This collaboration between PLM and LM is facilitated by a cross-modal projector (i.e., Q-Former) that bridges the modality gap between the PLM’s representation space and the LM’s input space. Unlike previous studies focusing on protein property prediction and protein-text retrieval, we delve into the largely unexplored field of protein-to-text generation. To facilitate comprehensive benchmarks and promote future research, we establish quantitative evaluations for protein-text modeling tasks, including protein captioning, protein question-answering, and protein-text retrieval. Our experiments show that ProtT3 substantially surpasses current baselines, with ablation studies further highlighting the efficacy of its core components. Our code is available at https://github.com/acharkq/ProtT3.",,2024,ACL,Yes,Language,Methodological KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models,"Automatic evaluation methods for large language models (LLMs) are hindered by data contamination, leading to inflated assessments of their effectiveness. Existing strategies, which aim to detect contaminated texts, focus on quantifying contamination status instead of accurately gauging model performance. In this paper, we introduce KIEval, a Knowledge-grounded Interactive Evaluation framework, which incorporates an LLM-powered “interactor” role for the first time to accomplish a dynamic contamination-resilient evaluation. Starting with a question in a conventional LLM benchmark involving domain-specific knowledge, KIEval utilizes dynamically generated, multi-round, and knowledge-focused dialogues to determine whether a model’s response is merely a recall of benchmark answers or demonstrates a deep comprehension to apply knowledge in more complex conversations. Extensive experiments on seven leading LLMs across five datasets validate KIEval’s effectiveness and generalization. We also reveal that data contamination brings no contribution or even negative effect to models’ real-world applicability and understanding, and existing contamination detection methods for LLMs can only identify contamination in pre-training but not during supervised fine-tuning.",,2024,ACL,No,, EmoBench: Evaluating the Emotional Intelligence of Large Language Models,"Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion management and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data are publicly available at https://github.com/Sahandfer/EmoBench.",,2024,ACL,Yes,Language,Benchmark Soft Knowledge Prompt: Help External Knowledge Become a Better Teacher to Instruct LLM in Knowledge-based VQA,"LLM has achieved impressive performance on multi-modal tasks, which have received ever-increasing research attention. Recent research focuses on improving prediction performance and reliability (e.g., addressing the hallucination problem). They often prepend relevant external knowledge to the input text as an extra prompt. However, these methods would be affected by the noise in the knowledge and the context length limitation of LLM. In our work, we focus on making better use of external knowledge and propose a method to actively extract valuable information in the knowledge to produce the latent vector as a soft prompt, which is then fused with the image embedding to form a knowledge-enhanced context to instruct LLM. The experimental results on knowledge-based VQA benchmarks show that the proposed method enjoys better utilization of external knowledge and helps the model achieve better performance.",,2024,ACL,No,, TasTe: Teaching Large Language Models to Translate through Self-Reflection,"Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks. Techniques like instruction tuning have effectively enhanced the proficiency of LLMs in the downstream task of machine translation. However, the existing approaches fail to yield satisfactory translation outputs that match the quality of supervised neural machine translation (NMT) systems. One plausible explanation for this discrepancy is that the straightforward prompts employed in these methodologies are unable to fully exploit the acquired instruction-following capabilities. To this end, we propose the \textbf{TasTe} framework, which stands for translating through self-reflection. The self-reflection process includes two stages of inference. In the first stage, LLMs are instructed to generate preliminary translations and conduct self-assessments on these translations simultaneously. In the second stage, LLMs are tasked to refine these preliminary translations according to the evaluation results. The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods. Our work presents a promising approach to unleash the potential of LLMs and enhance their capabilities in MT. The codes and datasets are open-sourced at https://github.com/YutongWang1216/ReflectionLLMMT.",,2024,ACL,No,, Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in Large Language Models,"This paper identifies a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g., ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark of concrete (e.g., holidays and songs) and abstract (e.g., values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need to critically examine cultural dominance and ethical considerations in their development and deployment. We show that two straightforward methods in model development (i.e., pretraining on more diverse data) and deployment (e.g., culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.",,2024,ACL,Yes,Language,Methodological LLaMA Pro: Progressive LLaMA with Block Expansion,"Humans generally acquire new skills without compromising the old; however, the opposite holds for Large Language Models (LLMs), e.g., from LLaMA to CodeLLaMA. To this end, we propose a new post-pretraining method for LLMs with an expansion of Transformer blocks. We tune the expanded blocks using only new corpus, efficiently and effectively improving the model’s knowledge while mitigating forgetting. In this paper, we experiment on the corpus of code and math, yielding LLaMA Pro-8.3B, a versatile foundation model initialized from LLaMA2-7B, excelling in general tasks, programming, and mathematics. LLaMA Pro and its instruction-following counterpart (LLaMA Pro - Instruct) achieve advanced performance among various benchmarks, demonstrating superiority over existing open models in the LLaMA family and the immense potential of reasoning and addressing diverse tasks as an intelligent agent. Our findings provide valuable insights into integrating natural and programming languages, laying a solid foundation for developing advanced language agents that operate effectively in various environments.",,2024,ACL,No,, GroundingGPT: Language Enhanced Multi-modal Grounding Model,"Multi-modal large language models (MLLMs) have demonstrated remarkable performance across various tasks. However, these models often prioritize capturing global information and overlook the importance of perceiving local information. This limitation hinders their ability to effectively understand fine-grained details and handle grounding tasks that necessitate nuanced comprehension. Although some recent works have made strides in this, they have primarily focused on single-modality inputs. Therefore, we propose GroundingGPT, an end-to-end language enhanced multi-modal grounding model. It is designed to perform fine-grained grounding tasks for three modalities: image, video and audio. To enhance the model’s performance, we adopt a coarse-to-fine training strategy, utilizing a three-stage training approach to progressively enhance the model’s semantic awareness and fine-grained understanding capabilities. Additionally, we employ a diversified stage-specific dataset construction pipeline, developing a multi-modal, multi-granularity dataset tailored for training the model in different stages. Extensive experiments conducted on multiple multi-modal benchmarks demonstrate that our model achieves impressive fine-grained understanding of multi-modal inputs on grounding tasks while maintaining or improving its global comprehension capabilities. Our code, model, and dataset are available at https://github.com/lzw-lzw/GroundingGPT.",,2024,ACL,No,, "XCodeEval: An Execution-based Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval","Recently, pre-trained large language models (LLMs) have shown impressive abilities in generating codes from natural language descriptions, repairing buggy codes, translating codes between languages, and retrieving relevant code segments. However, the evaluation of these models has often been performed in a scattered way on only one or two specific tasks, in a few languages, at a partial granularity (e.g., function) level, and in many cases without proper training data. Even more concerning is that in most cases the evaluation of generated codes has been done in terms of mere lexical overlap with a reference code rather than actual execution. We introduce *xCodeEval*, the largest executable multilingual multitask benchmark to date consisting of 25 M document-level coding examples (16.5 B tokens) from about 7.5 K unique problems covering up to 11 programming languages with execution-level parallelism. It features a total of 7 tasks involving code understanding, generation, translation and retrieval. *xCodeEval* adopts an execution-based evaluation and offers a multilingual code execution engine, *ExecEval* that supports unit test based execution in all the 11 languages. To address the challenge of balancing the distributions of text-code samples over multiple attributes in validation/test sets, we propose a novel data splitting and a data selection schema based on the geometric mean and graph-theoretic principle. Our experiments with OpenAI’s LLMs (zero-shot) and open-LLMs (zero-shot and fine-tuned) on the tasks and languages demonstrate to be quite challenging as per the current advancements in language models.",,2024,ACL,Yes,Language,Benchmark ProxyQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models,"Large Language Models (LLMs) have succeeded remarkably in understanding long-form contents. However, exploring their capability for generating long-form contents, such as reports and articles, has been relatively unexplored and inadequately assessed by existing benchmarks. The prevalent evaluation methods, which predominantly rely on crowdsourcing, are recognized for their labor-intensive nature and lack of efficiency, whereas automated metrics, such as the ROUGE score, demonstrate discordance with human judgment criteria. In this paper, we propose ProxyQA, an innovative framework dedicated to assessing long-text generation. ProxyQA comprises in-depth human-curated meta-questions spanning various domains, each accompanied by specific proxy-questions with pre-annotated answers. LLMs are tasked to generate extensive content in response to these meta-questions, by engaging an evaluator and incorporating the generated texts as contextual background, ProxyQA assesses the generated content’s quality through the evaluator’s accuracy in addressing the proxy-questions. We examine multiple LLMs, emphasizing ProxyQA’s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that the proxy-question method is notably self-consistent and aligns closely with human evaluative standards. The dataset and leaderboard is available at https://proxy-qa.com.",,2024,ACL,Yes,Language,Methodological A Glitch in the Matrix? Locating and Detecting Language Model Grounding with Fakepedia,"Large language models (LLMs) have an impressive ability to draw on novel information supplied in their context. Yet the mechanisms underlying this contextual grounding remain unknown, especially in situations where contextual information contradicts factual knowledge stored in the parameters, which LLMs also excel at recalling. Favoring the contextual information is critical for retrieval-augmented generation methods, which enrich the context with up-to-date information, hoping that grounding can rectify outdated or noisy stored knowledge. We present a novel method to study grounding abilities using Fakepedia, a novel dataset of counterfactual texts constructed to clash with a model’s internal parametric knowledge. In this study, we introduce Fakepedia, a counterfactual dataset designed to evaluate grounding abilities when the internal parametric knowledge clashes with the contextual information. We benchmark various LLMs with Fakepedia and conduct a causal mediation analysis of LLM components when answering Fakepedia queries, based on our Masked Grouped Causal Tracing (MGCT) method. Through this analysis, we identify distinct computational patterns between grounded and ungrounded responses. We finally demonstrate that distinguishing grounded from ungrounded responses is achievable through computational analysis alone. Our results, together with existing findings about factual recall mechanisms, provide a coherent narrative of how grounding and factual recall mechanisms interact within LLMs.",,2024,ACL,Yes,Language,Benchmark Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA,"Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs’ multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs’ performance with synthetic data and offer insights for enhancement.",,2024,ACL,Yes,Image, WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models,"The rapid advancement of large language models (LLMs) has led to a new era marked by the development of autonomous applications in real-world scenarios, which drives innovation in creating advanced web agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we establish a new benchmark by compiling real-world tasks from 15 popular websites and introduce an automatic evaluation protocol leveraging multimodal understanding abilities of GPT-4V to evaluate open-ended web agents. We show that WebVoyager achieves a 59.1% task success rate on our benchmark, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager. The proposed automatic evaluation metric achieves 85.3% agreement with human judgment, indicating its effectiveness in providing reliable and accurate assessments of web agents.",,2024,ACL,Yes,Multimodal, Harnessing the Power of Large Language Models for Natural Language to First-Order Logic Translation,"Advancements in logical reasoning, utilizing LLMs to convert natural language into logical symbolism, combined with the use of external theorem provers, have repositioned the symbolic approach as a central point of interest. The main challenge within this paradigm lies in the LLMs’ capability to accurately translate natural language (NL) statements into first-order-logic (FOL) expressions. Although LLMs have shown notable success, there remains a gap in understanding the limitations and challenges they encounter in NL-FOL translation. This is primarily due to the absence of datasets and evaluation test beds at the required fine-grained level. We present MALLS, a dataset of 28K diverse and verified sentence-level NL-FOL pairs collected from GPT4. We utilize a combined strategy of FOL rule parsing, human annotation, and automatic filtering to ensure quality. We also present LogicLLaMA, a LLaMA2-7B/13B fine-tuned on MALLS for NL-FOL translation, which can be used standalone or to correct previously generated rules by GPT3.5 after being further fine-tuned via a novel reinforcement learning with human feedback (RLHF) framework. We benchmark a wide range of LLMs on MALLS and previous datasets, highlighting weaknesses in them in NL-FOL translation and demonstrating the advantages of MALLS. We also show that LogicLLaMA achieves GPT4-level performance and can generalize to other datasets. Project repo is available at https://github.com/gblackout/LogicLLaMA",,2024,ACL,Yes,Language,Methodological PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning,"Instruction tuning has remarkably advanced large language models (LLMs) in understanding and responding to diverse human instructions. Despite the success in high-resource languages, its application in lower-resource ones faces challenges due to the imbalanced foundational abilities of LLMs across different languages, stemming from the uneven language distribution in their pre-training data. To tackle this issue, we propose pivot language guided generation (PLUG), an approach that utilizes a high-resource language, primarily English, as the pivot to enhance instruction tuning in lower-resource languages. It trains the model to first process instructions in the pivot language, and then produce responses in the target language. To evaluate our approach, we introduce a benchmark, X-AlpacaEval, of instructions in 4 languages (Chinese, Korean, Italian, and Spanish), each annotated by professional translators. Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average, compared to directly responding in the target language alone. Further experiments validate the versatility of our approach by employing alternative pivot languages beyond English to assist languages where LLMs exhibit lower proficiency. Code and data are available at https://github.com/ytyz1307zzh/PLUG.",,2024,ACL,Yes,Language,Methodological ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs,"Large Language Models (LLMs) still struggle with natural language reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents. ReConcile enhances collaborative reasoning between LLM agents via multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism that leads to a better consensus. In each round, ReConcile initiates discussion between agents via a ‘discussion prompt’ that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their confidence scores, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. Experiments on seven benchmarks demonstrate that ReConcile significantly improves LLMs’ reasoning – both individually and as a team – surpassing prior single-agent and multi-agent baselines by up to 11.4% and even outperforming GPT-4 on three datasets. ReConcile also flexibly incorporates different combinations of agents, including API-based, open-source, and domain-specific models, leading to an 8% improvement on MATH. Finally, we analyze the individual components of ReConcile, demonstrating that the diversity originating from different models is critical to its superior performance.",,2024,ACL,No,, Large Language Models Are No Longer Shallow Parsers,"The development of large language models (LLMs) brings significant changes to the field of natural language processing (NLP), enabling remarkable performance in various high-level tasks, such as machine translation, question-answering, dialogue generation, etc., under end-to-end settings without requiring much training data. Meanwhile, fundamental NLP tasks, particularly syntactic parsing, are also essential for language study as well as evaluating the capability of LLMs for instruction understanding and usage. In this paper, we focus on analyzing and improving the capability of current state-of-the-art LLMs on a classic fundamental task, namely constituency parsing, which is the representative syntactic task in both linguistics and natural language processing. We observe that these LLMs are effective in shallow parsing but struggle with creating correct full parse trees. To improve the performance of LLMs on deep syntactic parsing, we propose a three-step approach that firstly prompts LLMs for chunking, then filters out low-quality chunks, and finally adds the remaining chunks to prompts to instruct LLMs for parsing, with later enhancement by chain-of-thought prompting. Experimental results on English and Chinese benchmark datasets demonstrate the effectiveness of our approach on improving LLMs’ performance on constituency parsing.",,2024,ACL,No,, Dialogue Summarization with Mixture of Experts based on Large Language Models,"Dialogue summarization is an important task that requires to generate highlights for a conversation from different aspects (e.g., content of various speakers). While several studies successfully employ large language models (LLMs) and achieve satisfying results, they are limited by using one model at a time or treat it as a black box, which makes it hard to discriminatively learn essential content in a dialogue from different aspects, therefore may lead to anticipation bias and potential loss of information in the produced summaries. In this paper, we propose an LLM-based approach with role-oriented routing and fusion generation to utilize mixture of experts (MoE) for dialogue summarization. Specifically, the role-oriented routing is an LLM-based module that selects appropriate experts to process different information; fusion generation is another LLM-based module to locate salient information and produce finalized dialogue summaries. The proposed approach offers an alternative solution to employing multiple LLMs for dialogue summarization by leveraging their capabilities of in-context processing and generation in an effective manner. We run experiments on widely used benchmark datasets for this task, where the results demonstrate the superiority of our approach in producing informative and accurate dialogue summarization.",,2024,ACL,No,, ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences,"Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT’s superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain.",,2024,ACL,Yes,Language,Technical From Moments to Milestones: Incremental Timeline Summarization Leveraging Large Language Models,"Timeline summarization (TLS) is essential for distilling coherent narratives from a vast collection of texts, tracing the progression of events and topics over time. Prior research typically focuses on either event or topic timeline summarization, neglecting the potential synergy of these two forms. In this study, we bridge this gap by introducing a novel approach that leverages large language models (LLMs) for generating both event and topic timelines. Our approach diverges from conventional TLS by prioritizing event detection, leveraging LLMs as pseudo-oracles for incremental event clustering and the construction of timelines from a text stream. As a result, it produces a more interpretable pipeline. Empirical evaluation across four TLS benchmarks reveals that our approach outperforms the best prior published approaches, highlighting the potential of LLMs in timeline summarization for real-world applications.",,2024,ACL,No,, Prompt Optimization via Adversarial In-Context Learning,"We propose a new method, Adversarial In-Context Learning (adv-ICL), to optimize prompts for in-context learning (ICL). Inspired by adversarial learning, adv-ICL is implemented as a two-player game between a generator and discriminator, with LLMs acting as both. In each round, given an input prefixed by task instructions and several exemplars, the generator produces an output. The discriminator then classifies the generator’s input-output pair as model-generated or real data. Based on the discriminator’s loss, a prompt modifier LLM proposes possible edits to the generator and discriminator prompts, and the edits that most improve the adversarial loss are selected. We show that applying adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques for both open and closed-source models on 13 generation and classification tasks including summarization, arithmetic reasoning, machine translation, data-to-text generation, and the MMLU and big-bench hard benchmarks. In addition, our method is computationally efficient, easily extensible to other LLMs and tasks, and effective in low-resource settings.",,2024,ACL,No,, LaMP: When Large Language Models Meet Personalization,"This paper highlights the importance of personalization in large language models and introduces the LaMP benchmark — a novel benchmark for training and evaluating language models for producing personalized outputs. LaMP offers a comprehensive evaluation framework with diverse language tasks and multiple entries for each user profile. It consists of seven personalized tasks, spanning three text classification and four text generation tasks. We additionally propose two retrieval augmentation approaches that retrieve personal items from each user profile for personalizing language model outputs. To this aim, we study various retrieval models, including term matching, semantic matching, and time-aware methods. Extensive experiments on LaMP for zero-shot and fine-tuned language models demonstrate the efficacy of the proposed retrieval augmentation approach and highlight the impact of personalization in various natural language tasks.",,2024,ACL,Yes,Language,Benchmark MT-Bench-101: A Fine-Grained Benchmark for Evaluating Large Language Models in Multi-Turn Dialogues,"The advent of Large Language Models (LLMs) has drastically enhanced dialogue systems. However, comprehensively evaluating the dialogue abilities of LLMs remains a challenge. Previous benchmarks have primarily focused on single-turn dialogues or provided coarse-grained and incomplete assessments of multi-turn dialogues, overlooking the complexity and fine-grained nuances of real-life dialogues. To address this issue, we introduce MT-Bench-101, specifically designed to evaluate the fine-grained abilities of LLMs in multi-turn dialogues. By conducting a detailed analysis of real multi-turn dialogue data, we construct a three-tier hierarchical ability taxonomy comprising 4208 turns across 1388 multi-turn dialogues in 13 distinct tasks. We then evaluate 21 popular LLMs based on MT-Bench-101, conducting comprehensive analyses from both ability and task perspectives and observing differing trends in LLMs performance across dialogue turns within various tasks. Further analysis indicates that neither utilizing common alignment techniques nor chat-specific designs has led to obvious enhancements in the multi-turn abilities of LLMs. Extensive case studies suggest that our designed tasks accurately assess the corresponding multi-turn abilities. The data and code are available at https://github.com/mtbench101/mt-bench-101.",,2024,ACL,Yes,Language,Benchmark EFSA: Towards Event-Level Financial Sentiment Analysis,"In this paper, we extend financial sentiment analysis (FSA) to event-level since events usually serve as the subject of the sentiment in financial text. Though extracting events from the financial text may be conducive to accurate sentiment predictions, it has specialized challenges due to the lengthy and discontinuity of events in a financial text. To this end, we reconceptualize the event extraction as a classification task by designing a categorization comprising coarse-grained and fine-grained event categories. Under this setting, we formulate the Event-Level Financial Sentiment Analysis(EFSA for short) task that outputs quintuples consisting of (company, industry, coarse-grained event, fine-grained event, sentiment) from financial text. A large-scale Chinese dataset containing 12,160 news articles and 13,725 quintuples is publicized as a brand new testbed for our task. A four-hop Chain-of-Thought LLM-based approach is devised for this task. Systematically investigations are conducted on our dataset, and the empirical results demonstrate the benchmarking scores of existing methods and our proposed method can reach the current state-of-the-art. Our dataset and framework implementation are available at https://github.com/cty1934/EFSA",,2024,ACL,Yes,Language,Methodological Advancement in Graph Understanding: A Multimodal Benchmark and Fine-Tuning of Vision-Language Models,"Graph data organizes complex relationships and interactions between objects, facilitating advanced analysis and decision-making across different fields. In this paper, we propose a new paradigm for interactive and instructional graph data understanding and reasoning.Instead of adopting complex graph neural models or heuristic graph-to-text instruction design, we leverage Vision-Language Models (VLMs) to encode the graph images with varying structures across different domains. This paper first evaluates the capabilities of public VLMs in graph learning from multiple aspects. Then it introduces a novel instruction-following dataset for multimodal graph understanding and reasoning in English and Chinese. Besides, by fine-tuning MiniGPT-4 and LLaVA on our dataset, we achieved an accuracy increase of 5%-15% compared to baseline models, with the best-performing model attaining scores comparable to Gemini in GPT-asissted Evaluation. This research not only showcases the potential of integrating VLMs with graph data but also opens new avenues for advancements in graph data understanding.",,2024,ACL,Yes,Multimodal, SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving,"Large Language Models (LLMs) have driven substantial progress in artificial intelligence in recent years, exhibiting impressive capabilities across a wide range of tasks, including mathematical problem-solving. Inspired by the success of subgoal-based methods, we propose a novel framework called SEquential subGoal Optimization (SEGO) to enhance LLMs’ ability to solve mathematical problems. By establishing a connection between the subgoal breakdown process and the probability of solving problems, SEGO aims to identify better subgoals with theoretical guarantees. Addressing the challenge of identifying suitable subgoals in a large solution space, our framework generates problem-specific subgoals and adjusts them according to carefully designed criteria. Incorporating these optimized subgoals into the policy model training leads to significant improvements in problem-solving performance. We validate SEGO’s efficacy through experiments on two benchmarks, GSM8K and MATH, where our approach outperforms existing methods, highlighting the potential of SEGO in AI-driven mathematical problem-solving.",,2024,ACL,No,, Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment,"Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively.",,2024,ACL,No,, STICKERCONV: Generating Multimodal Empathetic Responses from Scratch,"Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research, notably due to the challenge of a lack of comprehensive datasets. In this paper, we introduce the Agent for STICKERCONV (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, STICKERCONV, comprising 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios. This dataset serves as a benchmark for multimodal empathetic generation. To advance further, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation framework, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS’s effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems.",,2024,ACL,Yes,Multimodal, EXAMS-V: A Multi-Discipline Multilingual Multimodal Exam Benchmark for Evaluating Vision Language Models,"We introduce EXAMS-V, a new challenging multi-discipline multimodal multilingual exam benchmark for evaluating vision language models. It consists of 20,932 multiple-choice questions across 20 school disciplines covering natural science, social science, and other miscellaneous studies, e.g., religion, fine arts, business, etc. EXAMS-V includes a variety of multimodal features such as text, images, tables, figures, diagrams, maps, scientific symbols, and equations. The questions come in 11 languages from 7 language families. Unlike existing benchmarks, EXAMS-V is uniquely curated by gathering school exam questions from various countries, with a variety of education systems. This distinctive approach calls for intricate reasoning across diverse languages and relies on region-specific knowledge. Solving the problems in the dataset requires advanced perception and joint reasoning over the text and the visual content in the image. Our evaluation results demonstrate that this is a challenging dataset, which is difficult even for advanced vision–text models such as GPT-4V and Gemini; this underscores the inherent complexity of the dataset and its significance as a future benchmark.",,2024,ACL,Yes,Multimodal, Order-Agnostic Data Augmentation for Few-Shot Named Entity Recognition,"Data augmentation (DA) methods have been proven to be effective for pre-trained language models (PLMs) in low-resource settings, including few-shot named entity recognition (NER). However, existing NER DA techniques either perform rule-based manipulations on words that break the semantic coherence of the sentence, or exploit generative models for entity or context substitution, which requires a substantial amount of labeled data and contradicts the objective of operating in low-resource settings. In this work, we propose order-agnostic data augmentation (OaDA), an alternative solution that exploits the often overlooked order-agnostic property in the training data construction phase of sequence-to-sequence NER methods for data augmentation. To effectively utilize the augmented data without suffering from the one-to-many issue, where multiple augmented target sequences exist for one single sentence, we further propose the use of ordering instructions and an innovative OaDA-XE loss. Specifically, by treating each permutation of entity types as an ordering instruction, we rearrange the entity set accordingly, ensuring a distinct input-output pair, while OaDA-XE assigns loss based on the best match between the target sequence and model predictions. We conduct comprehensive experiments and analyses across three major NER benchmarks and significantly enhance the few-shot capabilities of PLMs with OaDA.",,2024,ACL,No,, Large Language Models are Superpositions of All Characters: Attaining Arbitrary Role-play via Self-Alignment,"Considerable efforts have been invested in augmenting the role-playing proficiency of open-source large language models (LLMs) by emulating proprietary counterparts. Nevertheless, we posit that LLMs inherently harbor role-play capabilities, owing to the extensive knowledge of characters and potential dialogues ingrained in their vast training corpora. Thus, we introduce Ditto, the first self-alignment method for role-play, which encourages an instruction-following LLM to simulate role-play dialogues as a variant of reading comprehension, and creates a role-play training set comprising 4000 characters, surpassing the scale of currently available datasets by tenfold regarding the number of roles. Subsequently, we fine-tune the LLM using this self-generated dataset to augment its role-playing capabilities. Upon evaluating our meticulously constructed role-play benchmark and the roleplay subset of MT-Bench, Ditto, in various parameter scales, consistently maintains a consistent role identity and provides accurate role-specific knowledge in multi-turn role-play conversations, outperforming all open-source role-play baselines. Furthermore, we present the first cross-supervision role-play experiment, revealing that the role-play styles can be easily acquired, while the intrinsic capabilities of LLMs confine the knowledge within role-play.",,2024,ACL,Yes,Language,Methodological Synthesizing Text-to-SQL Data from Weak and Strong LLMs,"The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to-SQL tasks. In this paper, we introduce a synthetic data approach that combines data produced by larger, more powerful models (strong models) with error information data generated by smaller, not well-aligned models (weak models). The method not only enhances the domain generalization of text-to-SQL models but also explores the potential of error data supervision through preference learning. Furthermore, we employ the synthetic data approach for instruction tuning on open-source LLMs, resulting SENSE, a specialized text-to-SQL model. The effectiveness of SENSE is demonstrated through state-of-the-art results on the SPIDER and BIRD benchmarks, bridging the performance gap between open-source models and methods prompted by closed-source models.",,2024,ACL,No,, Chain-of-Exemplar: Enhancing Distractor Generation for Multimodal Educational Question Generation,"Multiple-choice questions (MCQs) are important in enhancing concept learning and student engagement for educational purposes. Despite the multimodal nature of educational content, current methods focus mainly on text-based inputs and often neglect the integration of visual information. In this work, we study the problem of multimodal educational question generation, which aims at generating subject-specific educational questions with plausible yet incorrect distractors based on multimodal educational content. To tackle this problem, we introduce a novel framework, named Chain-of-Exemplar (CoE), which utilizes multimodal large language models (MLLMs) with Chain-of-Thought reasoning to improve the generation of challenging distractors. Furthermore, CoE leverages three-stage contextualized exemplar retrieval to retrieve exemplary questions as guides for generating more subject-specific educational questions. Experimental results on the ScienceQA benchmark demonstrate the superiority of CoE in both question generation and distractor generation over existing methods across various subjects and educational levels.",,2024,ACL,No,, LLMEmbed: Rethinking Lightweight LLM’s Genuine Function in Text Classification,"With the booming of Large Language Models (LLMs), prompt-learning has become a promising method mainly researched in various research areas. Recently, many attempts based on prompt-learning have been made to improve the performance of text classification. However, most of these methods are based on heuristic Chain-of-Thought (CoT), and tend to be more complex but less efficient. In this paper, we rethink the LLM-based text classification methodology, propose a simple and effective transfer learning strategy, namely LLMEmbed, to address this classical but challenging task. To illustrate, we first study how to properly extract and fuse the text embeddings via various lightweight LLMs at different network depths to improve their robustness and discrimination, then adapt such embeddings to train the classifier. We perform extensive experiments on publicly available datasets, and the results show that LLMEmbed achieves strong performance while enjoys low training overhead using lightweight LLM backbones compared to recent methods based on larger LLMs, *i.e.* GPT-3, and sophisticated prompt-based strategies. Our LLMEmbed achieves adequate accuracy on publicly available benchmarks without any fine-tuning while merely use 4% model parameters, 1.8% electricity consumption and 1.5% runtime compared to its counterparts. Code is available at: https://github.com/ChunLiu-cs/LLMEmbed-ACL2024.",,2024,ACL,No,, PokeMQA: Programmable knowledge editing for Multi-hop Question Answering,"Multi-hop question answering (MQA) is one of the challenging tasks to evaluate machine’s comprehension and reasoning abilities, where large language models (LLMs) have widely achieved the human-comparable performance. Due to the dynamics of knowledge facts in real world, knowledge editing has been explored to update model with the up-to-date facts while avoiding expensive re-training or fine-tuning. Starting from the edited fact, the updated model needs to provide cascading changes in the chain of MQA. The previous art simply adopts a mix-up prompt to instruct LLMs conducting multiple reasoning tasks sequentially, including question decomposition, answer generation, and conflict checking via comparing with edited facts. However, the coupling of these functionally-diverse reasoning tasks inhibits LLMs’ advantages in comprehending and answering questions while disturbing them with the unskilled task of conflict checking. We thus propose a framework, Programmable knowledge editing for Multi-hop Question Answering (PokeMQA), to decouple the jobs. Specifically, we prompt LLMs to decompose knowledge-augmented multi-hop question, while interacting with a detached trainable scope detector to modulate LLMs behavior depending on external conflict signal. The experiments on three LLM backbones and two benchmark datasets validate our superiority in knowledge editing of MQA, outperforming all competitors by a large margin in almost all settings and consistently producing reliable reasoning process.",,2024,ACL,No,, M^3CoT: A Novel Benchmark for Multi-Domain Multi-step Multi-modal Chain-of-Thought,"Multi-modal Chain-of-Thought (MCoT) requires models to leverage knowledge from both textual and visual modalities for step-by-step reasoning, which gains increasing attention. Nevertheless, the current MCoT benchmark still faces some challenges: (1) absence of visual modal reasoning, (2) single-step visual modal reasoning, and (3) domain missing, thereby hindering the development of MCoT. Motivated by this, we introduce a novel benchmark (M^3CoT) to address the above challenges, advancing the multi-domain, multi-step, and multi-modal CoT. Additionally, we conduct a thorough evaluation involving abundant MCoT approaches on Vision Large Language Models (VLLMs). In addition, we highlight that the current VLLMs still struggle to correctly reason in M^3CoT and there is a large gap between VLLMs and human performance in M^3CoT, despite their superior results on previous MCoT benchmarks. To our knowledge, we take the first meaningful step toward the multi-domain, multi-step, and multi-modal scenario in MCoT. We hope that M^3CoT will serve as a valuable resource, providing a pioneering foundation in multi-domain, multi-step, multi-modal chain-of-thought research.",,2024,ACL,Yes,Multimodal, Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models,"Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts.In this study, we propose a data mining framework ProLong that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the Dependency Strength between text segments in a given document. Then, we refine this metric based on the Dependency Distance of these segments to incorporate spatial relationships across long contexts. Final results are calibrated with a Dependency Specificity metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies, and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities.",,2024,ACL,No,, Think Twice: Perspective-Taking Improves Large Language Models’ Theory-of-Mind Capabilities,"Human interactions are deeply rooted in the interplay of thoughts, beliefs, and desires made possible by Theory of Mind (ToM): our cognitive ability to understand the mental states of ourselves and others. Although ToM may come naturally to us, emulating it presents a challenge to even the most advanced Large Language Models (LLMs). Recent improvements to LLMs’ reasoning capabilities from simple yet effective prompting techniques such as Chain-of-Thought (CoT) have seen limited applicability to ToM. In this paper, we turn to the prominent cognitive science theory “Simulation Theory” to bridge this gap. We introduce SimToM, a novel two-stage prompting framework inspired by Simulation Theory’s notion of perspective-taking. To implement this idea on current ToM benchmarks, SimToM first filters context based on what the character in question knows before answering a question about their mental state. Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods, and our analysis reveals the importance of perspective-taking to Theory-of-Mind capabilities. Our findings suggest perspective-taking as a promising direction for future research into improving LLMs’ ToM capabilities.",,2024,ACL,No,, BizBench: A Quantitative Reasoning Benchmark for Business and Finance,"Answering questions within business and finance requires reasoning, precision, and a wide-breadth of technical knowledge. Together, these requirements make this domain difficult for large language models (LLMs). We introduce BizBench, a benchmark for evaluating models’ ability to reason about realistic financial problems. BizBench comprises eight quantitative reasoning tasks, focusing on question-answering (QA) over financial data via program synthesis. We include three financially-themed code-generation tasks from newly collected and augmented QA data. Additionally, we isolate the reasoning capabilities required for financial QA: reading comprehension of financial text and tables for extracting intermediate values, and understanding financial concepts and formulas needed to calculate complex solutions. Collectively, these tasks evaluate a model’s financial background knowledge, ability to parse financial documents, and capacity to solve problems with code. We conduct an in-depth evaluation of open-source and commercial LLMs, comparing and contrasting the behavior of code-focused and language-focused models. We demonstrate that the current bottleneck in performance is due to LLMs’ limited business and financial understanding, highlighting the value of a challenging benchmark for quantitative reasoning within this domain.",,2024,ACL,Yes,Language,Benchmark Machine Unlearning of Pre-trained Large Language Models,"This study investigates the concept of the ‘right to be forgotten’ within the context of large language models (LLMs). We explore machine unlearning as a pivotal solution, with a focus on pre-trained models–a notably under-researched area. Our research delineates a comprehensive framework for machine unlearning in pre-trained LLMs, encompassing a critical analysis of seven diverse unlearning methods. Through rigorous evaluation using curated datasets from arXiv, books, and GitHub, we establish a robust benchmark for unlearning performance, demonstrating that these methods are over 10^5 times more computationally efficient than retraining. Our results show that integrating gradient ascent with gradient descent on in-distribution data improves hyperparameter robustness. We also provide detailed guidelines for efficient hyperparameter tuning in the unlearning process. Our findings advance the discourse on ethical AI practices, offering substantive insights into the mechanics of machine unlearning for pre-trained LLMs and underscoring the potential for responsible AI development.",,2024,ACL,Yes,Language,Methodological FactPICO: Factuality Evaluation for Plain Language Summarization of Medical Evidence,"Plain language summarization with LLMs can be useful for improving textual accessibility of technical content. But how factual are these summaries in a high-stakes domain like medicine? This paper presents FactPICO, a factuality benchmark for plain language summarization of medical texts describing randomized controlled trials (RCTs), which are the basis of evidence-based medicine and can directly inform patient treatment. FactPICO consists of 345 plain language summaries of RCT abstracts generated from three LLMs (i.e., GPT-4, Llama-2, and Alpaca), with fine-grained evaluation and natural language rationales from experts. We assess the factuality of critical elements of RCTs in those summaries: Populations, Interventions, Comparators, Outcomes (PICO), as well as the reported findings concerning these. We also evaluate the correctness of the extra information (e.g., explanations) added by LLMs. Using FactPICO, we benchmark a range of existing factuality metrics, including the newly devised ones based on LLMs. We find that plain language summarization of medical evidence is still challenging, especially when balancing between simplicity and factuality, and that existing metrics correlate poorly with expert judgments on the instance level.",,2024,ACL,Yes,Language,Benchmark OpenToM: A Comprehensive Benchmark for Evaluating Theory-of-Mind Reasoning Capabilities of Large Language Models,"Neural Theory-of-Mind (N-ToM), machine’s ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters’ psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs’ capabilities of modeling characters’ mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters’ mental states in the psychological world.",,2024,ACL,Yes,Language,Benchmark RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations,"Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute-Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/explanare/ravel.",,2024,ACL,Yes,Language,Benchmark Enhancing Dialogue State Tracking Models through LLM-backed User-Agents Simulation,"Dialogue State Tracking (DST) is designed to monitor the evolving dialogue state in the conversations and plays a pivotal role in developing task-oriented dialogue systems. However, obtaining the annotated data for the DST task is usually a costly endeavor. In this paper, we focus on employing LLMs to generate dialogue data to reduce dialogue collection and annotation costs. Specifically, GPT-4 is used to simulate the user and agent interaction, generating thousands of dialogues annotated with DST labels. Then a two-stage fine-tuning on LLaMA 2 is performed on the generated data and the real data for the DST prediction. Experimental results on two public DST benchmarks show that with the generated dialogue data, our model performs better than the baseline trained solely on real data. In addition, our approach is also capable of adapting to the dynamic demands in real-world scenarios, generating dialogues in new domains swiftly. After replacing dialogue segments in any domain with the corresponding generated ones, the model achieves comparable performance to the model trained on real data. The source code and generated dialogue data are available at https://github.com/ParticleMedia/LUAS.",,2024,ACL,No,, On the Multi-turn Instruction Following for Conversational Web Agents,"Web agents powered by Large Language Models (LLMs) have demonstrated remarkable abilities in planning and executing multi-step interactions within complex web-based environments, fulfilling a wide range of web navigation tasks. Despite these advancements, the potential for LLM-powered agents to effectively engage with sequential user instructions in real-world scenarios has not been fully explored. In this work, we introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment, supported by a specially developed dataset named Multi-Turn Mind2Web (MT-Mind2Web). To tackle the limited context length of LLMs and the context-dependency issue of the conversational tasks, we further propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques. Extensive experiments are conducted to benchmark the MT-Mind2Web dataset, and validate the effectiveness of the proposed method.",,2024,ACL,Yes,Language,Methodological Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents,"With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction.However, there is a scarcity of benchmarks available for LLM-based mobile agents.Benchmarking these agents generally faces three main challenges:(1) The inefficiency of UI-only operations imposes limitations to task evaluation.(2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents.(3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents.First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion.Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs.To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios.Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps. Dataset and platform will be released in the future.",,2024,ACL,Yes,Language,Benchmark TruthX: Alleviating Hallucinations by Editing Large Language Models in Truthful Space,"Large Language Models (LLMs) sometimes suffer from producing hallucinations, especially LLMs may generate untruthful responses despite knowing the correct knowledge. Activating the truthfulness within LLM is the key to fully unlocking LLM’s knowledge potential. In this paper, we propose TruthX, an inference-time intervention method to activate the truthfulness of LLM by identifying and editing the features within LLM’s internal representations that govern the truthfulness. TruthX employs an auto-encoder to map LLM’s representations into semantic and truthful latent spaces respectively, and applies contrastive learning to identify a truthful editing direction within the truthful space. During inference, by editing LLM’s internal representations in truthful space, TruthX effectively enhances the truthfulness of LLM. Experiments show that TruthX improves the truthfulness of 13 advanced LLMs by an average of 20% on TruthfulQA benchmark. Further analyses suggest that TruthX can control LLM to produce truthful or hallucinatory responses via editing only one vector in LLM’s internal representations.",,2024,ACL,No,, Multimodal Table Understanding,"Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings.",,2024,ACL,Yes,Image, MM-SAP: A Comprehensive Benchmark for Assessing Self-Awareness of Multimodal Large Language Models in Perception,"Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in visual perception and understanding. However, these models also suffer from hallucinations, which limit their reliability as AI systems. We believe that these hallucinations are partially due to the models’ struggle with understanding what they can and cannot perceive from images, a capability we refer to as self-awareness in perception. Despite its importance, this aspect of MLLMs has been overlooked in prior studies. In this paper, we aim to define and evaluate the self-awareness of MLLMs in perception. To do this, we first introduce the knowledge quadrant in perception, which helps define what MLLMs know and do not know about images. Using this framework, we propose a novel benchmark, the Self-Awareness in Perception for MLLMs (MM-SAP), specifically designed to assess this capability. We apply MM-SAP to a variety of popular MLLMs, offering a comprehensive analysis of their self-awareness and providing detailed insights. The experiment results reveal that current MLLMs possess limited self-awareness capabilities, pointing to a crucial area for future advancement in the development of trustworthy MLLMs. Code and data are available at https://github.com/YHWmz/MM-SAP.",,2024,ACL,Yes,Image, Focus on Your Question! Interpreting and Mitigating Toxic CoT Problems in Commonsense Reasoning,"Large language models exhibit high-level commonsense reasoning abilities, especially with enhancement methods like Chain-of-Thought (CoT). However, we find these CoT-like methods lead to a considerable number of originally correct answers turning wrong, which we define as the Toxic CoT problem. To interpret and mitigate this problem, we first utilize attribution tracing and causal tracing methods to probe the internal working mechanism of the LLM during CoT reasoning. Through comparisons, we prove that the model exhibits information loss from the question over the shallow attention layers when generating rationales or answers. Based on the probing findings, we design a novel method called RIDERS (Residual decodIng and sERial-position Swap), which compensates for the information deficit in the model from both decoding and serial-position perspectives. Through extensive experiments on multiple commonsense reasoning benchmarks, we validate that this method not only significantly eliminates Toxic CoT problems (decreased by \textbf{23.6}%), but also effectively improves the model’s overall commonsense reasoning performance (increased by \textbf{5.5}%).",,2024,ACL,No,, F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods,"Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs’ fundamental abilities.",,2024,ACL,Yes,Language,Benchmark Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations,"In this paper, we present an innovative process-oriented math process reward model called Math-shepherd, which assigns a reward score to each step of math problem solutions. The training of Math-shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-shepherd in two scenarios: 1) \textit{Verification}: Math-shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) \textit{Reinforcement Learning (RL)}: Math-shepherd is employed to reinforce LLMs.With Math-shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, process RL with Math-shepherd significantly enhances Mistral-7B (77.9%\to84.1% on GSM8K and 28.6%\to33.0% on MATH).The accuracy can be further improved to 89.1% and 43.5% on two benchmarks with verification of Math-shepherd.We believe that automatic process supervision holds significant potential for the future evolution of LLMs.",,2024,ACL,,, Large Language Models are not Fair Evaluators,"In this paper, we uncover a positional bias in the evaluation paradigm of adopting large language models (LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. We propose a simple yet effective calibration framework to address our discovered positional bias.To evaluate the effectiveness of our framework, we manually annotate the “win/tie/lose” outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark’s question prompt. Extensive experiments demonstrate that our approach successfully alleviates evaluation bias, resulting in closer alignment with human judgments.",,2024,ACL,No,, Synchronized Video Storytelling: Generating Video Narrations with Structured Storyline,"Video storytelling is engaging multimedia content that utilizes video and its accompanying narration to share a story and attract the audience, where a key challenge is creating narrations for recorded visual scenes. Previous studies on dense video captioning and video story generation have made some progress. However, in practical applications, we typically require synchronized narrations for ongoing visual scenes. In this work, we introduce a new task of Synchronized Video Storytelling, which aims to generate synchronous and informative narrations for videos. These narrations, associated with each video clip, should relate to the visual content, integrate relevant knowledge, and have an appropriate word count corresponding to the clip’s duration. Specifically, a structured storyline is beneficial to guide the generation process, ensuring coherence and integrity. To support the exploration of this task, we introduce a new benchmark dataset E-SyncVidStory with rich annotations. Since existing Multimodal LLMs are not effective in addressing this task in one-shot or few-shot settings, we propose a framework named VideoNarrator that can generate a storyline for input videos and simultaneously generate narrations with the guidance of the generated or predefined storyline. We further introduce a set of evaluation metrics to thoroughly assess the generation. Both automatic and human evaluations validate the effectiveness of our approach. Our dataset, codes, and evaluations will be released.",,2024,ACL,Yes,Video, T-Eval: Evaluating the Tool Utilization Capability of Large Language Models Step by Step,"Large language models (LLMs) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool-utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available.",,2024,ACL,Yes,Language,Methodological Synergistic Interplay between Search and Large Language Models for Information Retrieval,"Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern retrieval models (RMs). The emergence of large language models (LLMs) has further revolutionized the IR field by enabling users to interact with search systems in natural languages. In this paper, we explore the advantages and disadvantages of LLMs and RMs, highlighting their respective strengths in understanding user-issued queries and retrieving up-to-date information. To leverage the benefits of both paradigms while circumventing their limitations, we propose **InteR**, a novel framework that facilitates information refinement through synergy between RMs and LLMs. InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections and enables LLMs to enhance prompt formulation using retrieved documents. This iterative refinement process augments the inputs of RMs and LLMs, leading to more accurate retrieval. Experiments on large-scale retrieval benchmarks involving web search and low-resource retrieval tasks show that InteR achieves overall superior **zero-shot** retrieval performance compared to state-of-the-art methods, even those using relevance judgment. Source code is available at https://github.com/Cyril-JZ/InteR.",,2024,ACL,No,, Beyond Recognising Entailment: Formalising Natural Language Inference from an Argumentative Perspective,"In argumentation theory, argument schemes are a characterisation of stereotypical patterns of inference. There has been little work done to develop computational approaches to identify these schemes in natural language. Moreover, advancements in recognizing textual entailment lack a standardized definition of inference, which makes it challenging to compare methods trained on different datasets and rely on the generalisability of their results. In this work, we propose a rigorous approach to align entailment recognition with argumentation theory. Wagemans’ Periodic Table of Arguments (PTA), a taxonomy of argument schemes, provides the appropriate framework to unify these two fields. To operationalise the theoretical model, we introduce a tool to assist humans in annotating arguments according to the PTA. Beyond providing insights into non-expert annotator training, we present Kialo-PTA24, the first multi-topic dataset for the PTA. Finally, we benchmark the performance of pre-trained language models on various aspects of argument analysis. Our experiments show that the task of argument canonicalisation poses a significant challenge for state-of-the-art models, suggesting an inability to represent argumentative reasoning and a direction for future investigation.",,2024,ACL,Yes,Language,Methodological Parrot: Enhancing Multi-Turn Instruction Following for Large Language Models,"Humans often interact with large language models (LLMs) in multi-turn interaction to obtain desired answers or more information. However, most existing studies overlook the multi-turn instruction following ability of LLMs, in terms of training dataset, training method, and evaluation benchmark. In this paper, we introduce Parrot, a solution aiming to enhance multi-turn instruction following for LLMs. First, we introduce an efficient but effective method for collecting multi-turn instructions that feature human-like queries, such as anaphora and ellipsis. Second, we propose a context-aware preference optimization strategy to further enhance LLMs for complex queries in multi-turn interaction. Moreover, to quantitatively evaluate LLMs in multi-turn instruction following, we manually build a multi-turn benchmark derived from existing ones. Extensive experiments show that Parrot improves current LLMs by up to 7.2% in multi-turn instruction following. Our dataset and codes will be open-sourced to facilitate future research.",,2024,ACL,Yes,Language,Methodological DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy,"Recent advances in large language models (LLMs) have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior studies have focused on modeling reasoning steps using various thought structures like chains, trees, or graphs. However, LLM-based reasoning still encounters the following challenges: (1) Limited adaptability of preset structures to diverse tasks; (2) Insufficient precision in exploiting known conditions to derive new ones; and (3) Inadequate consideration of historical reasoning experiences for subsequent reasoning steps. To this end, we propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy. First, we categorize known conditions into two types: determinate and indeterminate premises, facilitating the transformation process. Subsequently, we leverage quantitative measurements to prioritize more relevant premises to explore new insights. Furthermore, we automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps. Comprehensive experimental results demonstrate that DetermLR surpasses all baselines on various logical reasoning benchmarks: LogiQA, ProofWriter, FOLIO, PrOntoQA, and LogicalDeduction. Compared to previous multi-step reasoning methods, DetermLR achieves higher accuracy with fewer reasoning steps, highlighting its superior efficiency and effectiveness in solving logical reasoning tasks.",,2024,ACL,No,, MERA: A Comprehensive LLM Evaluation in Russian,"Over the past few years, one of the most notable advancements in AI research has been in foundation models (FMs), headlined by the rise of language models (LMs). However, despite researchers’ attention and the rapid growth in LM application, the capabilities, limitations, and associated risks still need to be better understood. To address these issues, we introduce a new instruction benchmark, MERA, oriented towards the FMs’ performance on the Russian language. The benchmark encompasses 21 evaluation tasks for generative models covering 10 skills and is supplied with private answer scoring to prevent data leakage. The paper introduces a methodology to evaluate FMs and LMs in fixed zero- and few-shot instruction settings that can be extended to other modalities. We propose an evaluation methodology, an open-source code base for the MERA assessment, and a leaderboard with a submission system. We evaluate open LMs as baselines and find they are still far behind the human level. We publicly release MERA to guide forthcoming research, anticipate groundbreaking model features, standardize the evaluation procedure, and address potential ethical concerns and drawbacks.",,2024,ACL,Yes,Language,Benchmark NewsBench: A Systematic Evaluation Framework for Assessing Editorial Capabilities of Large Language Models in Chinese Journalism,"We present NewsBench, a novel evaluation framework to systematically assess the capabilities of Large Language Models (LLMs) for editorial capabilities in Chinese journalism. Our constructed benchmark dataset is focused on four facets of writing proficiency and six facets of safety adherence, and it comprises manually and carefully designed 1,267 test samples in the types of multiple choice questions and short answer questions for five editorial tasks in 24 news domains. To measure performances, we propose different GPT-4 based automatic evaluation protocols to assess LLM generations for short answer questions in terms of writing proficiency and safety adherence, and both are validated by the high correlations with human evaluations. Based on the systematic evaluation framework, we conduct a comprehensive analysis of eleven popular LLMs which can handle Chinese. The experimental results highlight GPT-4 and ERNIE Bot as top performers, yet reveal a relative deficiency in journalistic safety adherence in creative writing tasks. Our findings also underscore the need for enhanced ethical guidance in machine-generated journalistic content, marking a step forward in aligning LLMs with journalistic standards and safety considerations. The evaluation framework and experimental results are expected to provide an in-depth understanding of the editorial capabilities of LLMs and speed up the development of LLMs in journalism.",,2024,ACL,Yes,Language,Benchmark MAPO: Advancing Multilingual Reasoning through Multilingual-Alignment-as-Preference Optimization,"Intuitively, reasoning abilities are considered language-agnostic. However, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO) to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization(DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages. The project is available at https://github.com/NJUNLP/MAPO.",,2024,ACL,No,, CoELM: Construction-Enhanced Language Modeling,"Recent studies have shown that integrating constructional information can improve the performance of pre-trained language models (PLMs) in natural language understanding. However, exploration into leveraging constructional information to enhance generative language models for natural language generation has been limited. Additionally, probing studies indicate that PLMs primarily grasp the syntactic structure of constructions but struggle to capture their semantics. In this work, we encode constructions as inductive biases to explicitly embed constructional semantics and guide the generation process. We begin by presenting a construction grammar induction framework designed to automatically identify constructions from corpora. Subsequently, we propose the Construction-Enhanced Language Model (CoELM). It introduces a construction-guided language modeling approach that employs a dynamic sequence reassembly strategy during pre-training. Extensive experiments have demonstrated the superiority of CoELM across various benchmarks.",,2024,ACL,No,, SymKGQA: Few-Shot Knowledge Graph Question Answering via Symbolic Program Generation and Execution,"Semantic Parsing of natural language questions into their executable logical form (LF) has shown state-of-the-art (SOTA) performance for Knowledge Graph Question Answering (KGQA). However, these methods are not applicable for real-world applications, due to lack of KG-specific training data. Recent advances in the capabilities of Large Language Models (LLMs) has led towards generating low-level LFs such as SPARQL and S-Expression in a few-shot setting. Unfortunately, these methods: (1) are limited to the knowledge of underlying LLM about the LF, (2) performs inferior for the harder complex benchmarks such as KQA Pro, (3) suffers while grounding the generated LF to a specific Knowledge Graph. Recently, a new LF called KoPL has been introduced that explicitly models complex reasoning process step-by-step in a symbolic manner and has shown SOTA on KQA Pro in fully-supervised setting. Inspired by this, we propose SymKGQA framework that generates step-by-step Symbolic LF i.e., KoPL in a few-shot in-context learning setting using LLM. Our framework is not dependent on pre-trained information of LLM about KoPL. We further build a Retrieval-Augmented Generation based Question-Aware Contextual KoPL (QUACK) resolver to ground the generated LF. Our experiments with different LLMs and few-shot settings demonstrate that SymKGQA outperforms all other few-shot and even many of the fully-supervised KGQA approaches.",,2024,ACL,No,, Meta-Task Prompting Elicits Embeddings from Large Language Models,"We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation (MetaEOL), for generating high-quality sentence embeddings from Large Language Models (LLMs) without the need for model fine-tuning. Leveraging meta-task prompting, MetaEOL guides LLMs to produce embeddings through a series of carefully designed prompts that address multiple representational aspects. Our comprehensive experiments demonstrate that embeddings averaged from various meta-tasks are versatile embeddings that yield competitive performance on Semantic Textual Similarity (STS) benchmarks and excel in downstream tasks, surpassing contrastive-trained models. Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.",,2024,ACL,No,, Artifacts or Abduction: How Do LLMs Answer Multiple-Choice Questions Without the Question?,"Multiple-choice question answering (MCQA) is often used to evaluate large language models (LLMs). To see if MCQA assesses LLMs as intended, we probe if LLMs can perform MCQA with choices-only prompts, where models must select the correct answer only from the choices. In three MCQA datasets and four LLMs, this prompt bests a majority baseline in 11/12 cases, with up to 0.33 accuracy gain. To help explain this behavior, we conduct an in-depth, black-box analysis on memorization, choice dynamics, and question inference. Our key findings are threefold. First, we find no evidence that the choices-only accuracy stems from memorization alone. Second, priors over individual choices do not fully explain choices-only accuracy, hinting that LLMs use the group dynamics of choices. Third, LLMs have some ability to infer a relevant question from choices, and surprisingly can sometimes even match the original question. We hope to motivate the use of stronger baselines in MCQA benchmarks, the design of robust MCQA datasets, and further efforts to explain LLM decision-making.",,2024,ACL,No,, SyllabusQA: A Course Logistics Question Answering Dataset,"Automated teaching assistants and chatbots have significant potential to reduce the workload of human instructors, especially for logistics-related question answering, which is important to students yet repetitive for instructors. However, due to privacy concerns, there is a lack of publicly available datasets. We introduce SyllabusQA, an open-source dataset with 63 real course syllabi covering 36 majors, containing 5,078 open-ended course logistics-related question-answer pairs that are diverse in both question types and answer formats. Since many logistics-related questions contain critical information like the date of an exam, it is important to evaluate the factuality of answers. We benchmark several strong baselines on this task, from large language model prompting to retrieval-augmented generation. We introduce Fact-QA, an LLM-based (GPT-4) evaluation metric to evaluate the factuality of predicted answers. We find that despite performing close to humans on traditional metrics of textual similarity, there remains a significant gap between automated approaches and humans in terms of fact precision.",,2024,ACL,Yes,Language,Benchmark MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models,"Large language models (LLMs) have achieved remarkable performance in natural language understanding and generation tasks. However, they often suffer from limitations such as difficulty in incorporating new knowledge, generating hallucinations, and explaining their reasoning process. To address these challenges, we propose a novel prompting pipeline, named MindMap, that leverages knowledge graphs (KGs) to enhance LLMs’ inference and transparency. Our method enables LLMs to comprehend KG inputs and infer with a combination of implicit and external knowledge. Moreover, our method elicits the mind map of LLMs, which reveals their reasoning pathways based on the ontology of knowledge. We evaluate our method on diverse question & answering tasks, especially in medical domains, and show significant improvements over baselines. We also introduce a new hallucination evaluation benchmark and analyze the effects of different components of our method. Our results demonstrate the effectiveness and robustness of our method in merging knowledge from LLMs and KGs for combined inference.",,2024,ACL,Yes,Language,Methodological AGB-DE: A Corpus for the Automated Legal Assessment of Clauses in German Consumer Contracts,"Legal tasks and datasets are often used as benchmarks for the capabilities of language models. However, openly available annotated datasets are rare. In this paper, we introduce AGB-DE, a corpus of 3,764 clauses from German consumer contracts that have been annotated and legally assessed by legal experts. Together with the data, we present a first baseline for the task of detecting potentially void clauses, comparing the performance of an SVM baseline with three fine-tuned open language models and the performance of GPT-3.5. Our results show the challenging nature of the task, with no approach exceeding an F1-score of 0.54. While the fine-tuned models often performed better with regard to precision, GPT-3.5 outperformed the other approaches with regard to recall. An analysis of the errors indicates that one of the main challenges could be the correct interpretation of complex clauses, rather than the decision boundaries of what is permissible and what is not.",,2024,ACL,Yes,Language,Benchmark Examining the robustness of LLM evaluation to the distributional assumptions of benchmarks,"Benchmarks have emerged as the central approach for evaluating Large Language Models (LLMs). The research community often relies on a model’s average performance across the test prompts of a benchmark to evaluate the model’s performance. This is consistent with the assumption that the test prompts within a benchmark represent a random sample from some real-world distribution of interest. We note that this is generally not the case; instead, we hold that the distribution of interest varies according to the specific use case. Hence, we analyze the robustness of LLM benchmarks to their underlying distributional assumptions. We find that (1) the correlation in model performance across test prompts is non-random, (2) accounting for correlations across test prompts can change model rankings on major benchmarks, (3) explanatory factors for these correlations include semantic similarity and common LLM failure points.",,2024,ACL,No,, Large Language Models Can Learn Temporal Reasoning,"While large language models (LLMs) have demonstrated remarkable reasoning capabilities, they are not without their flaws and inaccuracies. Recent studies have introduced various methods to mitigate these limitations. Temporal reasoning (TR), in particular, presents a significant challenge for LLMs due to its reliance on diverse temporal concepts and intricate temporal logic. In this paper, we propose TG-LLM, a novel framework towards language-based TR. Instead of reasoning over the original context, we adopt a latent representation, temporal graph (TG) that enhances the learning of TR. A synthetic dataset (TGQA), which is fully controllable and requires minimal supervision, is constructed for fine-tuning LLMs on this text-to-TG translation task. We confirmed in experiments that the capability of TG translation learned on our dataset can be transferred to other TR tasks and benchmarks. On top of that, we teach LLM to perform deliberate reasoning over the TGs via Chain-of-Thought (CoT) bootstrapping and graph data augmentation. We observed that those strategies, which maintain a balance between usefulness and diversity, bring more reliable CoTs and final results than the vanilla CoT distillation.",,2024,ACL,Yes,Language,Methodological CODIS: Benchmarking Context-dependent Visual Comprehension for Multimodal Large Language Models,"Multimodal large language models (MLLMs) have demonstrated promising results in a variety of tasks that combine vision and language. As these models become more integral to research and applications, conducting comprehensive evaluations of their capabilities has grown increasingly important. However, most existing benchmarks fail to consider that, in certain situations, images need to be interpreted within a broader context. In this work, we introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension. Our findings indicate that MLLMs consistently fall short of human performance on this benchmark. Further analysis confirms that these models struggle to effectively extract and utilize contextual information to improve their understanding of images. This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.",,2024,ACL,Yes,Multimodal, CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models,"Large language models (LLMs) are increasingly used to meet user information needs, but their effectiveness in dealing with user queries that contain various types of ambiguity remains unknown, ultimately risking user trust and satisfaction. To this end, we introduce CLAMBER, a benchmark for evaluating LLMs using a well-organized taxonomy. Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries, even enhanced by chain-of-thought (CoT) and few-shot prompting. These techniques may result in overconfidence in LLMs and yield only marginal enhancements in identifying ambiguity. Furthermore, current LLMs fall short in generating high-quality clarifying questions due to a lack of conflict resolution and inaccurate utilization of inherent knowledge.In this paper, CLAMBER presents a guidance and promotes further research on proactive and trustworthy LLMs.",,2024,ACL,Yes,Language,Benchmark PAGED: A Benchmark for Procedural Graphs Extraction from Documents,"Automatic extraction of procedural graphs from documents creates a low-cost way for users to easily understand a complex procedure by skimming visual graphs. Despite the progress in recent studies, it remains unanswered: whether the existing studies have well solved this task (Q1) and whether the emerging large language models (LLMs) can bring new opportunities to this task (Q2). To this end, we propose a new benchmark PAGED, equipped with a large high-quality dataset and standard evaluations. It investigates five state-of-the-art baselines, revealing that they fail to extract optimal procedural graphs well because of their heavy reliance on hand-written rules and limited available data. We further involve three advanced LLMs in PAGED and enhance them with a novel self-refine strategy. The results point out the advantages of LLMs in identifying textual elements and their gaps in building logical structures. We hope PAGED can serve as a major landmark for automatic procedural graph extraction and the investigations in PAGED can offer insights into the research on logic reasoning among non-sequential elements.",,2024,ACL,Yes,Language,Benchmark RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models,"Retrieval-augmented generation (RAG) has become a main technique for alleviating hallucinations in large language models (LLMs). Despite the integration of RAG, LLMs may still present unsupported or contradictory claims to the retrieved contents. In order to develop effective hallucination prevention strategies under RAG, it is important to create benchmark datasets that can measure the extent of hallucination. This paper presents RAGTruth, a corpus tailored for analyzing word-level hallucinations in various domains and tasks within the standard RAG frameworks for LLM applications. RAGTruth comprises nearly 18,000 naturally generated responses from diverse LLMs using RAG. These responses have undergone meticulous manual annotations at both the individual case and word levels, incorporating evaluations of hallucination intensity. We not only benchmark hallucination frequencies across different LLMs, but also critically assess the effectiveness of several existing hallucination detection methodologies. We show that using a high-quality dataset such as RAGTruth, it is possible to finetune a relatively small LLM and achieve a competitive hallucination detection performance when compared to the existing prompt-based approaches using state-of-the-art LLMs such as GPT-4. Furthermore, the finetuned model can effectively mitigate hallucination in LLM responses.",,2024,ACL,Yes,Language,Benchmark The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models,"In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.",,2024,ACL,Yes,Language,Methodological CLOMO: Counterfactual Logical Modification with Large Language Models,"In this study, we delve into the realm of counterfactual reasoning capabilities of large language models (LLMs). Our primary objective is to cultivate the counterfactual thought processes within LLMs and rigorously assess these processes for their validity. Specifically, we introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark. In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship. To effectively evaluate a generation model’s counterfactual capabilities, we propose an innovative evaluation metric, the decomposed Self-Evaluation Score (SES) to directly evaluate the natural language output of LLMs instead of modeling the task as a multiple-choice problem. Analysis shows that the proposed automatic metric aligns well with human preference. Our experimental results show that while LLMs demonstrate a notable capacity for logical counterfactual thinking, there remains a discernible gap between their current abilities and human performance. Code and data are available at https://github.com/Eleanor-H/CLOMO.",,2024,ACL,Yes,Language,Methodological IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages,"As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench — the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate stateof-the-art LLMs like GPT-3.5, GPT-4, PaLM2, and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench isavailable at www.github.com/google-researchdatasets/indic-gen-bench",,2024,ACL,Yes,Language,Benchmark Uncertainty Aware Learning for Language Model Alignment,"As instruction-tuned large language models (LLMs) evolve, aligning pretrained foundation models presents increasing challenges. Existing alignment strategies, which typically leverage diverse and high-quality data sources, often overlook the intrinsic uncertainty of tasks, learning all data samples equally. This may lead to suboptimal data efficiency and model performance. In response, we propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios, by introducing the sample uncertainty (elicited from more capable LLMs). We implement UAL by a simple fashion – adaptively setting the label smoothing value of training according to the uncertainty of individual samples. Analysis shows that our UAL indeed facilitates better token clustering in the feature space, validating our hypothesis. Extensive experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning. Notably, LLMs aligned in a mixed scenario have achieved an average improvement of 10.62% on high-entropy tasks (i.e., AlpacaEval leaderboard), and 1.81% on complex low-entropy tasks (i.e., MetaMath and GSM8K).",,2024,ACL,No,, Fundamental Capabilities of Large Language Models and their Applications in Domain Scenarios: A Survey,"Large Language Models (LLMs) demonstrate significant value in domain-specific applications, benefiting from their fundamental capabilities. Nevertheless, it is still unclear which fundamental capabilities contribute to success in specific domains. Moreover, the existing benchmark-based evaluation cannot effectively reflect the performance of real-world applications. In this survey, we review recent advances of LLMs in domain applications, aiming to summarize the fundamental capabilities and their collaboration. Furthermore, we establish connections between fundamental capabilities and specific domains, evaluating the varying importance of different capabilities. Based on our findings, we propose a reliable strategy for domains to choose more robust backbone LLMs for real-world applications.",,2024,ACL,No,, Measuring Political Bias in Large Language Models: What Is Said and How It Is Said,"We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues. Existing benchmarks and measures focus on gender and racial biases. However, political bias exists in LLMs and can lead to polarization and other harms in downstream applications. In order to provide transparency to users, we advocate that there should be fine-grained and explainable measures of political biases generated by LLMs. Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias. We measured the political bias in eleven open-sourced LLMs and showed that our proposed framework is easily scalable to other topics and is explainable.",,2024,ACL,Yes,Language,Methodological Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use,"In this paper, we demonstrate that an inherent waveform pattern in the attention allocation of large language models (LLMs) significantly affects their performance in tasks demanding a high degree of context awareness, such as utilizing LLMs for tool-use. Specifically, the crucial information in the context will be potentially overlooked by model when it is positioned in the trough zone of the attention waveform, leading to decreased performance. To address this issue, we propose a novel inference method named Attention Buckets. It allows LLMs to process their input through multiple parallel processes. Each process utilizes a distinct base angle for the rotary position embedding, thereby creating a unique attention waveform. By compensating an attention trough of a particular process with an attention peak of another process, our approach enhances LLM’s awareness to various contextual positions, thus mitigating the risk of overlooking crucial information. In the largest tool-use benchmark, our method elevates a 7B model to achieve state-of-the-art performance, comparable to that of GPT-4. On other benchmarks and some RAG tasks, which also demand a thorough understanding of contextual content, Attention Buckets also exhibited notable enhancements in performance.",,2024,ACL,No,, Benchmarking Chinese Commonsense Reasoning of LLMs: From Chinese-Specifics to Reasoning-Memorization Correlations,"We introduce CHARM, the first benchmark for comprehensively and in-depth evaluating the commonsense reasoning ability of large language models (LLMs) in Chinese, which covers both globally known and Chinese-specific commonsense. We evaluated 7 English and 12 Chinese-oriented LLMs on CHARM, employing 5 representative prompt strategies for improving LLMs’ reasoning ability, such as Chain-of-Thought. Our findings indicated that the LLM’s language orientation and the task’s domain influence the effectiveness of the prompt strategy, which enriches previous research findings. We built closely-interconnected reasoning and memorization tasks, and found that some LLMs struggle with memorizing Chinese commonsense, affecting their reasoning ability, while others show differences in reasoning despite similar memorization performance. We also evaluated the LLMs’ memorization-independent reasoning abilities and analyzed the typical errors. Our study precisely identified the LLMs’ strengths and weaknesses, providing the clear direction for optimization. It can also serve as a reference for studies in other fields. We will release CHARM at https://github.com/opendatalab/CHARM.",,2024,ACL,Yes,Language,Benchmark Model Composition for Multimodal Large Language Models,"Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.",,2024,ACL,Yes,Multimodal, Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding,"We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting. Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM. Moreover, the proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its variants demonstrated a speedup up to 1.99\times.",,2024,ACL,No,, An Expert is Worth One Token: Synergizing Multiple Expert LLMs as Generalist via Expert Token Routing,"We present Expert-Token-Routing, a unified generalist framework that facilitates seamless integration of multiple expert LLMs. Our framework represents expert LLMs as special expert tokens within the vocabulary of a meta LLM. The meta LLM can route to an expert LLM like generating new tokens. Expert-Token-Routing not only supports learning the implicit expertise of expert LLMs from existing instruction dataset but also allows for dynamic extension of new expert LLMs in a plug-and-play manner. It also conceals the detailed collaboration process from the user’s perspective, facilitating interaction as though it were a singular LLM. Our framework outperforms various existing multi-LLM collaboration paradigms across benchmarks that incorporate six diverse expert domains, demonstrating effectiveness and robustness in building generalist LLM system via synergizing multiple expert LLMs.",,2024,ACL,No,, Exploring Precision and Recall to assess the quality and diversity of LLMs,"We introduce a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on importing Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals new insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned on instruction dataset or with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges that current LLMs face in generating diverse and high-quality text.",,2024,ACL,Yes,Language,Methodological Aligning Large Language Models by On-Policy Self-Judgment,"Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning. In this paper, we present a novel alignment framework, SELF-JUDGE that (1) does on-policy learning and 2) is parameter efficient, as it does not require an additional RM for evaluating the samples for on-policy learning. To this end, we propose Judge-augmented Supervised Fine-Tuning (JSFT) to train a single model to act as both a policy and a judge. Specifically, we view the pairwise judgment task, choosing the better response from a response pair, as a special case of the instruction-following task. The resulting model can judge preferences of on-the-fly responses from current policy initialized from itself. Experimental results show the efficacy of SELF-JUDGE, outperforming baselines in preference benchmarks. We also show that the rejecting sampling by itself can improve performance further without an additional evaluator.",,2024,ACL,No,, IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning,"Legal systems worldwide are inundated with exponential growth in cases and documents. There is an imminent need to develop NLP and ML techniques for automatically processing and understanding legal documents to streamline the legal system. However, evaluating and comparing various NLP models designed specifically for the legal domain is challenging. This paper addresses this challenge by proposing : Benchmark for Indian Legal Text Understanding and Reasoning. contains monolingual (English, Hindi) and multi-lingual (9 Indian languages) domain-specific tasks that address different aspects of the legal system from the point of view of understanding and reasoning over Indian legal documents. We present baseline models (including LLM-based) for each task, outlining the gap between models and the ground truth. To foster further research in the legal domain, we create a leaderboard (available at: https://exploration-lab.github.io/IL-TUR/ ) where the research community can upload and compare legal text understanding systems.",,2024,ACL,Yes,Language,Benchmark JumpCoder: Go Beyond Autoregressive Coder via Online Modification,"While existing code large language models (code LLMs) exhibit impressive capabilities in code generation, their autoregressive sequential generation inherently lacks reversibility. This limitation hinders them from timely correcting previous missing statements during coding as humans do, often leading to error propagation and suboptimal performance. We introduce JumpCoder, a novel model-agnostic framework that enables human-like online modification and non-sequential generation to augment code LLMs. The key idea behind JumpCoder is to insert new code into the currently generated code when necessary during generation, which is achieved through an auxiliary infilling model that works in tandem with the code LLM. Since identifying the best infill position beforehand is intractable, we adopt an infill-first, judge-later strategy, which experiments with filling at the k most critical positions following the generation of each line, and uses an Abstract Syntax Tree (AST) parser alongside the Generation Model Scoring to effectively judge the validity of each potential infill. Extensive experiments using six state-of-the-art code LLMs across multiple and multilingual benchmarks consistently indicate significant improvements over all baselines. Our code is available in the uploaded attachment.",,2024,ACL,No,, AlignBench: Benchmarking Chinese Alignment of Large Language Models,"Alignment has become a critical step for instruction-tuned Large Language Models (LLMs) to become helpful assistants. However, effective evaluation of alignment for emerging Chinese LLMs is still significantly lacking, calling for real-scenario grounded, open-ended, challenging and automatic evaluations tailored for alignment. To fill in this gap, we introduce AlignBench, a comprehensive multi-dimensional benchmark for evaluating LLMs’ alignment in Chinese. We tailor a human-in-the-loop data curation pipeline, containing 8 main categories, 683 real-scenario rooted queries and corresponding human verified references.To ensure references’ correctness, each knowledge-intensive query is accompanied with evidences collected from reliable webpages (including the url and quotation) by our annotators.For automatic evaluation, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judge (CITATION) with Chain-of-Thought to generate explanations and final ratings as evaluations, ensuring high reliability and interpretability.All evaluation codes and data are publicly available at https://github.com/THUDM/AlignBench",,2024,ACL,Yes,Language,Benchmark SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models,"The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input, aiming at handling the challenges of catastrophic forgetting and knowledge transfer in CL. However, these methods tend to address only one of the challenges, ignoring the potential of aligning the two modules to effectively address catastrophic forgetting and knowledge transfer simultaneously. To this end, we propose a novel Shared Attention Framework (SAPT), to align the PET learning and selection via the Shared Attentive Learning & Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of SAPT. Moreover, SAPT consistently demonstrates its superiority when we scale it to different model sizes (from 770M to 13B), different model architectures (T5 and LLaMA-2) and unseen tasks.",,2024,ACL,No,, CharacterEval: A Chinese Benchmark for Role-Playing Conversational Agent Evaluation,"Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 11,376 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. To facilitate the convenient evaluation for these subjective metrics in CharacterEval, we further developed CharacterRM, a role-playing reward model based on human annotations, which has a higher correlation with human judgment compared to GPT-4. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation.",,2024,ACL,Yes,Language,Benchmark Learning to Generate Answers with Citations via Factual Consistency Models,"Large Language Models (LLMs) frequently hallucinate, impeding their reliability in mission-critical situations. One approach to address this issue is to provide citations to relevant sources alongside generated content, enhancing the verifiability of generations. However, citing passages accurately in answers remains a substantial challenge. This paper proposes a weakly-supervised fine-tuning method leveraging factual consistency models (FCMs). Our approach alternates between generating texts with citations and supervised fine-tuning with FCM-filtered citation data. Focused learning is integrated into the objective, directing the fine-tuning process to emphasise the factual unit tokens, as measured by an FCM. Results on the ALCE few-shot citation benchmark with various instruction-tuned LLMs demonstrate superior performance compared to in-context learning, vanilla supervised fine-tuning, and state-of-the-art methods, with an average improvement of 34.1, 15.5, and 10.5 citation F_1 points, respectively. Moreover, in a domain transfer setting we show that the obtained citation generation ability robustly transfers to unseen datasets. Notably, our citation improvements contribute to the lowest factual error rate across baselines.",,2024,ACL,No,, Improving Text Embeddings with Large Language Models,"In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.",,2024,ACL,No,, Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation,"We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation, i.e., generating coherent and relevant text from structured data. To avoid the issue of LLM training data contamination with standard benchmarks, we design Quintd - a tool for collecting novel structured data records from public APIs. We find that open LLMs (Llama 2, Mistral, and Zephyr) can generate fluent and coherent texts in zero-shot settings from data in common formats collected with Quintd. However, we show that the semantic accuracy of the outputs is a major issue: both according to human annotators and our reference-free metric based on GPT-4, more than 80% of the outputs of open LLMs contain at least one semantic error. We publicly release the code, data, and model outputs.",,2024,ACL,Yes,Language,Benchmark VisDiaHalBench: A Visual Dialogue Benchmark For Diagnosing Hallucination in Large Vision-Language Models,"Despite the significant success of large vision-language models (LVLMs), some studies have revealed that LVLMs suffer from the hallucination problem, where the LVLMs’ response contains descriptions of non-existent objects. Although various benchmarks have been proposed to investigate this problem, they mostly focus on single-turn evaluation and overlook the hallucination raised by textual inputs. To investigate the hallucination problem of LVLMs when given long-term misleading textual history, we propose a novel visual dialogue hallucination evaluation benchmark VisDiaHalBench. The benchmark consists of samples with five-turn questions about an edited image and its original version. VisDiaHalBench differs from previous hallucination benchmarks in the following three points: 1) The questions and answers are unambiguously grounded by annotated scene graphs. 2) The images are uncommonly edited to inspect the visual model and common-object hallucination in LLMs. 3) The carefully designed dialogue refers a same object in different turns to assess the image consistency and influence of history for LVLMs. The detailed analysis of several state-of-the-art LVLMs across image consistency, visual understanding, history influence, and other dimensions reveals their substantial performance gap with single-turn VQA tasks. The benchmark is released in: https://github.com/qingxingcao/VisDiaHalBench",,2024,ACL,Yes,Image, Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends,"Recent advancements in large language models (LLMs) have significantly advanced the capabilities of summarization systems.However, they continue to face a persistent challenge: hallucination. While prior work has extensively examined LLMs in news domains, evaluation of dialogue summarization has primarily focused on BART-based models, resulting in a notable gap in understanding LLM effectiveness.Our work seeks to address this gap by benchmarking LLMs for dialogue summarization faithfulness using human annotations,focusing on identifying and categorizing span-level inconsistencies.Specifically, we evaluate two prominent LLMs: GPT-4 and Alpaca-13B.Our evaluation reveals that LLMs often generate plausible, but not fully supported inferences based on conversation contextual cues, a trait absent in older models. As a result, we propose a refined taxonomy of errors, introducing a novel category termed “Contextual Inference” to address this aspect of LLM behavior. Using our taxonomy, we compare the behavioral differences between LLMs and older fine-tuned models. Additionally, we systematically assess the efficacy of automatic error detection methods on LLM summaries and find that they struggle to detect these nuanced errors effectively. To address this, we introduce two prompt-based approaches for fine-grained error detection. Our methods outperform existing metrics, particularly in identifying the novel “Contextual Inference” error type.",,2024,ACL,Yes,Language,Benchmark Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks,"Multimodal large language models (MLLMs) have proven effective in a wide range of tasks that require complex reasoning and linguistic comprehension. However, due to a lack of high-quality multimodal resources in languages other than English, the success of MLLMs remains relatively limited to English-based settings. This poses significant challenges in developing comparable models for other languages, even those with large speaker populations, such as Arabic. To alleviate this challenge, we introduce a comprehensive family of Arabic MLLMs, dubbed *Peacock*, with strong vision and language capabilities. Through comprehensive qualitative and quantitative analysis, we demonstrate the solid performance of our models on various visual reasoning tasks and further show their emerging dialectal potential. Additionally, we introduce *Henna*, a new benchmark specifically designed for assessing MLLMs on aspects related to Arabic culture, setting the first stone for culturally-aware Arabic MLLMs. The GitHub repository for the *Peacock* project is available at [https://github.com/UBC-NLP/peacock](https://github.com/UBC-NLP/peacock).",,2024,ACL,Yes,Multimodal, FinanceMATH: Knowledge-Intensive Math Reasoning in Finance Domains,"We introduce FinanceMath, a novel benchmark designed to evaluate LLMs' capabilities in solving knowledge-intensive math reasoning problems. Compared to prior works, this study features three core advancements. First, FinanceMath includes 1,200 problems with a hybrid of textual and tabular content. These problems require college-level knowledge in the finance domain for effective resolution. Second, we provide expert-annotated, detailed solution references in Python program format, ensuring a high-quality benchmark for LLM assessment. We also construct a finance-domain knowledge bank and investigate various knowledge integration strategies. Finally, we evaluate a wide spectrum of 44 LLMs with both Chain-of-Thought and Program-of-Thought prompting methods. Our experimental results reveal that the current best-performing system (i.e., GPT-4o) achieves only 60.9% accuracy using CoT prompting, leaving substantial room for improvement. Moreover, while augmenting LLMs with external knowledge can improve model performance (e.g., from 47.5% to 54.5% for Gemini-1.5-Pro), their accuracy remains significantly lower than the estimated human expert performance of 92%. We believe that FinanceMath can advance future research in the area of domain-specific knowledge retrieval and integration, particularly within the context of solving reasoning-intensive tasks.",,2024,ACL,Yes,Multimodal, API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs,"There is a growing need for Large Language Models (LLMs) to effectively use tools and external Application Programming Interfaces (APIs) to plan and complete tasks. As such, there is tremendous interest in methods that can acquire sufficient quantities of train and test data that involve calls to tools / APIs. Two lines of research have emerged as the predominant strategies for addressing this challenge. The first has focused on synthetic data generation techniques, while the second has involved curating task-adjacent datasets which can be transformed into API / Tool-based tasks. In this paper, we focus on the task of identifying, curating, and transforming existing datasets and, in turn, introduce API-BLEND, a large corpora for training and systematic testing of tool-augmented LLMs. The datasets mimic real-world scenarios involving API-tasks such as API / tool detection, slot filling, and sequencing of the detected APIs. We demonstrate the utility of the API-BLEND dataset for both training and benchmarking purposes.",,2024,ACL,Yes,Language,Benchmark SOTOPIA-π: Interactive Learning of Socially Intelligent Language Agents,"Humans learn social skills through both imitation and social interaction. This social learning process is largely understudied by existing research on building language agents. Motivated by this gap, we propose an interactive learning method, SOTOPIA-π, that improves the social intelligence of language agents. This method leverages behavior cloning and self-reinforcement based training on filtered social interaction data according to large language model (LLM) rating. We show that our training method allows a 7B LLM to reach the social goal completion ability of an expert model (GPT-4-based agent) without the loss of more generic abilities, such as the ability to answer knowledge-based questions. We also demonstrate that this training paradigm uncovers some weaknesses in standard evaluation and safety training paradigms that (1) LLM-based evaluation of social intelligence overestimates the abilities of the language agents trained specifically for social interaction, and that (2) despite not training for better safety or question answering (QA) ability, our methods improve the safety of language agents and maintain general QA ability on the MMLU benchmark.",,2024,ACL,No,, Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning?,"Temporal reasoning is fundamental for large language models (LLMs) to comprehend the world. Current temporal reasoning datasets are limited to questions about single or isolated events, falling short in mirroring the realistic temporal characteristics involving concurrent nature and intricate temporal interconnections. In this paper, we introduce CoTempQA, a comprehensive co-temporal Question Answering (QA) benchmark containing four co-temporal scenarios (Equal, Overlap, During, Mix) with 4,748 samples for evaluating the co-temporal comprehension and reasoning abilities of LLMs. Our extensive experiments reveal a significant gap between the performance of current LLMs and human-level reasoning on CoTempQA tasks. Even when enhanced with Chain of Thought (CoT) methodologies, models consistently struggle with our task. In our preliminary exploration, we discovered that mathematical reasoning plays a significant role in handling co-temporal events and proposed a strategy to boost LLMs’ co-temporal reasoning from a mathematical perspective. We hope that our CoTempQA datasets will encourage further advancements in improving the co-temporal reasoning capabilities of LLMs.",,2024,ACL,Yes,Language,Benchmark LLMArena: Assessing Capabilities of Large Language Models in Dynamic Multi-Agent Environments,"Recent advancements in large language models (LLMs) have revealed their potential for achieving autonomous agents possessing human-level intelligence. However, existing benchmarks for evaluating LLM Agents either use static datasets, potentially leading to data leakage or focus only on single-agent scenarios, overlooking the complexities of multi-agent interactions. There is a lack of a benchmark that evaluates the diverse capabilities of LLM agents in multi-agent, dynamic environments. To this end, we introduce LLMArena, a novel and easily extensible framework for evaluating the diverse capabilities of LLM in multi-agent dynamic environments. LLMArena encompasses seven distinct gaming environments, employing Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration. We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents, especially in opponent modeling and team collaboration. We hope LLMArena could guide future research towards enhancing these capabilities in LLMs, ultimately leading to more sophisticated and practical applications in dynamic, multi-agent settings.",,2024,ACL,Yes,Language,Benchmark HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs,"Given unstructured text, Large Language Models (LLMs) are adept at answering simple (single-hop) questions. However, as the complexity of the questions increase, the performance of LLMs degrade. We believe this is due to the overhead associated with understanding the complex question followed by filtering and aggregating unstructured information in the raw text. Recent methods try to reduce this burden by integrating structured knowledge triples into the raw text, aiming to provide a structured overview that simplifies information processing. However, this simplistic approach is query-agnostic and the extracted facts are ambiguous as they lack context. To address these drawbacks and to enable LLMs to answer complex (multi-hop) questions with ease, we propose to use a knowledge graph (KG) that is context-aware and is distilled to contain query-relevant information. The use of our compressed distilled KG as input to the LLM results in our method utilizing up to 67% fewer tokens to represent the query relevant information present in the supporting documents, compared to the state-of-the-art (SoTA) method.Our experiments show consistent improvements over the SoTA across several metrics (EM, F1, BERTScore, and Human Eval) on two popular benchmark datasets (HotpotQA and MuSiQue).",,2024,ACL,No,, PathReasoner: Modeling Reasoning Path with Equivalent Extension for Logical Question Answering,"Logical reasoning task has attracted great interest since it was proposed. Faced with such a task, current competitive models, even large language models (e.g., ChatGPT and PaLM 2), still perform badly. Previous promising LMs struggle in logical consistency modeling and logical structure perception. To this end, we model the logical reasoning task by transforming each logical sample into reasoning paths and propose an architecture PathReasoner. It addresses the task from the views of both data and model. To expand the diversity of the logical samples, we propose an atom extension strategy supported by equivalent logical formulas, to form new reasoning paths. From the model perspective, we design a stack of transformer-style blocks. In particular, we propose a path-attention module to joint model in-atom and cross-atom relations with the high-order diffusion strategy. Experiments show that PathReasoner achieves competitive performances on two logical reasoning benchmarks and great generalization abilities.",,2024,ACL,No,, ArchCode: Incorporating Software Requirements in Code Generation with Large Language Models,"This paper aims to extend the code generation capability of large language models (LLMs) to automatically manage comprehensive software requirements from given textual descriptions. Such requirements include both functional (i.e. achieving expected behavior for inputs) and non-functional (e.g., time/space performance, robustness, maintainability) requirements. However, textual descriptions can either express requirements verbosely or may even omit some of them. We introduce ARCHCODE, a novel framework that leverages in-context learning to organize requirements observed in descriptions and to extrapolate unexpressed requirements from them. ARCHCODE generates requirements from given descriptions, conditioning them to produce code snippets and test cases. Each test case is tailored to one of the requirements, allowing for the ranking of code snippets based on the compliance of their execution results with the requirements. Public benchmarks show that ARCHCODE enhances to satisfy functional requirements, significantly improving Pass@k scores.Furthermore, we introduce HumanEval-NFR, the first evaluation of LLMs’ non-functional requirements in code generation, demonstrating ARCHCODE’s superiority over baseline methods. The implementation of ARCHCODE and the HumanEval-NFR benchmark are both publicly accessible.",,2024,ACL,Yes,Language,Methodological MULFE: A Multi-Level Benchmark for Free Text Model Editing,"Adjusting the outdated behaviors of large langugae models (LLMs) after deployment remains a significant challenge. It motivates the model editing research, which is however mainly explored in a restricted task form with triple-based edit requests. Recent works have initiated a transition to a more practical and unified editing task that takes free-form text as edit requests. However, there are gaps in nuanced benchmark designs and re-evaluation of existing methods. To bridge the gaps, we introduce a multi-level benchmark for free text model editing (MULFE). The benchmark categorizes probe queries into three levels of generalization, ranging from basic literal memory to deeper understanding and reasoning. Based on the benchmark, we conduct extensive experiments across various base models, edit sizes, and editing methods, including adaptations of mainstream locate-and-edit and hypernetwork methods. The results highlight the inconsistent behaviors of edited models on different generalization levels. Higher-level generalization remains a significant challenge. Based on the findings, we propose SIDE, a simple yet effective method based on in-context distillation to enhance the generalization performance. The benchmark dataset and evaluation scripts are publicly available at http://github.com/wchrepo/mulfe.",,2024,ACL,Yes,Language,Benchmark Never Lost in the Middle: Mastering Long-Context Question Answering with Position-Agnostic Decompositional Training,"While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The “lost in the middle” problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Position-Agnostic Multi-step QA (PAM QA). Trained in this task, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model and code to promote related research in the community.",,2024,ACL,No,, CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges,"Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. However, real-world software development often involves complex code repositories with complex dependencies and extensive documentation. To enable LLMs to handle these realworld repo-level code generation, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code implementation, and code testing. We implement four agent strategies to optimize these tools’ usage. To the best of our knowledge, CodeAgent is the first agent tool framework specifically for repo-level code generation. In order to measure the effectiveness of our method at the repository level, we have introduced a benchmark dataset CodAgentBench. The performance on this dataset shows a significant improvement brought by our method, with improvements of pass rate ranging from 2.0 to 15.8. Further tests on the HumanEval benchmark confirm CodeAgent’s adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent’s robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.",,2024,ACL,Yes,Language,Methodological When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards,"Large Language Model (LLM) leaderboards based on benchmark rankings are regularly used to guide practitioners in model selection. Often, the published leaderboard rankings are taken at face value — we show this is a (potentially costly) mistake. Under existing leaderboards, the relative performance of LLMs is highly sensitive to (often minute) details. We show that for popular multiple-choice question benchmarks (e.g., MMLU), minor perturbations to the benchmark, such as changing the order of choices or the method of answer selection, result in changes in rankings up to 8 positions. We explain this phenomenon by conducting systematic experiments over three broad categories of benchmark perturbations and identifying the sources of this behavior. Our analysis results in several best-practice recommendations, including the advantage of a *hybrid* scoring method for answer selection. Our study highlights the dangers of relying on simple benchmark evaluations and charts the path for more robust evaluation schemes on the existing benchmarks. The code for this paper is available at [https://github.com/National-Center-for-AI-Saudi-Arabia/lm-evaluation-harness](https://github.com/National-Center-for-AI-Saudi-Arabia/lm-evaluation-harness).",,2024,ACL,No,, Evaluating Very Long-Term Conversational Memory of LLM Agents,"Existing works on long-term open-domain dialogues focus on evaluating model responses within contexts spanning no more than five chat sessions. Despite advancements in long-context large language models (LLMs) and retrieval augmented generation (RAG) techniques, their efficacy in very long-term dialogues remains unexplored. To address this research gap, we introduce a machine-human pipeline to generate high-quality, very long-term dialogues by leveraging LLM-based agent architectures and grounding their dialogues on personas and temporal event graphs. Moreover, we equip each agent with the capability of sharing and reacting to images. The generated conversations are verified and edited by human annotators for long-range consistency and grounding to the event graphs. Using this pipeline, we collect LoCoMo, a dataset of very long-term conversations, each encompassing 600 turns and 16K tokens on avg., over up to 32 sessions. Based on LoCoMo, we present a comprehensive evaluation benchmark to measure long-term memory in models, encompassing question answering, event summarization, and multi-modal dialogue generation tasks. Our experimental results indicate that LLMs exhibit challenges in understanding lengthy conversations and comprehending long-range temporal and causal dynamics within dialogues. Employing strategies like long-context LLMs or RAG can offer improvements but these models still substantially lag behind human performance.",,2024,ACL,Yes,Language,Benchmark NEO-BENCH: Evaluating Robustness of Large Language Models with Neologisms,"The performance of Large Language Models (LLMs) degrades from the temporal drift between data used for model training and newer text seen during inference. One understudied avenue of language change causing data drift is the emergence of neologisms – new word forms – over time. We create a diverse resource of recent English neologisms by using several popular collection methods. We analyze temporal drift using neologisms by comparing sentences containing new words with near-identical sentences that replace neologisms with existing substitute words. Model performance is nearly halved in machine translation when a single neologism is introduced in a sentence. Motivated by these results, we construct a benchmark to evaluate LLMs’ ability to generalize to neologisms with various natural language understanding tasks and model perplexity. Models with later knowledge cutoff dates yield lower perplexities and perform better in downstream tasks. LLMs are also affected differently based on the linguistic origins of words, indicating that neologisms are complex for static LLMs to address. We will release our benchmark and code for reproducing our experiments.",,2024,ACL,Yes,Language,Benchmark Skin-in-the-Game: Decision Making via Multi-Stakeholder Alignment in LLMs,"Large Language Models (LLMs) have shown remarkable capabilities in tasks such as summarization, arithmetic reasoning, and question answering. However, they encounter significant challenges in the domain of moral reasoning and ethical decision-making, especially in complex scenarios with multiple stakeholders. This paper introduces the Skin-in-the-Game (SKIG) framework, aimed at enhancing moral reasoning in LLMs by exploring decisions’ consequences from multiple stakeholder perspectives. The core components of the framework consist of simulating accountability for decisions, conducting empathy exercises on different stakeholders, and evaluating the risks associated with the impacts of potential actions. We study SKIG’s performance across various moral reasoning benchmarks with proprietary and open-source LLMs, and investigate its crucial components through extensive ablation analyses. Our framework exhibits marked improvements in performance compared to baselines across different language models and benchmarks.",,2024,ACL,No,, Transparent and Scrutable Recommendations Using Natural Language User Profiles,"Recent state-of-the-art recommender systems predominantly rely on either implicit or explicit feedback from users to suggest new items. While effective in recommending novel options, many recommender systems often use uninterpretable embeddings to represent user preferences. This lack of transparency not only limits user understanding of why certain items are suggested but also reduces the user’s ability to scrutinize and modify their preferences, thereby affecting their ability to receive a list of preferred recommendations. Given the recent advances in Large Language Models (LLMs), we investigate how a properly crafted prompt can be used to summarize a user’s preferences from past reviews and recommend items based only on language-based preferences. In particular, we study how LLMs can be prompted to generate a natural language (NL) user profile that holistically describe a user’s preferences. These NL profiles can then be leveraged to fine-tune a LLM using only NL profiles to make transparent and scrutable recommendations. Furthermore, we validate the scrutability of our user profile-based recommender by investigating the impact on recommendation changes after editing NL user profiles. According to our evaluations of the model’s rating prediction performance on two benchmarking rating prediction datasets, we observe that this novel approach maintains a performance level on par with established recommender systems in a warm-start setting. With a systematic analysis into the effect of updating user profiles and system prompts, we show the advantage of our approach in easier adjustment of user preferences and a greater autonomy over users’ received recommendations.",,2024,ACL,No,, Representation Learning with Conditional Information Flow Maximization,"This paper proposes an information-theoretic representation learning framework, named conditional information flow maximization, to extract noise-invariant sufficient representations for the input data and target task. It promotes the learned representations have good feature uniformity and sufficient predictive ability, which can enhance the generalization of pre-trained language models (PLMs) for the target task. Firstly, an information flow maximization principle is proposed to learn more sufficient representations for the input and target by simultaneously maximizing both input-representation and representation-label mutual information. Unlike the information bottleneck, we handle the input-representation information in an opposite way to avoid the over-compression issue of latent representations. Besides, to mitigate the negative effect of potential redundant features from the input, we design a conditional information minimization principle to eliminate negative redundant features while preserve noise-invariant features. Experiments on 13 language understanding benchmarks demonstrate that our method effectively improves the performance of PLMs for classification and regression. Extensive experiments show that the learned representations are more sufficient, robust and transferable.",,2024,ACL,No,, GPT is Not an Annotator: The Necessity of Human Annotation in Fairness Benchmark Construction,"Social biases in LLMs are usually measured via bias benchmark datasets. Current benchmarks have limitations in scope, grounding, quality, and human effort required. Previous work has shown success with a community-sourced, rather than crowd-sourced, approach to benchmark development. However, this work still required considerable effort from annotators with relevant lived experience. This paper explores whether an LLM (specifically, GPT-3.5-Turbo) can assist with the task of developing a bias benchmark dataset from responses to an open-ended community survey. We also extend the previous work to a new community and set of biases: the Jewish community and antisemitism. Our analysis shows that GPT-3.5-Turbo has poor performance on this annotation task and produces unacceptable quality issues in its output. Thus, we conclude that GPT-3.5-Turbo is not an appropriate substitute for human annotation in sensitive tasks related to social biases, and that its use actually negates many of the benefits of community-sourcing bias benchmarks.",,2024,ACL,No,, Quantifying Contamination in Evaluating Code Generation Capabilities of Language Models,"While large language models have achieved remarkable performance on various code generation benchmarks, there have been growing concerns regarding potential contamination of these benchmarks as they may be leaked into pretraining and finetuning data. While recent work has investigated contamination in natural language generation and understanding tasks, there has been less extensive research into how data contamination impacts the evaluation of code generation, which is critical for understanding the robustness and reliability of LLMs in programming contexts. In this work, we perform a comprehensive study of data contamination of popular code generation benchmarks, and precisely quantify their overlap with pretraining corpus through both surface-level and semantic-level matching. In our experiments, we show that there are substantial overlap between popular code generation benchmarks and open training corpus, and models perform significantly better on the subset of the benchmarks where similar solutions are seen during training. We also conduct extensive analysis on the factors that affect model memorization and generalization, such as model size, problem difficulty, and question length. We release all resulting files from our matching pipeline for future research.",,2024,ACL,No,, Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic,"We propose RESTA to perform LLM realignment towards safety, which gets compromised due to downstream task fine-tuning. RESTA stands for REstoring Safety through Task Arithmetic. At its core, it involves a simple arithmetic addition of a safety vector to the weights of the compromised model. We demonstrate the effectiveness of RESTA in both parameter-efficient and full fine-tuning, covering a wide range of downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math. We also showcase the generalizability of RESTA on three existing safety evaluation benchmarks and a multilingual benchmark dataset proposed as a part of this work, consisting of 550 harmful questions covering 11 categories, each with 5 sub-categories of harm. Overall, RESTA decreases the harmfulness of the compromised model from 18.6% to 5.1% and from 9.2% to 1.5% in parameter-efficient and full fine-tuning, respectively, while maintaining most of the model’s performance on the task. We release the source codes at: https://github.com/declare-lab/resta.",,2024,ACL,Yes,Language,Methodological Multi-modal Preference Alignment Remedies Degradation of Visual Instruction Tuning on Language Models,"Multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities in production. However, the current MLLMs trained with visual-question-answering (VQA) datasets could suffer from degradation, as VQA datasets lack the diversity and complexity of the original text instruction datasets with which the underlying language model was trained. To address this degradation, we first collect a lightweight, 5k-sample VQA preference dataset where answers were annotated by Gemini for five quality metrics in a granular fashion and investigate standard Supervised Fine-tuning, rejection sampling, Direct Preference Optimization (DPO) and SteerLM algorithms. Our findings indicate that with DPO, we can surpass the instruction-following capabilities of the language model, achieving a 6.73 score on MT-Bench, compared to Vicuna’s 6.57 and LLaVA’s 5.99. This enhancement in textual instruction-following capability correlates with boosted visual instruction performance (+4.9% on MM-Vet, +6% on LLaVA-Bench), with minimal alignment tax on visual knowledge benchmarks compared to the previous RLHF approach. In conclusion, we propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that restores and boosts MLLM’s language capability after visual instruction tuning.",,2024,ACL,No,, Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning,"Instruction tuning is critical to improve LLMs but usually suffers from low-quality and redundant data. Data filtering for instruction tuning has proved important in improving both the efficiency and performance of the tuning process. But it also leads to extra cost and computation due to the involvement of LLMs in this process. To reduce the filtering cost, we study Superfiltering: Can we use a smaller and weaker model to select data for finetuning a larger and stronger model? Despite the performance gap between weak and strong language models, we find their highly consistent capability to perceive instruction difficulty and data selection results. This enables us to use a much smaller and more efficient model to filter the instruction data used to train a larger language model. Not only does it largely speed up the data filtering, but the filtered-data-finetuned LLM achieves even better performance on standard benchmarks. Extensive experiments validate the efficacy and efficiency of our approach.",,2024,ACL,No,, Confabulation: The Surprising Value of Large Language Model Hallucinations,"This paper presents a systematic defense of large language model (LLM) hallucinations or ‘confabulations’ as a potential resource instead of a categorically negative pitfall. The standard view is that confabulations are inherently problematic and AI research should eliminate this flaw. In this paper, we argue and empirically demonstrate that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication. In other words, it has potential value. Specifically, we analyze popular hallucination benchmarks and reveal that hallucinated outputs display increased levels of narrativity and semantic coherence relative to veridical outputs. This finding reveals a tension in our usually dismissive understandings of confabulation. It suggests, counter-intuitively, that the tendency for LLMs to confabulate may be intimately associated with a positive capacity for coherent narrative-text generation.",,2024,ACL,No,, DeVAn: Dense Video Annotation for Video-Language Models,"We present a novel human annotated dataset for evaluating the ability for visual-language models to generate both short and long descriptions for real-world video clips, termed {\bf DeVAn} (Dense Video Annotation). The dataset contains 8.5K YouTube video clips of 20-60 seconds in duration and covers a wide range of topics and interests. Each video clip is independently annotated by 5 human annotators, producing both captions (1 sentence) and summaries (3-10 sentences). Given any video selected from the dataset and its corresponding ASR information, we evaluate visual-language models on either caption or summary generation that is grounded in both the visual and auditory content of the video. Additionally, models are also evaluated on caption- and summary-based retrieval tasks, where the summary-based retrieval task requires the identification of a target video given \textit{excerpts} of a given summary. Given the novel nature of the paragraph-length video summarization task, we compared different existing evaluation metrics and their alignment with human preferences and found that model-based evaluation metrics provide more semantically-oriented and human-aligned evaluation. Finally, we benchmarked a wide range of current video-language models on DeVAn, and we aim for DeVAn to serve as a useful evaluation set in the age of large language models and complex multi-modal tasks. Code is available at https://github.com/TK-21st/DeVAn.",,2024,ACL,Yes,Video, Multimodal ArXiv: A Dataset for Improving Scientific Comprehension of Large Vision-Language Models,"Large vision-language models (LVLMs) excel across diverse tasks involving concrete images from natural scenes. However, their ability to interpret abstract figures, such as geometry shapes and scientific plots, remains limited due to a scarcity of training datasets in scientific domains.To fill this gap, we introduce Multimodal ArXiv, consisting of ArXivCap and ArXivQA, for enhancing LVLMs scientific comprehension.ArXivCap is a figure-caption dataset comprising 6.4M images and 3.9M captions, sourced from 572K ArXiv papers spanning various scientific domains.Drawing from ArXivCap, we introduce ArXivQA, a question-answering dataset generated by prompting GPT-4V based on scientific figures. ArXivQA greatly enhances open-sourced LVLMs’ mathematical reasoning capabilities, achieving a 10.4% absolute accuracy gain on a multimodal mathematical reasoning benchmark.Furthermore, employing ArXivCap, we devise four vision-to-text tasks for benchmarking LVLMs.Evaluation results with state-of-the-art LVLMs underscore their struggle with the nuanced semantics of academic figures, while domain-specific training yields substantial performance gains.Our error analysis uncovers misinterpretations of visual context, recognition errors, and the production of overly simplified captions by current LVLMs, shedding light on future improvements.",,2024,ACL,Yes,Multimodal, L-Eval: Instituting Standardized Evaluation for Long Context Language Models,"Recently, there has been growing interest in long-context scaling of large language models (LLMs). To facilitate research in this field, we propose L-Eval to institute a more standardized evaluation for Long-Context Language Models (LCLMs) addressing two key aspects: dataset construction and evaluation metrics. On the one hand, we build a new evaluation suite containing 20 sub-tasks, 508 long documents, and more than 2,000 human-labeled query-response pairs including diverse task types, domains, and input length (3k~200k tokens). On the other hand, we investigate the effectiveness of evaluation metrics for LCLMs and we show that Length-instruction-enhanced (LIE) evaluation and LLM judges can better correlate with human judgments. We conducted a comprehensive study of 4 popular commercial LLMs and 12 open-source counterparts using the L-Eval benchmark. Our empirical findings offer useful insights into the study of LCLMs and lay the groundwork for the development of a more principled evaluation of these models.",,2024,ACL,Yes,Language,Benchmark Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View,"As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: *Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)?* This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique ‘societies’ comprised of LLM agents, where each agent is characterized by a specific ‘trait’ (easy-going or overconfident) and engages in collaboration with a distinct ‘thinking pattern’ (debate or reflection). Through evaluating these multi-agent societies on three benchmark datasets, we discern that certain collaborative strategies not only outshine previous top-tier approaches but also optimize efficiency (using fewer API tokens). Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring foundational social psychology theories. In conclusion, we integrate insights from social psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets, hoping to catalyze further research in this promising avenue.",,2024,ACL,No,, CausalGym: Benchmarking causal interpretability methods on linguistic tasks,"Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M–6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler–gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.",,2024,ACL,Yes,Language,Benchmark Latxa: An Open Language Model and Evaluation Suite for Basque,"We introduce Latxa, a family of large language models for Basque ranging from 7 to 70 billion parameters. Latxa is based on Llama 2, which we continue pretraining on a new Basque corpus comprising 4.3M documents and 4.2B tokens. Addressing the scarcity of high-quality benchmarks for Basque, we further introduce 4 multiple choice evaluation datasets: EusProficiency, comprising 5,169 questions from official language proficiency exams; EusReading, comprising 352 reading comprehension questions; EusTrivia, comprising 1,715 trivia questions from 5 knowledge areas; and EusExams, comprising 16,046 questions from public examinations. In our extensive evaluation, Latxa outperforms all previous open models we compare to by a large margin. In addition, it is competitive with GPT-4 Turbo in language proficiency and understanding, despite lagging behind in reading comprehension and knowledge-intensive tasks. Both the Latxa family of models, as well as our new pretraining corpora and evaluation datasets, are publicly available under open licenses. Our suite enables reproducible research on methods to build LLMs for low-resource languages.",,2024,ACL,Yes,Language,Benchmark ArtPrompt: ASCII Art-based Jailbreak Attacks against Aligned LLMs,"Safety is critical to the usage of large language models (LLMs). Multiple techniques such as data filtering and supervised fine-tuning have been developed to strengthen LLM safety. However, currently known techniques presume that corpora used for safety alignment of LLMs are solely interpreted by semantics. This assumption, however, does not hold in real-world applications, which leads to severe vulnerabilities in LLMs. For example, users of forums often use ASCII art, a form of text-based art, to convey image information. In this paper, we propose a novel ASCII art-based jailbreak attack and introduce a comprehensive benchmark Vision-in-Text Challenge (ViTC) to evaluate the capabilities of LLMs in recognizing prompts that cannot be solely interpreted by semantics. We show that five SOTA LLMs (GPT-3.5, GPT-4, Gemini, Claude, and Llama2) struggle to recognize prompts provided in the form of ASCII art. Based on this observation, we develop the jailbreak attack ArtPrompt, which leverages the poor performance of LLMs in recognizing ASCII art to bypass safety measures and elicit undesired behaviors from LLMs. ArtPrompt only requires black-box access to the victim LLMs, making it a practical attack. We evaluate ArtPrompt on five SOTA LLMs, and show that ArtPrompt can effectively and efficiently induce undesired behaviors from all five LLMs.",,2024,ACL,Yes,Language,Methodological \inftyBench: Extending Long Context Evaluation Beyond 100K Tokens,"Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose , the first LLM benchmark featuring an average data length surpassing 100K tokens. comprises synthetic and realistic tasks spanning diverse domains in English and Chinese. The tasks in are designed to require an understanding of long dependencies in contexts and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. Based on , we evaluate several state-of-the-art LLMs tailored for processing long contexts. The experimental results indicate that existing long-context LLMs still require significant advancements to process 100K+ contexts effectively. Furthermore, we present three intriguing analyses regarding the behavior of LLMs processing long context. Our code and data is released.",,2024,ACL,Yes,Language,Benchmark Iterative Forward Tuning Boosts In-Context Learning in Language Models,"Despite the advancements in in-context learning (ICL) for large language models (LLMs), current research centers on specific prompt engineering, such as demonstration selection, with the expectation that a single iteration of demonstrations processing can generalize effectively to a given test sample. However, this perspective overlooks the potential benefits derived from multiple iterations involving demonstrations, a practice aligning more closely with the iterative decision-making process exhibited by humans, who often learn through analogy. In this study, we introduce a novel two-stage framework to boost ICL in LLMs. Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages. The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation. This mechanism operates by manipulating the Key-Value matrices without training, fostering enhanced understanding capabilities in LLMs by thinking demonstrations multiple times. We evaluated Deep-Thinking across a range of benchmarks and LLMs, showing its superior performance over vanilla ICL methods and its effectiveness in challenging tasks where demonstration selection is infeasible.",,2024,ACL,No,, SafetyBench: Evaluating the Safety of Large Language Models,"With the rapid development of Large Language Models (LLMs), increasing attention has been paid to their safety concerns. Consequently, evaluating the safety of LLMs has become an essential task for facilitating the broad applications of LLMs. Nevertheless, the absence of comprehensive safety evaluation benchmarks poses a significant impediment to effectively assess and enhance the safety of LLMs. In this work, we present SafetyBench, a comprehensive benchmark for evaluating the safety of LLMs, which comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns. Notably, SafetyBench also incorporates both Chinese and English data, facilitating the evaluation in both languages. Our extensive tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts, and there is still significant room for improving the safety of current LLMs. We also demonstrate that the measured safety understanding abilities in SafetyBench are correlated with safety generation abilities. Data and evaluation guidelines are available at https://github.com/thu-coai/SafetyBench. Submission entrance and leaderboard are available at https://llmbench.ai/safety.",,2024,ACL,Yes,Language,Benchmark M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models,"Managing long sequences has become an important and necessary feature for large language models (LLMs). However, assessing their ability to handle long contexts remains a challenge. This paper introduces M^4LE, a \textbf{M}ulti-ability, \textbf{M}ulti-range, \textbf{M}ulti-task, \textbf{M}ulti-domain benchmark for \textbf{L}ong-context \textbf{E}valuation. It encompasses 36 NLP datasets, covering 11 types of tasks and 12 domains, providing a comprehensive test bed. To address the lack of tasks featuring naturally long sequences, we propose an automatic approach to convert short-sequence tasks into long-sequence scenarios. These scenarios evaluate LLMs’ long-context understanding across five key abilities: understanding of single or multiple relevant spans in long contexts based on explicit or semantic hints, and global context understanding. This automatic approach allows us to create instances evenly distributed from 1k to 8k input length. Our evaluation of 11 prominent LLMs reveals that 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.",,2024,ACL,Yes,Language,Benchmark CHECKWHY: Causal Fact Verification via Argument Structure,"With the growing complexity of fact verification tasks, the concern with “thoughtful” reasoning capabilities is increasing. However, recent fact verification benchmarks mainly focus on checking a narrow scope of semantic factoids within claims and lack an explicit logical reasoning process. In this paper, we introduce CHECKWHY, a challenging dataset tailored to a novel causal fact verification task: checking the truthfulness of the causal relation within claims through rigorous reasoning steps. CHECKWHY consists of over 19K “why” claim-evidence- argument structure triplets with supports, refutes, and not enough info labels. Each argument structure is composed of connected evidence, representing the reasoning process that begins with foundational evidence and progresses toward claim establishment. Through extensive experiments on state-of-the-art models, we validate the importance of incorporating the argument structure for causal fact verification. Moreover, the automated and human evaluation of argument structure generation reveals the difficulty in producing satisfying argument structure by fine-tuned models or Chain-of-Thought prompted LLMs, leaving considerable room for future improvements.",,2024,ACL,Yes,Language,Methodological ToMBench: Benchmarking Theory of Mind in Large Language Models,"Theory of Mind (ToM) is the cognitive capability to perceive and ascribe mental states to oneself and others. Recent research has sparked a debate over whether large language models (LLMs) exhibit a form of ToM. However, existing ToM evaluations are hindered by challenges such as constrained scope, subjective judgment, and unintended contamination, yielding inadequate assessments. To address this gap, we introduce ToMBench with three key characteristics: a systematic evaluation framework encompassing 8 tasks and 31 abilities in social cognition, a multiple-choice question format to support automated and unbiased evaluation, and a build-from-scratch bilingual inventory to strictly avoid data leakage. Based on ToMBench, we conduct extensive experiments to evaluate the ToM performance of 10 popular LLMs across tasks and abilities. We find that even the most advanced LLMs like GPT-4 lag behind human performance by over 10% points, indicating that LLMs have not achieved a human-level theory of mind yet. Our aim with ToMBench is to enable an efficient and effective evaluation of LLMs’ ToM capabilities, thereby facilitating the development of LLMs with inherent social intelligence.",,2024,ACL,Yes,Language,Benchmark MultiPICo: Multilingual Perspectivist Irony Corpus,"Recently, several scholars have contributed to the growth of a new theoretical framework in NLP called perspectivism. This approach aimsto leverage data annotated by different individuals to model diverse perspectives that affect their opinions on subjective phenomena such as irony. In this context, we propose MultiPICo, a multilingual perspectivist corpus of ironic short conversations in different languages andlinguistic varieties extracted from Twitter and Reddit. The corpus includes sociodemographic information about its annotators. Our analysis of the annotated corpus shows how different demographic cohorts may significantly disagree on their annotation of irony and how certain cultural factors influence the perception of the phenomenon and the agreement on the annotation. Moreover, we show how disaggregated annotations and rich annotator metadata can be exploited to benchmark the ability of large language models to recognize irony, their positionality with respect to sociodemographic groups, and the efficacy of perspective-taking prompting for irony detection in multiple languages.",,2024,ACL,Yes,Language,Benchmark AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents,"Autonomous agents that address day-to-day digital tasks (e.g., ordering groceries for a household), must not only operate multiple apps (e.g., notes, messaging, shopping app) via APIs, but also generate rich code with complex control flow in an iterative manner based on their interaction with the environment. However, existing benchmarks for tool use are inadequate, as they only cover tasks that require a simple sequence of API calls. To remedy this gap, we built AppWorld Engine, a high-quality execution environment (60K lines of code) of 9 day-to-day apps operable via 457 APIs and populated with realistic digital activities simulating the lives of ~100 fictitious users. We then created AppWorld Benchmark (40K lines of code), a suite of 750 natural, diverse, and challenging autonomous agent tasks requiring rich and interactive code generation. It supports robust programmatic evaluation with state-based unit tests, allowing for different ways of completing a task while also checking for unexpected changes, i.e., collateral damage. The state-of-the-art LLM, GPT4O, solves only ~49% of our ‘normal’ tasks and ~30% of ‘challenge’ tasks, while other models solve at least 16% fewer. This highlights the benchmark’s difficulty and AppWorld’s potential to push the frontiers of interactive coding agents.",,2024,ACL,Yes,Language,Benchmark MMToM-QA: Multimodal Theory of Mind Question Answering,"Theory of Mind (ToM), the ability to understand people’s mental states, is an essential ingredient for developing machines with human-level social intelligence. Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding. However, existing ToM benchmarks use unimodal datasets – either video or text. Human ToM, on the other hand, is more than video or text understanding. People can flexibly reason about another person’s mind based on conceptual representations (e.g., goals, beliefs, plans) extracted from any available data. To address this, we introduce a multimodal Theory of Mind question answering (MMToM-QA) benchmark. MMToM-QA comprehensively evaluates machine ToM both on multimodal data and on different kinds of unimodal data about a person’s activity in a household environment. To engineer multimodal ToM capacity, we propose a novel method, BIP-ALM (Bayesian Inverse Planning Accelerated by Language Models). BIP-ALM extracts unified representations from multimodal data and utilizes language models for scalable Bayesian inverse planning. We conducted a systematic comparison of human performance, BIP-ALM, and state-of-the-art models, including GPT-4. The experiments demonstrate that large language models and large multimodal models still lack robust ToM capacity. BIP-ALM, on the other hand, shows promising results, by leveraging the power of both model-based mental inference and language models.",,2024,ACL,Yes,Multimodal, DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents,"Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning capabilities of LLMs in the context of understanding and analyzing specialized documents containing both text and tables. We conduct an extensive evaluation of 48 LLMs with Chain-of-Thought and Program-of-Thought prompting methods, aiming to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that even the current best-performing system (i.e., GPT-4o) still significantly lags behind human experts in solving complex numerical reasoning problems grounded in long contexts. We believe that DocMath-Eval can serve as a valuable benchmark for evaluating LLMs' capabilities in solving challenging numerical reasoning problems within expert domains.",,2024,ACL,Yes,Language,Benchmark Unintended Impacts of LLM Alignment on Global Representation,"Before being deployed for user-facing applications, developers align Large Language Models (LLMs) to user preferences through a variety of procedures, such as Reinforcement Learning From Human Feedback (RLHF) and Direct Preference Optimization (DPO). Current evaluations of these procedures focus on benchmarks of instruction following, reasoning, and truthfulness. However, human preferences are not universal, and aligning to specific preference sets may have unintended effects. We explore how alignment impacts performance along three axes of global representation: English dialects, multilingualism, and opinions from and about countries worldwide. Our results show that current alignment procedures create disparities between English dialects and global opinions. We find alignment improves capabilities in several languages. We conclude by discussing design decisions that led to these unintended impacts and recommendations for more equitable preference tuning. We make our code and data publicly available on Github.",,2024,ACL,No,, LooGLE: Can Long-Context Language Models Understand Long Contexts?,"Large language models (LLMs) are typically limited to processing texts within context window size, which has spurred significant research efforts into enhancing LLMs’ long-context understanding as well as developing high-quality benchmarks to evaluate the ability. However, prior datasets suffer from short comings like short length compared to the context window of modern LLMs; outdated documents that might have data leakage problems; and an emphasis on short dependency tasks only. In this paper, we present LooGLE , a Long Context Generic Language Evaluation benchmark. It features documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning varying dependency ranges in diverse domains. Human annotators meticulously crafted over 1,100 high-quality question-answer (QA) pairs with thorough cross-validation for a most precise assessment of LLMs’ long dependency capabilities. We conduct a comprehensive evaluation of representative LLMs on LooGLE . The results indicate that most LLMs have shockingly bad long context ability and fail to capture long dependencies in the context, even when their context window size is enough to fit the entire document. Our results shed light on enhancing the “true long-context understanding” ability of LLMs instead of merely enlarging their context window.",,2024,ACL,Yes,Language,Benchmark Explicating the Implicit: Argument Detection Beyond Sentence Boundaries,"Detecting semantic arguments of a predicate word has been conventionally modeled as a sentence-level task. The typical reader, however, perfectly interprets predicate-argument relations in a much wider context than just the sentence where the predicate was evoked. In this work, we reformulate the problem of argument detection through textual entailment to capture semantic relations across sentence boundaries. We propose a method that tests whether some semantic relation can be inferred from a full passage by first encoding it into a simple and standalone proposition and then testing for entailment against the passage. Our method does not require direct supervision, which is generally absent due to dataset scarcity, but instead builds on existing NLI and sentence-level SRL resources. Such a method can potentially explicate pragmatically understood relations into a set of explicit sentences. We demonstrate it on a recent document-level benchmark, outperforming some supervised methods and contemporary language models.",,2024,ACL,No,, Can Language Models Serve as Text-Based World Simulators?,"Virtual environments play a key role in benchmarking advances in complex planning and decision-making tasks but are expensive and complicated to build by hand. Can current language models themselves serve as world simulators, correctly predicting how actions change different world states, thus bypassing the need for extensive manual coding? Our goal is to answer this question in the context of text-based simulators. Our approach is to build and use a new benchmark, called ByteSized32-State-Prediction, containing a dataset of text game state transitions and accompanying game tasks. We use this to directly quantify, for the first time, how well LLMs can serve as text-based world simulators. We test GPT-4 on this dataset and find that, despite its impressive performance, it is still an unreliable world simulator without further innovations. This work thus contributes both new insights into current LLM’s capabilities and weaknesses, as well as a novel benchmark to track future progress as new models appear.",,2024,ACL,Yes,Language,Benchmark "FanOutQA: A Multi-Hop, Multi-Document Question Answering Benchmark for Large Language Models","One type of question that is commonly found in day-to-day scenarios is “fan-out” questions, complex multi-hop, multi-document reasoning questions that require finding information about a large number of entities. However, there exist few resources to evaluate this type of question-answering capability among large language models. To evaluate complex reasoning in LLMs more fully, we present FanOutQA, a high-quality dataset of fan-out question-answer pairs and human-annotated decompositions with English Wikipedia as the knowledge base. We formulate three benchmark settings across our dataset and benchmark 7 LLMs, including GPT-4, LLaMA 2, Claude-2.1, and Mixtral-8x7B, finding that contemporary models still have room to improve reasoning over inter-document dependencies in a long context. We provide our dataset, along with open-source tools to run models to encourage evaluation.",,2024,ACL,Yes,Language,Benchmark UltraSparseBERT: 99% Conditionally Sparse Language Modelling,"We present UltraSparseBERT, a BERT variant that uses 0.3% of its neurons during inference while performing on par with similar BERT models. UltraSparseBERT selectively engages just 12 out of 4095 neurons for each layer inference. This is achieved by reorganizing feedforward networks into fast feedforward networks (FFFs).To showcase but one benefit of high sparsity, we provide an Intel MKL implementation achieving 78x speedup over the optimized feedforward baseline on CPUs, and an OpenAI Triton implementation performing forward passes 4.1x faster than the corresponding native GPU implementation. The training and benchmarking code is enclosed.",,2024,ACL,No,, SceMQA: A Scientific College Entrance Level Multimodal Question Answering Benchmark,"The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level. It addresses a critical educational phase often overlooked in existing benchmarks, spanning high school to pre-college levels. SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology. It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models’ abilities. Additionally, our benchmark provides specific knowledge points for each problem and detailed explanations for each answer. SceMQA also uniquely presents problems with identical contexts but varied questions to facilitate a more thorough and accurate assessment of reasoning capabilities. In the experiment, we evaluate both open-source and close-source state-of-the-art Multimodal Large Language Models (MLLMs), across various experimental settings. The results show that further research and development are needed in developing more capable MLLM, as highlighted by only 50% to 60% accuracy achieved by the strongest models.",,2024,ACL,Yes,Multimodal, Bi-Directional Multi-Granularity Generation Framework for Knowledge Graph-to-Text with Large Language Model,"The knowledge graph-to-text (KG-to-text) generation task aims to synthesize coherent and engaging sentences that accurately convey the complex information derived from an input knowledge graph. Existing methods generate the whole target text based on all KG triples at once and may incorporate incorrect KG triples for each sentence. To this end, we propose the bi-directional multi-granularity generation framework. Instead of generating the whole text at a time, we construct the sentence level generation based on the corresponding triples and generate the graph-level text as a result. Moreover, we design a backward relation extraction task to enhance the correctness of relational information. Our method achieves the new state-of-the-art in benchmark dataset WebNLG and further analysis shows the efficiency of different modules.",,2024,ACL,No,, DDPrompt: Differential Diversity Prompting in Large Language Models,"Large Language Models (LLMs) have shown that their reasoning ability could be enhanced through approaches like Chain-of-Thought (CoT) prompting. However, these methods use single prompts for different types of questions and do not design appropriate prompts for questions with different characteristics. In this paper, we aim to explore a methodology that generates differentially diverse reasoning paths for different types of questions. To achieve this, we propose a novel prompting strategy called Differential Diversity Prompting (DDPrompt). Firstly, we generate the optimal prompts collection based on question characteristics. Then, we use this optimal prompts collection to generate multiple answers for a question and choose the final answer by voting. We evaluated DDPrompt on twelve reasoning benchmarks and significant improvement in the performance of LLMs on complex reasoning tasks (e.g., GSM8K 75%->84%, Tracking Shuffled Objects (68.8%->83.9%))",,2024,ACL,No,, Fine-Tuning Pre-Trained Language Models with Gaze Supervision,"Human gaze data provide cognitive information that reflect human language comprehension and has been effectively integrated into a variety of natural language processing (NLP) tasks, demonstrating improved performance over corresponding plain text-based models. In this work, we propose to integrate a gaze module into pre-trained language models (LMs) at the fine-tuning stage to improve their capabilities to learn representations that are grounded in human language processing. This is done by extending the conventional purely text-based fine-tuning objective with an auxiliary loss to exploit cognitive signals. The gaze module is only included during training, retaining compatibility with existing pre-trained LM-based pipelines. We evaluate the proposed approach using two distinct pre-trained LMs on the GLUE benchmark and observe that the proposed model improves performance compared to both standard fine-tuning and traditional text augmentation baselines.",,2024,ACL,No,, EmbSpatial-Bench: Benchmarking Spatial Understanding for Embodied Tasks with Large Vision-Language Models,"The recent rapid development of Large Vision-Language Models (LVLMs) has indicated their potential for embodied tasks. However, the critical skill of spatial understanding in embodied environments has not been thoroughly evaluated, leaving the gap between current LVLMs and qualified embodied intelligence unknown. Therefore, we construct EmbSpatial-Bench, a benchmark for evaluating embodied spatial understanding of LVLMs. The benchmark is automatically derived from embodied scenes and covers 6 spatial relationships from an egocentric perspective. Experiments expose the insufficient capacity of current LVLMs (even GPT-4V). We further present EmbSpatial-SFT, an instruction-tuning dataset designed to improve LVLMs’ embodied spatial understanding.",,2024,ACL,Yes,Multimodal, ConstitutionalExperts: Training a Mixture of Principle-based Prompts,"Large language models (LLMs) are highly capable at a variety of tasks given the right prompt, but writing one is still a difficult and tedious process. In this work, we introduce ConstitutionalExperts, a method for learning a prompt consisting of constitutional principles (i.e. rules), given a training dataset. Unlike prior methods that optimize the prompt as a single entity, our method incrementally improves the prompt by surgically editing individual principles. We also show that we can improve overall performance by learning unique prompts for different semantic regions of the training data and using a mixture-of-experts (MoE) architecture to route inputs at inference time. We compare our method to other state of the art prompt-optimization techniques across six benchmark datasets. We also investigate whether MoE improves these other techniques. Our results suggest that ConstitutionalExperts outperforms other prompt optimization techniques by 10.9% (F1) and that mixture-of-experts improves all techniques, suggesting its broad applicability.",,2024,ACL,No,, Time Sensitive Knowledge Editing through Efficient Finetuning,"Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains. However, keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete. It is thus essential to design effective methods to both update obsolete knowledge and induce new knowledge into LLMs. Existing locate-and-edit knowledge editing (KE) method suffers from two limitations. First, the post-edit LLMs by such methods generally have poor capability in answering complex queries that require multi-hop reasoning. Second, the long run-time of such locate-and-edit methods to perform knowledge edits make it infeasible for large scale KE in practice. In this paper, we explore Parameter-Efficient Fine-Tuning (PEFT) techniques as an alternative for KE. We curate a more comprehensive temporal KE dataset with both knowledge update and knowledge injection examples for KE performance benchmarking. We further probe the effect of fine-tuning on a range of layers in an LLM for the multi-hop QA task. We find that PEFT performs better than locate-and-edit techniques for time-sensitive knowledge edits.",,2024,ACL,Yes,Language,Methodological PRewrite: Prompt Rewriting with Reinforcement Learning,"Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a “trial and error” fashion that can be time consuming, ineffective, and sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications?To address these problems, we investigate automated prompt engineering in this paper. Specifically, we propose PRewrite, an automated method to rewrite an under-optimized prompt to a more effective prompt. We instantiate the prompt rewriter using an LLM. The rewriter LLM is trained using reinforcement learning to optimize the performance on a given downstream task. We conduct experiments on diverse benchmark datasets, which demonstrates the effectiveness of PRewrite.",,2024,ACL,No,, Self-Augmented In-Context Learning for Unsupervised Word Translation,"Recent work has shown that, while large language models (LLMs) demonstrate strong word translation or bilingual lexicon induction (BLI) capabilities in few-shot setups, they still cannot match the performance of ‘traditional’ mapping-based approaches in the unsupervised scenario where no seed translation pairs are available, especially for lower-resource languages. To address this challenge with LLMs, we propose self-augmented in-context learning (SAIL) for unsupervised BLI: starting from a zero-shot prompt, SAIL iteratively induces a set of high-confidence word translation pairs for in-context learning (ICL) from an LLM, which it then reapplies to the same LLM in the ICL fashion. Our method shows substantial gains over zero-shot prompting of LLMs on two established BLI benchmarks spanning a wide range of language pairs, also outperforming mapping-based baselines across the board. In addition to achieving state-of-the-art unsupervised BLI performance, we also conduct comprehensive analyses on SAIL and discuss its limitations.",,2024,ACL,No,, Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models,"Humor is a fundamental facet of human cognition and interaction. Yet, despite recent advances in natural language processing, humor detection remains a challenging task that is complicated by the scarcity of datasets that pair humorous texts with similar non-humorous counterparts. We investigate whether large language models (LLMs) can generate synthetic data for humor detection via editing texts. We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to “unfun” jokes, as judged by humans and as measured on the downstream task of humor detection. We extend our approach to a code-mixed English-Hindi humor dataset where we find that GPT-4’s synthetic data is highly rated by bilingual annotators and provides challenging adversarial examples for humor classifiers.",,2024,ACL,No,, IMGTB: A Framework for Machine-Generated Text Detection Benchmarking,"In the era of large language models generating high quality texts, it is a necessity to develop methods for detection of machine-generated text to avoid their harmful use or simply for annotation purposes. It is, however, also important to properly evaluate and compare such developed methods. Recently, a few benchmarks have been proposed for this purpose; however, integration of newest detection methods is rather challenging, since new methods appear each month and provide slightly different evaluation pipelines.In this paper, we present the IMGTB framework, which simplifies the benchmarking of machine-generated text detection methods by easy integration of custom (new) methods and evaluation datasets. In comparison to existing frameworks, it enables to objectively compare statistical metric-based zero-shot detectors with classification-based detectors and with differently fine-tuned detectors. Its configurability and flexibility makes research and development of new detection methods easier, especially their comparison to the existing state-of-the-art detectors. The default set of analyses, metrics and visualizations offered by the tool follows the established practices of machine-generated text detection benchmarking found in state-of-the-art literature.",,2024,ACL,Yes,Language,Benchmark "OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety","The rapid development of Chinese large language models (LLMs) poses big challenges for efficient LLM evaluation. While current initiatives have introduced new benchmarks or evaluation platforms for assessing Chinese LLMs, many of these focus primarily on capabilities, usually overlooking potential alignment and safety issues. To address this gap, we introduce OpenEval, an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety. For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning. For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs. To evaluate safety, especially anticipated risks (e.g., power-seeking, self-awareness) of advanced LLMs, we include 6 datasets. In addition to these benchmarks, we have implemented a phased public evaluation and benchmark update strategy to ensure that OpenEval is in line with the development of Chinese LLMs or even able to provide cutting-edge benchmark datasets to guide the development of Chinese LLMs. In our first public evaluation, we have tested a range of Chinese LLMs, spanning from 7B to 72B parameters, including both open-source and proprietary models. Evaluation results indicate that while Chinese LLMs have shown impressive performance in certain tasks, more attention should be directed towards broader aspects such as commonsense reasoning, alignment, and safety.",,2024,ACL,Yes,Language,Benchmark LinkTransformer: A Unified Package for Record Linkage with Transformer Language Models,"Many computational analyses require linking information across noisy text datasets. While large language models (LLMs) offer significant promise, approximate string matching packages in popular statistical softwares such as R and Stata remain predominant in academic applications. These packages have simple interfaces and can be easily extended to a diversity of languages and settings, and for academic applications, ease-of-use and extensibility are essential. In contrast, packages for record linkage with LLMs require significant familiarity with deep learning frameworks and often focus on specialized applications of commercial value in English. The open-source package LinkTransformer aims to bridge this gap by providing an end-to-end software for performing record linkage and other data cleaning tasks with transformer LLMs, treating linkage as a text retrieval problem. At its core is an off-the-shelf toolkit for applying transformer models to record linkage. LinkTransformer contains a rich repository of pre-trained models for multiple languages and supports easy integration of any transformer language model from Hugging Face or OpenAI, providing the extensibility required for many scholarly applications. Its APIs also perform common data processing tasks, e.g., aggregation, noisy de-duplication, and translation-free cross-lingual linkage. LinkTransformer contains comprehensive tools for efficient model tuning, allowing for highly customized applications, and users can easily contribute their custom-trained models to its model hub to ensure reproducibility. Using a novel benchmark dataset geared towards academic applications, we show that LinkTransformer - with both custom models and Hugging Face or OpenAI models off-the-shelf - outperforms string matching by a wide margin. By combining transformer LMs with intuitive APIs, LinkTransformer aims to democratize these performance gains for those who lack familiarity with deep learning frameworks.",,2024,ACL,Yes,Language,Technical BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization,"Large Language Models (LLMs) have become pivotal in advancing natural language processing, yet their potential to perpetuate biases poses significant concerns. This paper introduces a new framework employing Direct Preference Optimization (DPO) to mitigate gender, racial, and religious biases in LLM-generated English text. By developing a loss function that favors less biased over biased completions, our approach cultivates a preference for respectful and non-discriminatory language in LLMs. We also contribute a manually designed dataset for training LLMs to recognize and correct biases. This dataset encompasses a diverse range of prompts paired with both biased and unbiased completions. Implementing this approach on the Microsoft Phi-2 model, we demonstrate substantial reductions in biased outputs as our model outperforms the baseline model on almost all bias benchmarks. Our model also achieves better performance compared to other open-source models on most benchmarks. By reducing biases in the language generated by the model, our study marks a significant step towards developing more ethical and socially responsible LLMs. We publicly release BiasDPO dataset on HuggingFace.",,2024,ACL,No,, On Improving Repository-Level Code QA for Large Language Models,"Large Language Models (LLMs) such as ChatGPT, GitHub Copilot, Llama, or Mistral assist programmers as copilots and knowledge sources to make the coding process faster and more efficient. This paper aims to improve the copilot performance by implementing different self-alignment processes and retrieval-augmented generation (RAG) pipelines, as well as their combination. To test the effectiveness of all approaches, we create a dataset and apply a model-based evaluation, using LLM as a judge. It is designed to check the model’s abilities to understand the source code semantics, the dependency between files, and the overall meta-information about the repository. We also compare our approach with other existing solutions, e.g. ChatGPT-3.5, and evaluate on the existing benchmarks. Code and dataset are available online (https://anonymous.4open.science/r/ma_llm-382D).",,2024,ACL,No,, Rescue: Ranking LLM Responses with Partial Ordering to Improve Response Generation,"Customizing LLMs for a specific task involves separating high-quality responses from lower-quality ones. This skill can be developed using supervised fine-tuning with extensive human preference data. However, obtaining a large volume of expert-annotated data is costly for most tasks. In this paper, we explore a novel method to optimize LLMs using ranking metrics. This method trains the model to prioritize the best responses from a pool of candidates created for a particular task. Rather than a traditional full ordering, we advocate for a partial ordering, as achieving consensus on the perfect order of candidate responses can be challenging. Our partial ordering is more robust, less sensitive to noise, and can be achieved with limited human annotations or through heuristic methods. We test our system’s improved response generation ability using benchmark datasets, including textual entailment and multi-document question answering. We conduct ablation studies to understand crucial factors, such as how to gather candidate responses for a specific task, determine their most suitable order, and balance supervised fine-tuning with ranking metrics. Our approach, named RESCUE, offers a promising avenue for enhancing the response generation and task accuracy of LLMs.",,2024,ACL,No,, Can LLMs Augment Low-Resource Reading Comprehension Datasets? Opportunities and Challenges,"Large Language Models (LLMs) have demonstrated impressive zero-shot performance on a wide range of NLP tasks, demonstrating the ability to reason and apply common sense. A relevant application is to use them for creating high-quality synthetic datasets for downstream tasks. In this work, we probe whether GPT-4 can be used to augment existing extractive reading comprehension datasets. Automating data annotation processes has the potential to save large amounts of time, money, and effort that goes into manually labeling datasets. In this paper, we evaluate the performance of GPT-4 as a replacement for human annotators for low-resource reading comprehension tasks, by comparing performance after fine-tuning, and the cost associated with annotation. This work serves to be the first analysis of LLMs as synthetic data augmenters for QA systems, highlighting the unique opportunities and challenges. Additionally, we release augmented versions of low-resource datasets, that will allow the research community to create further benchmarks for evaluation of generated datasets. Github available at https://github.com/vsamuel2003/qa-gpt4",,2024,ACL,No,, Bridging Distribution Gap via Semantic Rewriting with LLMs to Enhance OOD Robustness,"This paper investigates the robustness of Large Language Models (LLMs) against Out-Of-Distribution (OOD) data within the context of sentiment analysis. Traditional fine-tuning approaches often fail to generalize effectively across different data distributions, limiting the practical deployment of LLMs in dynamic real-world scenarios. To address this challenge, we introduce a novel method called “Semantic Rewriting,” which leverages the inherent flexibility of LLMs to align both in-distribution (ID) and OOD data with the LLMs distributions. By semantically transforming sentences to minimize linguistic discrepancies, our approach helps to standardize features across datasets, thus enhancing model robustness. We conduct extensive experiments with several benchmark datasets and LLMs to validate the efficacy of our method. The results demonstrate that Semantic Rewriting significantly improves the performance of models on OOD tasks, outperforming traditional methods in both robustness and generalization capabilities. Our findings suggest that Semantic Rewriting is a promising technique for developing more reliable and versatile NLP systems capable of performing robustly across diverse operational environments.",,2024,ACL,No,, In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery,"State of the art Symbolic Regression (SR) methods currently build specialized models, while the application of Large Language Models (LLMs) remains largely unexplored. In this work, we introduce the first comprehensive framework that utilizes LLMs for the task of SR.We propose In-Context Symbolic Regression (ICSR), an SR method which iteratively refines a functional form with an LLM and determines its coefficients with an external optimizer. ICSR leverages LLMs’ strong mathematical prior both to propose an initial set of possible functions given the observations and to refine them based on their errors.Our findings reveal that LLMs are able to successfully find symbolic equations that fit the given data, matching or outperforming the overall performance of the best SR baselines on four popular benchmarks, while yielding simpler equations with better out of distribution generalization.",,2024,ACL,No,, ImageInWords: Unlocking Hyper-Detailed Image Descriptions,"Despite the longstanding adage ”an image is worth a thousand words,” generating accurate hyper-detailed image descriptions remains unsolved. Trained on short web-scraped image-text, vision-language models often generate incomplete descriptions with visual inconsistencies. We address this via a novel data-centric approach with ImageInWords (IIW), a carefully designed human-in-the-loop framework for curating hyper-detailed image descriptions. Human evaluations on IIW data show major gains compared to recent datasets (+66%) and GPT-4V (+48%) across comprehensiveness, specificity, hallucinations, and more. We also show that fine-tuning with IIW data improves these metrics by +31% against models trained with prior work, even with only 9k samples. Lastly, we evaluate IIW models with text-to-image generation and vision-language reasoning tasks. Our generated descriptions result in the highest fidelity images, and boost compositional reasoning by up to 6% on ARO, SVO-Probes, and Winoground datasets. We release the IIW-Eval benchmark with human judgement labels, object and image-level annotations from our framework, and existing image caption datasets enriched via IIW-model.",,2024,ACL,Yes,Multimodal, NumeroLogic: Number Encoding for Enhanced LLMs’ Numerical Reasoning,"Language models struggle with handling numerical data and performing arithmetic operations. We hypothesize that this limitation can be partially attributed to non-intuitive textual numbers representation. When a digit is read or generated by a causal language model it does not know its place value (e.g. thousands vs. hundreds) until the entire number is processed. To address this issue, we propose a simple adjustment to how numbers are represented by including the count of digits before each number. For instance, instead of “42”, we suggest using “2:42” as the new format. This approach, which we term NumeroLogic, offers an added advantage in number generation by serving as a Chain of Thought (CoT). By requiring the model to consider the number of digits first, it enhances the reasoning process before generating the actual number. We use arithmetic tasks to demonstrate the effectiveness of the NumeroLogic formatting. We further demonstrate NumeroLogic applicability to general natural language modeling, improving language understanding performance in the MMLU benchmark.",,2024,ACL,No,, RoTBench: A Multi-Level Benchmark for Evaluating the Robustness of Large Language Models in Tool Learning,"Tool learning has generated widespread interest as a vital means of interaction between Large Language Models (LLMs) and the physical world. Current research predominantly emphasizes LLMs’ capacity to utilize tools in well-structured environments while overlooking their stability when confronted with the inevitable noise of the real world. To bridge this gap, we introduce *RoTBench*, a multi-level benchmark for evaluating the robustness of LLMs in tool learning. Specifically, we establish five external environments, each featuring varying levels of noise (i.e., Clean, Slight, Medium, Heavy, and Union), providing an in-depth analysis of the model’s resilience across three critical phases: tool selection, parameter identification, and content filling. Experiments involving six widely-used models underscore the urgent necessity for enhancing the robustness of LLMs in tool learning. For instance, the performance of GPT-4 even drops significantly from 80.00 to 58.10 when there is no substantial change in manual accuracy. More surprisingly, the noise correction capability inherent in the GPT family paradoxically impedes its adaptability in the face of mild noise. In light of these findings, we propose RoTTuning, a strategy that enriches the diversity of training environments to bolster the robustness of LLMs in tool learning. The code and data are available at https://github.com/Junjie-Ye/RoTBench.",,2024,ACL,Yes,Language,Benchmark Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing,"Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.",,2024,ACL,No,, “We Demand Justice!”: Towards Social Context Grounding of Political Texts,"Political discourse on social media often contains similar language with opposing intended meanings. For example, the phrase thoughts and prayers, is used to express sympathy for mass shooting victims, as well as satirically criticize the lack of legislative action on gun control. Understanding such discourse fully by reading only the text is difficult. However, knowledge of the social context information makes it easier. We characterize the social context required to fully understand such ambiguous discourse, by grounding the text in real-world entities, actions, and attitudes. We propose two datasets that require understanding social context and benchmark them using large pre-trained language models and several novel structured models. We show that structured models, explicitly modeling social context, outperform larger models on both tasks, but still lag significantly behind human performance. Finally, we perform an extensive analysis, to obtain further insights into the language understanding challenges posed by our social grounding tasks.",,2024,ACL,Yes,Language,Methodological On Fake News Detection with LLM Enhanced Semantics Mining,"Large language models (LLMs) have emerged as valuable tools for enhancing textual features in various text-related tasks. Despite their superiority in capturing the lexical semantics between tokens for text analysis, our preliminary study on two popular LLMs, i.e., ChatGPT and Llama2, showcases that simply applying the news embeddings from LLMs is ineffective for fake news detection. Such embeddings only encapsulate the language styles between tokens. Meanwhile, the high-level semantics among named entities and topics, which reveal the deviating patterns of fake news, have been ignored. Therefore, we propose a topic model together with a set of specially designed prompts to extract topics and real entities from LLMs and model the relations among news, entities, and topics as a heterogeneous graph to facilitate investigating news semantics. We then propose a Generalized Page-Rank model and a consistent learning criteria for mining the local and global semantics centered on each news piece through the adaptive propagation of features across the graph. Our model shows superior performance on five benchmark datasets over seven baseline methods and the efficacy of the key ingredients has been thoroughly validated.",,2024,ACL,No,, Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection,"Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, making them increasingly integral to various applications. However, this capability introduces the risk of prompt injection attacks, where malicious instructions are embedded in the input to trigger unintended actions or content. Understanding the robustness of LLMs against such attacks is critical for ensuring their safe deployment. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks, assessing their ability to discern which instructions to follow and which to disregard. Through extensive experiments with leading instruction-following LLMs, we reveal significant vulnerabilities, particularly in models that mis-follow injected instructions. Our results show that certain models are excessively inclined to prioritize embedded instructions in prompts, often focusing on the latter parts of the prompt without fully understanding the overall context. Conversely, models that exhibit stronger contextual understanding and instruction-following capabilities tend to be more easily compromised by injected instructions. These findings highlight the need to balance improving LLMs’ instruction-following abilities with enhancing their overall comprehension of prompts, to prevent mis-following inappropriate instructions. We hope our analysis provides valuable insights into these vulnerabilities, contributing to the development of more robust solutions in the future.",,2024,ACL,Yes,Language,Benchmark GeoGPT4V: Towards Geometric Multi-modal Large Language Models with Geometric Image Generation,"Large language models have seen widespread adoption in math problem-solving, yet for geometry problems, which often necessitate visual aids even for humans, the most advanced multi-modal models still struggle to effectively utilize image information. High-quality data is crucial for enhancing the geometric capabilities of multi-modal models, yet existing open-source datasets and related efforts are either too challenging for direct model learning or suffer from misalignment between text and images. To overcome this issue, we introduce a novel pipeline that leverages GPT-4 and GPT-4V to generate relatively basic geometry problems with aligned text and images, facilitating model learning. We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset. Experimental results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks. The code is available at https://anonymous.4open.science/r/GeoGPT4V-08B2.",,2024,ACL,No,, RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning,"Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts row and column-wise sparse low-rank adaptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.",,2024,ACL,No,, BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering,"Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often struggle with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.",,2024,ACL,No,, Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence,"Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of Large Language Models (LLMs) with human preferences, offering a more straightforward alternative to the complex Reinforcement Learning from Human Feedback (RLHF). Despite its promising efficacy, DPO faces a notable drawback: “verbosity”, a common over-optimization phenomenon also observed in RLHF. While previous studies mainly attributed verbosity to biased labels within the data, we propose that the issue also stems from an inherent algorithmic length reliance in DPO. Specifically, we suggest that the discrepancy between sequence-level Kullback–Leibler (KL) divergences between chosen and rejected sequences, used in DPO, results in overestimated or underestimated rewards due to varying token lengths. Empirically, we utilize datasets with different label lengths to demonstrate the presence of biased rewards. We then introduce an effective downsampling approach, named SamPO, to eliminate potential length reliance. Our experimental evaluations, conducted across three LLMs of varying scales and a diverse array of conditional and open-ended benchmarks, highlight the efficacy of SamPO in mitigating verbosity, achieving improvements of 5% to 12% over DPO through debaised rewards. Our code can be accessed at: https://github.com/LuJunru/SamPO/.",,2024,ACL,No,, CryptoTrade: A Reflective LLM-based Agent to Guide Zero-shot Cryptocurrency Trading,"The utilization of Large Language Models (LLMs) in financial trading has primarily been concentrated within the stock market, aiding in economic and financial decisions. Yet, the unique opportunities presented by the cryptocurrency market, noted for its on-chain data’s transparency and the critical influence of off-chain signals like news, remain largely untapped by LLMs. This work aims to bridge the gap by developing an LLM-based trading agent, CryptoTrade, which uniquely combines the analysis of on-chain and off-chain data. This approach leverages the transparency and immutability of on-chain data, as well as the timeliness and influence of off-chain signals, providing a comprehensive overview of the cryptocurrency market. CryptoTrade incorporates a reflective mechanism specifically engineered to refine its daily trading decisions by analyzing the outcomes of prior trading decisions. This research makes two significant contributions. Firstly, it broadens the applicability of LLMs to the domain of cryptocurrency trading. Secondly, it establishes a benchmark for cryptocurrency trading strategies. Through extensive experiments, CryptoTrade has demonstrated superior performance in maximizing returns compared to time-series baselines, but not compared to traditional trading signals, across various cryptocurrencies and market conditions. Our code and data are available at https://github.com/Xtra-Computing/CryptoTrade",,2024,ACL,Yes,Language,Methodological AMR-Evol: Adaptive Modular Response Evolution Elicits Better Knowledge Distillation for Large Language Models in Code Generation,"The impressive performance of proprietary LLMs like GPT4 in code generation has led to a trend to replicate these capabilities in open-source models through knowledge distillation (e.g. Code Evol-Instruct). However, these efforts often neglect the crucial aspect of response quality, relying heavily on teacher models for direct response distillation. This paradigm, especially for complex instructions, can degrade the quality of synthesized data, compromising the knowledge distillation process. To this end, our study introduces the Adaptive Modular Response Evolution (AMR-Evol) framework, which employs a two-stage process to refine response distillation. The first stage, modular decomposition, breaks down the direct response into more manageable sub-modules. The second stage, adaptive response evolution, automatically evolves the response with the related function modules. Our experiments with three popular code benchmarks—HumanEval, MBPP, and EvalPlus—attests to the superiority of the AMR-Evol framework over baseline response distillation methods. By comparing with the open-source Code LLMs trained on a similar scale of data, we observed performance enhancements: more than +3.0 points on HumanEval-Plus and +1.0 points on MBPP-Plus, which underscores the effectiveness of our framework. Our codes are available at https://github.com/ChiYeungLaw/AMR-Evol.",,2024,ACL,No,, ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval,"Conversational search requires accurate interpretation of user intent from complex multi-turn contexts. This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent complex conversational sessions for dense retrieval. To achieve this, we propose a simple and effective dual-learning approach that adapts LLM for retrieval via contrastive learning while enhancing the complex session understanding through masked instruction tuning on high-quality conversational instruction tuning data. Extensive experiments on five conversational search benchmarks demonstrate that ChatRetriever significantly outperforms existing conversational dense retrievers, achieving state-of-the-art performance on par with LLM-based rewriting approaches. Furthermore, ChatRetriever exhibits superior robustness in handling diverse conversational contexts. Our work highlights the potential of adapting LLMs for retrieval with complex inputs like conversational search sessions and proposes an effective approach to advance this research direction.",,2024,ACL,No,, Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments,"Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generated texts and determine the preferred one, have been employed in a wide range of applications. However, LLMs exhibit preference biases and worrying sensitivity to prompt designs. In this work, we first reveal that the predictive preference of LLMs can be highly brittle and skewed, even with semantically equivalent instructions. We find that fairer predictive preferences from LLMs consistently lead to judgments that are better aligned with humans. Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO, which aims to produce fairer preference decisions and improve the alignment of LLM evaluators with human judgments. To this end, we propose a zero-shot learning objective based on the preference decision fairness. ZEPO demonstrates substantial performance improvements over state-of-the-art LLM evaluators, without requiring labeled data, on representative meta-evaluation benchmarks. Our findings underscore the critical correlation between preference fairness and human alignment, positioning ZEPO as an efficient prompt optimizer for bridging the gap between LLM evaluators and human judgments.",,2024,ACL,No,, Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation,"Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.",,2024,ACL,No,, Can Large Language Models Always Solve Easy Problems if They Can Solve Harder Ones?,"Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues (e.g. LLMs can react differently to disturbances like rephrasing or inconsequential order change). In addition to these inconsistencies, we also observe that LLMs, while capable of solving hard problems, can paradoxically fail at easier ones. To evaluate this hard-to-easy inconsistency, we develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty. Furthermore, we introduce the concept of consistency score to quantitatively measure this inconsistency and analyze the potential for improvement in consistency by relative consistency score. Based on comprehensive experiments across a variety of existing models, we find: (1) GPT-4 achieves the highest consistency score of 92.2% but is still inconsistent to specific questions due to distraction by redundant information, misinterpretation of questions, etc.; (2) models with stronger capabilities typically exhibit higher consistency, but exceptions also exist; (3) hard data enhances consistency for both fine-tuning and in-context learning. Our data and code will be publicly available on GitHub.",,2024,ACL,Yes,Language,Benchmark SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation,"Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defenses targeted against the generation of copyrighted text.To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose a lightweight, real-time defense mechanism to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism substantially reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests.",,2024,ACL,Yes,Language,Methodological Triad: A Framework Leveraging a Multi-Role LLM-based Agent to Solve Knowledge Base Question Answering,"Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with multiple roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent’s multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.",,2024,ACL,No,, HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding,"Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks. However, these models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images. Many existing work detects hallucination by directly judging whether an object exists in an image, overlooking the association between the object and semantics. To address this issue, we propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD). This framework incorporates hallucination feedback at both object and sentence semantic levels. Remarkably, even with a marginal degree of training, this approach can alleviate over 15% of hallucination. Simultaneously, HELPD penalizes the output logits according to the image attention window to avoid being overly affected by generated text. HELPD can be seamlessly integrated with any LVLMs. Our experiments demonstrate that the proposed framework yields favorable results across multiple hallucination benchmarks. It effectively mitigates hallucination for different LVLMs and concurrently improves their text generation quality.",,2024,ACL,No,, Self-Bootstrapped Visual-Language Model for Knowledge Selection and Question Answering,"While large pre-trained visual-language models have shown promising results on traditional visual question answering benchmarks, it is still challenging for them to answer complex VQA problems which requires diverse world knowledge. Motivated by the research of retrieval-augmented generation in the field of natural language processing, we use Dense Passage Retrieval (DPR) to retrieve related knowledge to help the model answer questions. However, DPR conduct retrieving in natural language space, which may not ensure comprehensive acquisition of image information. Thus, the retrieved knowledge is not truly conducive to helping answer the question, affecting the performance of the overall system. To address this issue, we propose a novel framework that leverages the visual-language model to select the key knowledge retrieved by DPR and answer questions. The framework consists of two modules: Selector and Answerer, where both are initialized by the MLLM and parameter-efficiently finetuned by self-bootstrapping: find key knowledge in the retrieved knowledge documents using the Selector, and then use them to finetune the Answerer to predict answers; obtain the pseudo-labels of key knowledge documents based on the predictions of the Answerer and weak supervision labels, and then finetune the Selector to select key knowledge; repeat. Our framework significantly enhances the performance of the baseline on the challenging open-domain Knowledge-based VQA benchmark, OK-VQA, achieving a state-of-the-art accuracy of 62.83%.",,2024,ACL,No,, TinyChart: Efficient Chart Understanding with Program-of-Thoughts Learning and Visual Token Merging,"Charts are important for presenting and explaining complex data relationships. Recently, multimodal large language models (MLLMs) have shown remarkable capabilities in chart understanding. However, the sheer size of these models limits their use in resource-constrained environments. In this paper, we present TinyChart, an efficient MLLM for chart understanding with only 3B parameters. TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through Program-of-Thoughts (PoT) learning, which trains the model to generate Python programs for numerical calculations, and (2) reduce lengthy vision feature sequences through Vision Token Merging, which gradually merges most similar vision tokens. Extensive experiments demonstrate that our 3B TinyChart achieves SOTA performance on various chart understanding benchmarks including ChartQA, Chart-to-Text, Chart-to-Table, OpenCQA, and ChartX. It outperforms several chart-understanding MLLMs with up to 13B parameters, and close-sourced MLLM GPT-4V on ChartQA, with higher throughput during inference due to a smaller model scale and more efficient vision encoding.",,2024,ACL,No,, Enhancing Advanced Visual Reasoning Ability of Large Language Models,"Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning, challenging models’ advanced reasoning ability. Traditional Vision-Language models (VLMs) perform well in visual perception tasks while struggling with complex reasoning scenarios. Conversely, Large Language Models (LLMs) demonstrate robust text reasoning capabilities; however, they lack visual acuity. To bridge this gap, we propose **C**omplex **V**isual **R**easoning **L**arge **L**anguage **M**odels (**CVR-LLM**), capitalizing on VLMs’ visual perception proficiency and LLMs’ extensive reasoning capability. Unlike recent multimodal large language models (MLLMs) that require a projection layer, our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop and leverages LLMs’ text knowledge for accurate predictions without extra training. We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs’ contextual understanding and reasoning. Additionally, we introduce Chain-of-Comparison (CoC), a step-by-step comparison technique enabling contrasting various aspects of predictions. Our CVR-LLM presents the first comprehensive study across a wide array of complex visual reasoning tasks and achieves SOTA performance among all.",,2024,ACL,Yes,Multimodal, Embedding and Gradient Say Wrong: A White-Box Method for Hallucination Detection,"In recent years, large language models (LLMs) have achieved remarkable success in the field of natural language generation. Compared to previous small-scale models, they are capable of generating fluent output based on the provided prefix or prompt. However, one critical challenge — the *hallucination* problem — remains to be resolved. Generally, the community refers to the undetected hallucination scenario where the LLMs generate text unrelated to the input text or facts. In this study, we intend to model the distributional distance between the regular conditional output and the unconditional output, which is generated without a given input text. Based upon Taylor Expansion for this distance at the output probability space, our approach manages to leverage the embedding and first-order gradient information. The resulting approach is plug-and-play that can be easily adapted to any autoregressive LLM. On the hallucination benchmarks HADES and other datasets, our approach achieves state-of-the-art performance.",,2024,ACL,No,, Tag-grounded Visual Instruction Tuning with Retrieval Augmentation,"Despite recent advances in the general visual instruction-following ability of Multimodal Large Language Models (MLLMs), they still struggle with critical problems when required to provide a precise and detailed response to a visual instruction: (1) failure to identify novel objects or entities, (2) mention of non-existent objects, and (3) neglect of object’s attributed details. Intuitive solutions include improving the size and quality of data or using larger foundation models. They show effectiveness in mitigating these issues, but at an expensive cost of collecting a vast amount of new data and introducing a significantly larger model. Standing at the intersection of these approaches, we examine the three object-oriented problems from the perspective of the image-to-text mapping process by the multimodal connector. In this paper, we first identify the limitations of multimodal connectors stemming from insufficient training data. Driven by this, we propose to enhance the mapping with retrieval-augmented tag tokens, which contain rich object-aware information such as object names and attributes. With our Tag-grounded visual instruction tuning with retrieval Augmentation (TUNA), we outperform baselines that share the same language model and training data on 12 benchmarks. Furthermore, we show the zero-shot capability of TUNA when provided with specific datastores.",,2024,ACL,No,, Towards Difficulty-Agnostic Efficient Transfer Learning for Vision-Language Models,"Vision-language models (VLMs) like CLIP have demonstrated remarkable applicability across a variety of downstream tasks, including zero-shot image classification. Recently, the use of prompts or adapters for efficient transfer learning (ETL) has gained significant attention for effectively adapting to downstream tasks. However, previous studies have overlooked the challenge of varying transfer difficulty of downstream tasks. In this paper, we empirically analyze how each ETL method behaves with respect to transfer difficulty. Our observations indicate that utilizing vision prompts and text adapters is crucial for adaptability and generalizability in domains with high difficulty. Also, by applying an adaptive ensemble approach that integrates task-adapted VLMs with pre-trained VLMs and strategically leverages more general knowledge in low-difficulty and less in high-difficulty domains, we consistently enhance performance across both types of domains. Based on these observations, we propose an adaptive ensemble method that combines visual prompts and text adapters with pre-trained VLMs, tailored by transfer difficulty, to achieve optimal performance for any target domain. Upon experimenting with extensive benchmarks, our method consistently outperforms all baselines, particularly on unseen tasks, demonstrating its effectiveness.",,2024,ACL,No,, Advancing Process Verification for Large Language Models via Tree-Based Preference Learning,"Large Language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales. Some methods have proven effective in boosting accuracy by introducing extra verifiers to assess these paths. However, existing verifiers, typically trained on binary-labeled reasoning paths, fail to fully utilize the relative merits of intermediate steps, thereby limiting the effectiveness of the feedback provided. To overcome this limitation, we propose Tree-based Preference Learning Verifier (Tree-PLV), a novel approach that constructs reasoning trees via a best-first search algorithm and collects step-level paired data for preference training. Compared to traditional binary classification, step-level preferences more finely capture the nuances between reasoning steps, allowing for a more precise evaluation of the complete reasoning path. We empirically evaluate Tree-PLV across a range of arithmetic and commonsense reasoning tasks, where it significantly outperforms existing benchmarks. For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67.55% → 82.79%), MATH (17.00% → 26.80%), CSQA (68.14% → 72.97%), and StrategyQA (82.86% → 83.25%). Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.",,2024,ACL,No,, Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization,"Despite recent advances in LLM quantization, activation quantization remains to be challenging due to the activation outliers. Conventional remedies, e.g., mixing precisions for different channels, introduce extra overhead and reduce the speedup. In this work, we develop a simple yet effective strategy to facilitate per-tensor activation quantization by preventing the generation of problematic tokens. Precisely, we propose a method to find a set of key-value cache, coined _CushionCache_, which mitigates outliers in subsequent tokens when inserted as a prefix. CushionCache works in two steps: First, we greedily search for a prompt token sequence that minimizes the maximum activation values in subsequent tokens. Then, we further tune the token cache to regularize the activations of subsequent tokens to be more quantization-friendly. The proposed method successfully addresses activation outliers of LLMs, providing a substantial performance boost for per-tensor activation quantization methods. We thoroughly evaluate our method over a wide range of models and benchmarks and find that it significantly surpasses the established baseline of per-tensor W8A8 quantization and can be seamlessly integrated with the recent activation quantization method.",,2024,ACL,No,, CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search,"In this paper, we study how open-source large language models (LLMs) can be effectively deployed for improving query rewriting in conversational search, especially for ambiguous queries. We introduce CHIQ, a two-step method that leverages the capabilities of LLMs to resolve ambiguities in the conversation history before query rewriting. This approach contrasts with prior studies that predominantly use closed-source LLMs to directly generate search queries from conversation history. We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings, showing highly competitive performances with systems leveraging closed-source LLMs. Our study provides a first step towards leveraging open-source LLMs in conversational search, as a competitive alternative to the prevailing reliance on commercial LLMs. Data, models, and source code will be publicly available upon acceptance at https://github.com/fengranMark/CHIQ.",,2024,ACL,No,, VIVA: A Benchmark for Vision-Grounded Decision-Making with Human Values,"This paper introduces VIVA, a benchmark for VIsion-grounded decision-making driven by human VAlues. While most large vision-language models (VLMs) focus on physical-level skills, our work is the first to examine their multimodal capabilities in leveraging human values to make decisions under a vision-depicted situation. VIVA contains 1,062 images depicting diverse real-world situations and the manually annotated decisions grounded in them. Given an image there, the model should select the most appropriate action to address the situation and provide the relevant human values and reason underlying the decision. Extensive experiments based on VIVA show the limitation of VLMs in using human values to make multimodal decisions. Further analyses indicate the potential benefits of exploiting action consequences and predicted human values.",,2024,ACL,Yes,Image, Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you!,"Humans possess multimodal literacy, allowing them to actively integrate information from various modalities to form reasoning. Faced with challenges like lexical ambiguity in text, we supplement this with other modalities, such as thumbnail images or textbook illustrations. Is it possible for machines to achieve a similar multimodal understanding capability?In response, we present Understanding Pun with Image Explanations (UNPIE), a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities. Puns serve as the ideal subject for this evaluation due to their intrinsic ambiguity. Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings. We pose three multimodal challenges with the annotations to assess different aspects of multimodal literacy; Pun Grounding, Disambiguation, and Reconstruction. The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context, particularly as the complexity of the tasks increases.",,2024,ACL,Yes,Multimodal, Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?,"State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on multi-hop reasoning—the ability to identify and integrate information from multiple textual sources.Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. We propose a challenging multi-hop reasoning benchmark by generating seemingly plausible multi-hop reasoning chains that ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs and show that their multi-hop reasoning performance is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We also find that—while LLMs tend to ignore misleading lexical cues—misleading reasoning paths indeed present a significant challenge. The code and data are made available at https://github.com/zawedcvg/Are-Large-Language-Models-Attentive-Readers",,2024,ACL,Yes,Language,Benchmark Surveying the Dead Minds: Historical-Psychological Text Analysis with Contextualized Construct Representation (CCR) for Classical Chinese,"In this work, we develop a pipeline for historical-psychological text analysis in classical Chinese. Humans have produced texts in various languages for thousands of years; however, most of the computational literature is focused on contemporary languages and corpora. The emerging field of historical psychology relies on computational techniques to extract aspects of psychology from historical corpora using new methods developed in natural language processing (NLP). The present pipeline, called Contextualized Construct Representations (CCR), combines expert knowledge in psychometrics (i.e., psychological surveys) with text representations generated via Transformer-based language models to measure psychological constructs such as traditionalism, norm strength, and collectivism in classical Chinese corpora. Considering the scarcity of available data, we propose an indirect supervised contrastive learning approach and build the first Chinese historical psychology corpus (C-HI-PSY) to fine-tune pre-trained models. We evaluate the pipeline to demonstrate its superior performance compared with other approaches. The CCR method outperforms word-embedding-based approaches across all of our tasks and exceeds prompting with GPT-4 in most tasks. Finally, we benchmark the pipeline against objective, external data to further verify its validity.",,2024,ACL,Yes,Language,Methodological Knowledge Verification to Nip Hallucination in the Bud,"While large language models (LLMs) have demonstrated exceptional performance across various tasks following human alignment, they may still generate responses that sound plausible but contradict factual knowledge, a phenomenon known as hallucination. In this paper, we demonstrate the feasibility of mitigating hallucinations by verifying and minimizing the inconsistency between external knowledge present in the alignment data and the intrinsic knowledge embedded within foundation LLMs. Specifically, we propose a novel approach called Knowledge Consistent Alignment (KCA), which employs a well-aligned LLM to automatically formulate assessments based on external knowledge to evaluate the knowledge boundaries of foundation LLMs. To address knowledge inconsistencies in the alignment data, KCA implements several specific strategies to deal with these data instances. We demonstrate the superior efficacy of KCA in reducing hallucinations across six benchmarks, utilizing foundation LLMs of varying backbones and scales. This confirms the effectiveness of mitigating hallucinations by reducing knowledge inconsistency. Our code, model weights, and data are openly accessible at https://github.com/fanqiwan/KCA.",,2024,ACL,No,, African or European Swallow? Benchmarking Large Vision-Language Models for Fine-Grained Object Classification,"Recent Large Vision-Language Models (LVLMs) demonstrate impressive abilities on numerous image understanding and reasoning tasks. The task of fine-grained object classification (e.g., distinction between animal species), however, has been probed insufficiently, despite its downstream importance. We fill this evaluation gap by creating FOCI (Fine-grained Object ClassIfication), a difficult multiple-choice benchmark for fine-grained object classification, from existing object classification datasets: (1) multiple-choice avoids ambiguous answers associated with casting classification as open-ended QA task; (2) we retain classification difficulty by mining negative labels with a CLIP model. FOCI complements five popular classification datasets with four domain-specific subsets from ImageNet-21k. We benchmark 12 public LVLMs on and show that it tests for a complementary skill to established image understanding and reasoning benchmarks. Crucially, CLIP models exhibit dramatically better performance than LVLMs. Since the image encoders of LVLMs come from these CLIP models, this points to inadequate alignment for fine-grained object distinction between the encoder and the LLM and warrants (pre)training data with more fine-grained annotation. We release our code at ANONYMIZED.",,2024,ACL,Yes,Image, An Electoral Approach to Diversify LLM-based Multi-Agent Collective Decision-Making,"Modern large language models (LLMs) have exhibited cooperative synergy on complex task-solving, and collective decision-making (CDM) is a pivotal component in LLM-based multi-agent collaboration frameworks. Our survey on 52 recent such systems uncovers a severe lack of diversity, with a heavy reliance on dictatorial and plurality voting for CDM. Through the lens of social choice theory, we scrutinize widely-adopted CDM methods and identify their limitations. To enrich current landscape of LLM-based CDM, we present GEDI, an electoral CDM module that incorporates various ordinal preferential voting mechanisms. Our empirical case study across three benchmarks shows that the integration of certain CDM methods can markedly improve the reasoning capabilities and robustness of some leading LLMs, all without requiring intricate system designs. Additionally, we find that some CDM mechanisms generate positive synergies even with as few as three agents. The voting-based methods also demonstrate robustness against single points of failure, as well as diversity in terms of hit-rate@k and subject-wise impacts.",,2024,ACL,No,, PhiloGPT: A Philology-Oriented Large Language Model for Ancient Chinese Manuscripts with Dunhuang as Case Study,"Philology, the study of ancient manuscripts, demands years of professional training in ex-tensive knowledge memorization and manual textual retrieval. Despite these requirements align closely with strengths of recent successful Large Language Models (LLMs), the scarcity of high-quality, specialized training data has hindered direct applications. To bridge this gap, we curated the PhiloCorpus-ZH, a rich collec-tion of ancient Chinese texts spanning a millen-nium with 30 diverse topics, including firsthand folk copies. This corpus facilitated the develop-ment of PhiloGPT, the first LLM tailored for discovering ancient Chinese manuscripts. To effectively tackle complex philological tasks like restoration, attribution, and linguistic anal-ysis, we introduced the PhiloCoP framework. Modeled on the analytical patterns of philol-ogists, PhiloCoP enhances LLM’s handling of historical linguistic peculiarities such as phonetic loans, polysemy, and syntactic inver-sions. We further integrated these tasks into the PhiloBenchmark, establishing a new standard for evaluating ancient Chinese LLMs address-ing philology tasks. Deploying PhiloGPT in practical scenarios has enabled Dunhuang spe-cialists to resolve philology tasks, such as iden-tifying duplication of copied text and assisting archaeologists with text completion, demon-strating its potential in real-world applications.",,2024,ACL,Yes,Language,Methodological Evaluating Large Language Models via Linguistic Profiling,"Large Language Models (LLMs) undergo extensive evaluation against various benchmarks collected in established leaderboards to assess their performance across multiple tasks. However, to the best of our knowledge, there is a lack of comprehensive studies evaluating these models’ linguistic abilities independent of specific tasks. In this paper, we introduce a novel evaluation methodology designed to test LLMs’ sentence generation abilities under specific linguistic constraints. Drawing on the ‘linguistic profiling’ approach, we rigorously investigate the extent to which five LLMs of varying sizes, tested in both zero- and few-shot scenarios, effectively adhere to (morpho)syntactic constraints. Our findings shed light on the linguistic proficiency of LLMs, revealing both their capabilities and limitations in generating linguistically-constrained sentences.",,2024,ACL,Yes,Language,Methodological CUTE: Measuring LLMs’ Understanding of Their Tokens,"Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. This raises the question: To what extent can LLMs learn orthographic information? To answer this, we propose a new benchmark, CUTE, which features a collection of tasks designed to test the orthographic knowledge of LLMs. We evaluate popular LLMs on CUTE, finding that most of them seem to know the spelling of their tokens, yet fail to use this information effectively to manipulate text, calling into question how much of this knowledge is generalizable.",,2024,ACL,Yes,Language,Benchmark BC-Prover: Backward Chaining Prover for Formal Theorem Proving,"Despite the remarkable progress made by large language models in mathematical reasoning, interactive theorem proving in formal logic still remains a prominent challenge. Previous methods resort to neural models for proofstep generation and search. However, they suffer from exploring possible proofsteps empirically in a large search space. Moreover, they directly use a less rigorous informal proof for proofstep generation, neglecting the incomplete reasoning within. In this paper, we propose BC-Prover, a backward chaining framework guided by pseudo steps. Specifically, BC-Prover prioritizes pseudo steps to proofstep generation. The pseudo steps boost the proof construction in two aspects: (1) Backward Chaining that decomposes the proof into sub-goals for goal-oriented exploration. (2) Step Planning that makes a fine-grained planning to bridge the gap between informal and formal proofs. Experiments on the miniF2F benchmark show significant performance gains by our framework over the state-of-the-art approaches. Our framework is also compatible with existing provers and further improves their performance with the backward chaining technique.",,2024,ACL,No,, Autoregressive Pre-Training on Pixels and Texts,"The integration of visual and textual information represents a promising direction in the advancement of language models. In this paper, we explore the dual modality of language—both visual and textual—within an autoregressive framework, pre-trained on both document images and texts. Our method employs a multimodal training strategy, utilizing visual data through next patch prediction with a regression head and/or textual data through next token prediction with a classification head. We focus on understanding the interaction between these two modalities and their combined impact on model performance. Our extensive evaluation across a wide range of benchmarks shows that incorporating both visual and textual data significantly improves the performance of pixel-based language models. Remarkably, we find that a unidirectional pixel-based model trained solely on visual data can achieve comparable results to state-of-the-art bidirectional models on several language understanding tasks. This work uncovers the untapped potential of integrating visual and textual modalities for more effective language modeling. We release our code, data, and model checkpoints at https://github.com/ernie-research/pixelgpt.",,2024,ACL,No,, SEEKR: Selective Attention-Guided Knowledge Retention for Continual Learning of Large Language Models,"Continual learning (CL) is crucial for language models to dynamically adapt to the evolving real-world demands. To mitigate the catastrophic forgetting problem in CL, data replay has been proven a simple and effective strategy, and the subsequent data-replay-based distillation can further enhance the performance. However, existing methods fail to fully exploit the knowledge embedded in models from previous tasks, resulting in the need for a relatively large number of replay samples to achieve good results. In this work, we first explore and emphasize the importance of attention weights in knowledge retention, and then propose a SElective attEntion-guided Knowledge Retention method (SEEKR) for data-efficient replay-based continual learning of large language models (LLMs). Specifically, SEEKR performs attention distillation on the selected attention heads for finer-grained knowledge retention, where the proposed forgettability-based and task-sensitivity-based measures are used to identify the most valuable attention heads. Experimental results on two continual learning benchmarks for LLMs demonstrate the superiority of SEEKR over the existing methods on both performance and efficiency. Explicitly, SEEKR achieves comparable or even better performance with only 1/10 of the replayed data used by other methods, and reduces the proportion of replayed data to 1%. The code is available at https://github.com/jinghan1he/SEEKR.",,2024,ACL,No,, Fine-Grained Prediction of Reading Comprehension from Eye Movements,"Can human reading comprehension be assessed from eye movements in reading? In this work, we address this longstanding question using large-scale eyetracking data. We focus on a cardinal and largely unaddressed variant of this question: predicting reading comprehension of a single participant for a single question from their eye movements over a single paragraph. We tackle this task using a battery of recent models from the literature, and three new multimodal language models. We evaluate the models in two different reading regimes: ordinary reading and information seeking, and examine their generalization to new textual items, new participants, and the combination of both. The evaluations suggest that the task is highly challenging, and highlight the importance of benchmarking against a strong text-only baseline. While in some cases eye movements provide improvements over such a baseline, they tend to be small. This could be due to limitations of current modelling approaches, limitations of the data, or because eye movement behavior does not sufficiently pertain to fine-grained aspects of reading comprehension processes. Our study provides an infrastructure for making further progress on this question.",,2024,ACL,No,, LLM4Decompile: Decompiling Binary Code with Large Language Models,"Decompilation aims to convert binary code to high-level source code, but traditional tools like Ghidra often produce results that are difficult to read and execute. Motivated by the advancements in Large Language Models (LLMs), we propose LLM4Decompile, the first and largest open-source LLM series (1.3B to 33B) trained to decompile binary code. We optimize the LLM training process and introduce the LLM4Decompile-End models to decompile binary directly. The resulting models significantly outperform GPT-4o and Ghidra on the HumanEval and ExeBench benchmarks by over 100% in terms of re-executability rate. Additionally, we improve the standard refinement approach to fine-tune the LLM4Decompile-Ref models, enabling them to effectively refine the decompiled code from Ghidra and achieve a further 16.2% improvement over the LLM4Decompile-End. LLM4Decompile demonstrates the potential of LLMs to revolutionize binary code decompilation, delivering remarkable improvements in readability and executability while complementing conventional tools for optimal results.",,2024,ACL,Yes,Language,Technical CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering,"Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question’s semantics. To address them, we propose a novel rewriting method CoTKR, Chain- of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.",,2024,ACL,No,, A User-Centric Multi-Intent Benchmark for Evaluating Large Language Models,"Large language models (LLMs) are essential tools that users employ across various scenarios, so evaluating their performance and guiding users in selecting the suitable service is important. Although many benchmarks exist, they mainly focus on specific predefined model abilities, such as world knowledge, reasoning, etc. Based on these ability scores, it is hard for users to determine which LLM best suits their particular needs. To address these issues, we propose to evaluate LLMs from a user-centric perspective and design this benchmark to measure their efficacy in satisfying user needs under distinct intents. Firstly, we collect 1,846 real-world use cases from a user study with 712 participants from 23 countries. This first-hand data helps us understand actual user intents and needs in LLM interactions, forming the User Reported Scenarios (URS) dataset, which is categorized with six types of user intents. Secondly, based on this authentic dataset, we benchmark 10 LLM services with GPT-4-as-Judge. Thirdly, we show that benchmark scores align well with human preference in both real-world experience and pair-wise annotations, achieving Pearson correlations of 0.95 and 0.94, respectively. This alignment confirms that the URS dataset and our evaluation method establish an effective user-centric benchmark. The dataset, code, and process data are publicly available at https://github.com/Alice1998/URS.",,2024,ACL,Yes,Language,Benchmark VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation,"In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons, sketches and scientific figures. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs and (f) comparison with VLMs on rasterized representations. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced.",,2024,ACL,Yes,Language,Benchmark Performance-Guided LLM Knowledge Distillation for Efficient Text Classification at Scale,"Large Language Models (LLMs) face significant challenges at inference time due to their high computational demands. To address this, we present Performance-Guided Knowledge Distillation (PGKD), a cost-effective and high-throughput solution for production text classification applications. PGKD utilizes teacher-student Knowledge Distillation to distill the knowledge of LLMs into smaller, task-specific models. PGKD establishes an active learning routine between the student model and the LLM; the LLM continuously generates new training data leveraging hard-negative mining, student model validation performance, and early-stopping protocols to inform the data generation. By employing a cyclical, performance-aware approach tailored for highly multi-class, sparsely annotated datasets prevalent in industrial text classification, PGKD effectively addresses training challenges and outperforms traditional BERT-base models and other knowledge distillation methods on several multi-class classification datasets. Additionally, cost and latency benchmarking reveals that models fine-tuned with PGKD are up to 130X faster and 25X less expensive than LLMs for inference on the same classification task. While PGKD is showcased for text classification tasks, its versatile framework can be extended to any LLM distillation task, including language generation, making it a powerful tool for optimizing performance across a wide range of AI applications.",,2024,ACL,No,, Incubating Text Classifiers Following User Instruction with Nothing but LLM,"In this paper, we aim to generate text classification data given arbitrary class definitions (i.e., user instruction), so one can train a text classifier without any human annotation or raw corpus. Recent advances in large language models (LLMs) lead to pioneer attempts to individually generate texts for each class via prompting. In this paper, we propose Incubator, the first framework that can handle complicated and even mutually dependent classes (e.g., ""TED Talk given by Educator"" and ""Other""). Specifically, our Incubator is a fine-tuned LLM that takes the instruction of all class definitions as input, and in each inference, it can jointly generate one sample for every class. First, we tune Incubator on the instruction-to-data mappings that we obtained from classification datasets and descriptions on Hugging Face together with in-context augmentation by GPT-4. To emphasize the uniformity and diversity in generations, we refine Incubator by fine-tuning with the cluster centers of semantic textual embeddings of the generated samples. We compare Incubator on various classification tasks with strong baselines such as direct LLM-based inference and training data generation by prompt engineering. Experiments show Incubator is able to (1) outperform previous methods on traditional benchmarks, (2) take label interdependency and user preference into consideration, and (3) enable logical text mining by incubating multiple classifiers",,2024,ACL,No,, PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling,"Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PROMST that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6%-29.3% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks.",,2024,ACL,Yes,Language,Methodological Where is the signal in tokenization space?,"Large Language Models (LLMs) are typically shipped with tokenizers that *deterministically* encode text into so-called *canonical* token sequences, to which the LLMs assign probability values.One common assumption is that the probability of a piece of text is the probability of its canonical token sequence.However, the tokenization of a string is not unique: e.g., the Llama2 tokenizer encodes ‘Tokens‘ as ‘[Tok,ens]‘, but ‘[Tok,en,s]‘ also represents the same text.In this paper, we study non-canonical tokenizations.We prove that, given a string, it is computationally hard to find the most likely tokenization for an autoregressive LLM, as well as to compute the marginal probability over all possible tokenizations.We then show how the marginal is, in most cases, indistinguishable from the canonical probability.Surprisingly, we then empirically demonstrate the existence of a significant amount of signal hidden within tokenization space.Notably, by simply aggregating the probabilities of non-canonical tokenizations, we achieve improvements across a range of LLM evaluation benchmarks for a variety of architectures, including transformers and state space models.",,2024,ACL,No,, I Could’ve Asked That: Reformulating Unanswerable Questions,"When seeking information from unfamiliar documents, users frequently pose questions that cannot be answered by the documents. While existing large language models (LLMs) identify these unanswerable questions, they do not assist users in reformulating their questions, thereby reducing their overall utility. We curate CouldAsk, an evaluation benchmark composed of existing and new datasets for document-grounded question answering, specifically designed to study reformulating unanswerable questions. We evaluate state-of-the-art open-source and proprietary LLMs on CouldAsk. The results demonstrate the limited capabilities of these models in reformulating questions. Specifically, GPT-4 and Llama2-7B successfully reformulate questions only 26% and 12% of the time, respectively. Error analysis shows that 62% of the unsuccessful reformulations stem from the models merely rephrasing the questions or even generating identical questions. We publicly release the benchmark and the code to reproduce the experiments.",,2024,ACL,Yes,Language,Benchmark STOP! Benchmarking Large Language Models with Sensitivity Testing on Offensive Progressions,"Mitigating explicit and implicit biases in Large Language Models (LLMs) has become a critical focus in the field of natural language processing. However, many current methodologies evaluate scenarios in isolation, without considering the broader context or the spectrum of potential biases within each situation. To address this, we introduce the Sensitivity Testing on Offensive Progressions (STOP) dataset, which includes 450 offensive progressions containing 2,700 unique sentences of varying severity that progressively escalate from less to more explicitly offensive. Covering a broad spectrum of 9 demographics and 46 sub-demographics, STOP ensures inclusivity and comprehensive coverage. We evaluate several leading closed- and open-source models, including GPT-4, Mixtral, and Llama 3. Our findings reveal that even the best-performing models detect bias inconsistently, with success rates ranging from 19.3% to 69.8%. Furthermore, we demonstrate how aligning models with human judgments on STOP can improve model answer rates on sensitive tasks such as BBQ, StereoSet, and CrowS-Pairs by up to 191%, while maintaining or even improving performance. STOP presents a novel framework for assessing the complex nature of biases in LLMs, which will enable more effective bias mitigation strategies and facilitates the creation of fairer language models.",,2024,ACL,Yes,Language,Benchmark Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models,"Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available.",,2024,ACL,No,, World to Code: Multi-modal Data Generation via Self-Instructed Compositional Captioning and Filtering,"Recent advances in Vision-Language Models (VLMs) and the scarcity of high-quality multi-modal alignment data have inspired numerous researches on synthetic VLM data generation. The conventional norm in VLM data construction uses a mixture of specialists in caption and OCR, or stronger VLM APIs and expensive human annotation.In this paper, we present World to Code (W2C), a meticulously curated multi-modal data construction pipeline that organizes the final generation output into a Python code format. The pipeline leverages the VLM itself to extract cross-modal information via different prompts and filter the generated outputs again via a consistency filtering strategy. Experiments have demonstrated the high quality of W2C by improving various existing visual question answering and visual grounding benchmarks across different VLMs. Further analysis also demonstrates that the new code parsing ability of VLMs presents better cross-modal equivalence than the commonly used detail caption ability. Our code is available at https://github.com/foundation-multimodal-models/World2Code.",,2024,ACL,No,, DVD: Dynamic Contrastive Decoding for Knowledge Amplification in Multi-Document Question Answering,"Large language models (LLMs) are widely used in question-answering (QA) systems but often generate information with hallucinations. Retrieval-augmented generation (RAG) offers a potential remedy, yet the uneven retrieval quality and irrelevant contents may distract LLMs.In this work, we address these issues at the generation phase by treating RAG as a multi-document QA task.We propose a novel decoding strategy, Dynamic Contrastive Decoding, which dynamically amplifies knowledge from selected documents during the generation phase. involves constructing inputs batchwise, designing new selection criteria to identify documents worth amplifying, and applying contrastive decoding with a specialized weight calculation to adjust the final logits used for sampling answer tokens. Zero-shot experimental results on ALCE-ASQA, NQ, TQA and PopQA benchmarks show that our method outperforms other decoding strategies. Additionally, we conduct experiments to validate the effectiveness of our selection criteria, weight calculation, and general multi-document scenarios. Our method requires no training and can be integrated with other methods to improve the RAG performance. Our codes will be publicly available at https://github.com/JulieJin-km/Dynamic_Contrastive_Decoding.",,2024,ACL,No,, Forgetting Curve: A Reliable Method for Evaluating Memorization Capability for Long-Context Models,"Numerous recent works target to extend effective context length for language models and various methods, tasks and benchmarks exist to measure model’s effective memory length. However, through thorough investigations, we find limitations for currently existing evaluations on model’s memory. We provide an extensive survey for limitations in this work and propose a new method called forgetting curve to measure the memorization capability of long-context models. We show that forgetting curve has the advantage of being robust to the tested corpus and the experimental settings, of not relying on prompt and can be applied to any model size. We apply our forgetting curve to a large variety of models involving both transformer and RNN/SSM based architectures. Our measurement provides empirical evidence for the effectiveness of transformer extension techniques while raises questions for the effective length of RNN/SSM based models. We also examine the difference between our measurement and existing benchmarks as well as popular metrics for various models.",,2024,ACL,Yes,Language,Methodological EVEDIT: Event-based Knowledge Editing for Deterministic Knowledge Propagation,"The dynamic nature of real-world information necessitates knowledge editing (KE) in large language models (LLMs). The edited knowledge should propagate and facilitate the deduction of new information based on existing model knowledge. We term the existing related knowledge in LLM serving as the origination of knowledge propagation as ”deduction anchors”. However, current KE approaches, which only operate on (subject, relation, object) triple. We both theoretically and empirically observe that this simplified setting often leads to uncertainty when determining the deduction anchors, causing low confidence in their answers. To mitigate this issue, we propose a novel task of event-based knowledge editing that pairs facts with event descriptions. This task manifests not only a closer simulation of real-world editing scenarios but also a more logically sound setting, implicitly defining the deduction anchor and enabling LLMs to propagate knowledge confidently. We curate a new benchmark dataset Evedit derived from the CounterFact dataset and validate its superiority in improving model confidence. Moreover, while we observe that the event-based setting is significantly challenging for existing approaches, we propose a novel approach Self-Edit that showcases stronger performance, achieving 55.6% consistency improvement while maintaining the naturalness of generation.",,2024,ACL,Yes,Language,Methodological From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis,"We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct 50k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks.",,2024,ACL,No,, Quality Matters: Evaluating Synthetic Data for Tool-Using LLMs,"Training large language models (LLMs) for external tool usage is a rapidly expanding field, with recent research focusing on generating synthetic data to address the shortage of available data. However, the absence of systematic data quality checks poses complications for properly training and testing models. To that end, we propose two approaches for assessing the reliability of data for training LLMs to use external tools. The first approach uses intuitive, human-defined correctness criteria. The second approach uses a model-driven assessment with in-context evaluation. We conduct a thorough evaluation of data quality on two popular benchmarks, followed by an extrinsic evaluation that showcases the impact of data quality on model performance. Our results demonstrate that models trained on high-quality data outperform those trained on unvalidated data, even when trained with a smaller quantity of data. These findings empirically support the significance of assessing and ensuring the reliability of training data for tool-using LLMs.",,2024,ACL,No,, Aligning Translation-Specific Understanding to General Understanding in Large Language Models,"Large Language models (LLMs) have exhibited remarkable abilities in understanding complex texts, offering a promising path towards human-like translation performance. However, this study reveals the misalignment between the translation-specific understanding and the general understanding inside LLMs. This understanding misalignment leads to LLMs mistakenly or literally translating some complicated concepts that they accurately comprehend in the general scenarios (e.g., QA). To align the translation-specific understanding to the general one, we propose a novel translation process, DUAT (Difficult words Understanding Aligned Translation), explicitly incorporating the general understanding on the complicated content incurring inconsistent understandings to guide the translation. Specifically, DUAT performs cross-lingual interpretation for the difficult-to-translate words and enhances the translation with the generated interpretations. Furthermore, we reframe the external tools to improve DUAT in detecting difficult words and generating helpful interpretations. We conduct experiments on the self-constructed benchmark Challenge-WMT, consisting of samples that are prone to mistranslation. Human evaluation results on high-resource and low-resource language pairs indicate that DUAT significantly facilitates the understanding alignment, which improves the translation quality (up to +3.85 COMET) and reduces translation literalness by -25% ∼ -51%.",,2024,ACL,Yes,Language,Methodological Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement,"Large language models (LLMs) demonstrate exceptional instruct-following ability to complete various downstream tasks. Although this impressive ability makes LLMs flexible task solvers, their performance in solving tasks also heavily relies on instructions. In this paper, we reveal that LLMs are over-sensitive to lexical variations in task instructions, even when the variations are imperceptible to humans. By providing models with neighborhood instructions, which are closely situated in the latent representation space and differ by only one semantically similar word, the performance on downstream tasks can be vastly different. Following this property, we propose a black-box Combinatorial Optimization framework for Prompt Lexical Enhancement (COPLE). COPLE performs iterative lexical optimization according to the feedback from a batch of proxy tasks, using a search strategy related to word influence. Experiments show that even widely-used human-crafted prompts for current benchmarks suffer from the lexical sensitivity of models, and COPLE recovers the declined model ability in both instruct-following and solving downstream tasks.",,2024,ACL,No,, Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method,"As the scale of training corpora for large language models (LLMs) grows, model developers become increasingly reluctant to disclose details on their data. This lack of transparency poses challenges to scientific evaluation and ethical deployment. Recently, pretraining data detection approaches, which infer whether a given text was part of an LLM’s training data through black-box access, have been explored. The Min-K% Prob method, which has achieved state-of-the-art results, assumes that a non-training example tends to contain a few outlier words with low token probabilities. However, the effectiveness may be limited as it tends to misclassify non-training texts that contain many common words with high probabilities predicted by LLMs. To address this issue, we introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection. We compute the cross-entropy (i.e., the divergence) between the token probability distribution and the token frequency distribution to derive a detection score.We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text. Experimental results on English-language benchmarks and PatentMIA demonstrate that our proposed method significantly outperforms existing methods. Our code and PatentMIA benchmark are available at https://github.com/zhang-wei-chao/DC-PDD.",,2024,ACL,Yes,Language,Methodological NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian,"Norwegian, spoken by only 5 million population, is under-representative within the most impressive breakthroughs in NLP tasks. To the best of our knowledge, there has not yet been a comprehensive evaluation of the existing language models (LMs) on Norwegian generation tasks during the article writing process. To fill this gap, we 1) compiled the existing Norwegian dataset and pre-trained 4 Norwegian Open Language Models varied from parameter scales and architectures, collectively called NorGLM; 2) introduced a comprehensive benchmark, NLEBench, for evaluating natural language generation capabilities in Norwegian, encompassing translation and human annotation. Based on the investigation, we find that: 1) the mainstream, English-dominated LM GPT-3.5 has limited capability in understanding the Norwegian context; 2) the increase in model parameter scales demonstrates limited impact on the performance of downstream tasks when the pre-training dataset is constrained in size; 3) smaller models also demonstrate the reasoning capability through Chain-of-Thought; 4) a multi-task dataset that includes synergy tasks can be used to verify the generalizability of LLMs on natural language understanding and, meanwhile, test the interconnectedness of these NLP tasks. We share our resources and code for reproducibility under a CC BY-NC 4.0 license.",,2024,ACL,Yes,Language,Benchmark Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA,"Long-context modeling capabilities of Large Language Models (LLMs) have garnered widespread attention, leading to the emergence of LLMs with ultra-context windows. Meanwhile, benchmarks for evaluating long-context language models are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong’s test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model’s long-context modeling capabilities.",,2024,ACL,Yes,Language,Benchmark To Preserve or To Compress: An In-Depth Study of Connector Selection in Multimodal Large Language Models,"In recent years, multimodal large language models (MLLMs) have attracted widespread attention from both industry and academia. Based on the integration position, MLLMs can be categorized into external and internal fusion architectures, with the former being more predominant. However, there remains considerable debate on how to construct the optimal external fusion MLLM architecture, especially regarding the performance of different connectors on tasks with varying granularities. This paper systematically investigates the impact of connectors on MLLM performance. Specifically, we classify connectors into feature-preserving and feature-compressing types. Utilizing a unified classification standard, we categorize sub-tasks from three comprehensive benchmarks, MMBench, MME, and SEED-Bench, into three task types: coarse-grained perception, fine-grained perception, and reasoning, and evaluate the performance from this perspective. Our findings reveal significant performance differences between different types of connectors across various tasks, offering essential guidance for MLLM architecture design and advancing the understanding of MLLM architecture optimization.",,2024,ACL,No,, Benchmarking Vision Language Models for Cultural Understanding,"Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of visual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM’s geo-diverse cultural understanding. We curate a diverse collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly weaker capabilities for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.",,2024,ACL,Yes,Image, Teaching Small Language Models Reasoning through Counterfactual Distillation,"With the rise of large language models (LLMs), many studies are interested in transferring the reasoning capabilities of LLMs to small language models (SLMs). Previous distillation methods usually utilize the capabilities of LLMs to generate chain-of-thought (CoT) samples and teach SLMs via fine-tuning. However, such a standard distillation approach performs poorly when applied to out-of-distribution (OOD) examples, and the diversity of the generated CoT samples is insufficient. In this work, we propose a novel counterfactual distillation framework. Firstly, we leverage LLMs to automatically generate high-quality counterfactual data. Given an input text example, our method generates a counterfactual example that is very similar to the original input, but its task label has been changed to the desired one. Then, we utilize multi-view CoT to enhance the diversity of reasoning samples. Experiments on four NLP benchmarks show that our approach enhances the reasoning capabilities of SLMs and is more robust to OOD data. We also conduct extensive ablations and sample studies to understand the reasoning capabilities of SLMs.",,2024,ACL,No,, C-LLM: Learn to Check Chinese Spelling Errors Character by Character,"Chinese Spell Checking (CSC) aims to detect and correct spelling errors in sentences. Despite Large Language Models (LLMs) exhibit robust capabilities and are widely applied in various tasks, their performance on CSC is often unsatisfactory. We find that LLMs fail to meet the Chinese character-level constraints of the CSC task, namely equal length and phonetic similarity, leading to a performance bottleneck. Further analysis reveals that this issue stems from the granularity of tokenization, as current mixed character-word tokenization struggles to satisfy these character-level constraints. To address this issue, we propose C-LLM, a Large Language Model-based Chinese Spell Checking method that learns to check errors Character by Character. Character-level tokenization enables the model to learn character-level alignment, effectively mitigating issues related to character-level constraints. Furthermore, CSC is simplified to replication-dominated and substitution-supplemented tasks. Experiments on two CSC benchmarks demonstrate that C-LLM achieves a 2.1% enhancement in general scenarios and a significant 12% improvement in vertical domain scenarios compared to existing methods, establishing state-of-the-art performance.",,2024,ACL,No,, Video-LLaVA: Learning United Visual Representation by Alignment Before Projection,"Large Vision-Language Model (LVLM) has enhanced the performance of various downstream tasks in visual-language understanding. Most existing approaches encode images and videos into separate feature spaces, which are then fed as inputs to large language models. However, due to the lack of unified tokenization for images and videos, namely misalignment before projection, it becomes challenging for a Large Language Model (LLM) to learn multi-modal interactions from several poor projection layers.In this work, we unify visual representation into the language feature space to advance the foundational LLM towards a unified LVLM. As a result, we establish a simple but robust LVLM baseline, Video-LLaVA, which learns from a mixed dataset of images and videos, mutually enhancing each other.As a result, Video-LLaVA outperforms Video-ChatGPT by 5.8%, 9.9%, 18.6%, and 10.1% on MSRVTT, MSVD, TGIF, and ActivityNet, respectively. Additionally, our Video-LLaVA also achieves superior performances on a broad range of 9 image benchmarks.Notably, extensive experiments demonstrate that Video-LLaVA mutually benefits images and videos within a unified visual representation, outperforming models designed specifically for images or videos. We aim for this work to provide modest insights into the multi-modal inputs for the LLM.",,2024,ACL,No,, Do Large Language Models Know How Much They Know?,"Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. Nevertheless, the rapid advancement in their deployment trails a comprehensive understanding of their internal mechanisms, as well as a delineation of their capabilities and limitations. A desired characteristic of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this attribute, we develop a benchmark that challenges these models to enumerate all information they possess on specific topics. This benchmark assesses whether the models recall excessive, insufficient, or the precise amount of required information, thereby indicating their awareness of how much they know about the given topic. Our findings reveal that the emergence of this property varies across different architectures and manifests at diverse rates. However, with sufficient scaling, all tested models are ultimately capable of performing this task. The insights gained from this research advance our understanding of LLMs, shedding light on their operational capabilities and contributing to the ongoing exploration of their intricate dynamics.",,2024,ACL,Yes,Language,Benchmark Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models,"Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs such as LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate descriptive visual attributes based on a concept that appears within an input image despite their prominent zero-shot image captioning ability. In-depth analyses show that instruction-tuned LVLMs suffer from modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept. In an effort to further the community’s endeavor in this direction, we propose a multiple granularity attribute-centric benchmark and training mixture, Finer, which aims to establish a ground to evaluate LVLMs’ fine-grained visual comprehension ability and provide significantly improved explainability.",,2024,ACL,Yes,Image, Evaluating LLMs for Targeted Concept Simplification for Domain-Specific Texts,"One useful application of NLP models is to support people in reading complex text from unfamiliar domains (e.g., scientific articles). Simplifying the entire text makes it understandable but sometimes removes important details. On the contrary, helping adult readers understand difficult concepts in context can enhance their vocabulary and knowledge. In a preliminary human study, we first identify that lack of context and unfamiliarity with difficult concepts is a major reason for adult readers’ difficulty with domain-specific text. We then introduce targeted concept simplification, a simplification task for rewriting text to help readers comprehend text containing unfamiliar concepts. We also introduce WikiDomains, a new dataset of 22k definitions from 13 academic domains paired with a difficult concept within each definition. We benchmark the performance of open-source and commercial LLMs and a simple dictionary baseline on this task across human judgments of ease of understanding and meaning preservation. Interestingly, our human judges preferred explanations about the difficult concept more than simplifications of the concept phrase. Further, no single model achieved superior performance across all quality dimensions, and automated metrics also show low correlations with human evaluations of concept simplification (~0.2), opening up rich avenues for research on personalized human reading comprehension support.",,2024,ACL,Yes,Language,Benchmark GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities,"Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84% and demonstrates state-of-the-art performance on deductive reasoning and hallucination evaluation benchmarks. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning capabilities.",,2024,ACL,Yes,Audio, UOUO: Uncontextualized Uncommon Objects for Measuring Knowledge Horizons of Vision Language Models,"Smaller-scale Vision-Language Models (VLMs) often claim to perform on par with larger models in general-domain visual grounding and question-answering benchmarks while offering advantages in computational efficiency and storage. However, their ability to handle rare objects, which fall into the long tail of data distributions, is less understood. To rigorously evaluate this aspect, we introduce the “Uncontextualized Uncommon Objects” (UOUO) benchmark. This benchmark focuses on systematically testing VLMs with both large and small parameter counts on rare and specialized objects. Our comprehensive analysis reveals that while smaller VLMs maintain competitive performance on common datasets, they significantly underperform on tasks involving uncommon objects. We also propose an advanced, scalable pipeline for data collection and cleaning, ensuring the UOUO benchmark provides high-quality, challenging instances. These findings highlight the need to consider long-tail distributions when assessing the true capabilities of VLMs. Code and project details for UOUO can be found at https://zoezheng126.github.io/UOUO-Website/.",,2024,ACL,Yes,Multimodal, Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning,"Personalization in large language models (LLMs) is increasingly important, aiming to align the LLMs’ interactions, content, and recommendations with individual user preferences. Recent advances have highlighted effective prompt design by enriching user queries with non-parametric knowledge through behavior history retrieval and textual profiles. However, these methods faced limitations due to a lack of model ownership, resulting in constrained customization and privacy issues, and often failed to capture complex, dynamic user behavior patterns. To address these shortcomings, we introduce One PEFT Per User (OPPU), employing personalized parameter-efficient fine-tuning (PEFT) modules to store user-specific behavior patterns and preferences. By plugging in personal PEFT parameters, users can own and use their LLMs individually. OPPU integrates parametric user knowledge in the personal PEFT parameters with non-parametric knowledge from retrieval and profiles, adapting LLMs to user behavior shifts. Experimental results demonstrate that OPPU significantly outperforms existing prompt-based methods across seven diverse tasks in the LaMP benchmark. Further studies reveal OPPU’s enhanced capabilities in handling user behavior shifts, modeling users at different activity levels, maintaining robustness across various user history formats, and displaying versatility with different PEFT methods.",,2024,ACL,No,, Understanding and Mitigating Language Confusion in LLMs,"We investigate a surprising limitation of LLMs: their inability to consistently generate text in a user’s desired language. We create the Language Confusion Benchmark (LCB) to evaluate such failures, covering 15 typologically diverse languages with existing and newly-created English and multilingual prompts. We evaluate a range of LLMs on monolingual and cross-lingual generation reflecting practical use cases, finding that Llama Instruct and Mistral models exhibit high degrees of language confusion and even the strongest models fail to consistently respond in the correct language. We observe that base and English-centric instruct models are more prone to language confusion, which is aggravated by complex prompts and high sampling temperatures. We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning. We release our language confusion benchmark, which serves as a first layer of efficient, scalable multilingual evaluation.",,2024,ACL,Yes,Language,Benchmark From Local Concepts to Universals: Evaluating the Multicultural Understanding of Vision-Language Models,"Despite recent advancements in vision-language models, their performance remains suboptimal on images from non-western cultures due to underrepresentation in training datasets. Various benchmarks have been proposed to test models’ cultural inclusivity. Still, they have limited coverage of cultures and do not adequately assess cultural diversity across universal and culture-specific local concepts. To address these limitations, we introduce the GlobalRG benchmark, comprising two challenging tasks: retrieval across universals and cultural visual grounding. The former task entails retrieving culturally diverse images for universal concepts from 50 countries, while the latter aims at grounding culture-specific concepts within images from 15 countries. Our evaluation across a wide range of models reveals that the performance varies significantly across cultures – underscoring the necessity for enhancing multicultural understanding in vision-language models.",,2024,ACL,Yes,Multimodal, Beyond Embeddings: The Promise of Visual Table in Visual Reasoning,"Visual representation learning has been a cornerstone in computer vision, involving typical forms such as visual embeddings, structural symbols, and text-based representations. Despite the success of CLIP-type visual embeddings, they often lack access to world knowledge critical for visual reasoning. In this work, we propose Visual Table, a novel form of visual representation tailored for visual reasoning. Visual tables are constructed as hierarchical descriptions of visual scenes, featuring a scene description and multiple object-centric descriptions covering categories, attributes, and knowledge. Thanks to the structural and textual formats, visual tables offer unique properties over mere visual embeddings, such as explainability and controllable editing. Furthermore, they deliver instance-level world knowledge and detailed attributes that are essential for visual reasoning. To create visual tables, we develop a generator trained on the dataset with collected, small-scale annotations. Extensive results on 11 visual reasoning benchmarks demonstrate that the generated visual tables significantly outperform previous structural and text-based representations. Moreover, they consistently enhance state-of-the-art multi-modal large language models across diverse benchmarks, showcasing their potential for advancing visual reasoning tasks. Our code is available at https://github.com/LaVi-Lab/Visual-Table.",,2024,ACL,No,, Knowledge-Centric Hallucination Detection,"Large Language Models (LLMs) have shown impressive capabilities but also a concerning tendency to hallucinate. This paper presents RefChecker, a framework that introduces claim-triplets to represent claims in LLM responses, aiming to detect fine-grained hallucinations. In RefChecker, an extractor generates claim-triplets from a response, which are then evaluated by a checker against a reference. We delineate three task settings: Zero, Noisy and Accurate Context, to reflect various real-world use cases. We curated a benchmark spanning various NLP tasks and annotated 11k claim-triplets from 2.1k responses by seven LLMs. RefChecker supports both proprietary and open-source models as the extractor and checker. Experiments demonstrate that claim-triplets enable superior hallucination detection, compared to other granularities such as response, sentence and sub-sentence level claims. RefChecker outperforms prior methods by 18.2 to 27.2 points on our benchmark and the checking results of RefChecker are strongly aligned with human judgments.",,2024,ACL,Yes,Language,Methodological Automatic Instruction Evolving for Large Language Models,"Fine-tuning large pre-trained language models with Evol-Instruct has achieved encouraging results across a wide range of tasks. However, designing effective evolving methods for instruction evolution requires substantial human expertise. This paper proposes Auto Evol-Instruct, an end-to-end framework that evolves instruction datasets using large language models without any human effort. The framework automatically analyzes and summarizes suitable evolutionary strategies for the given instruction data and iteratively improves the evolving method based on issues exposed during the instruction evolution process. Our extensive experiments demonstrate that the best method optimized by Auto Evol-Instruct outperforms human-designed methods on various benchmarks, including MT-Bench, AlpacaEval, GSM8K, and HumanEval.",,2024,ACL,No,, Generative Models for Automatic Medical Decision Rule Extraction from Text,"Medical decision rules play a key role in many clinical decision support systems (CDSS). However, these rules are conventionally constructed by medical experts, which is expensive and hard to scale up. In this study, we explore the automatic extraction of medical decision rules from text, leading to a solution to construct large-scale medical decision rules. We adopt a formulation of medical decision rules as binary trees consisting of condition/decision nodes. Such trees are referred to as medical decision trees and we introduce several generative models to extract them from text. The proposed models inherit the merit of two categories of successful natural language generation frameworks, i.e., sequence-to-sequence generation and autoregressive generation. To unleash the potential of pretrained language models, we design three styles of linearization (natural language, augmented natural language and JSON code), acting as the target sequence for our models. Our final system achieves 67% tree accuracy on a comprehensive Chinese benchmark, outperforming state-of-the-art baseline by 12%. The result demonstrates the effectiveness of generative models on explicitly modeling structural decision-making roadmaps, and shows great potential to boost the development of CDSS and explainable AI. Our code will be open-source upon acceptance.",,2024,ACL,No,, FRoG: Evaluating Fuzzy Reasoning of Generalized Quantifiers in LLMs,"Fuzzy reasoning is vital due to the frequent use of imprecise information in daily contexts. However, the ability of current large language models (LLMs) to handle such reasoning remains largely uncharted. In this paper, we introduce a new benchmark, FRoG, for fuzzy reasoning, featuring real-world mathematical word problems that incorporate generalized quantifiers. Our experimental findings reveal that fuzzy reasoning continues to pose significant challenges for LLMs. Moreover, we find that existing methods designed to enhance reasoning do not consistently improve performance in tasks involving fuzzy logic. Additionally, our results show an inverse scaling effect in the performance of LLMs on FRoG. Interestingly, we also demonstrate that strong mathematical reasoning skills are not necessarily indicative of success on our benchmark.",,2024,ACL,Yes,Language,Benchmark Extending Context Window of Large Language Models from a Distributional Perspective,"Scaling the rotary position embedding (RoPE) has become a common method for extending the context window of RoPE-based large language models (LLMs). However, existing scaling methods often rely on empirical approaches and lack a profound understanding of the internal distribution within RoPE, resulting in suboptimal performance in extending the context window length. In this paper, we propose to optimize the context window extending task from the view of rotary angle distribution. Specifically, we first estimate the distribution of the rotary angles within the model and analyze the extent to which length extension perturbs this distribution. Then, we present a novel extension strategy that minimizes the disturbance between rotary angle distributions to maintain consistency with the pre-training phase, enhancing the model’s capability to generalize to longer sequences. Experimental results compared to the strong baseline methods demonstrate that our approach reduces by up to 72% of the distributional disturbance when extending LLaMA2’s context window to 8k, and reduces by up to 32% when extending to 16k. On the LongBench-E benchmark, our method achieves an average improvement of up to 4.33% over existing state-of-the-art methods. Furthermore, Our method maintains the model’s performance on the Hugging Face Open LLM benchmark after context window extension, with only an average performance fluctuation ranging from -0.12 to +0.22.",,2024,ACL,No,, Leveraging pre-trained language models for linguistic analysis: A case of argument structure constructions,"This study evaluates the effectiveness of pre-trained language models in identifying argument structure constructions, important for modeling both first and second language learning. We examine three methodologies: (1) supervised training with RoBERTa using a gold-standard ASC treebank, including by-tag accuracy evaluation for sentences from both native and non-native English speakers, (2) prompt-guided annotation with GPT-4, and (3) generating training data through prompts with GPT-4, followed by RoBERTa training. Our findings indicate that RoBERTa trained on gold-standard data shows the best performance. While data generated through GPT-4 enhances training, it does not exceed the benchmarks set by gold-standard data.",,2024,ACL,No,, "MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration","Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating exceptional reasoning, tool usage, and memory capabilities. As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework that captures LLMs’ reasoning, planning, collaboration, and other social abilities. This work introduces a novel competition-based benchmark framework specifically designed to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality.We utilize two social deduction games alongside three game-theory scenarios to create diverse environments.Our frame is fortified with the probabilistic graphic modeling (PGM) method, enhancing the LLMs’ capabilities in navigating complex social and cognitive dimensions. We evaluate seven LLMs, quantitatively highlighting a significant capability gap of over threefold between the strongest, GPT o1, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the abilities of all selected models by an average of 37%. Our data and code can be found here https://github.com/cathyxl/MAgIC.",,2024,ACL,Yes,Language,Benchmark Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale,"The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed’s large-scale, de-identified medical image-text pairs to address these limitations, they often fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an ‘unblinded’ capacity to denoise and reformat the data, resulting in the creation of the **PubMedVision** dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM **HuatuoGPT-Vision**, which shows superior performance in medical multimodal scenarios among open-source MLLMs. Our code and data are available at https://github.com/FreedomIntelligence/HuatuoGPT-Vision.",,2024,ACL,Yes,Multimodal, Do Text-to-Vis Benchmarks Test Real Use of Visualisations?,"Large language models are able to generate code for visualisations in response to simple user requests.This is a useful application and an appealing one for NLP research because plots of data provide grounding for language.However, there are relatively few benchmarks, and those that exist may not be representative of what users do in practice.This paper investigates whether benchmarks reflect real-world use through an empirical study comparing benchmark datasets with code from public repositories.Our findings reveal a substantial gap, with evaluations not testing the same distribution of chart types, attributes, and actions as real-world examples.One dataset is representative, but requires extensive modification to become a practical end-to-end benchmark. This shows that new benchmarks are needed to support the development of systems that truly address users’ visualisation needs.These observations will guide future data creation, highlighting which features hold genuine significance for users.",,2024,ACL,No,, Is LLM-as-a-Judge Robust? Investigating Universal Adversarial Attacks on Zero-shot LLM Assessment,"Large Language Models (LLMs) are powerful zero-shot assessors used in real-world situations such as assessing written exams and benchmarking systems. Despite these critical applications, no existing work has analyzed the vulnerability of judge-LLMs to adversarial manipulation. This work presents the first study on the adversarial robustness of assessment LLMs, where we demonstrate that short universal adversarial phrases can be concatenated to deceive judge LLMs to predict inflated scores. Since adversaries may not know or have access to the judge-LLMs, we propose a simple surrogate attack where a surrogate model is first attacked, and the learned attack phrase then transferred to unknown judge-LLMs. We propose a practical algorithm to determine the short universal attack phrases and demonstrate that when transferred to unseen models, scores can be drastically inflated such that irrespective of the assessed text, maximum scores are predicted. It is found that judge-LLMs are significantly more susceptible to these adversarial attacks when used for absolute scoring, as opposed to comparative assessment. Our findings raise concerns on the reliability of LLM-as-a-judge methods, and emphasize the importance of addressing vulnerabilities in LLM assessment methods before deployment in high-stakes real-world scenarios.",,2024,ACL,No,, GENRA: Enhancing Zero-shot Retrieval with Rank Aggregation,"Large Language Models (LLMs) have been shown to effectively perform zero-shot document retrieval, a process that typically consists of two steps: i) retrieving relevant documents, and ii) re-ranking them based on their relevance to the query. This paper presents GENRA, a new approach to zero-shot document retrieval that incorporates rank aggregation to improve retrieval effectiveness. Given a query, GENRA first utilizes LLMs to generate informative passages that capture the query’s intent. These passages are then employed to guide the retrieval process, selecting similar documents from the corpus. Next, we use LLMs again for a second refinement step. This step can be configured for either direct relevance assessment of each retrieved document or for re-ranking the retrieved documents. Ultimately, both approaches ensure that only the most relevant documents are kept. Upon this filtered set of documents, we perform multi-document retrieval, generating individual rankings for each document. As a final step, GENRA leverages rank aggregation, combining the individual rankings to produce a single refined ranking. Extensive experiments on benchmark datasets demonstrate that GENRA improves existing approaches, highlighting the effectiveness of the proposed methodology in zero-shot retrieval.",,2024,ACL,No,, DAMRO: Dive into the Attention Mechanism of LVLM to Reduce Object Hallucination,"Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that **D**ive into **A**ttention **M**echanism of LVLM to **R**educe **O**bject Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs.",,2024,ACL,No,, PARIKSHA: A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data,"Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors – the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.",,2024,ACL,Yes,Language,Benchmark LawBench: Benchmarking Legal Knowledge of Large Language Models,"We present LawBench, the first evaluation benchmark composed of 20 tasks aimed to assess the ability of Large Language Models (LLMs) to perform Chinese legal-related tasks. LawBench is meticulously crafted to enable precise assessment of LLMs’ legal capabilities from three cognitive levels that correspond to the widely accepted Bloom’s cognitive taxonomy. Using LawBench, we present a comprehensive evaluation of 21 popular LLMs and the first comparative analysis of the empirical results in order to reveal their relative strengths and weaknesses. All data, model predictions and evaluation code are accessible from https://github.com/open-compass/LawBench.",,2024,ACL,Yes,Language,Benchmark Efficient Performance Tracking: Leveraging Large Language Models for Automated Construction of Scientific Leaderboards,"Scientific leaderboards are standardized ranking systems that facilitate evaluating and comparing competitive methods. Typically, a leaderboard is defined by a task, dataset, and evaluation metric (TDM) triple, allowing objective performance assessment and fostering innovation through benchmarking. However, the exponential increase in publications has made it infeasible to construct and maintain these leaderboards manually. Automatic leaderboard construction has emerged as a solution to reduce manual labor. Existing datasets for this task are based on the community-contributed leaderboards without additional curation. Our analysis shows that a large portion of these leaderboards are incomplete, and some of them contain incorrect information. In this work, we present SciLead, a manually-curated Scientific Leaderboard dataset that overcomes the aforementioned problems. Building on this dataset, we propose three experimental settings that simulate real-world scenarios where TDM triples are fully defined, partially defined, or undefined during leaderboard construction. While previous research has only explored the first setting, the latter two are more representative of real-world applications. To address these diverse settings, we develop a comprehensive LLM-based framework for constructing leaderboards. Our experiments and analysis reveal that various LLMs often correctly identify TDM triples while struggling to extract result values from publications. We make our code and data publicly available.",,2024,ACL,Yes,Language,Technical AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning,"Recent advancements in large language models (LLMs) have been remarkable. Users face a choice between using cloud-based LLMs for generation quality and deploying local-based LLMs for lower computational cost. The former option is typically costly and inefficient, while the latter usually fails to deliver satisfactory performance for reasoning steps requiring deliberate thought processes. In this work, we propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs. Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, handling less complex reasoning steps, and the cloud agent equipped with a larger LLM, managing more intricate reasoning steps. This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent, thereby effectively integrating the strengths of both locally-deployed and cloud-based LLMs, resulting in significant enhancements in task completion performance and efficiency. We evaluate AdaSwitch across 7 benchmarks, ranging from mathematical reasoning and complex question answering, using various types of LLMs to instantiate the local and cloud agents. The empirical results show that AdaSwitch effectively improves the performance of the local agent, and sometimes achieves competitive results compared to the cloud agent while utilizing much less computational overhead.",,2024,ACL,No,, mDPO: Conditional Preference Optimization for Multimodal Large Language Models,"Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment. Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement. Through a comparative experiment, we identify the unconditional preference problem in multimodal preference optimization, where the model overlooks the image condition. To address this problem, we propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference. Moreover, we introduce a reward anchor that forces the reward to be positive for chosen responses, thereby avoiding the decrease in their likelihood—an intrinsic problem of relative preference optimization. Experiments on two multimodal LLMs of different sizes and three widely used benchmarks demonstrate that mDPO effectively addresses the unconditional preference problem in multimodal preference optimization and significantly improves model performance, particularly in reducing hallucination.",,2024,ACL,No,, Language-to-Code Translation with a Single Labeled Example,"Tools for translating natural language into code promise natural, open-ended interaction with databases, web APIs, and other software systems. However, this promise is complicated by the diversity and continual development of these systems, each with its own interface and distinct set of features. Building a new language-to-code translator, even starting with a large language model (LM), typically requires annotating a large set of natural language commands with their associated programs. In this paper, we describe ICIP (In-Context Inverse Programming), a method for bootstrapping a language-to-code system using mostly (or entirely) unlabeled programs written using a potentially unfamiliar (but human-readable) library or API. ICIP uses a pre-trained LM to assign candidate natural language descriptions to these programs, then iteratively refines the descriptions to ensure global consistency. Across nine different application domains from the Overnight and Spider benchmarks and text-davinci-003 and CodeLlama-7b-Instruct models, ICIP outperforms a number of prompting baselines. Indeed, in a “nearly unsupervised” setting with only a single annotated program and 100 unlabeled examples, it achieves up to 85% of the performance of a fully supervised system.",,2024,ACL,No,, Attribute or Abstain: Large Language Models as Long Document Assistants,"LLMs can help humans working with long documents, but are known to hallucinate. *Attribution* can increase trust in LLM responses: The LLM provides evidence that supports its response, which enhances verifiability. Existing approaches to attribution have only been evaluated in RAG settings, where the initial retrieval confounds LLM performance. This is crucially different from the long document setting, where retrieval is not needed, but could help. Thus, a long document specific evaluation of attribution is missing. To fill this gap, we present LAB, a benchmark of 6 diverse long document tasks with attribution, and experiments with different approaches to attribution on 5 LLMs of different sizes. We find that *citation*, i.e. response generation and evidence extraction in one step, performs best for large and fine-tuned models, while additional retrieval can help for small, prompted models. We investigate whether the “Lost in the Middle” phenomenon exists for attribution, but do not find this. We also find that evidence quality can predict response quality on datasets with simple responses, but not so for complex responses, as models struggle with providing evidence for complex claims. We release code and data for further investigation. [Link](https://github.com/UKPLab/arxiv2024-attribute-or-abstain)",,2024,ACL,Yes,Language,Benchmark Retrieved In-Context Principles from Previous Mistakes,"In-context learning (ICL) has been instrumental in adapting large language models (LLMs) to downstream tasks using correct input-output examples. Recent advances have attempted to improve model performance through principles derived from mistakes, yet these approaches suffer from lack of customization and inadequate error coverage. To address these limitations, we propose Retrieved In-Context Principles (RICP), a novel teacher-student framework. In RICP, the teacher model analyzes mistakes from the student model to generate reasons and insights for preventing similar mistakes. These mistakes are clustered based on their underlying reasons for developing task-level principles, enhancing the error coverage of principles. During inference, the most relevant mistakes for each question are retrieved to create question-level principles, improving the customization of the provided guidance. RICP is orthogonal to existing prompting methods and does not require intervention from the teacher model during inference. Experimental results across seven reasoning benchmarks reveal that RICP effectively enhances performance when applied to various prompting strategies.",,2024,ACL,No,, Pelican: Correcting Hallucination in Vision-LLMs via Claim Decomposition and Program of Thought Verification,"Large Visual Language Models (LVLMs) struggle with hallucinations in visual instruction following task(s). These issues hinder their trustworthiness and real-world applicability. We propose Pelican – a novel framework designed to detect and mitigate hallucinations through claim verification. Pelican first decomposes the visual claim into a chain of sub-claims based on first-order predicates. These sub-claims consists of (predicate, question) pairs and can be conceptualized as nodes of a computational graph. We then use use Program-of-Thought prompting to generate Python code for answering these questions through flexible composition of external tools. Pelican improves over prior work by introducing (1) intermediate variables for precise grounding of object instances, and (2) shared computation for answering the sub-question to enable adaptive corrections and inconsistency identification. We finally use reasoning abilities of LLM to verify the correctness of the the claim by considering the consistency and confidence of the (question, answer) pairs from each sub-claim. Our experiments demonstrate consistent performance improvements over various baseline LVLMs and existing hallucination mitigation approaches across several benchmarks.",,2024,ACL,No,, Unsupervised End-to-End Task-Oriented Dialogue with LLMs: The Power of the Noisy Channel,"Training task-oriented dialogue systems typically requires turn-level annotations for interacting with their APIs: e.g. a dialogue state and the system actions taken at each step. These annotations can be costly to produce, error-prone, and require both domain and annotation expertise. With advances in LLMs, we hypothesize that unlabeled data and a schema definition are sufficient for building a working task-oriented dialogue system, completely unsupervised. We consider a novel unsupervised setting of only (1) a well-defined API schema (2) a set of unlabeled dialogues between a user and agent. We propose an innovative approach using expectation-maximization (EM) that infers turn-level annotations as latent variables using a noisy channel model to build an end-to-end dialogue agent. Evaluating our approach on the MultiWOZ benchmark, our method more than doubles the dialogue success rate of a strong GPT-3.5 baseline.",,2024,ACL,No,, WPO: Enhancing RLHF with Weighted Preference Optimization,"Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 76.7% based on Gemma-2-9b-it. We release the code and models at https://github.com/wzhouad/WPO.",,2024,ACL,No,, Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors,"Large language models (LLMs) offer many opportunities to scale high-quality personalized tutoring. A promising approach is to build dialog tutoring models to scaffold students’ problem-solving. However, even though existing models perform well in solving reasoning questions, they can struggle to precisely detect student’s errors and tailor their feedback to these errors. Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions and show how grounding to such verification improves the overall quality of tutor response generation. We collect a dataset of 1,002 stepwise math reasoning chains with the first error step annotated by teachers. We show empirically that finding the mistake in a student solution is challenging for current models. We propose and evaluate several verifiers for detecting these errors. Using both automatic and human evaluation we show that the student solution verifiers steer the generation model towards highly targeted responses to student error which are more often correct with less hallucinations compared to existing baselines. The benchmark dataset and code will be released openly.",,2024,ACL,Yes,Language,Methodological CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios,"With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.",,2024,ACL,Yes,Language,Benchmark Explaining and Improving Contrastive Decoding by Extrapolating the Probabilities of a Huge and Hypothetical LM,"Contrastive decoding (CD) (Li et al., 2022) improves the next-token distribution of a large expert language model (LM) using a small amateur LM. Although CD is applied to various LMs and domains to enhance open-ended text generation, it is still unclear why CD often works well, when it could fail, and how we can make it better. To deepen our understanding of CD, we first theoretically prove that CD could be viewed as linearly extrapolating the next-token logits from a huge and hypothetical LM. We also highlight that the linear extrapolation could make CD unable to output the most obvious answers that have already been assigned high probabilities by the amateur LM.To overcome CD’s limitation, we propose a new unsupervised decoding method called Asymptotic Probability Decoding (APD). APD explicitly extrapolates the probability curves from the LMs of different sizes to infer the asymptotic probabilities from an infinitely large LM without inducing more inference costs than CD. In FactualityPrompts, an open-ended text generation benchmark, sampling using APD significantly boosts factuality in comparison to the CD sampling and its variants, and achieves state-of-the-art results for Pythia 6.9B and OPT 6.7B. Furthermore, in five commonsense QA datasets, APD is often significantly better than CD and achieves a similar effect of using a larger LLM. For example, the perplexity of APD on top of Pythia 6.9B is even lower than the perplexity of Pythia 12B in CommonsenseQA and LAMBADA.",,2024,ACL,No,, FIRST: Faster Improved Listwise Reranking with Single Token Decoding,"Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly–potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.",,2024,ACL,No,, “Flex Tape Can’t Fix That”: Bias and Misinformation in Edited Language Models,"Weight-based model editing methods update the parametric knowledge of language models post-training. However, these methods can unintentionally alter unrelated parametric knowledge representations, potentially increasing the risk of harm. In this work, we investigate how weight editing methods unexpectedly amplify model biases after edits. We introduce a novel benchmark dataset, Seesaw-CF, for measuring bias amplification of model editing methods for demographic traits such as race, geographic origin, and gender. We use Seesaw-CF to examine the impact of model editing on bias in five large language models. Our results demonstrate that edited models exhibit, to various degrees, more biased behavior for certain demographic groups than before they were edited, specifically becoming less confident in properties for Asian and African subjects. Additionally, editing facts about place of birth, country of citizenship, or gender has particularly negative effects on the model’s knowledge about unrelated properties, such as field of work, a pattern observed across multiple models.",,2024,ACL,Yes,Language,Benchmark MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents,"Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of fact-checking are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to a model to check a single response. In this work, we show how to build small fact-checking models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify datasets from recent work on fact-checking and grounding LLM generations into a new benchmark, LLM-AggreFact. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.",,2024,ACL,Yes,Language,Methodological Learning to Correct for QA Reasoning with Black-box LLMs,"An open challenge in recent machine learning is about how to improve the reasoning capability of large language models (LLMs) in a black-box setting, i.e., without access to detailed information such as output token probabilities. Existing approaches either rely on accessibility (which is often unrealistic) or involve significantly increased train- and inference-time costs. This paper addresses those limitations or shortcomings by proposing a novel approach, namely CoBB (Correct for improving QA reasoning of Black-Box LLMs). It uses a trained adaptation model to perform a seq2seq mapping from the often-imperfect reasonings of the original black-box LLM to the correct or improved reasonings. Specifically, the adaptation model is initialized with a relatively small open-source LLM and adapted over a collection of sub-sampled training pairs. To select the representative pairs of correct and incorrect reasonings, we formulated the dataset construction as an optimization problem that minimizes the statistical divergence between the sampled subset and the entire collection, and solved it via a genetic algorithm. We then train the adaptation model over the sampled pairs by contrasting the likelihoods of correct and incorrect reasonings. Our experimental results demonstrate that CoBB significantly improves reasoning accuracy across various QA benchmarks, compared to the best-performing adaptation baselines.",,2024,ACL,No,, AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?,"Language agents, built on top of language models (LMs), are systems that can interact with complex environments, such as the open web. In this work, we examine whether such agents can perform realistic and time-consuming tasks on the web, e.g., monitoring real-estate markets or locating relevant nearby businesses. We introduce AssistantBench, a challenging new benchmark consisting of 214 realistic tasks that can be automatically evaluated, covering different scenarios and domains. We find that AssistantBench exposes the limitations of current systems, including language models and retrieval-augmented language models, as no model reaches an accuracy of more than 25 points. While closed-book LMs perform well in terms of accuracy, they exhibit low precision and tend to hallucinate facts. State-of-the-art web agents reach a score of near zero. Additionally, we introduce SeePlanAct (SPA), a new web agent that significantly outperforms previous agents, and an ensemble of SPA and closed-book models reaches the best overall performance. Moreover, we analyze failures of current systems and highlight that open web navigation remains a major challenge.",,2024,ACL,Yes,Language,Benchmark The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention,"Prompt-based “diversity interventions” are commonly adopted to improve the diversity of Text-to-Image (T2I) models depicting individuals with various racial or gender traits. However, will this strategy result in nonfactual demographic distribution, especially when generating real historical figures? In this work, we propose **DemOgraphic FActualIty Representation (DoFaiR)**, a benchmark to systematically quantify the trade-off between using diversity interventions and preserving demographic factuality in T2I models. DoFaiR consists of 756 meticulously fact-checked test instances to reveal the factuality tax of various diversity prompts through an automated evidence-supported evaluation pipeline. Experiments on DoFaiR unveil that diversity-oriented instructions increase the number of different gender and racial groups in DALLE-3’s generations at the cost of historically inaccurate demographic distributions. To resolve this issue, we propose **Fact-Augmented Intervention** (FAI), which instructs a Large Language Model (LLM) to reflect on verbalized or retrieved factual information about gender and racial compositions of generation subjects in history, and incorporate it into the generation context of T2I models. By orienting model generations using the reflected historical truths, FAI significantly improves the demographic factuality under diversity interventions while preserving diversity.",,2024,ACL,Yes,Multimodal, RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs,"Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and decontaminating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used LMs for Russian are sensitive to morphological and agreement-oriented contrasts, but fall behind humans on phenomena requiring the understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.",,2024,ACL,Yes,Language,Benchmark Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction,"The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called T^3(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our codeand data can be found at https://github.com/HKUST-KnowComp/LiveSum.",,2024,ACL,Yes,Language,Methodological Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs,"Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel algorithm for optimizing LM programs. MIPRO outperforms baseline optimizers on five of seven diverse multi-stage LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 13% accuracy. We have released our new optimizers and benchmark in DSPy at [http://dspy.ai](http://dspy.ai).",,2024,ACL,Yes,Language,Methodological Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding,"Graphical User Interfaces (GUIs) are central to our interaction with digital devices and growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (ScreenPR) task. Currently, this task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed ScreenPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: https://screen-point-and-read.github.io.",,2024,ACL,Yes,Image, Precise Model Benchmarking with Only a Few Observations,"How can we precisely estimate a large language model’s (LLM) accuracy on questions belonging to a specific topic within a larger question-answering dataset? The standard direct estimator, which averages the model’s accuracy on the questions in each subgroup, may exhibit high variance for subgroups (topics) with small sample sizes. Synthetic regression modeling, which leverages the model’s accuracy on questions about other topics, may yield biased estimates that are too unreliable for large subgroups. We prescribe a simple yet effective solution: an empirical Bayes (EB) estimator that balances direct and regression estimates for each subgroup separately, improving the precision of subgroup-level estimates of model performance. Our experiments on multiple datasets show that this approach consistently provides more precise estimates of the LLM performance compared to the direct and regression approaches, achieving substantial reductions in the mean squared error. Confidence intervals for EB estimates also have near-nominal coverage and are narrower compared to those for the direct estimator. Additional experiments on tabular and vision data validate the benefits of this EB approach.",,2024,ACL,No,, ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models,"When conducting literature reviews, scientists often create literature review tables—tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs’ abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.",,2024,ACL,Yes,Language,Methodological Is It Good Data for Multilingual Instruction Tuning or Just Bad Multilingual Evaluation for Large Language Models?,"Multilingual large language models are designed, claimed, and expected to cater to speakers of varied languages. We hypothesise that the current practices of fine-tuning and evaluating these models may not perfectly align with this objective owing to a heavy reliance on translation, which cannot cover language-specific knowledge but can introduce translation defects. It remains unknown whether the nature of the instruction data has an impact on the model output; conversely, it is questionable whether translated test sets can capture such nuances. Due to the often coupled practices of using translated data in both stages, such imperfections could have been overlooked. This work investigates these issues using controlled native or translated data during the instruction tuning and evaluation stages. We show that native or generation benchmarks reveal a notable difference between native and translated instruction data especially when model performance is high, whereas other types of test sets cannot. The comparison between round-trip and single-pass translations reflects the importance of knowledge from language-native resources. Finally, we demonstrate that regularization is beneficial to bridging this gap on structured but not generative tasks.",,2024,ACL,No,, "Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction","In this work, we are interested in automated methods for knowledge graph creation (KGC) from input text. Progress on large language models (LLMs) has prompted a series of recent works applying them to KGC, e.g., via zero/few-shot prompting. Despite successes on small domain-specific datasets, these models face difficulties scaling up to text common in many real-world applications. A principal issue is that, in prior methods, the KG schema has to be included in the LLM prompt to generate valid triplets; larger and more complex schemas easily exceed the LLMs’ context window length. Furthermore, there are scenarios where a fixed pre-defined schema is not available and we would like the method to construct a high-quality KG with a succinct self-generated schema. To address these problems, we propose a three-phase framework named Extract-Define-Canonicalize (EDC): open information extraction followed by schema definition and post-hoc canonicalization. EDC is flexible in that it can be applied to settings where a pre-defined target schema is available and when it is not; in the latter case, it constructs a schema automatically and applies self-canonicalization. To further improve performance, we introduce a trained component that retrieves schema elements relevant to the input text; this improves the LLMs’ extraction performance in a retrieval-augmented generation-like manner. We demonstrate on three KGC benchmarks that EDC is able to extract high-quality triplets without any parameter tuning and with significantly larger schemas compared to prior works. Code for EDC is available at https://github.com/clear-nus/edc.",,2024,ACL,No,, Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge,"Despite progress in multimodal large language models (MLLMs), the challenge of interpreting long-form videos in response to linguistic queries persists, largely due to the inefficiency in temporal grounding and limited pre-trained context window size. In this work, we introduce Temporal Grounding Bridge (TGB), a novel framework that bootstraps MLLMs with advanced temporal grounding capabilities and broadens their contextual scope. Our framework significantly enhances the temporal capabilities of current MLLMs through three key innovations: an efficient multi-span temporal grounding algorithm applied to low-dimension temporal features projected from flow; a multimodal length extrapolation training paradigm that utilizes low-dimension temporal features to extend the training context window size; and a bootstrapping framework that bridges our model with pluggable MLLMs without requiring annotation. We validate TGB across seven video benchmarks and demonstrate substantial performance improvements compared with prior MLLMs. Notably, our model, initially trained on sequences of four frames, effectively handles sequences up to 16 longer without sacrificing performance, highlighting its scalability and effectiveness in real-world applications. Our code is publicly available.",,2024,ACL,No,, STORYSUMM: Evaluating Faithfulness in Story Summarization,"Human evaluation has been the gold standard for checking faithfulness in abstractive summarization. However, with a challenging source domain like narrative, multiple annotators can agree a summary is faithful, while missing details that are obvious errors only once pointed out. We therefore introduce a new dataset, StorySumm, comprising LLM summaries of short stories with localized faithfulness labels and error explanations. This benchmark is for evaluation methods, testing whether a given method can detect challenging inconsistencies. Using this dataset, we first show that any one human annotation protocol is likely to miss inconsistencies, and we advocate for pursuing a range of methods when establishing ground truth for a summarization dataset. We finally test recent automatic metrics and find that none of them achieve more than 70% balanced accuracy on this task, demonstrating that it is a challenging benchmark for future work in faithfulness evaluation.",,2024,ACL,Yes,Language,Benchmark ARM: An Alignment-and-Replacement Module for Chinese Spelling Check Based on LLMs,"Chinese Spelling Check (CSC) aims to identify and correct spelling errors in Chinese texts, where enhanced semantic understanding of a sentence can significantly improve correction accuracy. Recently, Large Language Models (LLMs) have demonstrated exceptional mastery of world knowledge and semantic understanding, rendering them more robust against spelling errors. However, the application of LLMs in CSC is a double-edged sword, as they tend to unnecessarily alter sentence length and modify rare but correctly used phrases. In this paper, by leveraging the capabilities of LLMs while mitigating their limitations, we propose a novel plug-and-play Alignment-and-Replacement Module ARM that enhances the performance of existing CSC models and without the need for retraining or fine-tuning. Experiment results and analysis on three benchmark datasets demonstrate the effectiveness and competitiveness of the proposed module.",,2024,ACL,No,, Enhancing Language Model Factuality via Activation-Based Confidence Calibration and Guided Decoding,"Calibrating language models (LMs) aligns their generation confidence with the actual likelihood of answer correctness, which can inform users about LMs’ reliability and mitigate hallucinated content. However, prior calibration methods, such as self-consistency-based and logit-based approaches, are either limited in inference-time efficiency or fall short of providing informative signals. Moreover, simply filtering out low-confidence responses reduces the LM’s helpfulness when the answers are correct. Therefore, effectively using calibration techniques to enhance an LM’s factuality remains an unsolved challenge. In this paper, we first propose an activation-based calibration method, ActCab, which trains a linear layer on top of the LM’s last-layer activations that can better capture the representations of knowledge. Built on top of ActCab, we further propose CoDec, a confidence-guided decoding strategy to elicit truthful answers with high confidence from LMs. By evaluating on five popular QA benchmarks, ActCab achieves superior calibration performance than all competitive baselines, e.g., by reducing the average expected calibration error (ECE) score by up to 39%. Further experiments on CoDec show consistent improvements in several LMs’ factuality on challenging QA datasets, such as TruthfulQA, highlighting the value of confidence signals in enhancing the factuality.",,2024,ACL,No,, DataTales: A Benchmark for Real-World Intelligent Data Narration,"We introduce DataTales, a novel benchmark designed to assess the proficiency of language models in data narration, a task crucial for transforming complex tabular data into accessible narratives. Existing benchmarks often fall short in capturing the requisite analytical complexity for practical applications. DataTales addresses this gap by offering 4.9k financial reports paired with corresponding market data, showcasing the demand for models to create clear narratives and analyze large datasets while understanding specialized terminology in the field. Our findings highlights the significant challenge that language models face in achieving the necessary precision and analytical depth for proficient data narration, suggesting promising avenues for future model development and evaluation methodologies.",,2024,ACL,Yes,Language,Benchmark "GlobeSumm: A Challenging Benchmark Towards Unifying Multi-lingual, Cross-lingual and Multi-document News Summarization","News summarization in today’s global scene can be daunting with its flood of multilingual content and varied viewpoints from different sources. However, current studies often neglect such real-world scenarios as they tend to focus solely on either single-language or single-document tasks. To bridge this gap, we aim to unify Multi-lingual, Cross-lingual and Multi-document Summarization into a novel task, i.e., MCMS, which encapsulates the real-world requirements all-in-one. Nevertheless, the lack of a benchmark inhibits researchers from adequately studying this invaluable problem. To tackle this, we have meticulously constructed the GLOBESUMM dataset by first collecting a wealth of multilingual news reports and restructuring them into event-centric format. Additionally, we introduce the method of protocol-guided prompting for high-quality and cost-effective reference annotation. In MCMS, we also highlight the challenge of conflicts between news reports, in addition to the issues of redundancies and omissions, further enhancing the complexity of GLOBESUMM. Through extensive experimental analysis, we validate the quality of our dataset and elucidate the inherent challenges of the task. We firmly believe that GLOBESUMM, given its challenging nature, will greatly contribute to the multilingual communities and the evaluation of LLMs.",,2024,ACL,Yes,Language,Benchmark Large Language Models Know What is Key Visual Entity: An LLM-assisted Multimodal Retrieval for VQA,"Visual question answering (VQA) tasks, often performed by visual language model (VLM), face challenges with long-tail knowledge. Recent retrieval-augmented VQA (RA-VQA) systems address this by retrieving and integrating external knowledge sources. However, these systems still suffer from redundant visual information irrelevant to the question during retrieval. To address these issues, in this paper, we propose LLM-RA, a novel method leveraging the reasoning capability of a large language model (LLM) to identify key visual entities, thus minimizing the impact of irrelevant information in the query of retriever. Furthermore, key visual entities are independently encoded for multimodal joint retrieval, preventing cross-entity interference. Experimental results demonstrate that our method outperforms other strong RA-VQA systems. In two knowledge-intensive VQA benchmarks, our method achieves the new state-of-the-art performance among those with similar scale of parameters and even performs comparably to models with 1-2 orders larger parameters.",,2024,ACL,No,, One2Set + Large Language Model: Best Partners for Keyphrase Generation,"Keyphrase generation (KPG) aims to automatically generate a collection of phrases representing the core concepts of a given document. The dominant paradigms in KPG include one2seq and one2set. Recently, there has been increasing interest in applying large language models (LLMs) to KPG. Our preliminary experiments reveal that it is challenging for a single model to excel in both recall and precision. Further analysis shows that: 1) the one2set paradigm owns the advantage of high recall, but suffers from improper assignments of supervision signals during training; 2) LLMs are powerful in keyphrase selection, but existing selection methods often make redundant selections. Given these observations, we introduce a generate-then-select framework decomposing KPG into two steps, where we adopt a one2set-based model as generator to produce candidates and then use an LLM as selector to select keyphrases from these candidates. Particularly, we make two important improvements on our generator and selector: 1) we design an Optimal Transport-based assignment strategy to address the above improper assignments; 2) we model the keyphrase selection as a sequence labeling task to alleviate redundant selections. Experimental results on multiple benchmark datasets show that our framework significantly surpasses state-of-the-art models, especially in absent keyphrase prediction.",,2024,ACL,No,, Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering,"Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.",,2024,ACL,Yes,Language,Benchmark ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models,"Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community has yet to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM’s hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve total scores of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play crucial roles in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.",,2024,ACL,Yes,Language,Benchmark PrExMe! Large Scale Prompt Exploration of Open Source LLMs for Machine Translation and Summarization Evaluation,"Large language models (LLMs) have revolutionized NLP research. Notably, in-context learning enables their use as evaluation metrics for natural language generation, making them particularly advantageous in low-resource scenarios and time-restricted applications. In this work, we introduce PrExMe, a large-scale Prompt Exploration for Metrics, where we evaluate more than 720 prompt templates for open-source LLM-based metrics on machine translation (MT) and summarization datasets, totalling over 6.6M evaluations. This extensive comparison (1) benchmarks recent open-source LLMs as metrics and (2) explores the stability and variability of different prompting strategies. We discover that, on the one hand, there are scenarios for which prompts are stable. For instance, some LLMs show idiosyncratic preferences and favor to grade generated texts with textual labels while others prefer to return numeric scores. On the other hand, the stability of prompts and model rankings can be susceptible to seemingly innocuous changes. For example, changing the requested output format from “0 to 100” to ""-1 to +1” can strongly affect the rankings in our evaluation. Our study contributes to understanding the impact of different prompting approaches on LLM-based metrics for MT and summarization evaluation, highlighting the most stable prompting patterns and potential limitations.",,2024,ACL,Yes,Language,Benchmark Repairs in a Block World: A New Benchmark for Handling User Corrections with Multi-Modal Language Models,"In dialogue, the addressee may initially misunderstand the speaker and respond erroneously, often prompting the speaker to correct the misunderstanding in the next turn with a Third Position Repair (TPR). The ability to process and respond appropriately to such repair sequences is thus crucial in conversational AI systems. In this paper, we first collect, analyse, and publicly release BlockWorld-Repairs: a dataset of multi-modal TPR sequences in an instruction-following manipulation task that is, by design, rife with referential ambiguity. We employ this dataset to evaluate several state-of-the-art Vision and Language Models (VLM) across multiple settings, focusing on their capability to process and accurately respond to TPRs and thus recover from miscommunication. We find that, compared to humans, all models significantly underperform in this task. We then show that VLMs can benefit from specialised losses targeting relevant tokens during fine-tuning, achieving better performance and generalising better to new scenarios. Our results suggest that these models are not yet ready to be deployed in multi-modal collaborative settings where repairs are common, and highlight the need to design training regimes and objectives that facilitate learning from interaction. Our code and data are available at www.github.com/JChiyah/blockworld-repairs",,2024,ACL,Yes,Language,Benchmark Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models,"As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while generating responses.To overcome these limitations, we adapt existing LLMs to duplex models so that they can listen to users while generating output and dynamically adjust themselves to provide instant feedback.Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to process these slices pseudo-simultaneously.Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses and covering typical feedback types in instantaneous interactions.Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released soon.",,2024,ACL,Yes,Language,Technical Puzzle Solving using Reasoning of Large Language Models: A Survey,"Exploring the capabilities of Large Language Models (LLMs) in puzzle solving unveils critical insights into their potential and challenges in AI, marking a significant step towards understanding their applicability in complex reasoning tasks. This survey leverages a unique taxonomy—dividing puzzles into rule-based and rule-less categories—to critically assess LLMs through various methodologies, including prompting techniques, neuro-symbolic approaches, and fine-tuning. Through a critical review of relevant datasets and benchmarks, we assess LLMs’ performance, identifying significant challenges in complex puzzle scenarios. Our findings highlight the disparity between LLM capabilities and human-like reasoning, particularly in those requiring advanced logical inference. The survey underscores the necessity for novel strategies and richer datasets to advance LLMs’ puzzle-solving proficiency and contribute to AI’s logical reasoning and creative problem-solving advancements.",,2024,ACL,No,, SciEx: Benchmarking Large Language Models on Scientific Exams with Human Expert Grading and Automatic Grading,"With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs’ ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.",,2024,ACL,Yes,Language,Benchmark Reasoning or a Semblance of it? A Diagnostic Study of Transitive Reasoning in LLMs,"Evaluating Large Language Models (LLMs) on reasoning benchmarks demonstrates their ability to solve compositional questions. However, little is known of whether these models engage in genuine logical reasoning or simply rely on implicit cues to generate answers. In this paper, we investigate the transitive reasoning capabilities of two distinct LLM architectures, LLaMA 2 and Flan-T5, by manipulating facts within two compositional datasets: QASC and Bamboogle. We controlled for potential cues that might influence the models’ performance, including (a) word/phrase overlaps across sections of test input; (b) models’ inherent knowledge during pre-training or fine-tuning; and (c) Named Entities. Our findings reveal that while both models leverage (a), Flan-T5 shows more resilience to experiments (b and c), having less variance than LLaMA 2. This suggests that models may develop an understanding of transitivity through fine-tuning on knowingly relevant datasets, a hypothesis we leave to future work.",,2024,ACL,No,, What Are the Odds? Language Models Are Capable of Probabilistic Reasoning,"Language models (LM) are capable of remarkably complex linguistic tasks; however, numerical reasoning is an area in which they frequently struggle. An important but rarely evaluated form of reasoning is understanding probability distributions. In this paper, we focus on evaluating the probabilistic reasoning capabilities of LMs using idealized and real-world statistical distributions. We perform a systematic evaluation of state-of-the-art LMs on three tasks: estimating percentiles, drawing samples, and calculating probabilities. We evaluate three ways to provide context to LMs 1) anchoring examples from within a distribution or family of distributions, 2) real-world context, 3) summary statistics on which to base a Normal approximation. Models can make inferences about distributions, and can be further aided by the incorporation of real-world context, example shots and simplified assumptions, even if these assumptions are incorrect or misspecified. To conduct this work, we developed a comprehensive benchmark distribution dataset with associated question-answer pairs that we have released publicly.",,2024,ACL,Yes,Language,Benchmark Self-Training for Sample-Efficient Active Learning for Text Classification with Pre-Trained Language Models,"Active learning is an iterative labeling process that is used to obtain a small labeled subset, despite the absence of labeled data, thereby enabling to train a model for supervised tasks such as text classification.While active learning has made considerable progress in recent years due to improvements provided by pre-trained language models, there is untapped potential in the often neglected unlabeled portion of the data, although it is available in considerably larger quantities than the usually small set of labeled data. In this work, we investigate how self-training, a semi-supervised approach that uses a model to obtain pseudo-labels for unlabeled data, can be used to improve the efficiency of active learning for text classification. Building on a comprehensive reproduction of four previous self-training approaches, some of which are evaluated for the first time in the context of active learning or natural language processing, we introduce HAST, a new and effective self-training strategy, which is evaluated on four text classification benchmarks. Our results show that it outperforms the reproduced self-training approaches and reaches classification results comparable to previous experiments for three out of four datasets, using as little as 25% of the data. The code is publicly available at https://github.com/chschroeder/self-training-for-sample-efficient-active-learning.",,2024,ACL,No,, ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment,"We present a comprehensive evaluation of large language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross-lingual analyses. This paper introduces ReadMe++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian, collected from 112 different data sources. This benchmark will encourage research on developing robust multilingual readability assessment methods. Using ReadMe++, we benchmark multilingual and monolingual language models in the supervised, unsupervised, and few-shot prompting settings. The domain and language diversity in ReadMe++ enable us to test more effective few-shot prompting, and identify shortcomings in state-of-the-art unsupervised methods. Our experiments also reveal exciting results of superior domain generalization and enhanced cross-lingual transfer capabilities by models trained on ReadMe++. We will make our data publicly available and release a python package tool for multilingual sentence readability prediction using our trained models at: https://github.com/tareknaous/readme",,2024,ACL,Yes,Language,Benchmark SLANG: New Concept Comprehension of Large Language Models,"The dynamic nature of language, particularly evident in the realm of slang and memes on the Internet, poses serious challenges to the adaptability of Large Language Models (LLMs). Traditionally anchored to static datasets, these models often struggle to keep up with the rapid linguistic evolution characteristic of online communities. This research aims to bridge this gap by enhancing LLMs’ comprehension of the evolving new concepts on the Internet, without the high cost of continual retraining. In pursuit of this goal, we introduce SLNAG, a benchmark designed to autonomously integrate novel data and assess LLMs’ ability to comprehend emerging concepts, alongside FOCUS, an approach uses causal inference to enhance LLMs to understand new phrases and their colloquial context. Our benchmark and approach involves understanding real-world instances of linguistic shifts, serving as contextual beacons, to form more precise and contextually relevant connections between newly emerging expressions and their meanings. The empirical analysis shows that our causal inference-based approach outperforms the baseline methods in terms of precision and relevance in the comprehension of Internet slang and memes.",,2024,ACL,Yes,Language,Methodological SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories,"Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be a boon to the research community, helping researchers validate, understand, and extend prior work. To advance towards this goal, we introduce SUPER, the first benchmark designed to evaluate the capability of LLMs in setting up and executing tasks from research repositories. SUPER aims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories. Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub-problems derived from the expert set that focus on specific challenges (e.g., configuring a trainer), and 602 automatically generated problems for larger-scale development. We introduce various evaluation measures to assess both task success and progress, utilizing gold solutions when available or approximations otherwise. We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios. This illustrates the challenge of this task, and suggests that SUPER can serve as a valuable resource for the community to make and measure progress.",,2024,ACL,Yes,Language,Benchmark Target-Aware Language Modeling via Granular Data Sampling,"Language model pretraining generally targets a broad range of use cases and incorporates data from diverse sources. However, there are instances where we desire a model that excels in specific areas without markedly compromising performance in other areas. A cost-effective and straightforward approach is sampling with low-dimensional data features, which allows selecting large-scale pretraining data for domain-specific use cases. In this work, we revisit importance sampling with n-gram features consisting of multi-granular tokens, which strikes a good balance between sentence compression and representation capabilities. We observed the sampled data to have a high correlation with the target downstream task performance *while preserving its effectiveness on other tasks*. This leads to the proposed data sampling paradigm where language models can be pretrained more efficiently on selected documents. On eight benchmarks we demonstrate with ~1% of the data, pretrained models perform on par with the full RefinedWeb data and outperform randomly selected samples for model sizes ranging from 125M to 1.5B.",,2024,ACL,No,, AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies,"Humans regularly engage in analogical thinking, relating personal experiences to current situations (X is analogous to Y because of Z). Analogical thinking allows humans to solve problems in creative ways, grasp difficult concepts, and articulate ideas more effectively. Can language models (LMs) do the same? To answer this question, we propose AnaloBench, a benchmark to determine analogical reasoning ability in LMs. Our benchmarking approach focuses on aspects of this ability that are common among humans: (i) recalling related experiences from a large amount of information, and (ii) applying analogical reasoning to complex and lengthy scenarios. We collect a set of 340 high quality, human written analogies for use in our benchmark, which constitutes the largest such collection to date. We then test a broad collection of models consisting of 12 open source and 3 proprietary in various sizes and architectures. As in prior results, scaling up LMs results in some performance boosts. Surprisingly, scale offers minimal gains when, (i) analogies involve lengthy scenarios, or (ii) recalling relevant scenarios from a large pool of information, a process analogous to finding a needle in a haystack. We hope these observations encourage further research in this field.",,2024,ACL,Yes,Language,Benchmark Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors,"Accurate text summarization is one of the most common and important tasks performed by Large Language Models, where the costs of human review for an entire document may be high, but the costs of errors in summarization may be even greater. We propose Detecting Errors through Ensembling Prompts (DEEP) - an end-to-end large language model framework for detecting factual errors in text summarization. Our framework uses a diverse set of LLM prompts to identify factual inconsistencies, treating their outputs as binary features, which are then fed into ensembling models. We then calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination. We demonstrate that prior models for detecting factual errors in summaries perform significantly worse without optimizing the thresholds on subsets of the evaluated dataset. Our framework achieves state-of-the-art (SOTA) balanced accuracy on the AggreFact-XSUM FTSOTA, TofuEval Summary-Level, and HaluEval Summarization benchmarks in detecting factual errors within transformer-generated text summaries. It does so without any fine-tuning of the language model or reliance on thresholding techniques not available in practical settings.",,2024,ACL,No,, Boosting Logical Fallacy Reasoning in LLMs via Logical Structure Tree,"Logical fallacy uses invalid or faulty reasoning in the construction of a statement. Despite the prevalence and harmfulness of logical fallacies, detecting and classifying logical fallacies still remains a challenging task. We observe that logical fallacies often use connective words to indicate an intended logical relation between two arguments, while the argument semantics does not actually support the logical relation. Inspired by this observation, we propose to build a logical structure tree to explicitly represent and track the hierarchical logic flow among relation connectives and their arguments in a statement. Specifically, this logical structure tree is constructed in an unsupervised manner guided by the constituency tree and a taxonomy of connectives for ten common logical relations, with relation connectives as non-terminal nodes and textual arguments as terminal nodes, and the latter are mostly elementary discourse units. We further develop two strategies to incorporate the logical structure tree into LLMs for fallacy reasoning. Firstly, we transform the tree into natural language descriptions and feed the textualized tree into LLMs as a part of the hard text prompt. Secondly, we derive a relation-aware tree embedding and insert the tree embedding into LLMs as a soft prompt. Experiments on benchmark datasets demonstrate that our approach based on logical structure tree significantly improves precision and recall for both fallacy detection and fallacy classification.",,2024,ACL,No,, Null-Shot Prompting: Rethinking Prompting Large Language Models With Hallucination,"This paper presents a series of investigations into an interesting phenomenon where we observe performance increases in large language models (LLMs) when providing a prompt that causes and exploits hallucination. We propose null-shot prompting, a counter-intuitive approach where we intentionally instruct LLMs to look at and utilize information from a null section. We investigate null-shot prompting on a wide range of tasks, including arithmetic reasoning, commonsense reasoning, and reading comprehension. We observe a substantial increase in performance in arithmetic reasoning tasks for various models, with up to a 44.62% increase compared to a baseline in one model. Therefore, we investigate deeper into this task by utilizing a more challenging mathematics problem-solving benchmark. We observe that LLMs benefit from hallucination in null-shot prompting in this task and discuss the mathematical topics that benefit the most from introducing hallucination in the prompt. We continue our investigation by evaluating hallucination detection abilities of the LLMs when using null-shot prompting. We find surprising results where hallucination in prompts can improve hallucination detection abilities of many LLMs. We also examine the effects of introducing both reasoning, which is known to mitigate hallucination, and hallucination simultaneously in the prompt and observe another surprising turn for the mathematics problem-solving benchmark with many performance improvements. We hope this paper will spark more interest, investigations, and discussions on how hallucination in prompts LLMs and even bolsters them in certain cases.",,2024,ACL,No,, How to Leverage Demonstration Data in Alignment for Large Language Model? A Self-Imitation Learning Perspective,"This paper introduces a novel generalized self-imitation learning GSIL framework, which effectively and efficiently aligns large language models with offline demonstration data. We develop GSIL by deriving a surrogate objective of imitation learning with density ratio estimates, facilitating the use of self-generated data and optimizing the imitation learning objective with simple classification losses. GSIL eliminates the need for complex adversarial training in standard imitation learning, achieving lightweight and efficient fine-tuning for large language models. In addition, GSIL encompasses a family of offline losses parameterized by a general class of convex functions for density ratio estimation and enables a unified view for alignment with demonstration data. Extensive experiments show that GSIL consistently and significantly outperforms baselines in many challenging benchmarks, such as coding (HuamnEval), mathematical reasoning (GSM8K) and instruction-following benchmark (MT-Bench). Code is public available at https://github.com/tengxiao1/GSIL.",,2024,ACL,No,, Style-Specific Neurons for Steering LLMs in Text Style Transfer,"Text style transfer (TST) aims to modify the style of a text without altering its original meaning. Large language models (LLMs) demonstrate superior performance across multiple tasks, including TST. However, in zero-shot setups, they tend to directly copy a significant portion of the input text to the output without effectively changing its style. To enhance the stylistic variety and fluency of the text, we present sNeuron-TST, a novel approach for steering LLMs using style-specific neurons in TST. Specifically, we identify neurons associated with the source and target styles and deactivate source-style-only neurons to give target-style words a higher probability, aiming to enhance the stylistic diversity of the generated text. However, we find that this deactivation negatively impacts the fluency of the generated text, which we address by proposing an improved contrastive decoding method that accounts for rapid token probability shifts across layers caused by deactivated source-style neurons. Empirical experiments demonstrate the effectiveness of the proposed method on six benchmarks, encompassing formality, toxicity, politics, politeness, authorship, and sentiment.",,2024,ACL,No,, DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models,"We introduce DA-Code, a code generation benchmark specifically designed to assess LLMs on agent-based data science tasks. This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks and demanding advanced coding skills in grounding and planning. Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks. Third, to solve the tasks, the models must utilize complex data science programming languages, including Python and SQL, to perform intricate data processing and derive the answers. We set up the benchmark in a controllable and executable environment that aligns with real-world data analysis scenarios and is scalable. The annotators meticulously designed the evaluation suite to ensure the accuracy and robustness of the evaluation. We developed the DA-Agent baseline. Experiments show that although the baseline performs better than other existing frameworks, using the current best LLMs achieves only 30.5% accuracy, leaving ample room for improvement. We release our benchmark at [link](https://github.com/yiyihum/dabench)",,2024,ACL,Yes,Language,Benchmark Exploring the Practicality of Generative Retrieval on Dynamic Corpora,"Benchmarking the performance of information retrieval (IR) is mostly conducted with a fixed set of documents (static corpora). However, in realistic scenarios, this is rarely the case and the documents to be retrieved are constantly updated and added. In this paper, we focus on Generative Retrievals (GR), which apply autoregressive language models to IR problems, and explore their adaptability and robustness in dynamic scenarios. We also conduct an extensive evaluation of computational and memory efficiency, crucial factors for real-world deployment of IR systems handling vast and ever-changing document collections. Our results on the StreamingQA benchmark demonstrate that GR is more adaptable to evolving knowledge (4–11%), robust in learning knowledge with temporal information, and efficient in terms of inference FLOPs (x2), indexing time (x6), and storage footprint (x4) compared to Dual Encoders (DE), which are commonly used in retrieval systems. Our paper highlights the potential of GR for future use in practical IR systems within dynamic environments.",,2024,ACL,No,, OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting,"Entity Linking (EL) is the process of associating ambiguous textual mentions to specific entities in a knowledge base.Traditional EL methods heavily rely on large datasets to enhance their performance, a dependency that becomes problematic in the context of few-shot entity linking, where only a limited number of examples are available for training. To address this challenge, we present OneNet, an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning. To the best of our knowledge, this marks a pioneering approach to applying LLMs to few-shot entity linking tasks. OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.Comprehensive evaluations across seven benchmark datasets reveal that OneNet outperforms current state-of-the-art entity linking methods.",,2024,ACL,No,, Large Language Models Are Poor Clinical Decision-Makers: A Comprehensive Benchmark,"The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs",,2024,ACL,Yes,Language,Benchmark Householder Pseudo-Rotation: A Novel Approach to Activation Editing in LLMs with Direction-Magnitude Perspective,"Activation Editing, which involves directly editting the internal representations of large language models (LLMs) to alter their behavior and achieve desired properties, has emerged as a promising area of research. Existing works primarily treat LLMs’ activations as points in space and modify them by adding steering vectors. We show that doing so would break the magnitude consistency of the activation vectors in LLMs. To overcome this shortcoming, we propose a novel editing method that views activations in terms of their directions and magnitudes. Our method, which we name Householder Pseudo-Rotation (HPR), mimics the rotation transformation, thus preserving activation norm and resulting in an improved performance on various safety benchmarks.",,2024,ACL,No,, Improving Knowledge Graph Completion with Structure-Aware Supervised Contrastive Learning,"Knowledge Graphs (KGs) often suffer from incomplete knowledge, which which restricts their utility. Recently, Contrastive Learning (CL) has been introduced to Knowledge Graph Completion (KGC), significantly improving the discriminative capabilities of KGC models and setting new benchmarks in performance. However, existing contrastive methods primarily focus on individual triples, overlooking the broader structural connectivities and topologies of KGs. This narrow focus limits a comprehensive understanding of the graph’s structural knowledge. To address this gap, we propose StructKGC, a novel contrastive learning framework designed to flexibly accommodate the diverse topologies inherent in KGs. Additionally, we introduce four contrastive tasks specifically tailored to KG data: Vertex-level CL, Neighbor-level CL, Path-level CL, and Relation composition level CL. These tasks are trained synergistically during the fine-tuning of pre-trained language models (PLMs), allowing for a more nuanced capture of subgraph semantics. To validate the effectiveness of our method, we perform a comprehensive set of experiments on several real-world datasets. The experimental results demonstrate that our approach achieves SOTA performance under standard supervised and low-resource settings. Furthermore, the different levels of structure-aware tasks introduced can mutually reinforce each other, leading to consistent performance improvements.",,2024,ACL,No,, How Do Your Code LLMs perform? Empowering Code Instruction Tuning with Really Good Data,"Recently, there has been a growing interest in studying how to construct better code instruction tuning data. However, we observe Code models trained with these datasets exhibit high performance on HumanEval but perform worse on other benchmarks such as LiveCodeBench. Upon further investigation, we find that many datasets suffer from severe data leakage. After cleaning up most of the leaked data, some well-known high-quality datasets perform poorly. This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data. To address this, we propose an efficient code data pruning strategy for selecting good samples. Our approach is based on three dimensions: instruction complexity, response quality, and instruction diversity. Based on our selected data, we present XCoder, a family of models finetuned from LLaMA3. Our experiments show Xcoder achieves new state-of-the-art performance using fewer training data, which verify the effectiveness of our data strategy. Moreover, we perform a comprehensive analysis on the data composition and find existing code datasets have different characteristics according to their construction methods, which provide new insights for future code LLMs.",,2024,ACL,No,, Mixture-of-Skills: Learning to Optimize Data Usage for Fine-Tuning Large Language Models,"Large language models (LLMs) are typically fine-tuned on diverse and extensive datasets sourced from various origins to develop a comprehensive range of skills, such as writing, reasoning, chatting, coding, and more. Each skill has unique characteristics, and these datasets are often heterogeneous and imbalanced, making the fine-tuning process highly challenging. Balancing the development of each skill while ensuring the model maintains its overall performance requires sophisticated techniques and careful dataset curation. In this work, we propose a general, model-agnostic, reinforcement learning framework, Mixture-of-Skills (MoS), that learns to optimize data usage automatically during the fine-tuning process. This framework ensures the optimal comprehensive skill development of LLMs by dynamically adjusting the focus on different datasets based on their current learning state. To validate the effectiveness of MoS, we conduct extensive experiments using three diverse LLM backbones on two widely used benchmarks and demonstrate that MoS substantially enhances model performance. Building on the success of MoS, we propose MoSpec, an adaptation for task-specific fine-tuning, which harnesses the utilities of various datasets for a specific purpose. Our work underlines the significance of dataset rebalancing and present MoS as a powerful, general solution for optimizing data usage in the fine-tuning of LLMs for various purposes.",,2024,ACL,No,, Pcc-tuning: Breaking the Contrastive Learning Ceiling in Semantic Textual Similarity,"Semantic Textual Similarity (STS) constitutes a critical research direction in computational linguistics and serves as a key indicator of the encoding capabilities of embedding models. Driven by advances in pre-trained language models and contrastive learning, leading sentence representation methods have reached an average Spearman’s correlation score of approximately 86 across seven STS benchmarks in SentEval. However, further progress has become increasingly marginal, with no existing method attaining an average score higher than 86.5 on these tasks. This paper conducts an in-depth analysis of this phenomenon and concludes that the upper limit for Spearman’s correlation scores under contrastive learning is 87.5. To transcend this ceiling, we propose an innovative approach termed Pcc-tuning, which employs Pearson’s correlation coefficient as a loss function to refine model performance beyond contrastive learning. Experimental results demonstrate that Pcc-tuning can markedly surpass previous state-of-the-art strategies with only a minimal amount of fine-grained annotated samples.",,2024,ACL,No,, Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing,"Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.",,2024,ACL,No,, Are LLMs Good Zero-Shot Fallacy Classifiers?,"Fallacies are defective arguments with faulty reasoning. Detecting and classifying them is a crucial NLP task to prevent misinformation, manipulative claims, and biased decisions. However, existing fallacy classifiers are limited by the requirement for sufficient labeled data for training, which hinders their out-of-distribution (OOD) generalization abilities. In this paper, we focus on leveraging Large Language Models (LLMs) for zero-shot fallacy classification. To elicit fallacy-related knowledge and reasoning abilities of LLMs, we propose diverse single-round and multi-round prompting schemes, applying different taskspecific instructions such as extraction, summarization, and Chain-of-Thought reasoning. With comprehensive experiments on benchmark datasets, we suggest that LLMs could be potential zero-shot fallacy classifiers. In general, LLMs under single-round prompting schemes have achieved acceptable zeroshot performances compared to the best fullshot baselines and can outperform them in all OOD inference scenarios and some opendomain tasks. Our novel multi-round prompting schemes can effectively bring about more improvements, especially for small LLMs. Our analysis further underlines the future research on zero-shot fallacy classification. Codes and data are available at: https://github.com/panFJCharlotte98/Fallacy_Detection.",,2024,ACL,No,, "Distractor Generation in Multiple-Choice Tasks: A Survey of Methods, Datasets, and Evaluation","The distractor generation task focuses on generating incorrect but plausible options for objective questions such as fill-in-the-blank and multiple-choice questions. This task is widely utilized in educational settings across various domains and subjects. The effectiveness of these questions in assessments relies on the quality of the distractors, as they challenge examinees to select the correct answer from a set of misleading options. The evolution of artificial intelligence (AI) has transitioned the task from traditional methods to the use of neural networks and pre-trained language models. This shift has established new benchmarks and expanded the use of advanced deep learning methods in generating distractors. This survey explores distractor generation tasks, datasets, methods, and current evaluation metrics for English objective questions, covering both text-based and multi-modal domains. It also evaluates existing AI models and benchmarks and discusses potential future research directions.",,2024,ACL,No,, Modeling User Preferences with Automatic Metrics: Creating a High-Quality Preference Dataset for Machine Translation,"Alignment with human preferences is an important step in developing accurate and safe large language models. This is no exception in machine translation (MT), where better handling of language nuances and context-specific variations leads to improved quality. However, preference data based on human feedback can be very expensive to obtain and curate at a large scale. Automatic metrics, on the other hand, can induce preferences, but they might not match human expectations perfectly. In this paper, we propose an approach that leverages the best of both worlds. We first collect sentence-level quality assessments from professional linguists on translations generated by multiple high-quality MT systems and evaluate the ability of current automatic metrics to recover these preferences. We then use this analysis to curate a new dataset, MT-Pref (metric induced translation preference) dataset, which comprises 18k instances covering 18 language directions, using texts sourced from multiple domains post-2022. We show that aligning TOWER models on MT-Pref significantly improves translation quality on WMT23 and FLORES benchmarks.",,2024,ACL,Yes,Language,Methodological DC-Instruct: An Effective Framework for Generative Multi-intent Spoken Language Understanding,"In the realm of multi-intent spoken language understanding, recent advancements have leveraged the potential of prompt learning frameworks. However, critical gaps exist in these frameworks: the lack of explicit modeling of dual-task dependencies and the oversight of task-specific semantic differences among utterances. To address these shortcomings, we propose DC-Instruct, a novel generative framework based on Dual-task Inter-dependent Instructions (DII) and Supervised Contrastive Instructions (SCI). Specifically, DII guides large language models (LLMs) to generate labels for one task based on the other task’s labels, thereby explicitly capturing dual-task inter-dependencies. Moreover, SCI leverages utterance semantics differences by guiding LLMs to determine whether a pair of utterances share the same or similar labels. This can improve LLMs on extracting and discriminating task-specific semantics, thus enhancing their SLU reasoning abilities. Extensive experiments on public benchmark datasets show that DC-Instruct markedly outperforms current generative models and state-of-the-art methods, demonstrating its effectiveness in enhancing dialogue language understanding and reasoning.",,2024,ACL,No,, Interpretable Composition Attribution Enhancement for Visio-linguistic Compositional Understanding,"Contrastively trained vision-language models such as CLIP have achieved remarkable progress in vision and language representation learning. Despite the promising progress, their proficiency in compositional reasoning over attributes and relations (e.g., distinguishing between “the car is underneath the person” and “the person is underneath the car”) remains notably inadequate. We investigate the cause for this deficient behavior is the composition attribution issue, where the attribution scores (e.g., attention scores or GradCAM scores) for relations (e.g., underneath) or attributes (e.g., red) in the text are substantially lower than those for object terms. In this work, we show such issue is mitigated via a novel framework called CAE (Composition Attribution Enhancement). This generic framework incorporates various interpretable attribution methods to encourage the model to pay greater attention to composition words denoting relationships and attributes within the text. Detailed analysis shows that our approach enables the models to adjust and rectify the attribution of the texts. Extensive experiments across seven benchmarks reveal that our framework significantly enhances the ability to discern intricate details and construct more sophisticated interpretations of combined visual and linguistic elements.",,2024,ACL,No,, Social Bias Probing: Fairness Benchmarking for Language Models,"While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.",,2024,ACL,Yes,Language,Benchmark Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models,"Retrieval-augmented language model (RALM) represents a significant advancement in mitigating factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed, and the retrieval of irrelevant data can mislead the response generation. Moreover, standard RALMs frequently neglect their intrinsic knowledge due to the interference from retrieved information. In instances where the retrieved information is irrelevant, RALMs should ideally utilize their intrinsic knowledge or, in the absence of both intrinsic and retrieved knowledge, opt to respond with “unknown” to avoid hallucination. In this paper, we introduces Chain-of-Note (CoN), a novel approach to improve robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for each retrieved document, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. Our experimental results show that GPT-4, when equipped with CoN, outperforms the Chain-of-Thought approach. Besides, we utilized GPT-4 to create 10K CoN data, subsequently trained on smaller models like OPT and LLaMa-2. Our experiments across four open-domain QA benchmarks show that fine-tuned RALMs equipped with CoN significantly outperform standard fine-tuned RALMs.",,2024,ACL,No,, DynaThink: Fast or Slow? A Dynamic Decision-Making Framework for Large Language Models,"Large language models (LLMs) have demonstrated emergent capabilities across diverse reasoning tasks via popular Chains-of-Thought (COT) prompting. However, such a simple and fast COT approach often encounters limitations in dealing with complicated problems, while a thorough method, which considers multiple reasoning pathways and verifies each step carefully, results in slower inference. This paper addresses the challenge of enabling LLMs to autonomously select between fast and slow inference methods, thereby optimizing both efficiency and effectiveness. We introduce a dynamic decision-making framework that categorizes tasks into two distinct pathways: ‘Fast,’ designated for tasks where the LLM quickly identifies a high-confidence solution, and ‘Slow,’ allocated for tasks that the LLM perceives as complex and for which it has low confidence in immediate solutions as well as requiring more reasoning paths to verify. Experiments on five popular reasoning benchmarks demonstrated the superiority of the DynaThink over baselines. For example, when we compared it to strong COT with self-consistency baseline on the complicated MATH dataset, DynaThink achieved more than 3% increase in accuracy with lower cost. The code will be made available upon publication.",,2024,ACL,No,, FinDVer: Explainable Claim Verification over Long and Hybrid-content Financial Documents,"We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 4,000 expert-annotated examples across four subsets, each focusing on a type of scenario that frequently arises in real-world financial domains. We assess a broad spectrum of 25 LLMs under long-context and RAG settings. Our results show that even the current best-performing system (i.e., GPT-4o) significantly lags behind human experts. Our detailed findings and insights highlight the strengths and limitations of existing LLMs in this new task. We believe FinDVer can serve as a valuable benchmark for evaluating LLM capabilities in claim verification over complex, expert-domain documents.",,2024,ACL,Yes,Language,Benchmark ActPlan-1K: Benchmarking the Procedural Planning Ability of Visual Language Models in Household Activities,"Large language models(LLMs) have been adopted to process textual task description and accomplish procedural planning in embodied AI tasks because of their powerful reasoning ability. However, there is still lack of study on how vision language models(VLMs) behave when multi-modal task inputs are considered. Counterfactual planning that evaluates the model’s reasoning ability over alternative task situations are also under exploited. In order to evaluate the planning ability of both multi-modal and counterfactual aspects, we propose ActPlan-1K. ActPlan-1K is a multi-modal planning benchmark constructed based on ChatGPT and household activity simulator iGibson2. The benchmark consists of 153 activities and 1,187 instances. Each instance describing one activity has a natural language task description and multiple environment images from the simulator. The gold plan of each instance is action sequences over the objects in provided scenes. Both the correctness and commonsense satisfaction are evaluated on typical VLMs. It turns out that current VLMs are still struggling at generating human-level procedural plans for both normal activities and counterfactual activities. We further provide automatic evaluation metrics by finetuning over BLEURT model to facilitate future research on our benchmark.",,2024,ACL,Yes,Multimodal, RaTEScore: A Metric for Radiology Report Generation,"This paper introduces a novel, entity-aware metric, termed as Radiological Report (Text) Evaluation (RaTEScore), to assess the quality of medical reports generated by AI models. RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions. Technically, we developed a comprehensive medical NER dataset, RaTE-NER, and trained an NER model specifically for this purpose. This model enables the decomposition of complex radiological reports into constituent medical entities. The metric itself is derived by comparing the similarity of entity embeddings, obtained from a language model, based on their types and relevance to clinical significance. Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.",,2024,ACL,Yes,Language,Technical LitSearch: A Retrieval Benchmark for Scientific Literature Search,"Literature search questions, such as “where can I find research on the evaluation of consistency in generated summaries?” pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.",,2024,ACL,Yes,Language,Benchmark AKEW: Assessing Knowledge Editing in the Wild,"Knowledge editing injects knowledge updates into language models to keep them correct and up-to-date. However, its current evaluations deviate significantly from practice: their knowledge updates solely consist of structured facts derived from meticulously crafted datasets, instead of practical sources—unstructured texts like news articles, and they often overlook practical real-world knowledge updates. To address these issues, in this paper we propose AKEW (Assessing Knowledge Editing in the Wild), a new practical benchmark for knowledge editing. AKEW fully covers three editing settings of knowledge updates: structured facts, unstructured texts as facts, and extracted triplets. It further introduces new datasets featuring both counterfactual and real-world knowledge updates. Through extensive experiments, we demonstrate the considerable gap between state-of-the-art knowledge-editing methods and practical scenarios. Our analyses further highlight key insights to motivate future research for practical knowledge editing.",,2024,ACL,Yes,Language,Benchmark CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation,"Evaluating the degree of reproduction of copyright-protected content by language models (LMs) is of significant interest to the AI and legal communities. Although both literal and non-literal similarities are considered by courts when assessing the degree of reproduction, prior research has focused only on literal similarities. To bridge this gap, we introduce CopyBench, a benchmark designed to measure both literal and non-literal copying in LM generations. Using copyrighted fiction books as text sources, we provide automatic evaluation protocols to assess literal and non-literal copying, balanced against the model utility in terms of the ability to recall facts from the copyrighted works and generate fluent completions. We find that, although literal copying is relatively rare, two types of non-literal copying—event copying and character copying—occur even in models as small as 7B parameters. Larger models demonstrate significantly more copying, with literal copying rates increasing from 0.2% to 10.5% and non-literal copying from 2.3% to 5.9% when comparing Llama3-8B and 70B models, respectively. We further evaluate the effectiveness of current strategies for mitigating copying and show that (1) training-time alignment can reduce literal copying but may increase non-literal copying, and (2) current inference-time mitigation methods primarily reduce literal but not non-literal copying.",,2024,ACL,Yes,Language,Benchmark AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction,"Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs, resulting in better problem-solving and task automation capabilities. Previous research primarily either focuses on APIs with limited arguments from a single source or overlooks the complex dependency relationship between different APIs. However, it is essential to utilize multiple APIs collaboratively from various sources, especially for complex user instructions. In this paper, we introduce MetaBench, the first benchmark to evaluate LLMs’ ability to plan and execute multiple APIs from various sources in order to complete the user’s task. Specifically, we consider two significant challenges in multiple APIs: 1) graph structures: some APIs can be executed independently while others need to be executed one by one, resulting in graph-like execution order; and 2) permission constraints: which source is authorized to execute the API call. We have experimental results on 9 distinct LLMs; e.g., GPT-4o achieves only a 2.0% success rate at the most complex instruction, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning and finetuning. Our code and data are publicly available at https://github.com/ruleGreen/AppBench.",,2024,ACL,Yes,Language,Benchmark ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?,"Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.",,2024,ACL,Yes,Language,Benchmark DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging,"Reinforcement learning from human feedback (RLHF) is a popular strategy for aligning large language models (LLMs) with desired behaviors. Reward modeling is a crucial step in RLHF. However, collecting paired preference data for training reward models is often costly and time-consuming, especially for domain-specific preferences requiring expert annotation. To address this challenge, we propose the **Do**main knowled**ge** merged **R**eward **M**odel (**DogeRM**), a novel framework that integrates domain-specific knowledge into a general reward model by model merging. The experiments demonstrate that DogeRM enhances performance across different benchmarks and provide a detailed analysis showcasing the effects of model merging, showing the great potential of facilitating model alignment.",,2024,ACL,No,, Re-Reading Improves Reasoning in Large Language Models,"To enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs), we introduce a simple, yet general and effective prompting method, RE2, i.e., Re-Reading the question as input. Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), which aim to elicit the reasoning process in the output, RE2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process. Consequently, RE2 demonstrates strong generality and compatibility with most thought-eliciting prompting methods, including CoT. Crucially, RE2 facilitates a “bidirectional” encoding in unidirectional decoder-only LLMs because the first pass could provide global information for the second pass. We begin with a preliminary empirical study as the foundation of RE2, illustrating its potential to enable “bidirectional” attention mechanisms. We then evaluate RE2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality. Our findings indicate that, with the exception of a few scenarios on vanilla ChatGPT, RE2 consistently enhances the reasoning performance of LLMs through a simple re-reading strategy. Further analyses reveal RE2’s adaptability, showing how it can be effectively integrated with different LLMs, thought-eliciting prompting, and ensemble strategies.",,2024,ACL,No,, ERVQA: A Dataset to Benchmark the Readiness of Large Vision Language Models in Hospital Environments,"The global shortage of healthcare workers has demanded the development of smart healthcare assistants, which can help monitor and alert healthcare workers when necessary. We examine the healthcare knowledge of existing Large Vision Language Models (LVLMs) via the Visual Question Answering (VQA) task in hospital settings through expert annotated open-ended questions. We introduce the Emergency Room Visual Question Answering (ERVQA) dataset, consisting of triplets covering diverse emergency room scenarios, a seminal benchmark for LVLMs. By developing a detailed error taxonomy and analyzing answer trends, we reveal the nuanced nature of the task. We benchmark state-of-the-art open-source and closed LVLMs using traditional and adapted VQA metrics: Entailment Score and CLIPScore Confidence. Analyzing errors across models, we infer trends based on properties like decoder type, model size, and in-context examples. Our findings suggest the ERVQA dataset presents a highly complex task, highlighting the need for specialized, domain-specific solutions.",,2024,ACL,Yes,Image, Improve Student’s Reasoning Generalizability through Cascading Decomposed CoTs Distillation,"Large language models (LLMs) exhibit enhanced reasoning at larger scales, driving efforts to distill these capabilities into smaller models via teacher-student learning.Previous works simply fine-tune student models on teachers’ generated Chain-of-Thoughts (CoTs) data. Although these methods enhance in-domain (IND) reasoning performance, they struggle to generalize to out-of-domain (OOD) tasks.We believe that the widespread spurious correlations between questions and answers may lead the model to preset a specific answer which restricts the diversity and generalizability of its reasoning process.In this paper, we propose Cascading Decomposed CoTs Distillation (CasCoD) to address these issues by decomposing the traditional single-step learning process into two cascaded learning steps. Specifically, by restructuring the training objectives—removing the answer from outputs and concatenating the question with the rationale as input—CasCoD’s two-step learning process ensures that students focus on learning rationales without interference from the preset answers, thus improving reasoning generalizability. Extensive experiments demonstrate the effectiveness of CasCoD on both IND and OOD benchmark reasoning datasets",,2024,ACL,No,, Revisiting Supervised Contrastive Learning for Microblog Classification,"Microblog content (e.g., Tweets) is noisy due to its informal use of language and its lack of contextual information within each post. To tackle these challenges, state-of-the-art microblog classification models rely on pre-training language models (LMs). However, pre-training dedicated LMs is resource-intensive and not suitable for small labs. Supervised contrastive learning (SCL) has shown its effectiveness with small, available resources. In this work, we examine the effectiveness of fine-tuning transformer-based language models, regularized with a SCL loss for English microblog classification. Despite its simplicity, the evaluation on two English microblog classification benchmarks (TweetEval and Tweet Topic Classification) shows an improvement over baseline models. The result shows that, across all subtasks, our proposed method has a performance gain of up to 11.9 percentage points. All our models are open source.",,2024,ACL,No,, SciAgent: Tool-augmented Language Models for Scientific Reasoning,"Scientific reasoning poses an excessive challenge for even the most advanced Large Language Models (LLMs). To make this task more practical and solvable for LLMs, we introduce a new task setting named tool-augmented scientific reasoning. This setting supplements LLMs with scalable toolsets, and shifts the focus from pursuing an omniscient problem solver to a proficient tool-user. To facilitate the research of such setting, we construct a tool-augmented training corpus named MathFunc which encompasses over 30,000 samples and roughly 6,000 tools. Building on MathFunc, we develop SciAgent to retrieve, understand and, if necessary, use tools for scientific problem solving. Additionally, we craft a benchmark, SciToolBench, spanning five scientific domains to evaluate LLMs’ abilities with tool assistance. Extensive experiments on SciToolBench confirm the effectiveness of SciAgent. Notably, SciAgent-Llama3-8B surpasses other LLMs with the comparable size by more than 8.0% in absolute accuracy. Furthermore, SciAgent-DeepMath-7B shows much superior performance than ChatGPT.",,2024,ACL,Yes,Language,Methodological Temporally Consistent Factuality Probing for Large Language Models,"The prolific use of Large Language Models (LLMs) as an alternate knowledge base requires them to be factually consistent, necessitating both correctness and consistency traits for paraphrased queries. Recently, significant attempts have been made to benchmark datasets and metrics to evaluate LLMs for these traits. However, structural simplicity (subject-relation-object) and contemporary association in their query formulation limit the broader definition of factuality and consistency. In this study, we introduce TeCFaP, a novel Temporally Consistent Factuality Probe task to expand the consistent factuality probe in the temporal dimension. To this end, we propose TEMP-COFAC, a high-quality dataset of prefix-style English query paraphrases. Subsequently, we extend the definitions of existing metrics to represent consistent factuality across temporal dimension. We experiment with a diverse set of LLMs and find most of them performing poorly on TeCFaP. Next, we propose a novel solution CoTSeLF (Consistent-Time-Sensitive Learning Framework) combining multi-task instruction tuning (MT-IT) with consistent-time-sensitive reinforcement learning (CTSRL) to improve temporally consistent factuality in LLMs. Our experiments demonstrate the efficacy of CoTSeLF over several baselines.",,2024,ACL,Yes,Language,Methodological Can LLMs replace Neil deGrasse Tyson? Evaluating the Reliability of LLMs as Science Communicators,"Large Language Models (LLMs) and AI assistants driven by these models are experiencing exponential growth in usage among both expert and amateur users. In this work, we focus on evaluating the reliability of current LLMs as science communicators. Unlike existing benchmarks, our approach emphasizes assessing these models on scientific question-answering tasks that require a nuanced understanding and awareness of answerability. We introduce a novel dataset, SCiPS-QA, comprising 742 Yes/No queries embedded in complex scientific concepts, along with a benchmarking suite that evaluates LLMs for correctness and consistency across various criteria. We benchmark three proprietary LLMs from the OpenAI GPT family and 13 open-access LLMs from the Meta Llama-2, Llama-3, and Mistral families. While most open-access models significantly underperform compared to GPT-4 Turbo, our experiments identify Llama-3-70B as a strong competitor, often surpassing GPT-4 Turbo in various evaluation aspects. We also find that even the GPT models exhibit a general incompetence in reliably verifying LLM responses. Moreover, we observe an alarming trend where human evaluators are deceived by incorrect responses from GPT-4 Turbo.",,2024,ACL,Yes,Language,Benchmark TKGT: Redefinition and A New Way of Text-to-Table Tasks Based on Real World Demands and Knowledge Graphs Augmented LLMs,"The task of text-to-table receives widespread attention, yet its importance and difficulty are underestimated. Existing works use simple datasets similar to table-to-text tasks and employ methods that ignore domain structures. As a bridge between raw text and statistical analysis, the text-to-table task often deals with complex semi-structured texts that refer to specific domain topics in the real world with entities and events, especially from those of social sciences. In this paper, we analyze the limitations of benchmark datasets and methods used in the text-to-table literature and redefine the text-to-table task to improve its compatibility with long text-processing tasks. Based on this redefinition, we propose a new dataset called CPL (Chinese Private Lending), which consists of judgments from China and is derived from a real-world legal academic project. We further propose TKGT (Text-KG-Table), a two stages domain-aware pipeline, which firstly generates domain knowledge graphs (KGs) classes semi-automatically from raw text with the mixed information extraction (Mixed-IE) method, then adopts the hybrid retrieval augmented generation (Hybird-RAG) method to transform it to tables for downstream needs under the guidance of KGs classes. Experiment results show that TKGT achieves state-of-the-art (SOTA) performance on both traditional datasets and the CPL. Our data and main code are available at https://github.com/jiangpw41/TKGT.",,2024,ACL,Yes,Language,Methodological The Instinctive Bias: Spurious Images lead to Illusion in MLLMs,"Large language models (LLMs) have recently experienced remarkable progress, where the advent of multi-modal large language models (MLLMs) has endowed LLMs with visual capabilities, leading to impressive performances in various multi-modal tasks. However, those powerful MLLMs such as GPT-4V still fail spectacularly when presented with certain image and text inputs. In this paper, we identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers, causing MLLMs to suffer from visual illusion. To quantify the effect, we propose CorrelationQA, the first benchmark that assesses the visual illusion level given spurious images. This benchmark contains 7,308 text-image pairs across 13 categories. Based on the proposed CorrelationQA, we conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees. We hope that our curated benchmark and evaluation results aid in better assessments of the MLLMs’ robustness in the presence of misleading images. The code and datasets are available at https://github.com/MasaiahHan/CorrelationQA.",,2024,ACL,Yes,Multimodal, Rationale-Aware Answer Verification by Pairwise Self-Evaluation,"Answer verification identifies correct solutions among candidates generated by large language models (LLMs). Current approaches typically train verifier models by labeling solutions as correct or incorrect based solely on whether the final answer matches the gold answer. However, this approach neglects any flawed rationale in the solution yielding the correct answer, undermining the verifier’s ability to distinguish between sound and flawed rationales. We empirically show that in StrategyQA, only 19% of LLM-generated solutions with correct answers have valid rationales, thus leading to an unreliable verifier. Furthermore, we demonstrate that training a verifier on valid rationales significantly improves its ability to distinguish valid and flawed rationale. To make a better verifier without extra human supervision, we introduce REPS (Rationale Enhancement through Pairwise Selection), a method for selecting valid rationales from candidates by iteratively applying pairwise self-evaluation using the same LLM that generates the solutions. Verifiers trained on solutions selected by REPS outperform those trained using conventional training methods on three reasoning benchmarks (ARC-Challenge, DROP, and StrategyQA). Our results suggest that training reliable verifiers requires ensuring the validity of rationales in addition to the correctness of the final answers, which would be critical for models assisting humans in solving complex reasoning tasks.",,2024,ACL,No,, Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs,"Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively.",,2024,ACL,Yes,Language,Methodological ATAP: Automatic Template-Augmented Commonsense Knowledge Graph Completion via Pre-Trained Language Models,"The mission of commonsense knowledge graph completion (CKGC) is to infer missing facts from known commonsense knowledge. CKGC methods can be roughly divided into two categories: triple-based methods and text-based methods. Due to the imbalanced distribution of entities and limited structural information, triple-based methods struggle with long-tail entities. Text-based methods alleviate this issue, but require extensive training and fine-tuning of language models, which reduces efficiency. To alleviate these problems, we propose ATAP, the first CKGC framework that utilizes automatically generated continuous prompt templates combined with pre-trained language models (PLMs). Moreover, ATAP uses a carefully designed new prompt template training strategy, guiding PLMs to generate optimal prompt templates for CKGC tasks. Combining the rich knowledge of PLMs with the template automatic augmentation strategy, ATAP effectively mitigates the long-tail problem and enhances CKGC performance. Results on benchmark datasets show that ATAP achieves state-of-the-art performance overall.",,2024,ACL,No,, Can We Trust the Performance Evaluation of Uncertainty Estimation Methods in Text Summarization?,"Text summarization, a key natural language generation (NLG) task, is vital in various domains. However, the high cost of inaccurate summaries in risk-critical applications, particularly those involving human-in-the-loop decision-making, raises concerns about the reliability of uncertainty estimation on text summarization (UE-TS) evaluation methods. This concern stems from the dependency of uncertainty model metrics on diverse and potentially conflicting NLG metrics. To address this issue, we introduce a comprehensive UE-TS benchmark incorporating 31 NLG metrics across four dimensions. The benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model on three datasets, with human-annotation analysis incorporated where applicable. We also assess the performance of 14 common uncertainty estimation methods within this benchmark. Our findings emphasize the importance of considering multiple uncorrelated NLG metrics and diverse uncertainty estimation methods to ensure reliable and efficient evaluation of UE-TS techniques. Our code and data are available: https://github.com/he159ok/Benchmark-of-Uncertainty-Estimation-Methods-in-Text-Summarization.",,2024,ACL,Yes,Language,Benchmark Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP,"Improvements in language models’ capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of “long-context”, defined simply by the total length of the model’s input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.",,2024,ACL,No,, Small LLMs Are Weak Tool Learners: A Multi-LLM Agent,"Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete various tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers accurately but also excel in task planning, tool invocation, and result summarization. While traditional works focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. To overcome these challenges, we propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with others to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.",,2024,ACL,No,, Still Not Quite There! Evaluating Large Language Models for Comorbid Mental Health Diagnosis,"In this study, we introduce ANGST, a novel, first of its kind benchmark for depression-anxiety comorbidity classification from social media posts. Unlike contemporary datasets that often oversimplify the intricate interplay between different mental health disorders by treating them as isolated conditions, ANGST enables multi-label classification, allowing each post to be simultaneously identified as indicating depression and/or anxiety. Comprising 2876 meticulously annotated posts by expert psychologists and an additional 7667 silver-labeled posts, ANGST posits a more representative sample of online mental health discourse. Moreover, we benchmark ANGST using various state-of-the-art language models, ranging from Mental-BERT to GPT-4. Our results provide significant insights into the capabilities and limitations of these models in complex diagnostic scenarios. While GPT-4 generally outperforms other models, none achieve an F1 score exceeding 72% in multi-class comorbid classification, underscoring the ongoing challenges in applying language models to mental health diagnostics.",,2024,ACL,Yes,Language,Benchmark ***YesBut***: A High-Quality Annotated Multimodal Dataset for evaluating Satire Comprehension capability of Vision-Language Models,"Understanding satire and humor is a challenging task for even current Vision-Language models. In this paper, we propose the challenging tasks of Satirical Image Detection (detecting whether an image is satirical), Understanding (generating the reason behind the image being satirical), and Completion (given one half of the image, selecting the other half from 2 given options, such that the complete image is satirical) and release a high-quality dataset ***YesBut***, consisting of 2547 images, 1084 satirical and 1463 non-satirical, containing different artistic styles, to evaluate those tasks. Each satirical image in the dataset depicts a normal scenario, along with a conflicting scenario which is funny or ironic. Despite the success of current Vision-Language Models on multimodal tasks such as Visual QA and Image Captioning, our benchmarking experiments show that such models perform poorly on the proposed tasks on the ***YesBut*** Dataset in Zero-Shot Settings w.r.t both automated as well as human evaluation. Additionally, we release a dataset of 119 real, satirical photographs for further research.",,2024,ACL,Yes,Image, Working Memory Identifies Reasoning Limits in Language Models,"This study explores the inherent limitations of large language models (LLMs) from a scaling perspective, focusing on the upper bounds of their cognitive capabilities. We integrate insights from cognitive science to quantitatively examine how LLMs perform on n-back tasks—a benchmark used to assess working memory, which involves temporarily holding and manipulating information. Our findings reveal that despite the increased model size, LLMs still face significant challenges in holding and processing information effectively, especially under complex task conditions. We also assess various prompting strategies, revealing their diverse impacts on LLM performance. The results highlight the struggle of current LLMs to autonomously discover optimal problem-solving patterns without heavily relying on manually corrected prompts. To move beyond these constraints, fundamental improvements in the planning and search of LLMs are essential for them to reason autonomously. Improving these capabilities will reduce the reliance on external corrections and enable LLMs to become more autonomous in their problem-solving processes.",,2024,ACL,No,, LLM-Evolve: Evaluation for LLM’s Evolving Capability on Benchmarks,"The advancement of large language models (LLMs) has extended their use to dynamic and interactive real-world applications, where models engage continuously with their environment and potentially enhance their performance over time. Most existing LLM benchmarks evaluate LLMs on i.i.d. tasks, overlooking their ability to learn iteratively from past experiences. Our paper bridges this evaluation gap by proposing a novel framework, LLM-Evolve, which extends established benchmarks to sequential problem-solving settings. LLM-Evolve evaluates LLMs over multiple rounds, providing feedback after each round to build a demonstration memory that the models can query in future tasks. We applied LLM-Evolve to the MMLU, GSM8K, and AgentBench benchmarks, testing 8 state-of-the-art open-source and closed-source models. Results show that LLMs can achieve performance improvements of up to 17% by learning from past interactions, with the quality of retrieval algorithms and feedback significantly influencing this capability. These insights advocate for more understanding and benchmarks for LLMs’ performance in evolving interactive scenarios.",,2024,ACL,Yes,Language,Benchmark FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping,"Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges for autoregressive token-by-token generation. To mitigate computation overload incurred during generation, several early-exit and layer-dropping strategies have been proposed. Despite some promising success due to the redundancy across LLMs layers on metrics like Rough-L/BLUE, our careful knowledge-intensive evaluation unveils issues such as generation collapse, hallucination, and noticeable performance drop even at the trivial exit ratio of ~10-15% of layers. We attribute these errors primarily to ineffective handling of the KV cache through state copying during early exit. In this work, we observe the saturation of computationally expensive feed-forward blocks of LLM layers and propose FFN-SkipLLM, which is a novel fine-grained skip strategy for autoregressive LLMs. FFN-SkipLLM leverages an input-adaptive feed-forward skipping approach that can skip ~25-30% of FFN blocks of LLMs with marginal change in performance on knowledge-intensive generation tasks without any requirement to handle the KV cache. Our extensive experiments and ablation studies across benchmarks like MT-Bench, Factoid-QA, and variable-length text summarization illustrate how our simple and easy-to-use method can facilitate faster autoregressive decoding.",,2024,ACL,No,, Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models,"We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs), combining ruleset interpretation, planning, and problem-solving. This benchmark is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers, following a simple set of rules. We show that, across leading LLMs, we obtain stable average performance while generating benchmark instances dynamically, following a target difficulty level. Thus, our benchmark alleviates concerns about test-set leakage into training data, an issue that often undermines popular benchmarks. Additionally, we conduct a comprehensive evaluation of both open and closed-source state-of-the-art LLMs on Mathador-LM. Our findings reveal that contemporary models struggle with Mathador-LM, scoring significantly lower than average 3rd graders. This stands in stark contrast to their strong performance on popular mathematical reasoning benchmarks. The implementation of Mathador-LM benchmark is available at https://github.com/IST-DASLab/Mathador-LM.",,2024,ACL,Yes,Language,Benchmark Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models,"Despite recent advances demonstrating vision- language models’ (VLMs) abilities to describe complex relationships among objects in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark of 241 questions across five categories specifically designed for quantitative spatial reasoning, and systematically investigate the performance of SoTA VLMs on this task. Our analysis reveals that questions involving reasoning about distances between objects are particularly challenging for SoTA VLMs; however, some VLMs perform significantly better at this task than others, with an almost 40 points gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using references objects as visual cues. Specifically, we demonstrate that instruct- ing VLMs to use reference objects in their reasoning paths significantly improves their quantitative spatial reasoning performance, bypassing the need for external data, architectural modifications, or fine-tuning. Remarkably, by solely using SpatialPrompt, Gemini 1.5 Pro, GPT-4V, and GPT-4o improve by 56.2, 28.5, and 6.7 points on average in Q-Spatial Bench without the need for more data, model architectural modifications, or fine-tuning.",,2024,ACL,Yes,Multimodal, One Thousand and One Pairs: A “novel” challenge for long-context language models,"Synthetic long-context LLM benchmarks (e.g., “needle-in-the-haystack”) test only surface-level retrieval capabilities; but how well can long-context LLMs retrieve, synthesize, and reason over information across book-length inputs? We address this question by creating NoCha, a dataset of 1,001 minimally different pairs of true and false claims about 67 recently-published English fictional books, written by human readers of those books. In contrast to existing long-context benchmarks, our annotators confirm that the largest share of pairs in NoCha require global reasoning over the entire book to verify. Our experiments show that while human readers easily perform this task, it is enormously challenging for all ten long-context LLMs that we evaluate: no open-weight model performs above random chance (despite their strong performance on synthetic benchmarks), while GPT-4o achieves the highest pair accuracy at 55.8%. Further analysis reveals that (1) on average, models perform much better on pairs that require only sentence-level retrieval vs. global reasoning; (2) model-generated explanations for their decisions are often inaccurate even for correctly-labeled claims; and (3) models perform substantially worse on speculative fiction books that contain extensive world-building. The methodology proposed in NoCha allows for the evolution of the benchmark dataset and the easy analysis of future models.",,2024,ACL,Yes,Language,Benchmark Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation,"As large language models (LLMs) evolve, evaluating their output reliably becomes increasingly difficult due to the high cost of human evaluation. To address this, we introduce FLAMe, a family of Foundational Large Autorater Models. FLAMe is trained on a diverse set of over 100 quality assessment tasks, incorporating 5M+ human judgments curated from publicly released human evaluations. FLAMe outperforms models like GPT-4 and Claude-3 on various held-out tasks, and serves as a powerful starting point for fine-tuning, as shown in our reward model evaluation case study (FLAMe-RM). On Reward-Bench, FLAMe-RM-24B achieves 87.8% accuracy, surpassing GPT-4-0125 (85.9%) and GPT-4o (84.7%). Additionally, we introduce FLAMe-Opt-RM, an efficient tail-patch fine-tuning approach that offers competitive RewardBench performance using 25×fewer training datapoints. Our FLAMe variants outperform popular proprietary LLM-as-a-Judge models on 8 of 12 autorater benchmarks, covering 53 quality assessment tasks, including RewardBench and LLM-AggreFact. Finally, our analysis shows that FLAMe is significantly less biased than other LLM-as-a-Judge models on the CoBBLEr autorater bias benchmark.",,2024,ACL,No,, Granular Privacy Control for Geolocation with Vision Language Models,"Vision Language Models (VLMs) are rapidly advancing in their capability to answer information-seeking questions. As these models are widely deployed in consumer applications, they could lead to new privacy risks due to emergent abilities to identify people in photos, geolocate images, etc. As we demonstrate, somewhat surprisingly, current open-source and proprietary VLMs are very capable image geolocators, making widespread geolocation with VLMs an immediate privacy risk, rather than merely a theoretical future concern. As a first step to address this challenge, we develop a new benchmark, GPTGeoChat, to test the capability of VLMs to moderate geolocation dialogues with users. We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v, which are annotated with the granularity of location information revealed at each turn. Using this new dataset we evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed. We find that custom fine-tuned models perform on par with prompted API-based models when identifying leaked location information at the country or city level, however fine-tuning on supervised data appears to be needed to accurately moderate finer granularities, such as the name of a restaurant or building.",,2024,ACL,Yes,Image, MedReadMe: A Systematic Study for Fine-grained Sentence Readability in Medical Domain,"Medical texts are notoriously challenging to read. Properly measuring their readability is the first step towards making them more accessible. Here, we present the first systematic study on fine-grained readability measurements in the medical domain, at both sentence-level and span-level. We first introduce a new dataset MedReadMe, which consists of manually annotated readability ratings and fine-grained complex span annotation for 4,520 sentences, featuring two novel “Google-Easy” and “Google-Hard” categories. It supports our quantitative analysis, which covers 650 linguistic features and additional complex span features, to answer “why medical sentences are so hard.” Enabled by our high-quality annotation, we benchmark several state-of-the-art sentence-level readability metrics, including unsupervised, supervised, and prompting-based methods using recently developed large language models (LLMs). Informed by our fine-grained complex span annotation, we find that adding a single feature, capturing the number of jargon spans, into existing readability formulas can significantly improve their correlation with human judgments, and also make them more stable. We will publicly release data and code.",,2024,ACL,Yes,Language,Methodological From LLMs to MLLMs: Exploring the Landscape of Multimodal Jailbreaking,"The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.",,2024,ACL,No,, MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs,"Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D’s efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks.",,2024,ACL,Yes,Language,Methodological Knowledge Planning in Large Language Models for Domain-Aligned Counseling Summarization,"In mental health counseling, condensing dialogues into concise and relevant summaries (aka counseling notes) holds pivotal significance. Large Language Models (LLMs) exhibit remarkable capabilities in various generative tasks; however, their adaptation to domain-specific intricacies remains challenging, especially within mental health contexts. Unlike standard LLMs, mental health experts first plan to apply domain knowledge in writing summaries. Our work enhances LLMs’ ability by introducing a novel planning engine to orchestrate structuring knowledge alignment. To achieve high-order planning, we divide knowledge encapsulation into two major phases: (i) holding dialogue structure and (ii) incorporating domain-specific knowledge. We employ a planning engine on Llama-2, resulting in a novel framework, PIECE. Our proposed system employs knowledge filtering-cum-scaffolding to encapsulate domain knowledge. Additionally, PIECE leverages sheaf convolution learning to enhance its understanding of the dialogue’s structural nuances. We compare PIECE with 14 baseline methods and observe a significant improvement across ROUGE and Bleurt scores. Further, expert evaluation and analyses validate the generation quality to be effective, sometimes even surpassing the gold standard. We further benchmark PIECE with other LLMs and report improvement, including Llama-2 (+2.72%), Mistral (+2.04%), and Zephyr (+1.59%), to justify the generalizability of the planning engine.",,2024,ACL,Yes,Language,Methodological Pruning via Merging: Compressing LLMs via Manifold Alignment Based Layer Merging,"While large language models (LLMs) excel in many domains, their complexity and scale challenge deployment in resource-limited environments. Current compression techniques, such as parameter pruning, often fail to effectively utilize the knowledge from pruned parameters. To address these challenges, we propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA), a novel approach that uses manifold learning and the Information Bottleneck (IB) measure to merge similar layers, reducing model size while preserving essential performance. We evaluate MKA on multiple benchmark datasets and various LLMs. Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods. Moreover, when coupled with quantization, MKA delivers even greater compression. Specifically, on the MMLU dataset using the Llama3-8B model, MKA achieves a compression ratio of 43.75% with a minimal performance decrease of only 2.82%. The proposed MKA method offers a resource-efficient and performance-preserving model compression technique for LLMs. We make our code available at https://github.com/SempraETY/Pruning-via-Merging",,2024,ACL,No,, Data Contamination Can Cross Language Barriers,"The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data. Existing contamination detection methods are typically based on the text overlap between training and evaluation data, which can be too superficial to reflect deeper forms of contamination. In this paper, we first present a cross-lingual form of contamination that inflates LLMs’ performance while evading current detection methods, deliberately injected by overfitting LLMs on the translated versions of benchmark test sets. Then, we propose generalization-based approaches to unmask such deeply concealed contamination. Specifically, we examine the LLM’s performance change after modifying the original benchmark by replacing the false answer choices with correct ones from other questions. Contaminated models can hardly generalize to such easier situations, where the false choices can be not even wrong, as all choices are correct in their memorization. Experimental results demonstrate that cross-lingual contamination can easily fool existing detection methods, but not ours. In addition, we discuss the potential utilization of cross-lingual contamination in interpreting LLMs’ working mechanisms and in post-training LLMs for enhanced multilingual capabilities.",,2024,ACL,No,, Game on Tree: Visual Hallucination Mitigation via Coarse-to-Fine View Tree and Game Theory,"Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which hinders their application in multimodal understanding and decision-making. In this work, we introduce a novel plug-and-play train-free decoding algorithm named Game and Tree based Hallucination Mitigation (GTHM), designed for mitigating VH. GTHM is inspired by empirical observations that the fuzziness of multi-granularity view perception exacerbates VH. Based on this, GTHM leverages visual information to construct a coarse-to-fine visual view tree (CFTree) that organizes visual objects, attributes, and relationships in a hierarchical manner. Additionally, we innovatively model the optimal visual-token matching process on the CFTree as the cooperative game. Specifically, we define the Tree-based Shapley Value (TSV) for each visual view on the CFTree to assess its significant contribution to the overall visual understanding, thereby determining the optimal visual granularity. Subsequently, we utilize the TSV as guidance to implement adaptive weight contrastive decoding to achieve vision-aware decoding. Extensive experiments on four popular benchmarks confirm the effectiveness of our GTHM in alleviating VH across different LVLM families without additional training or post-processing. Our code is published at https://github.com/mengchuang123/GTHM.",,2024,ACL,No,, Calibrating Language Models with Adaptive Temperature Scaling,"The effectiveness of large language models (LLMs) is not only measured by their ability to generate accurate outputs but also by their calibration—how well their confidence scores reflect the probability of their outputs being correct. While unsupervised pre-training has been shown to yield LLMs with well-calibrated conditional probabilities, recent studies have shown that after fine-tuning with reinforcement learning from human feedback (RLHF), the calibration of these models degrades significantly. In this work, we introduce Adaptive Temperature Scaling (ATS), a post-hoc calibration method that predicts a temperature scaling parameter for each token prediction. The predicted temperature values adapt based on token-level features and are fit over a standard supervised fine-tuning (SFT) dataset. The adaptive nature of ATS addresses the varying degrees of calibration shift that can occur after RLHF fine-tuning. ATS improves calibration by over 10-50% across three downstream natural language evaluation benchmarks compared to prior calibration methods and does not impede performance improvements from RLHF.",,2024,ACL,No,, Dual-Space Knowledge Distillation for Large Language Models,"Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the two models so that more knowledge can be transferred. However, in the current white-box KD framework, the output distributions are from the respective output spaces of the two models, using their own prediction heads. We argue that the space discrepancy will lead to low similarity between the teacher model and the student model on both representation and distribution levels. Furthermore, this discrepancy also hinders the KD process between models with different vocabularies, which is common for current LLMs. To address these issues, we propose a dual-space knowledge distillation (DSKD) framework that unifies the output spaces of the two models for KD. On the basis of DSKD, we further develop a cross-model attention mechanism, which can automatically align the representations of the two models with different vocabularies. Thus, our framework is not only compatible with various distance functions for KD (e.g., KL divergence) like the current framework, but also supports KD between any two LLMs regardless of their vocabularies. Experiments on task-agnostic instruction-following benchmarks show that DSKD significantly outperforms the current white-box KD framework with various distance functions, and also surpasses existing KD methods for LLMs with different vocabularies.",,2024,ACL,No,, NoiseBench: Benchmarking the Impact of Real Label Noise on Named Entity Recognition,"Available training data for named entity recognition (NER) often contains a significant percentage of incorrect labels for entity types and entity boundaries. Such label noise poses challenges for supervised learning and may significantly deteriorate model quality. To address this, prior work proposed various noise-robust learning approaches capable of learning from data with partially incorrect labels. These approaches are typically evaluated using simulated noise where the labels in a clean dataset are automatically corrupted. However, as we show in this paper, this leads to unrealistic noise that is far easier to handle than real noise caused by human error or semi-automatic annotation. To enable the study of the impact of various types of real noise, we introduce NoiseBench, an NER benchmark consisting of clean training data corrupted with 6 types of real noise, including expert errors, crowdsourcing errors, automatic annotation errors and LLM errors. We present an analysis that shows that real noise is significantly more challenging than simulated noise, and show that current state-of-the-art models for noise-robust learning fall far short of their achievable upper bound. We release NoiseBench for both English and German to the research community.",,2024,ACL,Yes,Language,Benchmark GuardBench: A Large-Scale Benchmark for Guardrail Models,"Generative AI systems powered by Large Language Models have become increasingly popular in recent years. Lately, due to the risk of providing users with unsafe information, the adoption of those systems in safety-critical domains has raised significant concerns. To respond to this situation, input-output filters, commonly called guardrail models, have been proposed to complement other measures, such as model alignment. Unfortunately, the lack of a standard benchmark for guardrail models poses significant evaluation issues and makes it hard to compare results across scientific publications. To fill this gap, we introduce GuardBench, a large-scale benchmark for guardrail models comprising 40 safety evaluation datasets. To facilitate the adoption of GuardBench, we release a Python library providing an automated evaluation pipeline built on top of it. With our benchmark, we also share the first large-scale prompt moderation datasets in German, French, Italian, and Spanish. To assess the current state-of-the-art, we conduct an extensive comparison of recent guardrail models and show that a general-purpose instruction-following model of comparable size achieves competitive results without the need for specific fine-tuning.",,2024,ACL,Yes,Language,Benchmark Jailbreaking LLMs with Arabic Transliteration and Arabizi,"This study identifies the potential vulnerabilities of Large Language Models (LLMs) to ‘jailbreak’ attacks, specifically focusing on the Arabic language and its various forms. While most research has concentrated on English-based prompt manipulation, our investigation broadens the scope to investigate the Arabic language. We initially tested the AdvBench benchmark in Standardized Arabic, finding that even with prompt manipulation techniques like prefix injection, it was insufficient to provoke LLMs into generating unsafe content. However, when using Arabic transliteration and chatspeak (or arabizi), we found that unsafe content could be produced on platforms like OpenAI GPT-4 and Anthropic Claude 3 Sonnet. Our findings suggest that using Arabic and its various forms could expose information that might remain hidden, potentially increasing the risk of jailbreak attacks. We hypothesize that this exposure could be due to the model’s learned connection to specific words, highlighting the need for more comprehensive safety training across all language forms.",,2024,ACL,No,, Efficient Unseen Language Adaptation for Multilingual Pre-Trained Language Models,"Multilingual pre-trained language models (mPLMs) have demonstrated notable effectiveness in zero-shot cross-lingual transfer tasks. Specifically, they can be fine-tuned solely on tasks in the source language and subsequently applied to tasks in the target language. However, for low-resource languages unseen during pre-training, relying solely on zero-shot language transfer often yields sub-optimal results. One common strategy is to continue training PLMs using masked language modeling objectives on the target language. Nonetheless, this approach can be inefficient due to the need to adjust all parameters for language adaptation. In this paper, we propose a more efficient solution: soft-prompt tuning for language adaptation. Our experiments demonstrate that with carefully designed prompts, soft-prompt tuning enables mPLMs to achieve effective zero-shot cross-lingual transfer to downstream tasks in previously unseen languages. Notably, we found that prompt tuning outperforms continuously trained baselines on two text classification benchmarks, encompassing 20 low-resource languages while utilizing a mere 0.28% of the tuned parameters. These results underscore the superior adaptability of mPLMs to previously unseen languages afforded by soft-prompt tuning compared to traditional fine-tuning methods.",,2024,ACL,No,, TV-TREES: Multimodal Entailment Trees for Neuro-Symbolic Video Reasoning,"It is challenging for models to understand complex, multimodal content such as television clips, and this is in part because video-language models often rely on single-modality reasoning and lack interpretability. To combat these issues we propose TV-TREES, the first multimodal entailment tree generator. TV-TREES serves as an approach to video understanding that promotes interpretable joint-modality reasoning by searching for trees of entailment relationships between simple text-video evidence and higher-level conclusions that prove question-answer pairs. We also introduce the task of multimodal entailment tree generation to evaluate reasoning quality. Our method’s performance on the challenging TVQA benchmark demonstrates interpretable, state-of-the-art zero-shot performance on full clips, illustrating that multimodal entailment tree generation can be a best-of-both-worlds alternative to black-box systems.",,2024,ACL,Yes,Multimodal, Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality,"In this paper, we propose a new method to enhance compositional understanding in pre-trained vision and language models (VLMs) without sacrificing performance in zero-shot multi-modal tasks. Traditional fine-tuning approaches often improve compositional reasoning at the cost of degrading multi-modal capabilities, primarily due to the use of global hard negative (HN) loss, which contrasts global representations of images and texts. This global HN loss pushes HN texts that are highly similar to the original ones, damaging the model’s multi-modal representations. To overcome this limitation, we propose Fine-grained Selective Calibrated CLIP (FSC-CLIP), which integrates local hard negative loss and selective calibrated regularization. These innovations provide fine-grained negative supervision while preserving the model’s representational integrity. Our extensive evaluations across diverse benchmarks for both compositionality and multi-modal tasks show that FSC-CLIP not only achieves compositionality on par with state-of-the-art models but also retains strong multi-modal capabilities. Code is available at: https://github.com/ytaek-oh/fsc-clip.",,2024,ACL,No,, Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model,"Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like GPT-4V and Llava in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks.",,2024,ACL,Yes,Multimodal, DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts,"Data-driven storytelling is a powerful method for conveying insights by combining narrative techniques with visualizations and text. These stories integrate visual aids, such as highlighted bars and lines in charts, along with textual annotations explaining insights. However, creating such stories requires a deep understanding of the data and meticulous narrative planning, often necessitating human intervention, which can be time-consuming and mentally taxing. While Large Language Models (LLMs) excel in various NLP tasks, their ability to generate coherent and comprehensive data stories remains underexplored. In this work, we introduce a novel task for data story generation and a benchmark containing 1,449 stories from diverse sources. To address the challenges of crafting coherent data stories, we propose a multi-agent framework employing two LLM agents designed to replicate the human storytelling process: one for understanding and describing the data (Reflection), generating the outline, and narration, and another for verification at each intermediary step. While our agentic framework generally outperforms non-agentic counterparts in both model-based and human evaluations, the results also reveal unique challenges in data story generation.",,2024,ACL,Yes,Multimodal, VerifyMatch: A Semi-Supervised Learning Paradigm for Natural Language Inference with Confidence-Aware MixUp,"While natural language inference (NLI) has emerged as a prominent task for evaluating a model’s capability to perform natural language understanding, creating large benchmarks for training deep learning models imposes a significant challenge since it requires extensive human annotations. To overcome this, we propose to construct pseudo-generated samples (premise-hypothesis pairs) using class-specific fine-tuned large language models (LLMs) thereby reducing the human effort and the costs in annotating large amounts of data. However, despite the impressive performance of LLMs, it is necessary to verify that the pseudo-generated labels are actually correct. Towards this goal, in this paper, we propose VerifyMatch, a semi-supervised learning (SSL) approach in which the LLM pseudo-labels guide the training of the SSL model and, at the same time, the SSL model acts as a verifier of the LLM-generated data. In our approach, we retain all pseudo-labeled samples, but to ensure unlabeled data quality, we further propose to use MixUp whenever the verifier does not agree with the LLM-generated label or when they both agree on the label but the verifier has a low confidence—lower than an adaptive confidence threshold. We achieve competitive accuracy compared to strong baselines for NLI datasets in low-resource settings.",,2024,ACL,No,, CaT-Bench: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans,"Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps need to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs’ ability to detect dependence between steps has significant room for improvement.",,2024,ACL,Yes,Language,Benchmark Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models,"While humans naturally develop theory of mind (ToM), the capability to understand other people’s mental states and beliefs, state-of-the-art large language models (LLMs) underperform on simple ToM benchmarks. We posit that we can extend our understanding of LLMs’ ToM abilities by evaluating key human ToM precursors-perception inference and perception-to-belief inference-in LLMs. We introduce two datasets, Percept-ToMi and Percept-FANToM, to evaluate these precursory inferences for ToM in LLMs by annotating characters’ perceptions on ToMi and FANToM, respectively.Our evaluation of eight state-of-the-art LLMs reveals that the models generally perform well in perception inference while exhibiting limited capability in perception-to-belief inference (e.g., lack of inhibitory control).Based on these results, we present PercepToM, a novel ToM method leveraging LLMs’ strong perception inference capability while supplementing their limited perception-to-belief inference. Experimental results demonstrate that PercepToM significantly enhances LLM’s performance, especially in false belief scenarios.",,2024,ACL,Yes,Language,Methodological Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs,"Extractive summarization plays a pivotal role in natural language processing due to its wide-range applications in summarizing diverse content efficiently, while also being faithful to the original content. Despite significant advancement achieved in extractive summarization by Large Language Models (LLMs), these summaries frequently exhibit incoherence. An important aspect of the coherent summary is its readability for intended users. Although there have been many datasets and benchmarks proposed for creating coherent extractive summaries, none of them currently incorporate user intent to improve coherence in extractive summarization. Motivated by this, we propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback, offering valuable insights into how to improve coherence in extractive summaries. We utilize this dataset for aligning LLMs through supervised fine-tuning with natural language human feedback to enhance the coherence of their generated summaries. Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (~10% Rouge-L) in terms of producing coherent summaries. We further utilize human feedback to benchmark results over instruction-tuned models such as FLAN-T5 which resulted in several interesting findings.",,2024,ACL,No,, Not All Contexts Are Equal: Teaching LLMs Credibility-aware Generation,"The rapid development of large language models has led to the widespread adoption of Retrieval-Augmented Generation (RAG), which integrates external knowledge to alleviate knowledge bottlenecks and mitigate hallucinations. However, the existing RAG paradigm inevitably suffers from the impact of flawed information introduced during the retrieval phrase, thereby diminishing the reliability and correctness of the generated outcomes. In this paper, we propose Credibility-aware Generation (CAG), a universally applicable framework designed to mitigate the impact of flawed information in RAG. At its core, CAG aims to equip models with the ability to discern and process information based on its credibility. To this end, we propose an innovative data transformation framework that generates data based on credibility, thereby effectively endowing models with the capability of CAG. Furthermore, to accurately evaluate the models’ capabilities of CAG, we construct a comprehensive benchmark covering three critical real-world scenarios. Experimental results demonstrate that our model can effectively understand and employ credibility for generation, significantly outperform other models with retrieval augmentation, and exhibit robustness despite the increasing noise in the context.",,2024,ACL,Yes,Language,Methodological Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues,"Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts. Current research predominantly treats personality recognition as a classification task, failing to reveal the supporting evidence for the recognized personality. In this paper, we propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait. Inspired by personality theories, personality traits are made up of stable patterns of personality state, where the states are short-term characteristic patterns of thoughts, feelings, and behaviors in a concrete situation at a specific moment in time. We propose an explainable personality recognition framework called Chain-of-Personality-Evidence (CoPE), which involves a reasoning process from specific contexts to short-term personality states to long-term personality traits. Furthermore, based on the CoPE framework, we construct an explainable personality recognition dataset from dialogues, PersonalityEvd. We introduce two explainable personality state recognition and explainable personality trait recognition tasks, which require models to recognize the personality state and trait labels and their corresponding support evidence. Our extensive experiments based on Large Language Models on the two tasks show that revealing personality traits is very challenging and we present some insights for future research. We will release our dataset and source code to facilitate further studies in this direction.",,2024,ACL,Yes,Language,Benchmark Self-Training Large Language and Vision Assistant for Medical Question Answering,"Large Vision-Language Models (LVLMs) have shown significant potential in assisting medical diagnosis by leveraging extensive biomedical datasets. However, the advancement of medical image understanding and reasoning critically depends on building high-quality visual instruction data, which is costly and labor-intensive to obtain, particularly in the medical domain. To mitigate this data-starving issue, we introduce Self-Training Large Language and Vision Assistant for Medical (STLLaVA-Med). The proposed method is designed to train a policy model (an LVLM) capable of auto-generating medical visual instruction data to improve data efficiency, guided through Direct Preference Optimization (DPO). Specifically, a more powerful and larger LVLM (e.g., GPT-4o) is involved as a biomedical expert to oversee the DPO fine-tuning process on the auto-generated data, encouraging the policy model to align efficiently with human preferences. We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks, demonstrating competitive zero-shot performance with the utilization of only 9% of the medical data.",,2024,ACL,No,, MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large Language Models,"Large language models (LLMs) are increasingly used for complex multi-turn conversations across diverse real-world applications. However, existing benchmarks mainly focus on single-turn evaluations, overlooking the models’ capabilities in multi-turn interactions. To address this gap, we introduce , a comprehensive benchmark to evaluate the multi-turn conversational abilities of LLMs. By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up. We construct multi-turn queries for each category either by augmenting existing datasets or creating new examples using GPT-4 with a human-in-the-loop process to avoid data leakage. To study the factors impacting multi-turn abilities, we create single-turn versions of the 1170 multi-turn queries and compare performance. Our evaluation of 10 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks. We observe significant performance degradation in multi-turn settings compared to single-turn settings in most models, which is not correlated with the models’ fundamental capabilities. Moreover, we identify the distance to relevant content and susceptibility to error propagation as the key factors influencing multi-turn performance.",,2024,ACL,Yes,Language,Benchmark MASIVE: Open-Ended Affective State Identification in English and Spanish,"In the field of emotion analysis, much NLP research focuses on identifying a limited number of discrete emotion categories, often applied across languages. These basic sets, however, are rarely designed with textual data in mind, and culture, language, and dialect can influence how particular emotions are interpreted. In this work, we broaden our scope to a practically unbounded set of affective states, which includes any terms that humans use to describe their experiences of feeling. We collect and publish MASIVE, a dataset of Reddit posts in English and Spanish containing over 1,000 unique affective states each. We then define the new problem of affective state identification for language generation models framed as a masked span prediction task. On this task, we find that smaller finetuned multilingual models outperform much larger LLMs, even on region-specific Spanish affective states. Additionally, we show that pretraining on MASIVE improves model performance on existing emotion benchmarks. Finally, through machine translation experiments, we find that native speaker-written data is vital to good performance on this task.",,2024,ACL,No,, AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality,"Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.",,2024,ACL,No,, Do LLMs Know to Respect Copyright Notice?,"Prior study shows that LLMs sometimes generate content that violates copyright. In this paper, we study another important yet underexplored problem, i.e., will LLMs respect copyright information in user input, and behave accordingly? The research problem is critical, as a negative answer would imply that LLMs will become the primary facilitator and accelerator of copyright infringement behavior. We conducted a series of experiments using a diverse set of language models, user prompts, and copyrighted materials, including books, news articles, API documentation, and movie scripts. Our study offers a conservative evaluation of the extent to which language models may infringe upon copyrights when processing user input containing protected material. This research emphasizes the need for further investigation and the importance of ensuring LLMs respect copyright regulations when handling user input to prevent unauthorized use or reproduction of protected content. We also release a benchmark dataset serving as a test bed for evaluating infringement behaviors by LLMs and stress the need for future alignment.",,2024,ACL,Yes,Language,Methodological Rethinking the Role of Proxy Rewards in Language Model Alignment,"Learning from human feedback via proxy reward modeling has been studied to align Large Language Models (LLMs) with human values. However, achieving reliable training through that proxy reward model (RM) is not a trivial problem, and its behavior remained as a black-box. In this paper, we study the role of proxy rewards in the LLM alignment via ‘reverse reward engineering’ by composing interpretable features as a white-box reward function. We aim to replicate the ground truth (gold) reward signal by achieving a monotonic relationship between the proxy and gold reward signals after training the model using the proxy reward in reinforcement learning (RL). Our findings indicate that successfully emulating the gold reward requires generating responses that are relevant with enough length to open-ended questions, while also ensuring response consistency in closed-ended questions. Furthermore, resulting models optimizing our devised white-box reward show competitive performances with strong open-source RMs in alignment benchmarks. We highlight its potential usage as a simple but strong reward baseline for the LLM alignment, not requiring explicit human feedback dataset and RM training.",,2024,ACL,No,, Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions?,"The adaption of multilingual pre-trained LLMs into eloquent and helpful assistants is essential to facilitate their use across different language regions. In that spirit, we are the first to conduct an extensive study of the performance of multilingual models instruction-tuned on different language compositions on parallel instruction-tuning benchmarks across a selection of the most spoken Indo-European languages. We systematically examine the effects of language and instruction dataset size on a mid-sized and a large, multilingual LLMs by instruction-tuning them on parallel instruction-tuning datasets. Our results demonstrate that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 9.9%. Furthermore, we show that the Superficial Alignment Hypothesis does not hold in general, as the investigated multilingual 7B parameter model presents a counter-example requiring large-scale instruction-tuning datasets. Finally, we conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.",,2024,ACL,Yes,Language,Methodological Multi-LogiEval: Towards Evaluating Multi-Step Logical Reasoning Ability of Large Language Models,"As Large Language Models (LLMs) continue to exhibit remarkable performance in natural language understanding tasks, there is a crucial need to measure their ability for human-like multi-step logical reasoning. Existing logical reasoning evaluation benchmarks often focus primarily on simplistic single-step or multi-step reasoning with a limited set of inference rules. Furthermore, the lack of datasets for evaluating non-monotonic reasoning represents a crucial gap since it aligns more closely with human-like reasoning. To address these limitations, we propose Multi-LogiEval, a comprehensive evaluation dataset encompassing multi-step logical reasoning with various inference rules and depths. Multi-LogiEval covers three logic types — propositional, first-order, and non-monotonic consisting of more than 30 inference rules and more than 60 of their combinations with various depths. Leveraging this dataset, we conduct evaluations on a range of LLMs such as GPT-4, ChatGPT, Gemini-Pro, Orca, and Mistral, employing a zero-shot chain-of-thought. Experimental results show that there is a significant drop in the performance of LLMs as the reasoning steps/depth increases (average accuracy of ~68% at depth-1 to ~43% at depth-5). We further conduct a thorough investigation of reasoning chains generated by LLMs which reveals several important findings. We believe that Multi-LogiEval facilitates future research for evaluating and enhancing the logical reasoning ability of LLMs.",,2024,ACL,Yes,Language,Benchmark Memorize Step by Step: Efficient Long-Context Prefilling with Incremental Memory and Decremental Chunk,"The evolution of Large Language Models (LLMs) has led to significant advancements, with models like Claude and Gemini capable of processing contexts up to 1 million tokens. However, efficiently handling long sequences remains challenging, particularly during the prefilling stage when input lengths exceed GPU memory capacity. Traditional methods often segment sequence into chunks and compress them iteratively with fixed-size memory. However, our empirical analysis shows that the fixed-size memory results in wasted computational and GPU memory resources. Therefore, we introduces Incremental Memory (IM), a method that starts with a small memory size and gradually increases it, optimizing computational efficiency. Additionally, we propose Decremental Chunk based on Incremental Memory (IMDC), which reduces chunk size while increasing memory size, ensuring stable and lower GPU memory usage. Our experiments demonstrate that IMDC is consistently faster (1.45x) and reduces GPU memory consumption by 23.3% compared to fixed-size memory, achieving comparable performance on the LongBench Benchmark.",,2024,ACL,No,, Connecting the Dots: Evaluating Abstract Reasoning Capabilities of LLMs Using the New York Times Connections Word Game,"The New York Times Connections game has emerged as a popular and challenging pursuit for word puzzle enthusiasts. We collect438 Connections games to evaluate the performance of state-of-the-art large language models (LLMs) against expert and novice humanplayers. Our results show that even the best-performing LLM, Claude 3.5 Sonnet, which has otherwise shown impressive reasoning abilities on a wide variety of benchmarks, can only fully solve 18% of the games. Novice and expert players perform better than Claude 3.5 Sonnet, with expert human players significantly outperforming it. We create a taxonomy of the knowledge types required to successfully cluster and categorize words in the Connections game. We find that while LLMs are decent at categorizing words based on semantic relations they struggle with other types of knowledge such as Encyclopedic Knowledge, Multiword Expressions or knowledge that combines both Word Form and Meaning. Our results establish the New York Times Connections game as a challenging benchmark for evaluating abstract reasoning capabilities in humans and AI systems.",,2024,ACL,Yes,Language,Benchmark Retrieval-enriched zero-shot image classification in low-resource domains,"Low-resource domains, characterized by scarce data and annotations, present significant challenges for language and visual understanding tasks, with the latter much under-explored in the literature. Recent advancements in Vision-Language Models (VLM) have shown promising results in high-resource domains but fall short in low-resource concepts that are under-represented (e.g. only a handful of images per category) in the pre-training set. We tackle the challenging task of zero-shot low-resource image classification from a novel perspective. By leveraging a retrieval-based strategy, we achieve this in a training-free fashion. Specifically, our method, named CoRE (Combination of Retrieval Enrichment), enriches the representation of both query images and class prototypes by retrieving relevant textual information from large web-crawled databases. This retrieval-based enrichment significantly boosts classification performance by incorporating the broader contextual information relevant to the specific class. We validate our method on a newly established benchmark covering diverse low-resource domains, including medical imaging, rare plants, and circuits. Our experiments demonstrate that CoRE outperforms existing state-of-the-art methods that rely on synthetic data generation and model fine-tuning.",,2024,ACL,Yes,Image, QuBE: Question-based Belief Enhancement for Agentic LLM Reasoning,"Despite advancements in Large Language Models (LLMs), many complex tasks are not easily solved in a single inference step, requiring the use of agentic LLMs in interactive environments. However, agentic LLMs suffer from a phenomenon known as reasoning derailment, due to the indiscriminate incorporation of observations from partially observable environments. We introduce QuBE, a method that enhances agents’ focus on task-relevant contexts, by constructing a belief state via question answering. We validate QuBE through experiments in two agentic LLM scenarios with partial observability: 1) a canonical interactive decision-making scenario using text-based game engines, and 2) an interactive retrieval-augmented generation (RAG) scenario using search engines. In the AlfWorld text-based game, QuBE outperforms established baselines by substantial margins, and in the search engine scenario, it achieves marked improvements on the BeIR zero-shot retrieval benchmark. The results demonstrate that QuBE significantly mitigates reasoning derailment, refining the decision-making process of LLM agents in partially observed environments.",,2024,ACL,No,, CompAct: Compressing Retrieved Documents Actively for Question Answering,"Retrieval-augmented generation supports language models to strengthen their factual groundings by providing external contexts. However, language models often face challenges when given extensive information, diminishing their effectiveness in solving questions. Context compression tackles this issue by filtering out irrelevant information, but current methods still struggle in realistic scenarios where crucial information cannot be captured with a single-step approach. To overcome this limitation, we introduce CompAct, a novel framework that employs an active strategy to condense extensive documents without losing key information. Our experiments demonstrate that CompAct brings significant improvements in both performance and compression rate on multi-hop question-answering benchmarks. CompAct flexibly operates as a cost-efficient plug-in module with various off-the-shelf retrievers or readers, achieving exceptionally high compression rates (47x).",,2024,ACL,No,, An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models,"Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs’ spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs’ spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our new benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning.",,2024,ACL,Yes,Multimodal, Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark,"Large Language Models (LLMs) offer the potential for automatic time series analysis and reporting, which is a critical task across many domains, spanning healthcare, finance, climate, energy, and many more. In this paper, we propose a framework for rigorously evaluating the capabilities of LLMs on time series understanding, encompassing both univariate and multivariate forms. We introduce a comprehensive taxonomy of time series features, a critical framework that delineates various characteristics inherent in time series data. Leveraging this taxonomy, we have systematically designed and synthesized a diverse dataset of time series, embodying the different outlined features, each accompanied by textual descriptions. This dataset acts as a solid foundation for assessing the proficiency of LLMs in comprehending time series. Our experiments shed light on the strengths and limitations of state-of-the-art LLMs in time series understanding, revealing which features these models readily comprehend effectively and where they falter. In addition, we uncover the sensitivity of LLMs to factors including the formatting of the data, the position of points queried within a series and the overall time series length.",,2024,ACL,Yes,Other, SpeechQE: Estimating the Quality of Direct Speech Translation,"Recent advances in automatic quality estimation for machine translation have exclusively focused on written language, leaving the speech modality underexplored. In this work, we formulate the task of quality estimation for speech translation (SpeechQE), construct a benchmark, and evaluate a family of systems based on cascaded and end-to-end architectures. In this process, we introduce a novel end-to-end system leveraging pre-trained text LLM. Results suggest that end-to-end approaches are better suited to estimating the quality of direct speech translation than using quality estimation systems designed for text in cascaded systems. More broadly, we argue that quality estimation of speech translation needs to be studied as a separate problem from that of text, and release our [data and models](https://github.com/h-j-han/SpeechQE) to guide further research in this space.",,2024,ACL,Yes,Audio, The Greatest Good Benchmark: Measuring LLMs’ Alignment with Utilitarian Moral Dilemmas,"The question of how to make decisions that maximise the well-being of all persons is very relevant to design language models that are beneficial to humanity and free from harm. We introduce the Greatest Good Benchmark to evaluate the moral judgments of LLMs using utilitarian dilemmas. Our analysis across 15 diverse LLMs reveals consistently encoded moral preferences that diverge from established moral theories and lay population moral standards. Most LLMs have a marked preference for impartial beneficence and rejection of instrumental harm. These findings showcase the ‘artificial moral compass’ of LLMs, offering insights into their moral alignment.",,2024,ACL,Yes,Language,Benchmark FOLIO: Natural Language Reasoning with First-Order Logic,"Large language models (LLMs) have achieved remarkable performance on a variety of natural language understanding tasks. However, existing benchmarks are inadequate in measuring the complex logical reasoning capabilities of a model. We present FOLIO, a human-annotated, logically complex and diverse dataset for reasoning in natural language (NL), equipped with first-order logic (FOL) annotations. FOLIO consists of 1,430 examples (unique conclusions), each paired with one of 487 sets of premises used to deductively reason for the validity of each conclusion. The logical correctness of the premises and conclusions is ensured by their FOL annotations, which are automatically verified by an FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO constitute a new NL-FOL translation dataset. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models. For both NL reasoning and NL-FOL translation, we benchmark multiple state-of-the-art language models. Our results show that a subset of FOLIO remains a challenge for one of the most capable Large Language Model (LLM) publicly available, GPT-4.",,2024,ACL,Yes,Language,Benchmark M3Hop-CoT: Misogynous Meme Identification with Multimodal Multi-hop Chain-of-Thought,"In recent years, there has been a significant rise in the phenomenon of hate against women on social media platforms, particularly through the use of misogynous memes. These memes often target women with subtle and obscure cues, making their detection a challenging task for automated systems. Recently, Large Language Models (LLMs) have shown promising results in reasoning using Chain-of-Thought (CoT) prompting to generate the intermediate reasoning chains as the rationale to facilitate multimodal tasks, but often neglect cultural diversity and key aspects like emotion and contextual knowledge hidden in the visual modalities. To address this gap, we introduce a **M**ultimodal **M**ulti-hop CoT (M3Hop-CoT) framework for **M**isogynous meme identification, combining a CLIP-based classifier and a multimodal CoT module with entity-object-relationship integration. M3Hop-CoT employs a three-step multimodal prompting principle to induce emotions, target awareness, and contextual knowledge for meme analysis. Our empirical evaluation, including both qualitative and quantitative analysis, validates the efficacy of the M3Hop-CoT framework on the SemEval-2022 Task 5 (**MAMI task**) dataset, highlighting its strong performance in the macro-F1 score. Furthermore, we evaluate the model’s generalizability by evaluating it on various benchmark meme datasets, offering a thorough insight into the effectiveness of our approach across different datasets. Codes are available at this link: https://github.com/Gitanjali1801/LLM_CoT",,2024,ACL,No,, MIBench: Evaluating Multimodal Large Language Models over Multiple Images,"Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. In this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source and closed-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as limited fine-grained perception, multi-image reasoning and in-context learning abilities. The annotated data of MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.",,2024,ACL,Yes,Image, ZEBRA: Zero-Shot Example-Based Retrieval Augmentation for Commonsense Question Answering,"Current Large Language Models (LLMs) have shown strong reasoning capabilities in commonsense question answering benchmarks, but the process underlying their success remains largely opaque. As a consequence, recent approaches have equipped LLMs with mechanisms for knowledge retrieval, reasoning and introspection, not only to improve their capabilities but also to enhance the interpretability of their outputs. However, these methods require additional training, hand-crafted templates or human-written explanations. To address these issues, we introduce ZEBRA, a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection and dispenses with the need for additional training of the LLM. Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs. This generated knowledge is then used to answer the input question, improving the model’s performance and interpretability. We evaluate our approach across 8 well-established commonsense reasoning benchmarks, demonstrating that ZEBRA consistently outperforms strong LLMs and previous knowledge integration approaches, achieving an average accuracy improvement of up to 4.5 points.",,2024,ACL,No,, Entity Insertion in Multilingual Linked Corpora: The Case of Wikipedia,"Links are a fundamental part of information networks, turning isolated pieces of knowledge into a network of information that is much richer than the sum of its parts. However, adding a new link to the network is not trivial: it requires not only the identification of a suitable pair of source and target entities but also the understanding of the content of the source to locate a suitable position for the link in the text. The latter problem has not been addressed effectively, particularly in the absence of text spans in the source that could serve as anchors to insert a link to the target entity. To bridge this gap, we introduce and operationalize the task of entity insertion in information networks. Focusing on the case of Wikipedia, we empirically show that this problem is, both, relevant and challenging for editors. We compile a benchmark dataset in 105 languages and develop a framework for entity insertion called LocEI (Localized Entity Insertion) and its multilingual variant XLocEI. We show that XLocEI outperforms all baseline models (including state-of-the-art prompt-based ranking with LLMs such as GPT-4) and that it can be applied in a zero-shot manner on languages not seen during training with minimal performance drop. These findings are important for applying entity insertion models in practice, e.g., to support editors in adding links across the more than 300 language versions of Wikipedia.",,2024,ACL,Yes,Language,Methodological OpenOmni: A Collaborative Open Source Tool for Building Future-Ready Multimodal Conversational Agents,"Multimodal conversational agents are highly desirable because they offer natural and human-like interaction.However, there is a lack of comprehensive end-to-end solutions to support collaborative development and benchmarking.While proprietary systems like GPT-4o and Gemini demonstrating impressive integration of audio, video, and text with response times of 200-250ms, challenges remain in balancing latency, accuracy, cost, and data privacy.To better understand and quantify these issues, we developed OpenOmni, an open-source, end-to-end pipeline benchmarking tool that integrates advanced technologies such as Speech-to-Text, Emotion Detection, Retrieval Augmented Generation, Large Language Models, along with the ability to integrate customized models.OpenOmni supports local and cloud deployment, ensuring data privacy and supporting latency and accuracy benchmarking. This flexible framework allows researchers to customize the pipeline, focusing on real bottlenecks and facilitating rapid proof-of-concept development. OpenOmni can significantly enhance applications like indoor assistance for visually impaired individuals, advancing human-computer interaction.Our demonstration video is available https://www.youtube.com/watch?v=zaSiT3clWqY, demo is available via https://openomni.ai4wa.com, code is available via https://github.com/AI4WA/OpenOmniFramework.",,2024,ACL,Yes,Multimodal, ReDel: A Toolkit for LLM-Powered Recursive Multi-Agent Systems,"Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support *recursive* multi-agent systems—where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to achieve significant performance gains on agentic benchmarks and easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source at https://github.com/zhudotexe/redel, and free to use under the MIT license.",,2024,ACL,No,, TAIL: A Toolkit for Automatic and Realistic Long-Context Large Language Model Evaluation,"As long-context large language models (LLMs) are attracting increasing attention for their ability to handle context windows exceeding 128k tokens, the need for effective evaluation methods for these models becomes critical.Existing evaluation methods, however, fall short: needle-in-a-haystack (NIAH) and its variants are overly simplistic, while creating realistic benchmarks is prohibitively expensive due to extensive human annotation requirements. To bridge this gap, we propose TAIL, an automatic toolkit for creating realistic evaluation benchmarks and assessing the performance of long-context LLMs.With TAIL, users can customize the building of a long-context, document-grounded QA benchmark and obtain visualized performance metrics of evaluated models.TAIL has the advantage of requiring minimal human annotation and generating natural questions based on user-provided long-context documents. We apply TAIL to construct a benchmark encompassing multiple expert domains, such as finance, law, patent, and scientific literature. We then evaluate four state-of-the-art long-context LLMs using this benchmark. Results show that all LLMs experience varyingdegrees of performance degradation as contextlengths increase.",,2024,ACL,Yes,Language,Methodological OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs,"The increased use of large language models (LLMs) across a variety of real-world applications calls for automatic tools to check the factual accuracy of their outputs, as LLMs often hallucinate. This is difficult as it requires assessing the factuality of free-form open-domain responses. While there has been a lot of research on this topic, different papers use different evaluation benchmarks and measures,which makes them hard to compare and hampers future progress. To mitigate these issues, we developed OpenFactCheck, a unified framework, with three modules: (i) RESPONSEEVAL, which allows users to easily customize an automatic fact-checking system and to assess the factuality of all claims in an input document using that system, (ii) LLMEVAL, which assesses the overall factuality of an LLM, and (iii) CHECKEREVAL, a module to evaluate automatic fact-checking systems. OpenFactCheck is open-sourced (https://github.com/mbzuai-nlp/openfactcheck) and publicly released as a Python library (https://pypi.org/project/openfactcheck/) and also as a web service (http://app.openfactcheck.com). A video describing the system is available at https://youtu.be/-i9VKL0HleI.",,2024,ACL,Yes,Language,Methodological ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning,"Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs’ powerful generative abilities for learning passage embeddings. To showcase our framework’s flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.",,2024,ACL,No,, MATSA: Multi-Agent Table Structure Attribution,"Large Language Models (LLMs) have significantly advanced QA tasks through in-context learning but often suffer from hallucinations. Attributing supporting evidence grounded in source documents has been explored for unstructured text in the past. However, tabular data present unique challenges for attribution due to ambiguities (e.g., abbreviations, domain-specific terms), complex header hierarchies, and the difficulty in interpreting individual table cells without row and column context. We introduce a new task, Fine-grained Structured Table Attribution (FAST-Tab), to generate row and column-level attributions supporting LLM-generated answers. We present MATSA, a novel LLM-based Multi-Agent system capable of post-hoc Table Structure Attribution to help users visually interpret factual claims derived from tables. MATSA augments tabular entities with descriptive context about structure, metadata, and numerical trends to semantically retrieve relevant rows and columns corresponding to facts in an answer. Additionally, we propose TabCite, a diverse benchmark designed to evaluate the FAST-Tab task on tables with complex layouts sourced from Wikipedia and business PDF documents. Extensive experiments demonstrate that MATSA significantly outperforms SOTA baselines on TabCite, achieving an 8-13% improvement in F1 score. Qualitative user studies show that MATSA helps increase user trust in Generative AI by providing enhanced explainability for LLM-assisted table QA and enables professionals to be more productive by saving time on fact-checking LLM-generated answers.",,2024,ACL,Yes,Other, OpenT2T: An Open-Source Toolkit for Table-to-Text Generation,"Table data is pervasive in various industries, and its comprehension and manipulation demand significant time and effort for users seeking to extract relevant information. Consequently, an increasing number of studies have been directed towards table-to-text generation tasks. However, most existing methods are benchmarked solely on a limited number of datasets with varying configurations, leading to a lack of unified, standardized, fair, and comprehensive comparison between methods. This paper presents OpenT2T, the first open-source toolkit for table-to-text generation, designed to reproduce existing large language models (LLMs) for performance comparison and expedite the development of new models.We have implemented and compared a wide range of LLMs under zero- and few-shot settings on 9 table-to-text generation datasets, covering data insight generation, table summarization, and free-form table question answering. Additionally, we maintain a public leaderboard to provide insights for future work into how to choose appropriate table-to-text generation systems for real-world scenarios.",,2024,ACL,Yes,Language,Technical WalledEval: A Comprehensive Safety Evaluation Toolkit for Large Language Models,"WalledEval is a comprehensive AI safety testing toolkit designed to evaluate large language models (LLMs). It accommodates a diverse range of models, including both open-weight and API-based ones, and features over 35 safety benchmarks covering areas such as multilingual safety, exaggerated safety, and prompt injections. The framework supports both LLM and judge benchmarking, and incorporates custom mutators to test safety against various text-style mutations such as future tense and paraphrasing. Additionally, WalledEval introduces WalledGuard, a new, small and performant content moderation tool, and SGXSTest, a benchmark for assessing exaggerated safety in cultural contexts. We make WalledEval publicly available at https://github.com/walledai/walledeval with a demonstration video at https://youtu.be/50Zy97kj1MA.",,2024,ACL,Yes,Language,Technical RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation,"Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.",,2024,ACL,No,, Sailor: Open Language Models for South-East Asia,"We present Sailor, a family of open language models ranging from 0.5B to 14B parameters, tailored for South-East Asian (SEA) languages. From Qwen1.5, Sailor models accept 200B to 400B tokens during continual pre-training, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize the data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. We share our insights to spark a wider interest in developing large language models for multilingual use cases.",,2024,ACL,No,, INDUS: Effective and Efficient Language Models for Scientific Applications,"Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this insight, we developed INDUS, a comprehensive suite of LLMs tailored for the closely-related domains of Earth science, biology, physics, heliophysics, planetary sciences and astrophysics, and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address NLP tasks, (2) a contrastive-learning based text embedding model trained using a diverse set of datasets to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation for applications which have latency or resource constraints. We also created three new scientific benchmark datasets, Climate-Change NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. We show that our models outperform both general-purpose (RoBERTa) and domain- specific (SciBERT) encoders on these new tasks as well as existing tasks in the domains of interest. Furthermore, we demonstrate the use of these models in two industrial settings- as a retrieval model for large-scale vector search applications and in automatic content tagging systems.",,2024,ACL,Yes,Language,Technical LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit,"Recent advancements in large language models (LLMs) are propelling us toward artificial general intelligence with their remarkable emergent abilities and reasoning capabilities. However, the substantial computational and memory requirements limit the widespread adoption. Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating LLMs, albeit with potential risks to accuracy. Numerous studies have aimed to minimize the accuracy loss associated with quantization. However, their quantization configurations vary from each other and cannot be fairly compared. In this paper, we present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization. LLMC integrates dozens of algorithms, models, and hardware, offering high extensibility from integer to floating-point quantization, from LLM to vision-language (VLM) model, from fixed-bit to mixed precision, and from quantization to sparsification. Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats, providing novel insights and detailed analyses for further research and practical guidance for users. Our toolkit is available at https://github.com/ModelTC/llmc.",,2024,ACL,Yes,Language,Benchmark "PDFTriage: Question Answering over Long, Structured Documents","Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user’s mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA. Our code and datasets will be released soon on Github.",,2024,ACL,Yes,Language,Methodological SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models,"This study presents a novel learning approach designed to enhance both mathematical reasoning and problem-solving abilities of Large Language Models (LLMs). We focus on integrating the Chain-of-Thought (CoT) and the Program-of-Thought (PoT) learning, hypothesizing that prioritizing the learning of mathematical reasoning ability is helpful for the amplification of problem-solving ability. Thus, the initial learning with CoT is essential for solving challenging mathematical problems. To this end, we propose a sequential learning approach, named SAAS (Solving Ability Amplification Strategy), which strategically transitions from CoT learning to PoT learning. Our empirical study, involving an extensive performance comparison using several benchmarks, demonstrates that our SAAS achieves state-of-the-art (SOTA) performance. The results underscore the effectiveness of our sequential learning approach, marking a significant advancement in the field of mathematical reasoning in LLMs.",,2024,ACL,No,, Robust ASR Error Correction with Conservative Data Filtering,"Error correction (EC) based on large language models is an emerging technology to enhance the performance of automatic speech recognition (ASR) systems.Generally, training data for EC are collected by automatically pairing a large set of ASR hypotheses (as sources) and their gold references (as targets).However, the quality of such pairs is not guaranteed, and we observed various types of noise which can make the EC models brittle, e.g. inducing overcorrection in out-of-domain (OOD) settings.In this work, we propose two fundamental criteria that EC training data should satisfy: namely, EC targets should (1) improve linguistic acceptability over sources and (2) be inferable from the available context (e.g. source phonemes).Through these criteria, we identify low-quality EC pairs and train the models not to make any correction in such cases, the process we refer to as conservative data filtering.In our experiments, we focus on Japanese ASR using a strong Conformer-CTC as the baseline and finetune Japanese LLMs for EC.Through our evaluation on a suite of 21 internal benchmarks, we demonstrate that our approach can significantly reduce overcorrection and improve both the accuracy and quality of ASR results in the challenging OOD settings.",,2024,ACL,No,, Divide-Conquer-Reasoning for Consistency Evaluation and Automatic Improvement of Large Language Models,"Evaluating the quality and consistency of text generated by Large Language Models (LLMs) poses a significant, yet unresolved challenge for industry research. We propose , an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators operating at the paragraph level, our method employs a divide-and-conquer evaluator () that breaks down the paragraph-to-paragraph comparison into sentence-to-paragraph comparisons. To facilitate this approach, we also introduce an automatic metric converter () that translates the output from into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver () that mitigates inconsistencies by leveraging the analytical reasons identified by . Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +16.8% and +32.5% on the SummEval dataset) in consistency evaluation across multiple benchmarks. Our approach also substantially reduces nearly 90% output inconsistencies in one iteration, showing promise for effective hallucination mitigation in real-world industrial applications.",,2024,ACL,No,, SEED: Semantic Knowledge Transfer for Language Model Adaptation to Materials Science,"Materials science is an interdisciplinary field focused on studying and discovering materials around us. However, due to the vast space of materials, datasets in this field are typically scarce and have limited coverage. This inherent limitation makes current adaptation methods less effective when adapting pre-trained language models (PLMs) to materials science, as these methods rely heavily on the frequency information from limited downstream datasets. In this paper, we propose Semantic Knowledge Transfer (SEED), a novel vocabulary expansion method to adapt the pre-trained language models for materials science. The core strategy of SEED is to transfer the materials knowledge of lightweight embeddings into the PLMs. To this end, we introduce knowledge bridge networks, which learn to transfer the latent knowledge of the materials embeddings into ones compatible with PLMs. By expanding the embedding layer of PLMs with these transformed embeddings, PLMs can comprehensively understand the complex terminology associated with materials science. We conduct extensive experiments across a broad range of materials-related benchmarks. Comprehensive evaluation results convincingly demonstrate that SEED mitigates the mentioned limitations of previous adaptation methods, showcasing the efficacy of transferring embedding knowledge into PLMs.",,2024,ACL,No,, BPID: A Benchmark for Personal Identity Deduplication,"Data deduplication is a critical task in data management and mining, focused on consolidating duplicate records that refer to the same entity. Personally Identifiable Information (PII) is a critical class of data for deduplication across various industries. Consumer data, stored and generated through various engagement channels, is crucial for marketers, agencies, and publishers. However, a major challenge to PII data deduplication is the lack of open-source benchmark datasets due to stringent privacy concerns, which hinders the research, development, and evaluation of robust solutions.This paper addresses this critical lack of PII deduplication benchmarks by introducing the first open-source, high-quality dataset for this task. We provide two datasets: one with 1,000,000 unlabeled synthetic PII profiles and a subset of 10,000 pairs curated and labeled by trained annotators as matches or non-matches. Our datasets contain synthetic profiles built from publicly available sources that do not represent any real individuals, thus ensuring privacy and ethical compliance. We provide several challenging data variations to evaluate the effectiveness of various deduplication techniques, including traditional supervised methods, deep-learning approaches, and large language models (LLMs). Our work aims to set a new standard for PII deduplication, paving the way for more accurate and secure solutions. We share our data publicly at this link - https://zenodo.org/records/13932202.",,2024,ACL,Yes,Language,Benchmark "Refining App Reviews: Dataset, Methodology, and Evaluation","With the growing number of mobile users, app development has become increasingly lucrative. Reviews on platforms such as Google Play and Apple App Store provide valuable insights to developers, highlighting bugs, suggesting new features, and offering feedback. However, many reviews contain typos, spelling errors, grammar mistakes, and complex sentences, hindering efficient interpretation and slowing down app improvement processes. To tackle this, we introduce RARE (Repository for App review REfinement), a benchmark dataset of 10,000 annotated pairs of original and refined reviews from 10 mobile applications. These reviews were collaboratively refined by humans and large language models (LLMs). We also conducted an evaluation of eight state-of-the-art LLMs for automated review refinement. The top-performing model (Flan-T5) was further used to refine an additional 10,000 reviews, contributing to RARE as a silver corpus.",,2024,ACL,Yes,Language,Benchmark TelBench: A Benchmark for Evaluating Telco-Specific Large Language Models,"The telecommunications industry, characterized by its vast customer base and complex service offerings, necessitates a high level of domain expertise and proficiency in customer service center operations. Consequently, there is a growing demand for Large Language Models (LLMs) to augment the capabilities of customer service representatives. This paper introduces a methodology for developing a specialized Telecommunications LLM (Telco LLM) designed to enhance the efficiency of customer service agents and promote consistency in service quality across representatives. We present the construction process of TelBench, a novel dataset created for performance evaluation of customer service expertise in the telecommunications domain. We also evaluate various LLMs and demonstrate the ability to benchmark both proprietary and open-source LLMs on predefined telecommunications-related tasks, thereby establishing metrics that define telcommunications performance.",,2024,ACL,Yes,Language,Benchmark Improving Few-Shot Cross-Domain Named Entity Recognition by Instruction Tuning a Word-Embedding based Retrieval Augmented Large Language Model,"Few-Shot Cross-Domain NER is the process of leveraging knowledge from data-rich source domains to perform entity recognition on data-scarce target domains. Most previous state-of-the-art (SOTA) approaches use pre-trained language models (PLMs) for cross-domain NER. However, these models are often domain specific. To successfully use these models for new target domains, we need to modify either the model architecture or perform model fine-tuning using data from the new domains. Both of these result in the creation of entirely new NER models for each target domain which is infeasible for practical scenarios. Recently, several works have attempted to use LLMs to solve Few-Shot Cross-Domain NER. However, most of these are either too expensive for practical purposes or struggle to follow LLM prompt instructions. In this paper, we propose IF-WRANER (Instruction Finetuned Word-embedding based Retrieval Augmented large language model for Named Entity Recognition), a retrieval augmented LLM, finetuned for the NER task. By virtue of the regularization techniques used during LLM finetuning and the adoption of word-level embedding over sentence-level embedding during the retrieval of in-prompt examples, IF-WRANER is able to outperform previous SOTA Few-Shot Cross-Domain NER approaches. We have demonstrated the effectiveness of our model by benchmarking its performance on the open source CrossNER dataset, on which it shows more than 2% F1 score improvement over the previous SOTA model. We have deployed the model for multiple customer care domains of an enterprise. Accurate entity prediction through IF-WRANER helps direct customers to automated workflows for the domains, thereby reducing escalations to human agents by almost 15% and leading to millions of dollars in yearly savings for the company.",,2024,ACL,No,, A Hassle-free Algorithm for Strong Differential Privacy in Federated Learning Systems,"Differential privacy (DP) and federated learning (FL) are combined as advanced privacy-preserving methods when training on-device language models in production mobile keyboard applications. DP-Follow-the-Regularized-Leader (DP-FTRL) algorithms, leveraging correlated noise mechanisms such as tree aggregation or matrix factorization, are widely used in practice for their superior privacy-utility trade-off and compatibility with FL systems. This paper presents a novel variant of DP-FTRL by adapting the recent theoretical advancements of the Buffered Linear Toeplitz (BLT) mechanism to multi-participant scenarios. In the FL setting, our BLT mechanism demonstrates enhanced privacy-utility trade-off and improved memory efficiency than the widely used tree aggregation mechanism. Moreover, BLT achieves comparable privacy and utility to the state-of-the-art banded matrix factorization mechanism, while significantly simplifying usage requirements and reducing memory. The flexibility of the BLT mechanism allows seamless integration with existing DP FL implementations in production environments. We evaluate the BLT-DP-FTRL algorithm on the StackOverflow dataset, serving as a research simulation benchmark, and across four on-device language model tasks in a production FL system. Our empirical results highlight the potential of the BLT mechanism to elevate the practicality and effectiveness of DP in real-world scenarios.",,2024,ACL,No,, ProConSuL: Project Context for Code Summarization with LLMs,"We propose Project Context for Code Summarization with LLMs (ProConSuL), a new framework to provide a large language model (LLM) with precise information about the code structure from program analysis methods such as a compiler or IDE language services and use task decomposition derived from the code structure. ProConSuL builds a call graph to provide the context from callees and uses a two-phase training method (SFT + preference alignment) to train the model to use the project context. We also provide a new evaluation benchmark for C/C++ functions and a set of proxy metrics. Experimental results demonstrate that ProConSuL allows to significantly improve code summaries and reduce the number of hallucinations compared to the base model (CodeLlama-7B-instruct). We make our code and dataset available at https://github.com/TypingCat13/ProConSuL.",,2024,ACL,Yes,Language,Methodological Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach,"Retrieval Augmented Generation (RAG) has been a powerful tool for Large Language Models (LLMs) to efficiently process overly lengthy contexts. However, recent LLMs like Gemini-1.5 and GPT-4 show exceptional capabilities to understand long contexts directly. We conduct a comprehensive comparison between RAG and long-context (LC) LLMs, aiming to leverage the strengths of both. We benchmark RAG and LC across various public datasets using three latest LLMs. Results reveal that when resourced sufficiently, LC consistently outperforms RAG in terms of average performance. However, RAG’s significantly lower cost remains a distinct advantage. Based on this observation, we propose Self-Route, a simple yet effective method that routes queries to RAG or LC based on model self-reflection. Self-Route significantly reduces the computation cost while maintaining a comparable performance to LC. Our findings provide a guideline for long-context applications of LLMs using RAG and LC.",,2024,ACL,No,, Don’t be my Doctor! Recognizing Healthcare Advice in Large Language Models,"Large language models (LLMs) have seen increasing popularity in daily use, with their widespread adoption by many corporations as virtual assistants, chatbots, predictors, and many more. Their growing influence raises the need for safeguards and guardrails to ensure that the outputs from LLMs do not mislead or harm users. This is especially true for highly regulated domains such as healthcare, where misleading advice may influence users to unknowingly commit malpractice. Despite this vulnerability, the majority of guardrail benchmarking datasets do not focus enough on medical advice specifically. In this paper, we present the HeAL benchmark (HEalth Advice in LLMs), a health-advice benchmark dataset that has been manually curated and annotated to evaluate LLMs’ capability in recognizing health-advice - which we use to safeguard LLMs deployed in industrial settings. We use HeAL to assess several models and report a detailed analysis of the findings.",,2024,ACL,Yes,Language,Benchmark Survival of the Safest: Towards Secure Prompt Optimization through Interleaved Multi-Objective Evolution,"Large language models (LLMs) have demonstrated remarkable capabilities; however, the optimization of their prompts has historically prioritized performance metrics at the expense of crucial safety and security considerations. To overcome this shortcoming, we introduce “Survival of the Safest” (), an innovative multi-objective prompt optimization framework that enhances both performance and security in LLMs simultaneously. utilizes an interleaved multi-objective evolution strategy, integrating semantic, feedback, and crossover mutations to effectively traverse the prompt landscape. Differing from the computationally demanding Pareto front methods, provides a scalable solution that expedites optimization in complex, high-dimensional discrete search spaces while keeping computational demands low. Our approach accommodates flexible weighting of objectives and generates a pool of optimized candidates, empowering users to select prompts that optimally meet their specific performance and security needs. Experimental evaluations across diverse benchmark datasets affirm ‘s efficacy in delivering high performance and notably enhancing safety and security compared to single-objective methods. This advancement marks a significant stride towards the deployment of LLM systems that are both high-performing and secure across varied industrial applications",,2024,ACL,No,, The State of the Art of Large Language Models on Chartered Financial Analyst Exams,"The Chartered Financial Analyst (CFA) program is one of the most widely recognized financial certifications globally. In this work, we test a variety of state-of-the-art large language models (LLMs) on mock CFA exams to provide an overview of their financial analysis capabilities using the same evaluation standards applied for human professionals. We benchmark five leading proprietary models and eight open-source models on all three levels of the CFA through challenging multiple-choice and essay questions. We find that flagship proprietary models perform relatively well and can solidly pass levels I and II exams, but fail at level III due to essay questions. Open-source models generally fall short of estimated passing scores, but still show strong performance considering their size, cost, and availability advantages. We also find that using textbook data helps bridge the gap between open-source and proprietary models to a certain extent, despite reduced gains in CFA levels II and III. By understanding the current financial analysis abilities of LLMs, we aim to guide practitioners on which models are best suited for enhancing automation in the financial industry.",,2024,ACL,Yes,Language,Benchmark Athena: Safe Autonomous Agents with Verbal Contrastive Learning,"Due to emergent capabilities, large language models (LLMs) have been utilized as language-based agents to perform a variety of tasks and make decisions with an increasing degree of autonomy. These autonomous agents can understand high-level instructions, interact with their environments, and execute complex tasks using a selection of tools available to them. As the capabilities of the agents expand, ensuring their safety and trustworthiness becomes more imperative. In this study, we introduce the Athena framework which leverages the concept of verbal contrastive learning where past safe and unsafe trajectories are used as in-context (contrastive) examples to guide the agent towards safety while fulfilling a given task. The framework also incorporates a critiquing mechanism to guide the agent to prevent risky actions at every step. Furthermore, due to the lack of existing benchmarks on the safety reasoning ability of LLM-based agents, we curate a set of 80 toolkits across 8 categories with 180 scenarios to provide a safety evaluation benchmark. Our experimental evaluation, with both closed- and open-source LLMs, indicates verbal contrastive learning and interaction-level critiquing improve the safety rate significantly.",,2024,ACL,Yes,Language,Methodological Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks,"An emergent research trend explores the use of Large Language Models (LLMs) as the backbone of agentic systems (e.g., SWE-Bench, Agent-Bench). To fulfill LLMs’ potential as autonomous agents, they must be able to identify, call, and interact with a variety of external tools and application program interfaces (APIs). This capability of LLMs, commonly termed function calling, leads to a myriad of advantages such as access to current and domain-specific information in databases and the outsourcing of tasks that can be reliably performed by tools. In this work, we introduce Granite-20B-FunctionCalling, a model trained using a multi-task training approach on seven fundamental tasks encompassed in function calling. Our comprehensive evaluation on multiple out-of-domain datasets, which compares Granite-20B-FunctionCalling to more than 15 other best proprietary and open models, shows that Granite-20B-FunctionCalling has better generalizability on multiple tasks across seven different evaluation benchmarks. Moreover, Granite-20B-FunctionCalling shows the best performance among all open models and ranks among the top on the Berkeley Function Calling Leaderboard (BFCL).",,2024,ACL,No,, FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data,"Large language models (LLMs) have demonstrated prowess in a wide range of tasks. However, many LLMs exhibit significant performance discrepancies between high- and low-resource languages. To mitigate this challenge, we present FuxiTranyu, an open-source multilingual LLM, which is designed to satisfy the need of the research community for balanced and high-performing multilingual capabilities. The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data that contains 600 billion tokens covering 43 natural languages and 16 programming languages. We also develop two instruction-tuned models: FuxiTranyu-8B-SFT which is fine-tuned on a diverse multilingual instruction dataset, and FuxiTranyu-8B-DPO which is further refined with DPO on a preference dataset for enhanced alignment ability. Extensive experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu against existing multilingual LLMs, e.g., BLOOM-7B, PolyLM-13B, and Mistral-7B-Instruct. Both neuron and representation interpretability analyses reveal that FuxiTranyu achieves consistent multilingual representations across languages. To promote further research into multilingual LLMs, we release both the base and instruction-tuned FuxiTranyu models together with 58 pre-training checkpoints at HuggingFace and Github.",,2024,ACL,No,, GraphQL Query Generation: A Large Training and Benchmarking Dataset,"GraphQL is a powerful query language for APIs that allows clients to fetch precise data efficiently and flexibly, querying multiple resources with a single request. However, crafting complex GraphQL query operations can be challenging. Large Language Models (LLMs) offer an alternative by generating GraphQL queries from natural language, but they struggle due to limited exposure to publicly available GraphQL schemas, often resulting in invalid or suboptimal queries. Furthermore, no benchmark test data suite is available to reliably evaluate the performance of contemporary LLMs.To address this, we present a large-scale, cross-domain Text-to-GraphQL query operation dataset. The dataset includes 10,940 training triples spanning 185 cross-source data stores and 957 test triples over 14 data stores. Each triple consists of a GraphQL schema, GraphQL query operation, and corresponding natural language query. The dataset has been predominantly manually created, with natural language paraphrasing, and carefully validated, requiring approximately 1200 person-hours. In our evaluation, we tested 10 state-of-the-art LLMs using our test dataset. The best-performing model achieved an accuracy of only around 50% with one in-context few-shot example, underscoring the necessity for custom fine-tuning. To support further research and benchmarking, we are releasing the training and test datasets under the MIT License. The dataset is available at https://github.com/stepzen-dev/NL2GQL.",,2024,ACL,Yes,Language,Benchmark Mixture of Diverse Size Experts,"The Sparsely-Activated Mixture-of-Experts (MoE) architecture has gained popularity for scaling large language models (LLMs) due to the sub-linearly increasing computational costs. Despite its success, most of the current structure designs face the challenge that the experts share the same size such that tokens have no chance to choose the experts with the most appropriate size to generate the next token. To migrate this defect, we propose Mixture of Diverse Size Experts (MoDSE), a new MoE architecture with designed layers where experts have different sizes. Analysis on difficult token generation tasks shows that experts with different sizes give better predictions, and the routing path of the experts tends to be stable after a period of training. The diversity of experts’ size will lead to load unbalancing. To tackle this limitation, we introduce an expert-pair allocation strategy to distribute the workload evenly across the GPUs. Comprehensive evaluations across multiple benchmarks demonstrate the effectiveness of MoDSE, surpassing existing MoEs by adaptively assigning the parameter budget to experts while maintaining the same total parameter size and number of experts.",,2024,ACL,No,, Course-Correction: Safety Alignment Using Synthetic Preferences,"The risk of harmful contents generated by large language models (LLMs) becomes a critical concern. This paper systematically evaluates and enhances LLMs’ capability to perform course-correction, , the model can steer away from generating harmful content autonomously. First, we introduce the C^2-Eval benchmark for quantitative assessment and analyze 10 popular LLMs, revealing varying proficiency of current safety-tuned LLMs in course-correction.To improve, we propose fine-tuning LLMs with preference learning, emphasizing the preference for timely course-correction. Using an automated pipeline, we create C^2-Syn, a synthetic C^2-Syn with 750K pairwise preferences, to teach models the concept of timely course-correction through data-driven learning.Experiments on Llama2-Chat 7B and Qwen2 7B show that our method effectively enhances course-correction skills without affecting general performance. Additionally, it effectively improves LLMs’ safety, particularly in resisting jailbreak attacks.",,2024,ACL,Yes,Language,Methodological Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models,"Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can parse natural queries about the visual content and generate human-like outputs. In this work, we explore the ability of these models to demonstrate human-like reasoning based on the perceived information. To address a crucial concern regarding the extent to which their reasoning capabilities are fully consistent and grounded, we also measure the reasoning consistency of these models. We achieve this by proposing a chain-of-thought (CoT) based consistency measure. However, such an evaluation requires a benchmark that encompasses both high-level inference and detailed reasoning chains, which is costly. We tackle this challenge by proposing an LLM-Human-in-the-Loop pipeline, which notably reduces cost while simultaneously ensuring the generation of a high-quality dataset. Based on this pipeline and the existing coarse-grained annotated dataset, we build the CURE benchmark to measure both the zero-shot reasoning performance and consistency of VLMs. We evaluate existing state-of-the-art VLMs, and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency, indicating that substantial efforts are required to enable VLMs to perform visual reasoning as systematically and consistently as humans. As an early step, we propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs. The first stage involves employing supervised fine-tuning of VLMs using step-by-step reasoning samples automatically generated by LLMs. In the second stage, we further augment the training process by incorporating feedback provided by LLMs to produce reasoning chains that are highly consistent and grounded. We empirically highlight the effectiveness of our framework in both reasoning performance and consistency.",,2024,ACL,Yes,Multimodal, Head-to-Tail: How Knowledgeable are Large Language Models (LLMs)? A.K.A. Will LLMs Replace Knowledge Graphs?,"Since the recent prosperity of Large Language Models (LLMs), there have been interleaved discussions regarding how to reduce hallucinations from LLM responses, how to increase the factuality of LLMs, and whether Knowledge Graphs (KGs), which store the world knowledge in a symbolic form, will be replaced with LLMs. In this paper, we try to answer these questions from a new angle: How knowledgeable are LLMs?To answer this question, we constructed Head-to-Tail, a benchmark that consists of 18K question-answer (QA) pairs regarding head, torso, and tail facts in terms of popularity. We designed an automated evaluation method and a set of metrics that closely approximate the knowledge an LLM confidently internalizes. Through a comprehensive evaluation of 16 publicly available LLMs, we show that existing LLMs are still far from being perfect in terms of their grasp of factual knowledge, especially for facts of torso-to-tail entities.",,2024,ACL,Yes,Language,Benchmark Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles,"Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, the summarization of diverse information dispersed across multiple articles about an event remains underexplored. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Next, to enable consistent automatic evaluation, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of summaries. Through correlation analyses, we outline the best practices for effectively using automatic LLM-based metrics on the DiverseSumm dataset. Finally, we study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover under 40% of the diverse information on average.",,2024,ACL,Yes,Language,Benchmark An Examination of the Compositionality of Large Generative Vision-Language Models,"With the success of Large Language Models (LLMs), many Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning. However, the performance of GVLMs in multimodal compositional reasoning remains under-explored. In this paper, we examine both the evaluation metrics ( VisualGPTScore, etc.) and current benchmarks for evaluating the compositionality of GVLMs. We identify the syntactical bias in current benchmarks, which is exploited by the linguistic capability of GVLMs. The bias renders VisualGPTScore an insufficient metric for assessing GVLMs. To combat this, we first introduce a **SyntaxBias Score**, leveraging LLMs to quantify such bias for mitigation. A challenging new task is subsequently added to evaluate the robustness of GVLMs against inherent inclination toward syntactical correctness. Using the bias-mitigated datasets and the new task, we propose a novel benchmark, namely **S**ynt**A**ctically **DE**-biased benchmark (SADE). Our study provides an unbiased benchmark for the compositionality of GVLMs, facilitating future research in this direction. Code and dataset are available at https://github.com/TeleeMa/SADE.",,2024,ACL,Yes,Multimodal, Dial-MAE: ConTextual Masked Auto-Encoder for Retrieval-based Dialogue Systems,"Dialogue response selection aims to select an appropriate response from several candidates based on a given user and system utterance history. Most existing works primarily focus on post-training and fine-tuning tailored for cross-encoders. However, there are no post-training methods tailored for dense encoders in dialogue response selection. We argue that when the current language model, based on dense dialogue systems (such as BERT), is employed as a dense encoder, it separately encodes dialogue context and response, leading to a struggle to achieve the alignment of both representations. Thus, we propose Dial-MAE (Dialogue Contextual Masking Auto-Encoder), a straightforward yet effective post-training technique tailored for dense encoders in dialogue response selection. Dial-MAE uses an asymmetric encoder-decoder architecture to compress the dialogue semantics into dense vectors, which achieves better alignment between the features of the dialogue context and response. Our experiments have demonstrated that Dial-MAE is highly effective, achieving state-of-the-art performance on two commonly evaluated benchmarks.",,2024,ACL,No,, Exploring Self-supervised Logic-enhanced Training for Large Language Models,"Traditional attempts to enhance the logical reasoning abilities of language models often rely on supervised fine-tuning, limiting their generalization to new tasks or domains. Large Language Models (LLMs), with their capacity to condense vast knowledge, can effectively tackle many tasks. Yet, our experiments reveal a gap in their performance on logical reasoning benchmarks when compared to state-of-the-art fine-tuning based models. To bridge this gap, we present LogicLLM, a first-of-its-kind, fully self-supervised framework for integrating logical reasoning capabilities into LLMs, and activating them via in-context learning. We apply this to two LLM series, FLAN-T5 and LLaMA, with parameter sizes from 3 billion to 33 billion. LogicLLM demonstrates its effectiveness through successful improvements on two logical reasoning benchmarks (ReClor and LogiQA-v2). Additionally, LogicLLM based on FLAN-T5-11B attains comparable results to ChatGPT, and evaluations with LLaMA-based models on three language understanding benchmarks (RACE, MMLU and Big-Bench-Hard) confirm that the improvements come without compromising the model’s general language understanding capabilities.",,2024,ACL,No,, MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning,"Tool-augmented Large Language Models (TALMs) are known to enhance the skillset of large language models (LLMs), thereby, leading to their improved reasoning abilities across many tasks. While, TALMs have been successfully employed in different question-answering benchmarks, their efficacy on complex mathematical reasoning benchmarks, and the potential complementary benefits offered by tools for knowledge retrieval and mathematical equation solving are open research questions. In this work, we present MathSensei, a tool-augmented large language model for mathematical reasoning. We study the complementary benefits of the tools - knowledge retriever (Bing Web Search), program generator + executor (Python), and symbolic equation solver (Wolfram-Alpha API) through evaluations on mathematical reasoning datasets. We perform exhaustive ablations on MATH, a popular dataset for evaluating mathematical reasoning on diverse mathematical disciplines. We also conduct experiments involving well-known tool planners to study the impact of tool sequencing on the model performance. MathSensei achieves 13.5% better accuracy over gpt-3.5-turbo with Chain-of-Thought on the MATH dataset. We further observe that TALMs are not as effective for simpler math word problems (in GSM-8K), and the benefit increases as the complexity and required knowledge increases (progressively over AQuA, MMLU-Math, and higher level complex questions in MATH). The code and data are available at https://github.com/Debrup-61/MathSensei.",,2024,ACL,No,, mEdIT: Multilingual Text Editing via Instruction Tuning,"We introduce mEdIT, a multi-lingual extension to CoEdIT – the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as “Grammatik korrigieren” (German) or “이 텍스 트를 단순화” (Korean). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models.",,2024,ACL,No,, A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution,"Based on Pre-trained Language Models (PLMs), event coreference resolution (ECR) systems have demonstrated outstanding performance in clustering coreferential events across documents. However, the state-of-the-art system exhibits an excessive reliance on the ‘triggers lexical matching’ spurious pattern in the input mention pair text. We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM), aiming to identify spurious and causal associations (i.e., rationales) within the ECR task. Leveraging the debiasing capability of counterfactual data augmentation, we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop. This method is specialized for pairwise input in the ECR system, where we conduct direct interventions on triggers and context to mitigate the spurious association while emphasizing the causation. Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.",,2024,ACL,No,, Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models,"Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage.Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model.We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.",,2024,ACL,No,, "S3Eval: A Synthetic, Scalable, Systematic Evaluation Suite for Large Language Model","The rapid development of Large Language Models (LLMs) has led to great strides in model capabilities like long-context understanding and reasoning.However, as LLMs are able to process longer contexts, it becomes more challenging to evaluate whether they have acquired certain capabilities, since the length of text (e.g., 200K tokens) they can process far exceeds what humans can reliably assess in a reasonable duration.In this paper, we propose using complex synthetic tasks as a proxy evaluation method, and present S3Eval, a Synthetic, Scalable, Systematic evaluation suite for LLMs evaluation.The synthetic nature of S3Eval provides users full control over the dataset, allowing them to systematically probe LLM capabilities by scaling text length and varying task difficulty across diverse scenarios.The strong correlation between S3Eval and real-world benchmarks demonstrates the soundness of using S3Eval for evaluation of LLMs.S3Eval provides a flexible and infinite long-context data generation method. We have generated a comprehensive dataset called S3Eval-Standard, and experimental results have shown that it poses significant challenges for all existing LLMs.",,2024,ACL,Yes,Language,Methodological MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning,"With the rapid development of large language models (LLMs) and their integration into large multimodal models (LMMs), there has beenimpressive progress in zero-shot completion of user-oriented vision-language tasks. However, a gap remains in the domain of chartimage understanding due to the distinct abstract components in charts. To address this, we introduce a large-scale MultiModal ChartInstruction (MMC-Instruction) dataset comprising 600k instances supporting diverse tasks and chart types. Leveraging this data, we de-velop MultiModal Chart Assistant (MMCA), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks. Recognizing the need for a comprehensive evaluation of LMM chart understanding, we also propose a MultiModal Chart Benchmark (MMC-Benchmark), a comprehensive human-annotated benchmark with nine distinct tasks evaluating reasoning capabilities over charts.Extensive experiments on MMC-Benchmark reveal the limitations of existing LMMs on correctly interpreting charts, even for the mostrecent GPT-4V model. Our work provides an instruction-tuning methodology and benchmark to advance multimodal understanding ofcharts. Code and data are available at https://github.com/FuxiaoLiu/MMC.",,2024,ACL,Yes,Image, Fine-Tuning Language Models with Reward Learning on Policy,"Reinforcement learning from human feedback (RLHF) has emerged as an effective approach to aligning large language models (LLMs) to human preferences.RLHF contains three steps, i.e., human preference collecting, reward learning, and policy optimization, which are usually performed serially.Despite its popularity, however, (fixed) reward models may suffer from inaccurate off-distribution, since policy optimization continuously shifts LLMs’ data distribution.Repeatedly collecting new preference data from the latest LLMs may alleviate this issue, which unfortunately makes the resulting system more complicated and difficult to optimize.In this paper, we propose reward learning on policy (RLP), an unsupervised framework that refines a reward model using policy samples to keep it on-distribution.Specifically, an unsupervised multi-view learning method is introduced to learn robust representations of policy samples.Meanwhile, a synthetic preference generation approach is developed to simulate high-quality preference data with policy outputs.Extensive experiments on three benchmark datasets show that RLP consistently outperforms the state-of-the-art.Our code is available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/rlp.",,2024,ACL,No,, IterAlign: Iterative Constitutional Alignment of Large Language Models,"With the rapid development of large language models (LLMs), aligning LLMs with human values and societal norms to ensure their reliability and safety has become crucial. Reinforcement learning with human feedback (RLHF) and Constitutional AI (CAI) have been proposed for LLM alignment. However, these methods require either heavy human annotations or explicitly pre-defined constitutions, which are labor-intensive and resource-consuming. To overcome these drawbacks, we study constitution-based LLM alignment and propose a data-driven constitution discovery and self-alignment framework called IterAlign. IterAlign leverages red teaming to unveil the weaknesses of an LLM and automatically discovers new constitutions using a stronger LLM. These constitutions are then used to guide self-correction of the base LLM. Such a constitution discovery pipeline can be run iteratively and automatically to discover new constitutions that specifically target the alignment gaps in the current LLM. Empirical results on several safety benchmark datasets and multiple base LLMs show that IterAlign successfully improves truthfulness, helpfulness, harmlessness and honesty, improving the LLM alignment by up to 13.5% in harmlessness.",,2024,ACL,No,, REST: Retrieval-Based Speculative Decoding,"We introduce Retrieval-Based Speculative Decoding (REST), a novel algorithm designed to speed up language model generation. The key insight driving the development of REST is the observation that the process of text generation often includes certain common phases and patterns. Unlike previous methods that rely on a draft language model for speculative decoding, REST harnesses the power of retrieval to generate draft tokens. This method draws from the reservoir of existing knowledge, retrieving and employing relevant tokens based on the current context. Its plug-and-play nature allows for seamless integration and acceleration of any language model, all without necessitating additional training. When benchmarked on 7B and 13B language models in a single-batch setting, REST achieves a significant speedup of 1.62 \times to 2.36 \times on code or text generation. The source code of REST is available at https://github.com/FasterDecoding/REST.",,2024,ACL,No,, MSciNLI: A Diverse Benchmark for Scientific Natural Language Inference,"The task of scientific Natural Language Inference (NLI) involves predicting the semantic relation between two sentences extracted from research articles. This task was recently proposed along with a new dataset called SciNLI derived from papers published in the computational linguistics domain. In this paper, we aim to introduce diversity in the scientific NLI task and present MSciNLI, a dataset containing 132,320 sentence pairs extracted from five new scientific domains. The availability of multiple domains makes it possible to study domain shift for scientific NLI. We establish strong baselines on MSciNLI by fine-tuning Pre-trained Language Models (PLMs) and prompting Large Language Models (LLMs). The highest Macro F1 scores of PLM and LLM baselines are 77.21% and 51.77%, respectively, illustrating that MSciNLI is challenging for both types of models. Furthermore, we show that domain shift degrades the performance of scientific NLI models which demonstrates the diverse characteristics of different domains in our dataset. Finally, we use both scientific NLI datasets in an intermediate task transfer learning setting and show that they can improve the performance of downstream tasks in the scientific domain. We make our dataset and code available on Github.",,2024,ACL,Yes,Language,Benchmark Toward Informal Language Processing: Knowledge of Slang in Large Language Models,"Recent advancement in large language models (LLMs) has offered a strong potential for natural language systems to process informal language. A representative form of informal language is slang, used commonly in daily conversations and online social media. To date, slang has not been comprehensively evaluated in LLMs due partly to the absence of a carefully designed and publicly accessible benchmark. Using movie subtitles, we construct a dataset that supports evaluation on a diverse set of tasks pertaining to automatic processing of slang. For both evaluation and finetuning, we show the effectiveness of our dataset on two core applications: 1) slang detection, and 2) identification of regional and historical sources of slang from natural sentences. We also show how our dataset can be used to probe the output distributions of LLMs for interpretive insights. We find that while LLMs such as GPT-4 achieve good performance in a zero-shot setting, smaller BERT-like models finetuned on our dataset achieve comparable performance. Furthermore, we show that our dataset enables finetuning of LLMs such as GPT-3.5 that achieve substantially better performance than strong zero-shot baselines. Our work offers a comprehensive evaluation and a high-quality benchmark on English slang based on the OpenSubtitles corpus, serving both as a publicly accessible resource and a platform for applying tools for informal language processing.",,2024,ACL,Yes,Language,Benchmark Ghostbuster: Detecting Text Ghostwritten by Large Language Models,"We introduce Ghostbuster, a state-of-the-art system for detecting AI-generated text.Our method works by passing documents through a series of weaker language models, running a structured search over possible combinations of their features, and then training a classifier on the selected features to predict whether documents are AI-generated.Crucially, Ghostbuster does not require access to token probabilities from the target model, making it useful for detecting text generated by black-box or unknown models.In conjunction with our model, we release three new datasets of human- and AI-generated text as detection benchmarks in the domains of student essays, creative writing, and news articles. We compare Ghostbuster to several existing detectors, including DetectGPT and GPTZero, as well as a new RoBERTa baseline. Ghostbuster achieves 99.0 F1 when evaluated across domains, which is 5.9 F1 higher than the best preexisting model. It also outperforms all previous approaches in generalization across writing domains (+7.5 F1), prompting strategies (+2.1 F1), and language models (+4.4 F1). We also analyze our system’s robustness to a variety of perturbations and paraphrasing attacks, and evaluate its performance on documents by non-native English speakers.",,2024,ACL,Yes,Language,Technical Multi-Scale Prompt Memory-Augmented Model for Black-Box Scenarios,"Black-box few-shot text classification handles text classification in limited data without accessing the parameters and gradients of language models (LMs). Existing black-box optimization methods have demonstrated strong few-shot learning capabilities. However, they still require numerous LMs’ calls to search optimal prompts, thus resulting in overfitting performance and increasing computational cost. To address this issue, we present MuSKPrompt (Multi-scale Knowledge Prompt for Memory Model), an efficient multi-scale knowledge prompt-based memory model in black-box few-shot text classification task. MuSKPrompt extracts instance-level and class-level knowledge at different scales and stores them in memory banks during training. Then, it references multi-scale memory banks to perform quick inference on new samples via a novel scoring module. MuSKPrompt achieves competitive performance in limited data through multi-scale instance-level and class-level knowledge. Moreover, it realizes gradient-free optimization with zero training parameters in the black-box scenario. Experiments on different benchmarks and parameter analysis demonstrate the effectiveness and efficiency of MuSKPrompt in black-box few-shot text classification tasks.",,2024,ACL,No,, Ungrammatical-syntax-based In-context Example Selection for Grammatical Error Correction,"In the era of large language models (LLMs), in-context learning (ICL) stands out as an effective prompting strategy that explores LLMs’ potency across various tasks. However, applying LLMs to grammatical error correction (GEC) is still a challenging task. In this paper, we propose a novel ungrammatical-syntax-based in-context example selection strategy for GEC. Specifically, we measure similarity of sentences based on their syntactic structures with diverse algorithms, and identify optimal ICL examples sharing the most similar ill-formed syntax to the test input. Additionally, we carry out a two-stage process to further improve the quality of selection results. On benchmark English GEC datasets, empirical results show that our proposed ungrammatical-syntax-based strategies outperform commonly-used word-matching or semantics-based methods with multiple LLMs. This indicates that for a syntax-oriented task like GEC, paying more attention to syntactic information can effectively boost LLMs’ performance. Our code is available at https://github.com/JamyDon/SynICL4GEC.",,2024,ACL,No,, BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual Transfer,"Despite remarkable advancements in few-shot generalization in natural language processing, most models are developed and evaluated primarily in English. To establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer, we introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format and provides a fixed set of few-shot examples and instructions. Using BUFFET, we perform thorough evaluations of ten state-of-the-art multilingual large language models with different transfer methods, namely in-context learning and fine-tuning. Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer. Strong multilingual pre-trained or instruction-tuned models such as BLOOM or ChatGPT often lag behind much smaller mT5-base models given the same number of few-shot samples, particularly in low-resource languages. Our analysis suggests avenues for future research in few-shot cross-lingual transfer.",,2024,ACL,Yes,Language,Benchmark zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models,"Modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they face a strong challenge in modeling the unseen zero-shot relations that have no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.",,2024,ACL,No,, Metacognitive Prompting Improves Understanding in Large Language Models,"In Large Language Models (LLMs), there have been consistent advancements in task-specific performance, largely influenced by effective prompt design. Recent advancements in prompting have enhanced reasoning in logic-intensive tasks for LLMs, yet the nuanced understanding abilities of these models, crucial for processing and interpreting complex information, remain underexplored. In this study, we introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes. Using MP, LLMs undergo a systematic series of structured, self-aware evaluations, drawing on both their vast inherent knowledge and new insights. We conduct extensive experiments on four prevalent LLMs: Llama2, PaLM2, GPT-3.5, and GPT-4, across ten natural language understanding (NLU) datasets from GLUE, SuperGLUE, BLUE, and LexGLUE benchmarks. Additionally, we compare our method with chain-of-thought prompting and its advanced versions. The results show that GPT-4 consistently excels across all tasks, while other models have shown significant progress in some tasks when used in conjunction with MP. Furthermore, MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks. This study underscores the potential to amplify the understanding abilities of LLMs and highlights the benefits of mirroring human introspective reasoning in NLU tasks.",,2024,ACL,No,, MART: Improving LLM Safety with Multi-round Automatic Red-Teaming,"Red-teaming is a common practice for mitigating unsafe behaviors in Large Language Models (LLMs), which involves thoroughly assessing LLMs to identify potential flaws and addressing them with responsible and accurate responses.While effective, manual red-teaming is costly, and existing automatic red-teaming typically discovers safety risks without addressing them.In this paper, we propose a Multi-round Automatic Red-Teaming (MART) method, which incorporates both automatic adversarial prompt writing and safe response generation, significantly increasing red-teaming scalability and the safety of the target LLM.Specifically, an adversarial LLM and a target LLM interplay with each other in an iterative manner, where the adversarial LLM aims to generate challenging prompts that elicit unsafe responses from the target LLM, while the target LLM is fine-tuned with safety aligned data on these adversarial prompts. In each round, the adversarial LLM crafts better attacks on the updated target LLM, while the target LLM also improves itself through safety fine-tuning.On adversarial prompt benchmarks, the violation rate of an LLM with limited safety alignment reduces up to 84.7% after 4 rounds of MART, achieving comparable performance to LLMs with extensive adversarial prompt writing. Notably, model helpfulness on non-adversarial prompts remains stable throughout iterations, indicating the target LLM maintains strong performance on instruction following.",,2024,ACL,No,, Routing to the Expert: Efficient Reward-guided Ensemble of Large Language Models,"The complementary potential of Large Language Models (LLM) assumes off-the-shelf LLMs have heterogeneous expertise in a wide range of domains and tasks so that an ensemble of LLMs can achieve consistently better performance. Existing ensemble methods for LLMs mainly focus on reward model ranking of outputs, leading to significant computation overhead. To combat this issue, we revisit the complementary potential of LLMs and further elaborate on it by mining latent expertise with off-the-shelf reward models. We propose ZOOTER, a reward-guided routing method distilling rewards on training queries to train a routing function, which can precisely distribute each query to the LLM with expertise about it. We also integrate a tag-based label enhancement to mitigate noise from uncertainty when using rewards as silver supervision. ZOOTER shows computation efficiency in inference as it only introduces minor computation overhead of a routing function compared with reward model ranking methods. We evaluate ZOOTER on a comprehensive benchmark collection with 26 subsets in different domains and tasks. ZOOTER outperforms the best single model on average and ranks first on 44% of tasks, even surpassing multiple reward model ranking methods.",,2024,ACL,No,, MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion,"Query expansion, pivotal in search engines, enhances the representation of user information needs with additional terms. While existing methods expand queries using retrieved or generated contextual documents, each approach has notable limitations. Retrieval-based methods often fail to accurately capture search intent, particularly with brief or ambiguous queries. Generation-based methods, utilizing large language models (LLMs), generally lack corpus-specific knowledge and entail high fine-tuning costs. To address these gaps, we propose a novel zero-shot query expansion framework utilizing LLMs for mutual verification. Specifically, we first design a query-query-document generation method, leveraging LLMs’ zero-shot reasoning ability to produce diverse sub-queries and corresponding documents. Then, a mutual verification process synergizes generated and retrieved documents for optimal expansion. Our proposed method is fully zero-shot, and extensive experiments on three public benchmark datasets are conducted to demonstrate its effectiveness over existing methods. Our code is available online at https://github.com/Applied-Machine-Learning-Lab/MILL to ease reproduction.",,2024,ACL,No,, Efficient Benchmarking (of Language Models),"The increasing versatility of language models (LMs) has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs, extending to thousands of GPU hours per model. However, the efficiency aspect of these evaluation efforts had raised little discussion in the literature.In this work, we present the problem of Efficient Benchmarking, namely, intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case, we investigate how different benchmark design choices affect the computation-reliability trade-off. We propose to evaluate the reliability of such decisions, by using a new measure – Decision Impact on Reliability, DIoR for short.We find, for example, that a benchmark leader may change by merely removing a low-ranked model from the benchmark, and observe that a correct benchmark ranking can be obtained by considering only a fraction of the evaluation examples.Based on our findings, we outline a set of concrete recommendations for efficient benchmark design and utilization practices. To take a step further, we use our findings to propose an evaluation algorithm, that, when applied to the HELM benchmark, leads to dramatic cost savings with minimal loss of benchmark reliability, often reducing computation by x100 or more.",,2024,ACL,No,, "MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks","There has been a surge in LLM evaluation research to understand LLM capabilities and limitations. However, much of this research has been confined to English, leaving LLM building and evaluation for non-English languages relatively unexplored. Several new LLMs have been introduced recently, necessitating their evaluation on non-English languages. This study aims to perform a thorough evaluation of the non-English capabilities of SoTA LLMs (GPT-3.5-Turbo, GPT-4, PaLM2, Gemini-Pro, Mistral, Llama2, and Gemma) by comparing them on the same set of multilingual datasets. Our benchmark comprises 22 datasets covering 83 languages, including low-resource African languages. We also include two multimodal datasets in the benchmark and compare the performance of LLaVA models, GPT-4-Vision and Gemini-Pro-Vision. Our experiments show that larger models such as GPT-4, Gemini-Pro and PaLM2 outperform smaller models on various tasks, notably on low-resource languages, with GPT-4 outperforming PaLM2 and Gemini-Pro on more datasets. We also perform a study on data contamination and find that several models are likely to be contaminated with multilingual evaluation benchmarks, necessitating approaches to detect and handle contamination while assessing the multilingual performance of LLMs.",,2024,ACL,Yes,Language,Benchmark PatentEval: Understanding Errors in Patent Generation,"In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.",,2024,ACL,Yes,Language,Benchmark Paraphrase and Solve: Exploring and Exploiting the Impact of Surface Form on Mathematical Reasoning in Large Language Models,"This paper studies the relationship between the surface form of a mathematical problem and its solvability by large language models. We find that subtle alterations in the surface form can significantly impact the answer distribution and the solve rate, exposing the language model’s lack of robustness and sensitivity to the surface form in reasoning through complex problems. To improve mathematical reasoning performance, we propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem. We evaluate our approach on four mathematics reasoning benchmarks over three large language models and show that SCoP improves mathematical reasoning performance over vanilla self-consistency, particularly for problems initially deemed unsolvable. Finally, we provide additional experiments and discussion regarding problem difficulty and surface forms, including cross-model difficulty agreement and paraphrasing transferability, and Variance of Variations (VOV) for language model evaluation.",,2024,ACL,No,, TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale,"The advent of large language models (LLMs) has significantly advanced natural language processing tasks like text summarization. However, their large size and computational demands, coupled with privacy concerns in data transmission, limit their use in resource-constrained and privacy-centric settings. To overcome this, we introduce TriSum, a framework for distilling LLMs’ text summarization abilities into a compact, local model. Initially, LLMs extract a set of aspect-triple rationales and summaries, which are refined using a dual-scoring method for quality. Next, a smaller local model is trained with these tasks, employing a curriculum learning strategy that evolves from simple to complex tasks. Our method enhances local model performance on various benchmarks (CNN/DailyMail, XSum, and ClinicalTrial), outperforming baselines by 4.5%, 8.5%, and 7.4%, respectively. It also improves interpretability by providing insights into the summarization rationale.",,2024,ACL,No,, GenRES: Rethinking Evaluation for Generative Relation Extraction in the Era of Large Language Models,"The field of relation extraction (RE) is experiencing a notable shift towards generative relation extraction (GRE), leveraging the capabilities of large language models (LLMs). However, we discovered that traditional relation extraction (RE) metrics like precision and recall fall short in evaluating GRE methods. This shortfall arises because these metrics rely on exact matching with human-annotated reference relations, while GRE methods often produce diverse and semantically accurate relations that differ from the references. To fill this gap, we introduce GenRES for a multi-dimensional assessment in terms of the topic similarity, uniqueness, granularity, factualness, and completeness of the GRE results. With GenRES, we empirically identified that (1) precision/recall fails to justify the performance of GRE methods; (2) human-annotated referential relations can be incomplete; (3) prompting LLMs with a fixed set of relations or entities can cause hallucinations. Next, we conducted a human evaluation of GRE methods that shows GenRES is consistent with human preferences for RE quality. Last, we made a comprehensive evaluation of fourteen leading LLMs using GenRES across document, bag, and sentence level RE datasets, respectively, to set the benchmark for future research in GRE",,2024,ACL,Yes,Language,Benchmark Do Localization Methods Actually Localize Memorized Data in LLMs? A Tale of Two Benchmarks,"The concept of localization in LLMs is often mentioned in prior work; however, methods for localization have never been systematically and directly evaluated. We propose two complementary benchmarks that evaluate the ability of localization methods to pinpoint LLM components responsible for memorized data. In our INJ benchmark, we actively inject a piece of new information into a small subset of LLM weights, enabling us to directly evaluate whether localization methods can identify these “ground truth” weights. In our DEL benchmark, we evaluate localization by measuring how much dropping out identified neurons deletes a memorized pretrained sequence. Despite their different perspectives, our two benchmarks yield consistent rankings of five localization methods. Methods adapted from network pruning perform well on both benchmarks, and all evaluated methods show promising localization ability. On the other hand, even successful methods identify neurons that are not specific to a single memorized sequence.",,2024,ACL,Yes,Language,Benchmark What Are We Measuring When We Evaluate Large Vision-Language Models? An Analysis of Latent Factors and Biases,"Vision-language (VL) models, pretrained on colossal image-text datasets, have attained broad VL competence that is difficult to evaluate. A common belief is that a small number of VL skills underlie the variety of VL tests. In this paper, we perform a large-scale transfer learning experiment aimed at discovering latent VL skills from data. We reveal interesting characteristics that have important implications for test suite design. First, generation tasks suffer from a length bias, suggesting benchmarks should balance tasks with varying output lengths. Second, we demonstrate that factor analysis successfully identifies reasonable yet surprising VL skill factors, suggesting benchmarks could leverage similar analyses for task selection.Finally, we present a new dataset, OLIVE^1, which simulates user instructions in the wild and presents challenges dissimilar to all datasets we tested. Our findings contribute to the design of balanced and broad-coverage vision-language evaluation methods. ^1https://github.com/jq-zh/olive-dataset",,2024,ACL,Yes,Multimodal, Curriculum Masking in Vision-Language Pretraining to Maximize Cross Modal Interaction,"Many leading methods in Vision and language (V+L) pretraining utilize masked language modeling (MLM) as a standard pretraining component, with the expectation that reconstruction of masked text tokens would necessitate reference to corresponding image context via cross/self attention and thus promote representation fusion. However, we observe that the minimization of MLM loss in earlier training stages can depend disproportionately on local text signals, leading to poor training efficiency and inconsistency with the goal of representation fusion. The extent of this lack of cross modal interaction depends strongly which token(s) are masked. To address this issue, we propose a curriculum masking scheme as a replacement for random masking. Tokens are selected to be masked at a frequency proportional to the expected level of cross modal interaction necessary to reconstruct them. This is achieved using a parallel mask selection agent that measures the cross modal flow of information and treats it as a reward to be maximized. By additionally masking contiguous spans that include key objects and their relations, we also achieve better relational understanding, which has been shown to be lacking in many SOTA models. Our experiments on a wide range of V+L tasks show that we trail closely behind state-of-the-art methods despite pretraining on 300x to 1000x less data and we also achieve either top or runner-up performance on tasks from the ARO benchmark which tests compositional relationships. Finally, we demonstrate the potential of our method to scale to larger pretraining data.",,2024,ACL,No,, Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks,"Recently, the large language model (LLM) community has shown increasing interest in enhancing LLMs’ capability to handle extremely long documents. As various long-text techniques and model architectures emerge, the precise and detailed evaluation of models’ long-text capabilities has become increasingly important. Existing long-text evaluation benchmarks, such as L-Eval and LongBench, construct long-text test sets based on open-source datasets, focusing mainly on QA and summarization tasks. These datasets include test samples of varying lengths (from 2k to 32k+) entangled together, making it challenging to assess model capabilities across different length ranges. Moreover, they do not cover the ultralong settings (100k+ tokens) that the latest LLMs claim to achieve. In this paper, we introduce Ada-LEval, a length-adaptable benchmark for evaluating the long-context understanding of LLMs. Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs’ long context capabilities. These benchmarks support intricate manipulation of the length of test cases, and can easily produce text samples up to 128k tokens. We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval. The evaluation results demonstrate the limitations of current LLMs, especially in ultra-long-context settings. Our code is available at https://github.com/open-compass/Ada-LEval.",,2024,ACL,Yes,Language,Benchmark Long-form evaluation of model editing,"Evaluations of model editing, a technique for changing the factual knowledge held by Large Language Models (LLMs), currently only use the ‘next few token’ completions after a prompt. As a result, the impact of these methods on longer natural language generation is largely unknown. We introduce long-form evaluation of model editing (\textbf{\textit{LEME}}) a novel evaluation protocol that measures the efficacy and impact of model editing in long-form generative settings. Our protocol consists of a machine-rated survey and a classifier which correlates well with human ratings. Importantly, we find that our protocol has very little relationship with previous short-form metrics (despite being designed to extend efficacy, generalization, locality, and portability into a long-form setting), indicating that our method introduces a novel set of dimensions for understanding model editing methods. Using this protocol, we benchmark a number of model editing techniques and present several findings including that, while some methods (ROME and MEMIT) perform well in making consistent edits within a limited scope, they suffer much more from factual drift than other methods. Finally, we present a qualitative analysis that illustrates common failure modes in long-form generative settings including internal consistency, lexical cohesion, and locality issues.",,2024,ACL,Yes,Language,Methodological Towards Improved Multi-Source Attribution for Long-Form Answer Generation,"Teaching large language models (LLMs) to generate text with attribution to evidence sources can reduce hallucinations, improve verifiability in question answering systems (QA), and increase reliability of retrieval augmented LLMs. Despite gaining increasing popularity for usage in QA systems and search engines, current LLMs struggle with attribution for long-form responses which require reasoning over multiple evidence sources. To address this, in this paper we aim to improve the attribution capability of LLMs for long-form answer generation to multiple sources, with multiple citations per sentence. However, data for training multi-source attributable QA systems is difficult and expensive to annotate, and therefore scarce. To overcome this challenge, we transform existing QA datasets for this task (MultiAttr), and empirically demonstrate, on a wide range of attribution benchmark datasets, that fine-tuning on MultiAttr provides significant improvements over training only on the target QA domain. Lastly, to fill a gap in existing benchmarks, we present a multi-source attribution dataset containing multi-paragraph answers, PolitiICite, based on PolitiFact articles that discuss events closely related to implementation statuses of election promises.",,2024,ACL,Yes,Language,Methodological Better Zero-Shot Reasoning with Role-Play Prompting,"Modern large language models (LLMs) exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs’ reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks. Our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, in experiments conducted using ChatGPT, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Upon further comparison with the Zero-Shot-CoT technique, which prompts the model to “think step by step”, our study demonstrates that role-play prompting acts as a more effective trigger for the CoT process.This highlights its potential to augment the reasoning capabilities of LLMs. We release our code at https://github.com/NKU-HLT/Role-Play-Prompting.",,2024,ACL,No,, DoG-Instruct: Towards Premium Instruction-Tuning Data via Text-Grounded Instruction Wrapping,"The improvement of LLMs’ instruction-following capabilities relies heavily on the availability of high-quality instruction-response pairs. Unfortunately, the current methods used to collect the pairs suffer from either unaffordable labor costs or severe hallucinations in the self-generation of LLM.To tackle these challenges, this paper proposes a scalable solution.It involves training LLMs to generate instruction-response pairs based on human-written documents, rather than relying solely on self-generation without context.Our proposed method not only exploits the advantages of human-written documents in reducing hallucinations but also utilizes an LLM to wrap the expression of documents, which enables us to bridge the gap between various document styles and the standard AI response.Experiments demonstrate that our method outperforms existing typical methods on multiple benchmarks.In particular, compared to the best-performing baseline, the LLM trained using our generated dataset exhibits a 10% relative improvement in performance on AlpacaEval, despite utilizing only 1/5 of its training data.Furthermore, a comprehensive manual evaluation validates the quality of the data we generated.",,2024,ACL,No,, XNLIeu: a dataset for cross-lingual NLI in Basque,"XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.",,2024,ACL,Yes,Language,Benchmark TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization,"Single document news summarization has seen substantial progress on faithfulness in recent years, driven by research on the evaluation of factual consistency, or hallucinations. We ask whether these advances carry over to other text summarization domains. We propose a new evaluation benchmark on topic-focused dialogue summarization, generated by LLMs of varying sizes. We provide binary sentence- level human annotations of the factual consistency of these summaries along with detailed explanations of factually inconsistent sentences. Our analysis shows that existing LLMs hallucinate significant amounts of factual errors in the dialogue domain, regardless of the model’s size. On the other hand, when LLMs, including GPT-4, serve as binary factual evaluators, they perform poorly and can be outperformed by prevailing state-of-the-art specialized factuality evaluation metrics. Finally, we conducted an analysis of hallucination types with a curated error taxonomy. We find that there are diverse errors and error distributions in model-generated summaries and that non-LLM based metrics can capture all error types better than LLM-based evaluators.",,2024,ACL,Yes,Language,Benchmark Flames: Benchmarking Value Alignment of LLMs in Chinese,"The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and ‘topping the chart’ in these evaluations, there is still a significant gap in LLMs’ deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes a value alignment benchmark named Flames, which encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values such as harmony. Accordingly, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting 17 mainstream LLMs, we obtain model responses and rigorously annotate them for detailed evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. We also develop a lightweight specified scorer capable of scoring LLMs across multiple dimensions to efficiently evaluate new models on the benchmark. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. Our benchmark is publicly available at https://github.com/AIFlames/Flames.",,2024,ACL,Yes,Language,Benchmark Effective Long-Context Scaling of Foundation Models,"We present an effective recipe to train strong long-context LLMs that are capable of utilizing massive context windows of up to 32,000 tokens. Our models are built through continual pretraining from Llama 2 checkpoints with longer text sequences and on a dataset where long texts are upsampled. We perform extensive evaluation using language modeling, synthetic context probing tasks, and a wide range of downstream benchmarks. Across all evaluations, our models achieve consistent improvements on most regular-context tasks and significant improvements on long-context tasks over Llama 2. Moreover, with a cost-effective instruction tuning procedure that is free of expensive annotation, the presented models can already surpass \texttt{gpt-3.5-turbo-16k}‘s overall performance on long-context benchmarks. Alongside these results, we provide an in-depth analysis on each individual component of our method. We delve into Llama’s position encodings and discuss its key limitation in modeling long data. We examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths – ablation results suggest that having abundant long texts in the pretrain dataset is \textit{not} the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.",,2024,ACL,No,, Fake Alignment: Are LLMs Really Aligned Well?,"The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety. This study investigates an under-explored issue about the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, LLM only remembers the answer style for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. We introduce a Fake alIgNment Evaluation (FINE) framework and two novel metrics——Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimation. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Subsequently, we found that multiple-choice format data can also be used as high-quality contrast distillation-based fine-tuning data, which can strongly improve the alignment consistency of LLMs with minimal fine-tuning overhead. For data and code, see https://github.com/AIFlames/Fake-Alignment.",,2024,ACL,Yes,Language,Methodological MAFALDA: A Benchmark and Comprehensive Study of Fallacy Detection and Classification,"We introduce MAFALDA, a benchmark for fallacy classification that merges and unites previous fallacy datasets. It comes with a taxonomy that aligns, refines, and unifies existing classifications of fallacies. We further provide a manual annotation of a part of the dataset together with manual explanations for each annotation. We propose a new annotation scheme tailored for subjective NLP tasks, and a new evaluation method designed to handle subjectivity. We then evaluate several language models under a zero-shot learning setting and human performances on MAFALDA to assess their capability to detect and classify fallacies.",,2024,ACL,Yes,Language,Benchmark SportQA: A Benchmark for Sports Understanding in Large Language Models,"A deep understanding of sports, a field rich in strategic and dynamic content, is crucial for advancing Natural Language Processing (NLP). This holds particular significance in the context of evaluating and advancing Large Language Models (LLMs), given the existing gap in specialized benchmarks. To bridge this gap, we introduce SportQA, a novel benchmark specifically designed for evaluating LLMs in the context of sports understanding. SportQA encompasses over 70,000 multiple-choice questions across three distinct difficulty levels, each targeting different aspects of sports knowledge from basic historical facts to intricate, scenario-based reasoning tasks. We conducted a thorough evaluation of prevalent LLMs, mainly utilizing few-shot learning paradigms supplemented by chain-of-thought (CoT) prompting. Our results reveal that while LLMs exhibit competent performance in basic sports knowledge, they struggle with more complex, scenario-based sports reasoning, lagging behind human expertise. The introduction of SportQA marks a significant step forward in NLP, offering a tool for assessing and enhancing sports understanding in LLMs. The dataset is available at https://github.com/haotianxia/SportQA",,2024,ACL,Yes,Language,Benchmark Sentence-level Media Bias Analysis with Event Relation Graph,"Media outlets are becoming more partisan and polarized nowadays. In this paper, we identify media bias at the sentence level, and pinpoint bias sentences that intend to sway readers’ opinions. As bias sentences are often expressed in a neutral and factual way, considering broader context outside a sentence can help reveal the bias. In particular, we observe that events in a bias sentence need to be understood in associations with other events in the document. Therefore, we propose to construct an event relation graph to explicitly reason about event-event relations for sentence-level bias identification. The designed event relation graph consists of events as nodes and four common types of event relations: coreference, temporal, causal, and subevent relations. Then, we incorporate event relation graph for bias sentences identification in two steps: an event-aware language model is built to inject the events and event relations knowledge into the basic language model via soft labels; further, a relation-aware graph attention network is designed to update sentence embedding with events and event relations information based on hard labels. Experiments on two benchmark datasets demonstrate that our approach with the aid of event relation graph improves both precision and recall of bias sentence identification.",,2024,ACL,No,, Enhancing Large Language Models Against Inductive Instructions with Dual-critique Prompting,"Numerous works are proposed to align large language models (LLMs) with human intents to better fulfill instructions, ensuring they are trustful and helpful.Nevertheless, some human instructions are often malicious or misleading and following them will lead to untruthful and unsafe responses.Previous work rarely focused on understanding how LLMs manage instructions based on counterfactual premises, referred to here as inductive instructions, which may stem from users’ false beliefs or malicious intents.In this paper, we aim to reveal the behaviors of LLMs towards inductive instructions and enhance their truthfulness and helpfulness accordingly. Specifically, we first introduce a benchmark of Inductive Instructions (INDust), where the false knowledge is incorporated into instructions in multiple different styles. After extensive human and automatic evaluations, we uncovered a universal vulnerability among LLMs in processing inductive instructions.Additionally, we identified that different inductive styles affect the models’ ability to identify the same underlying errors,and the complexity of the underlying assumptions also influences the model’s performance.Motivated by these results, we propose Dual-critique prompting to improve LLM robustness against inductive instructions.Our experiments demonstrate that Dual-critique prompting significantly bolsters the robustness of a diverse array of LLMs, even when confronted with varying degrees of inductive instruction complexity and differing inductive styles.",,2024,ACL,Yes,Language,Methodological GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer,"Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications. Traditional NER models are effective but limited to a set of predefined entity types. In contrast, Large Language Models (LLMs) can extract arbitrary entities through natural language instructions, offering greater flexibility. However, their size and cost, particularly for those accessed via APIs like ChatGPT, make them impractical in resource-limited scenarios. In this paper, we introduce a compact NER model trained to identify any type of entity. Leveraging a bidirectional transformer encoder, our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of LLMs. Through comprehensive testing, GLiNER demonstrate strong performance, outperforming both ChatGPT and fine-tuned LLMs in zero-shot evaluations on various NER benchmarks.",,2024,ACL,No,, Carpe diem: On the Evaluation of World Knowledge in Lifelong Language Models,"The dynamic nature of knowledge in an ever-changing world presents challenges for language models trained on static data; the model in the real world often requires not only acquiring new knowledge but also overwriting outdated information into updated ones. To study the ability of language models for these time-dependent dynamics in human language, we introduce a novel task, EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database. The construction of EvolvingQA is automated with our pipeline using large language models. We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge. Our analysis suggests that models fail to rectify knowledge due to small weight gradients. In addition, we elucidate that language models particularly struggle to reflect the change of numerical or temporal information. Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models. Our data construction code and dataset files are available at https://github.com/kimyuji/EvolvingQA_benchmark.",,2024,ACL,Yes,Language,Benchmark Fine-grained Gender Control in Machine Translation with Large Language Models,"In machine translation, the problem of ambiguously gendered input has been pointed out, where the gender of an entity is not available in the source sentence. To address this ambiguity issue, the task of controlled translation that takes the gender of the ambiguous entity as additional input have been proposed. However, most existing works have only considered a simplified setup of one target gender for input. In this paper, we tackle controlled translation in a more realistic setting of inputs with multiple entities and propose Gender-of-Entity (GoE) prompting method for LLMs. Our proposed method instructs the model with fine-grained entity-level gender information to translate with correct gender inflections. By utilizing four evaluation benchmarks, we investigate the controlled translation capability of LLMs in multiple dimensions and find that LLMs reach state-of-the-art performance in controlled translation. Furthermore, we discover an emergence of gender interference phenomenon when controlling the gender of multiple entities. Finally, we address the limitations of existing gender accuracy evaluation metrics and propose leveraging LLMs as an evaluator for gender inflection in machine translation.",,2024,ACL,No,, Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense,"Large language models (LLMs) have demonstrated substantial commonsense understanding through numerous benchmark evaluations. However, their understanding of cultural commonsense remains largely unexamined. In this paper, we conduct a comprehensive examination of the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks. Using several general and cultural commonsense benchmarks, we find that (1) LLMs have a significant discrepancy in performance when tested on culture-specific commonsense knowledge for different cultures; (2) LLMs’ general commonsense capability is affected by cultural context; and (3) The language used to query the LLMs can impact their performance on cultural-related tasks.Our study points to the inherent bias in the cultural understanding of LLMs and provides insights that can help develop culturally-aware language models.",,2024,ACL,No,, Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding,"Recently, deep end-to-end learning has been studied for intent classification in Spoken Language Understanding (SLU). However, end-to-end models require a large amount of speech data with intent labels, and highly optimized models are generally sensitive to the inconsistency between the training and evaluation conditions. Therefore, a natural language understanding approach based on Automatic Speech Recognition (ASR) remains attractive because it can utilize a pre-trained general language model and adapt to the mismatch of the speech input environment. Using this module-based approach, we improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors. We propose a two-stage method, Contrastive and Consistency Learning (CCL), that correlates error patterns between clean and noisy ASR transcripts and emphasizes the consistency of the latent features of the two transcripts. Experiments on four benchmark datasets show that CCL outperforms existing methods and improves the ASR robustness in various noisy environments. Code is available at https://github.com/syoung7388/CCL",,2024,ACL,No,, Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers,"The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works such as RankGPT have demonstrated that the LLMs have better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.",,2024,ACL,Yes,Language,Benchmark TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition,"Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.",,2024,ACL,No,, Contextual Label Projection for Cross-Lingual Structured Prediction,"Label projection, which involves obtaining translated labels and texts jointly, is essential for leveraging machine translation to facilitate cross-lingual transfer in structured prediction tasks. Prior research exploring label projection often compromise translation accuracy by favoring simplified label translation or relying solely on word-level alignments. In this paper, we introduce a novel label projection approach, CLaP, which translates text to the target language and performs *contextual translation* on the labels using the translated text as the context, ensuring better accuracy for the translated labels. We leverage instruction-tuned language models with multilingual capabilities as our contextual translator, imposing the constraint of the presence of translated labels in the translated text via instructions. We benchmark CLaP with other label projection techniques on zero-shot cross-lingual transfer across 39 languages on two representative structured prediction tasks - event argument extraction (EAE) and named entity recognition (NER), showing over 2.4 F1 improvement for EAE and 1.4 F1 improvement for NER. We further explore the applicability of CLaP on ten extremely low-resource languages to showcase its potential for cross-lingual structured prediction.",,2024,ACL,No,, RESPROMPT: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models,"Chain-of-thought (CoT) has impressively unlocked the reasoning potential of large language models (LLMs). Yet, it falls short when tackling problems that require multiple reasoning steps. This limitation arises from the complex nature of multi-step reasoning processes: later stages often depend not only on the immediately preceding step, but also on the results from several steps earlier. Such complexities indicate the reasoning process is naturally a graph. The almost linear structure of CoT, however, struggles to capture this complex reasoning graph. To address this challenge, we propose Residual Connection Prompting (ResPrompt), a new prompting strategy that advances multi-step reasoning in LLMs. The core of our idea is to reconstruct the reasoning graph within prompts. We achieve this by integrating necessary connections–links present in reasoning graph but missing in the linear CoT flow–into the prompts. Termed “residual connections”, these links can transform linear CoT into the complex reasoning graphs that multi-step problems entail. On benchmarks across math, sequential, and commonsense domains, ResPrompt demonstrates clear improvements in multi-step reasoning compared with CoT. Through extensive ablation studies and analyses, we pinpoint how to effectively build residual connections and also identify situations where it might be unnecessary.",,2024,ACL,No,, DialogBench: Evaluating LLMs as Human-like Dialogue Systems,"Large language models (LLMs) have achieved remarkable breakthroughs in new dialogue capabilities by leveraging instruction tuning,which refreshes human impressions of dialogue systems. The long-standing goal of dialogue systems is to be human-like enough to establish long-term connections with users. Therefore, there has been an urgent need to evaluate LLMs as human-like dialogue systems. In this paper, we propose DialogBench, a dialogue evaluation benchmark that contains 12 dialogue tasks to probe the capabilities of LLMs as human-like dialogue systems should have. Specifically, we prompt GPT-4 to generate evaluation instances for each task. We first design the basic prompt based on widely used design principles and further mitigate the existing biases to generate higher-quality evaluation instances. Our extensive tests on English and Chinese DialogBench of 26 LLMs show that instruction tuning improves the human likeness of LLMs to a certain extent, but most LLMs still have much room for improvement as human-like dialogue systems. Interestingly, results also show that the positioning of assistant AI can make instruction tuning weaken the human emotional perception of LLMs and their mastery of information about human daily life.",,2024,ACL,Yes,Language,Benchmark GINopic: Topic Modeling with Graph Isomorphism Network,"Topic modeling is a widely used approach for analyzing and exploring large document collections. Recent research efforts have incorporated pre-trained contextualized language models, such as BERT embeddings, into topic modeling. However, they often neglect the intrinsic informational value conveyed by mutual dependencies between words. In this study, we introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words. By conducting intrinsic (quantitative as well as qualitative) and extrinsic evaluations on diverse benchmark datasets, we demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.",,2024,ACL,No,, CMB: A Comprehensive Medical Benchmark in Chinese,"Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. We hope this benchmark provide first-hand experience in existing LLMs for medicine and also facilitate the widespread adoption and enhancement of medical LLMs within China. Our data and code are publicly available at https://github.com/FreedomIntelligence/CMB.",,2024,ACL,Yes,Language,Benchmark Global Gallery: The Fine Art of Painting Culture Portraits through Multilingual Instruction Tuning,"Exploring the intersection of language and culture in Large Language Models (LLMs), this study critically examines their capability to encapsulate cultural nuances across diverse linguistic landscapes. Central to our investigation are three research questions: the efficacy of language-specific instruction tuning, the impact of pretraining on dominant language data, and the identification of optimal approaches to elicit accurate cultural knowledge from LLMs. Utilizing the GeoMLaMA benchmark for multilingual commonsense knowledge and an adapted CAMeL dataset (English-only) for evaluation of nuanced cultural aspects, our experiments span six different languages and cultural contexts, revealing the extent of LLMs’ cultural awareness. Our findings highlight a nuanced landscape: while language-specific tuning and bilingual pretraining enhance cultural understanding in certain contexts, they also uncover inconsistencies and biases, particularly in non-Western cultures. This work expands our understanding of LLMs’ cultural competence and emphasizes the importance of integrating diverse cultural perspectives in their development, aiming for a more globally representative and equitable approach in language modeling.",,2024,ACL,No,, MT-PATCHER: Selective and Extendable Knowledge Distillation from Large Language Models for Machine Translation,"Large Language Models (LLM) have demonstrated their strong ability in the field of machine translation, yet they suffer from high computational cost and latency. Therefore, transferring translation knowledge from giant LLMs to medium-sized machine translation models is a promising research direction. However, traditional knowledge distillation methods ignore the capability of student and teacher models, therefore repeatedly teaching student models on the knowledge they have learned, and failing to extend to novel contexts and knowledge. In this paper, we propose a framework called MT-Patcher, which transfers knowledge from LLMs to existing MT models in a selective, comprehensive and proactive manner. Considering the current translation ability of student MT models, we only identify and correct their translation errors, instead of distilling the whole translation from the teacher. Leveraging the strong language abilities of LLMs, we instruct LLM teachers to synthesize diverse contexts and anticipate more potential errors for the student. Experiment results on translating both specific language phenomena and general MT benchmarks demonstrate that finetuning the MT model on about 10% examples can achieve comparable results to the traditional knowledge distillation method, and synthesized potential errors and diverse contexts further improve MT performances on unseen contexts and words.",,2024,ACL,No,, LinkPrompt: Natural and Universal Adversarial Attacks on Prompt-based Language Models,"Prompt-based learning is a new language model training paradigm that adapts the Pre-trained Language Models (PLMs) to downstream tasks, which revitalizes the performance benchmarks across various natural language processing (NLP) tasks. Instead of using a fixed prompt template to fine-tune the model, some research demonstrates the effectiveness of searching for the prompt via optimization. Such prompt optimization process of prompt-based learning on PLMs also gives insight into generating adversarial prompts to mislead the model, raising concerns about the adversarial vulnerability of this paradigm. Recent studies have shown that universal adversarial triggers (UATs) can be generated to alter not only the predictions of the target PLMs but also the prediction of corresponding Prompt-based Fine-tuning Models (PFMs) under the prompt-based learning paradigm. However, UATs found in previous works are often unreadable tokens or characters and can be easily distinguished from natural texts with adaptive defenses. In this work, we consider the naturalness of the UATs and develop \textit{LinkPrompt}, an adversarial attack algorithm to generate UATs by a gradient-based beam search algorithm that not only effectively attacks the target PLMs and PFMs but also maintains the naturalness among the trigger tokens. Extensive results demonstrate the effectiveness of \textit{LinkPrompt}, as well as the transferability of UATs generated by \textit{LinkPrompt} to open-sourced Large Language Model (LLM) Llama2 and API-accessed LLM GPT-3.5-turbo. The resource is available at https://github.com/SavannahXu79/LinkPrompt.",,2024,ACL,No,, CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions,"Recently, Large Language Models (LLMs) have been demonstrated to possess impressive capabilities in a variety of domains and tasks. We investigate the issue of prompt design in the multi-turn text-to-SQL task and attempt to enhance the LLMs’ reasoning capacity when generating SQL queries. In the conversational context, the current SQL query can be modified from the preceding SQL query with only a few operations due to the context dependency. We introduce our method called CoE-SQL which can prompt LLMs to generate the SQL query based on the previously generated SQL query with an edition chain. We also conduct extensive ablation studies to determine the optimal configuration of our approach. Our approach outperforms different in-context learning baselines stably and achieves state-of-the-art performances on two benchmarks SParC and CoSQL using LLMs, which is also competitive to the SOTA fine-tuned models.",,2024,ACL,No,, PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers,"In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define **Decision QA** as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, **DQA**. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the *iterative plan-then-retrieval augmented generation* (**PlanRAG**). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.",,2024,ACL,Yes,Language,Methodological Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References,"Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model’s hypotheses. To address this issue, this paper presents a simple and effective method, named **Div-Ref**, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. *We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all.* We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.",,2024,ACL,No,, Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF,"Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.",,2024,ACL,No,, Mind’s Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models,"Large language models (LLMs) have achieved remarkable advancements in natural language processing. However, the massive scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained environments. While techniques such as chain-of-thought (CoT) distillation have displayed promise in distilling LLMs into small language models (SLMs), there is a risk that distilled SLMs may still inherit flawed reasoning and hallucinations from LLMs. To address these issues, we propose a twofold methodology: First, we introduce a novel method for distilling the self-evaluation capability from LLMs into SLMs, aiming to mitigate the adverse effects of flawed reasoning and hallucinations inherited from LLMs. Second, we advocate for distilling more comprehensive thinking by incorporating multiple distinct CoTs and self-evaluation outputs, to ensure a more thorough and robust knowledge transfer into SLMs. Experiments on three NLP benchmarks demonstrate that our method significantly improves the performance of distilled SLMs, offering a new perspective for developing more effective and efficient SLMs in resource-constrained environments.",,2024,ACL,No,, KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation,"Parameter-efficient finetuning (PEFT) is a key technique for adapting large language models (LLMs) to downstream tasks. In this paper, we study leveraging knowledge graph embeddings to improve the effectiveness of PEFT. We propose a knowledgeable adaptation method called KnowLA. It inserts an adaptation layer into an LLM to integrate the embeddings of entities appearing in the input text. The adaptation layer is trained in combination with LoRA on instruction data. Experiments on six benchmarks with two popular LLMs and three knowledge graphs demonstrate the effectiveness and robustness of KnowLA. We show that KnowLA can help activate the relevant parameterized knowledge in an LLM to answer a question without changing its parameters or input prompts.",,2024,ACL,No,, MisgenderMender: A Community-Informed Approach to Interventions for Misgendering,"Content Warning: This paper contains examples of misgendering and erasure that could be offensive and potentially triggering.Misgendering, the act of incorrectly addressing someone’s gender, inflicts serious harm and is pervasive in everyday technologies, yet there is a notable lack of research to combat it. We are the first to address this lack of research into interventions for misgendering by conducting a survey of gender-diverse individuals in the US to understand perspectives about automated interventions for text-based misgendering. Based on survey insights on the prevalence of misgendering, desired solutions, and associated concerns, we introduce a misgendering interventions task and evaluation dataset, MisgenderMender. We define the task with two sub-tasks: (i) detecting misgendering, followed by (ii) correcting misgendering where misgendering is present, in domains where editing is appropriate. MisgenderMender comprises 3790 instances of social media content and LLM-generations about non-cisgender public figures, annotated for the presence of misgendering, with additional annotations for correcting misgendering in LLM-generated text. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlighting challenges for future models to address. We release the full dataset, code, and demo at https://tamannahossainkay.github.io/misgendermender/",,2024,ACL,Yes,Language,Methodological Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination?,"Despite the high performances of large language models (LLMs) across numerous benchmarks, recent research has unveiled their suffering from hallucinations and unfaithful reasoning. This work studies a type of hallucination induced by semantic associations. We investigate to what extent LLMs take shortcuts from certain keyword/entity biases in the prompt instead of following correct reasoning paths. To quantify this phenomenon, we propose a novel probing method and benchmark called EUREQA. EUREQA is an entity-searching task where a model finds a missing entity based on described multi-hop relations with other entities. These deliberately designed multi-hop relations create deceptive semantic associations, and models must stick to the correct reasoning path instead of incorrect shortcuts to find the correct answer.Experiments show that existing LLMs cannot follow correct reasoning paths and resist the attempt of greedy shortcuts, with GPT-4 only achieving 62% accuracy. Analyses provide further evidence that LLMs rely on semantic biases to solve the task instead of proper reasoning, questioning the validity and generalizability of current LLMs’ high performances.",,2024,ACL,Yes,Language,Methodological Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval,"There has been limited success for dense retrieval models in multilingual retrieval, due to uneven and scarce training data available across multiple languages. Synthetic training data generation is promising (e.g., InPars or Promptagator), but has been investigated only for English. Therefore, to study model capabilities across both cross-lingual and monolingual retrieval tasks, we develop **SWIM-IR**, a synthetic retrieval training dataset containing 33 (high to very-low resource) languages for fine-tuning multilingual dense retrievers without requiring any human supervision. To construct SWIM-IR, we propose SAP (summarize-then-ask prompting), where the large language model (LLM) generates a textual summary prior to the query generation step. SAP assists the LLM in generating informative queries in the target language. Using SWIM-IR, we explore synthetic fine-tuning of multilingual dense retrieval models and evaluate them robustly on three retrieval benchmarks: XOR-Retrieve (cross-lingual), MIRACL (monolingual) and XTREME-UP (cross-lingual). Our models, called SWIM-X, are competitive with human-supervised dense retrieval models, e.g., mContriever-X, finding that SWIM-IR can cheaply substitute for expensive human-labeled retrieval training data. SWIM-IR dataset and SWIM-X models are available at: https://github.com/google-research-datasets/SWIM-IR.",,2024,ACL,Yes,Language,Methodological "Automatic, Meta and Human Evaluation for Multimodal Summarization with Multimodal Output","Multimodal summarization with multimodal output (MSMO) has attracted increasing research interests recently as multimodal summary could provide more comprehensive information compared to text-only summary, effectively improving the user experience and satisfaction. As one of the most fundamental components for the development of MSMO, evaluation is an emerging yet underexplored research topic. In this paper, we fill this gap and propose a research framework that studies three research questions of MSMO evaluation: (1) Automatic Evaluation: We propose a novel metric mLLM-EVAL, which utilizes multimodal Large Language Model for MSMO EVALuation. (2) Meta-Evaluation: We create a meta-evaluation benchmark dataset by collecting human-annotated scores for multimodal summaries. With our benchmark, we conduct meta-evaluation analysis to assess the quality of different evaluation metrics and show the effectiveness of our proposed mLLM-EVAL. (3) Human Evaluation: To provide more objective and unbiased human annotations for meta-evaluation, we hypothesize and verify three types of cognitive biases in human evaluation. We also incorporate our findings into the human annotation process in the meta-evaluation benchmark. Overall, our research framework provides an evaluation metric, a meta-evaluation benchmark dataset annotated by humans and an analysis of cognitive biases in human evaluation, which we believe would serve as a valuable and comprehensive resource for the MSMO research community.",,2024,ACL,Yes,Multimodal, SuperGLEBer: German Language Understanding Evaluation Benchmark,"We assemble a broad Natural Language Understanding benchmark suite for the German language and consequently evaluate a wide array of existing German-capable models in order to create a better understanding of the current state of German LLMs. Our benchmark consists of 29 different tasks ranging over different types such as document classification, sequence tagging, sentence similarity, and question answering, on which we evaluate 10 different German-pretrained models, thereby charting the landscape of German LLMs. In our comprehensive evaluation we find that encoder models are a good choice for most tasks, but also that the largest encoder model does not necessarily perform best for all tasks. We make our benchmark suite and a leaderboard publically available at https://supergleber.professor-x.de and encourage the community to contribute new tasks and evaluate more models on it (https://github.com/LSX-UniWue/SuperGLEBer).",,2024,ACL,Yes,Language,Benchmark What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?,"Recent advancements in GPT-4V have displayed remarkable multi-modal capabilities in processing image inputs and following open-ended instructions. Despite these advancements, there is considerable scope for enhancing open-source multi-modal LLMs, especially in terms of multi-modal understanding accuracy and instruction-following proficiency. In this paper, we conduct a comprehensive study on training GPT4-style models. We introduce Lynx a multi-modal LLM developed through a series of controlled experiments comparing various model variants. This process allowed us to identify and implement an optimal training strategy tailored for multi-modal LLMs. In addition to our model development, we propose a plug-and-play technique designed to augment the instruction-following capabilities of multi-modal LLMs. We have validated the performance of Lynx on multiple benchmarks. Results demonstrate that Lynx not only achieves strong image understanding accuracy but also excels in instruction-following tasks, paving the path for ongoing enhancements in multi-modal LLMs.",,2024,ACL,No,, BUST: Benchmark for the evaluation of detectors of LLM-Generated Text,"We introduce BUST, a comprehensive benchmark designed to evaluate detectors of texts generated by instruction-tuned large language models (LLMs). Unlike previous benchmarks, our focus lies on evaluating the performance of detector systems, acknowledging the inevitable influence of the underlying tasks and different LLM generators. Our benchmark dataset consists of 25K texts from humans and 7 LLMs responding to instructions across 10 tasks from 3 diverse sources. Using the benchmark, we evaluated 5 detectors and found substantial performance variance across tasks. A meta-analysis of the dataset characteristics was conducted to guide the examination of detector performance. The dataset was analyzed using diverse metrics assessing linguistic features like fluency and coherence, readability scores, and writer attitudes, such as emotions, convincingness, and persuasiveness. Features impacting detector performance were investigated with surrogate models, revealing emotional content in texts enhanced some detectors, yet the most effective detector demonstrated consistent performance, irrespective of writer’s attitudes and text styles. Our approach focused on investigating relationships between the detectors’ performance and two key factors: text characteristics and LLM generators. We believe BUST will provide valuable insights into selecting detectors tailored to specific text styles and tasks and facilitate a more practical and in-depth investigation of detection systems for LLM-generated text.",,2024,ACL,Yes,Language,Benchmark "AceGPT, Localizing Large Language Models in Arabic","This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed ‘AceGPT’, sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.",,2024,ACL,No,, SQATIN: Supervised Instruction Tuning Meets Question Answering for Improved Dialogue NLU,"Task-oriented dialogue (TOD) systems help users execute well-defined tasks across a variety of domains (e.g., flight booking or food ordering), with their Natural Language Understanding (NLU) components being dedicated to the analysis of user utterances, predicting users’ intents (Intent Detection, ID) and extracting values for informational slots (Value Extraction, VE). In most domains, labelled NLU data is scarce, making sample-efficient learning – enabled with effective transfer paradigms – paramount. In this work, we introduce SQATIN, a new framework for dialog NLU based on (i) instruction tuning and (ii) question-answering-based formulation of ID and VE tasks. According to the evaluation on established NLU benchmarks, SQATIN sets the new state of the art in dialogue NLU, substantially surpassing the performance of current models based on standard fine-tuning objectives in both in-domain training and cross-domain transfer, and it also surpasses off-the-shelf large language models for the same task, both in terms of performance and inference efficiency. Furthermore, SQATIN yields particularly large performance gains in cross-domain transfer, owing to the fact that our QA-based instruction tuning leverages similarities between natural language descriptions of classes (i.e., slots and intents) across domains.",,2024,ACL,No,, Efficient End-to-End Visual Document Understanding with Rationale Distillation,"Understanding visually situated language requires interpreting complex layouts of textual and visual elements. Pre-processing tools, such as optical character recognition (OCR), can map document image inputs to textual tokens, then large language models (LLMs) can reason over text.However, such methods have high computational and engineering complexity. Can small pretrained image-to-text models accurately understand visual documents through similar recognition and reasoning steps instead?We propose Rationale Distillation (RD), which incorporates the outputs of OCR tools, LLMs, and larger multimodal models as intermediate “rationales”, and trains a small student model to predict both rationales and answers. On three visual document understanding benchmarks representing infographics, scanned documents, and figures, our Pix2Struct (282M parameters) student model finetuned with RD outperforms the base model by 4-5% absolute accuracy with only 1% higher computational cost.",,2024,ACL,No,, Investigating Data Contamination in Modern Benchmarks for Large Language Models,"Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52% and 57%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.",,2024,ACL,No,, RE^2: Region-Aware Relation Extraction from Visually Rich Documents,"Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose \textbf{RE}gion-Aware \textbf{R}elation \textbf{E}xtraction (\bf{RE^2}) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. To support the research on relation extraction from visually rich documents and demonstrate the generalizability of \bf{RE^2}, we build a new benchmark dataset, {DiverseForm}, that covers a wide range of domains. Extensive experiments on {DiverseForm} and several public benchmark datasets demonstrate significant superiority and transferability of \bf{RE^2} across various domains and languages, with up to 18.88% absolute F-score gain over all high-performing baselines",,2024,ACL,Yes,Image, IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context,"The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India’s unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups. All the scripts utilized and datasets created in this study are publicly available.",,2024,ACL,Yes,Language,Benchmark Struc-Bench: Are Large Language Models Good at Generating Complex Structured Tabular Data?,"Despite the remarkable capabilities of Large Language Models (LLMs) like GPT-4, producing complex, structured tabular data remains challenging. Our study assesses LLMs’ proficiency in structuring tables and introduces a novel fine-tuning method, cognizant of data structures, to bolster their performance. We unveil Struc-Bench, a comprehensive benchmark featuring prominent LLMs (GPT-NeoX-20B, GPT-3.5, GPT-4, and Vicuna), which spans text tables, HTML, and LaTeX formats. Our proposed FormatCoT aids in crafting format-specific instructions from the intended outputs to populate this benchmark. Addressing the gap in task-centered evaluation, we propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score), to more accurately gauge LLM performance. Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains, outshining its LLM counterparts across most measures. In-depth error analysis and creating an ability map across six dimensions, coverage, formatting, reasoning, comprehension, pragmatics, and hallucination, highlight areas for future enhancements and suggest forthcoming research trajectories. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.",,2024,ACL,Yes,Language,Benchmark Rehearsal-Free Modular and Compositional Continual Learning for Language Models,"Continual learning aims at incrementally acquiring new knowledge while not forgetting existing knowledge. To overcome catastrophic forgetting, methods are either rehearsal-based, i.e., store data examples from previous tasks for data replay, or isolate parameters dedicated to each task. However, rehearsal-based methods raise privacy and memory issues, and parameter-isolation continual learning does not consider interaction between tasks, thus hindering knowledge transfer. In this work, we propose MoCL, a rehearsal-free **Mo**dular and **C**ompositional Continual **L**earning framework which continually adds new modules to language models and composes them with existing modules. Experiments on various benchmarks show that MoCL outperforms state of the art and effectively facilitates knowledge transfer.",,2024,ACL,No,, Do Vision-Language Models Understand Compound Nouns?,"Open-vocabulary vision-language models (VLMs) like CLIP, trained using contrastive loss, have emerged as a promising new paradigm for text-to-image retrieval. However, do VLMs understand compound nouns (CNs) (e.g., *lab coat*) as well as they understand nouns (e.g., *lab*)? We curate Compun, a novel benchmark with 400 unique and commonly used CNs, to evaluate the effectiveness of VLMs in interpreting CNs. The Compun benchmark challenges a VLM for text-to-image retrieval where, given a text prompt with a CN, the task is to select the correct image that shows the CN among a pair of distractor images that show the constituent nouns that make up the CN. Next, we perform an in-depth analysis to highlight CLIPs’ limited understanding of certain types of CNs. Finally, we present an alternative framework that moves beyond hand-written templates for text prompts widely used by CLIP-like models. We employ a Large Language Model to generate multiple diverse captions that include the CN as an object in the scene described by the caption. Our proposed method improves CN understanding of CLIP by 8.25% on Compun. Code and benchmark are available.",,2024,ACL,Yes,Multimodal, Self-Improving for Zero-Shot Named Entity Recognition with Large Language Models,"Exploring the application of powerful large language models (LLMs) on the named entity recognition (NER) task has drawn much attention recently. This work pushes the performance boundary of zero-shot NER with LLMs by proposing a training-free self-improving framework, which utilizes an unlabeled corpus to stimulate the self-learning ability of LLMs. First, we use the LLM to make predictions on the unlabeled corpus using self-consistency and obtain a self-annotated dataset. Second, we explore various strategies to select reliable annotations to form a reliable self-annotated dataset. Finally, for each test input, we retrieve demonstrations from the reliable self-annotated dataset and perform inference via in-context learning. Experiments on four benchmarks show substantial performance improvements achieved by our framework. Through comprehensive experimental analysis, we find that increasing the size of unlabeled corpus or iterations of self-improving does not guarantee further improvement, but the performance might be boosted via more advanced strategies for reliable annotation selection.",,2024,ACL,No,, "Diverse Perspectives, Divergent Models: Cross-Cultural Evaluation of Depression Detection on Twitter","Social media data has been used for detecting users with mental disorders, such as depression. Despite the global significance of cross-cultural representation and its potential impact on model performance, publicly available datasets often lack crucial metadata relatedto this aspect. In this work, we evaluate the generalization of benchmark datasets to build AI models on cross-cultural Twitter data. We gather a custom geo-located Twitter dataset of depressed users from seven countries as a test dataset. Our results show that depressiondetection models do not generalize globally. The models perform worse on Global South users compared to Global North. Pre-trainedlanguage models achieve the best generalization compared to Logistic Regression, though still show significant gaps in performance on depressed and non-Western users. We quantify our findings and provide several actionable suggestions to mitigate this issue",,2024,ACL,No,, Arithmetic Reasoning with LLM: Prolog Generation & Permutation,"Instructing large language models (LLMs) to solve elementary school math problems has shown great success using Chain of Thought (CoT). However, the CoT approach relies on an LLM to generate a sequence of arithmetic calculations which can be prone to cascaded calculation errors. We hypothesize that an LLM should focus on extracting predicates and generating symbolic formulas from the math problem description so that the underlying calculation can be done via an external code interpreter. We investigate using LLM to generate Prolog programs to solve mathematical questions. Experimental results show that our Prolog-based arithmetic problem-solving outperforms CoT generation in the GSM8K benchmark across three distinct LLMs. In addition, given the insensitive ordering of predicates and symbolic formulas in Prolog, we propose to permute the ground truth predicates for more robust LLM training via data augmentation.",,2024,ACL,No,, MEMORY-VQ: Compression for Tractable Internet-Scale Memory,"Retrieval augmentation is a powerful but expensive method to make language models more knowledgeable about the world. Memory-based methods like LUMEN (de Jong et al., 2023a) pre-compute token representations for retrieved passages to drastically speed up inference. However, memory also leads to much greater storage requirements from storing pre-computed representations. We propose MEMORY-VQ, a new method to reduce storage requirements of memory-augmented models without sacrificing performance. Our method uses a vector quantization variational autoencoder (VQ-VAE) to compress token representations. We apply MEMORY-VQ to the LUMEN model to obtain LUMEN-VQ, a memory model that achieves a 16x compression rate with comparable performance on the KILT benchmark. LUMEN-VQ enables practical retrieval augmentation even for extremely large retrieval corpora.",,2024,ACL,No,, MuLan: A Study of Fact Mutability in Language Models,"Facts are subject to contingencies and can be true or false in different circumstances. One such contingency is time, wherein some facts mutate over a given period, e.g., the president of a country or the winner of a championship. Trustworthy language models ideally identify mutable facts as such and process them accordingly. We create MuLan, a benchmark for evaluating the ability of English language models to anticipate time-contingency, covering both 1:1 and 1:N relations. We hypothesize that mutable facts are encoded differently than immutable ones, hence being easier to update. In a detailed evaluation of six popular large language models, we consistently find differences in the LLMs’ confidence, representations, and update behavior, depending on the mutability of a fact. Our findings should inform future work on the injection of and induction of time-contingent knowledge to/from LLMs.",,2024,ACL,Yes,Language,Benchmark Breaking the Language Barrier: Can Direct Inference Outperform Pre-Translation in Multilingual LLM Applications?,"Large language models hold significant promise in multilingual applications. However, inherent biases stemming from predominantly English-centric pre-training have led to the widespread practice of pre-translation, i.e., translating non-English inputs to English before inference, leading to complexity and information loss. This study re-evaluates the need for pre-translation in the context of PaLM2 models, which have been established as highly performant in multilingual tasks. We offer a comprehensive investigation across 108 languages and 6 diverse benchmarks, including open-end generative tasks, which were excluded from previous similar studies. Our findings challenge the pre-translation paradigm established in prior research, highlighting the advantages of direct inference in PaLM2. Specifically, PaLM2-L consistently outperforms pre-translation in 94 out of 108 languages. These findings pave the way for more efficient and effective multilingual applications, alleviating the limitations associated with pre-translation and unlocking linguistic authenticity.",,2024,ACL,No,, AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents,"The advances made by Large Language Models (LLMs) have led to the pursuit of LLM agents that can solve intricate, multi-step reasoning tasks. As with any research pursuit, benchmarking and evaluation are key corner stones to efficient and reliable progress. However, existing benchmarks are often narrow and simply compute overall task success. To face these issues, we propose AgentQuest – a framework where (i) both benchmarks and metrics are modular and easily extensible through well documented and easy-to-use APIs; (ii) we offer two new evaluation metrics that can reliably track LLM agent progress while solving a task. We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase. Together with the research community, we hope to extend AgentQuest further and therefore we make it available under https://github.com/nec-research/agentquest.",,2024,ACL,Yes,Language,Benchmark ZhuJiu-Knowledge: A Fairer Platform for Evaluating Multiple Knowledge Types in Large Language Models,"The swift advancement in large language models (LLMs) has heightened the importance of model evaluations. LLMs have acquired a substantial amount of knowledge, and evaluating the knowledge of these LLMs is crucial. To address this, we introduce the ZhuJiu-Knowledge benchmark which carefully considers the following factors: (1) For knowledge scope, we concentrate on three domains: commonsense knowledge, world knowledge, language knowledge, which comes from ATOMIC, Conceptnet, Wikidata, and Wordnet. (2) For data construction, to prevent data contamination, we utilize knowledge derived from corpora and knowledge graphs to formulate novel questions which are ensured not to appear in the training corpus. A multitude of prompts is purposefully devised to mitigate the impact of prompt design on evaluation and to further analyze the LLMs’ sensitivity to various prompts. (3) For evaluation criteria, we propose a novel voting methodology for assessing generative text, aligning the model’s evaluation with human preferences to reduce biases inherent in individual model assessments. We evaluate 14 current mainstream LLMs and conduct a comprehensive discussion and analysis of their results. The ZhuJiu-Knowledge benchmark and open-participation leaderboard are publicly released at http://zhujiu-knowledge.top and we also provide a demo video at https://youtu.be/QJp4qlEHVH8.",,2024,ACL,Yes,Language,Benchmark Systematic Analysis for Pretrained Language Model Priming for Parameter-Efficient Fine-tuning,"Parameter-efficient (PE) methods (like Prompts or Adapters) for adapting pre-trained language models (PLM) to downstream tasks have been popular recently. However, hindrances still prevent these methods from reaching their full potential. For example, two significant challenges are few-shot adaptation and cross-task generalization. To tackle these issues, we propose a general PE priming framework to enhance and explore the few-shot adaptation and generalization ability of PE methods. In this framework, PLMs are primed with PE methods for rapidly adapting to various target tasks. To evaluate the generalization ability of these PE methods, we conduct experiments on a few-shot cross-domain benchmark containing 160 diverse NLP tasks. Our experiment not only reveals the best priming strategy but also verifies that priming facilitates the adaptation to target tasks.",,2024,ACL,No,, Investigating Web Corpus Filtering Methods for Language Model Development in Japanese,"The development of large language models (LLMs) is becoming increasingly significant, and there is a demand for high-quality, large-scale corpora for their pretraining.The quality of a web corpus is especially essential to improve the performance of LLMs because it accounts for a large proportion of the whole corpus. However, filtering methods for Web corpora have yet to be established.In this paper, we present empirical studies to reveal which filtering methods are indeed effective and analyze why they are.We build classifiers and language models in Japanese that can process large amounts of corpora rapidly enough for pretraining LLMs in limited computational resources. By evaluating these filtering methods based on a Web corpus quality evaluation benchmark, we reveal that the most accurate method is the N-gram language model. Indeed, we empirically present that strong filtering methods can rather lead to lesser performance in downstream tasks.We also report that the proportion of some specific topics in the processed documents decreases significantly during the filtering process.",,2024,ACL,No,, Cross-Task Generalization Abilities of Large Language Models,"Humans can learn a new language task efficiently with only few examples, by leveraging their knowledge and experience obtained when learning prior tasks. Enabling similar cross-task generalization abilities in NLP systems is fundamental for approaching the goal of general intelligence and expanding the reach of language technology in the future.In this thesis proposal, I will present my work on (1) benchmarking cross-task generalization abilities with diverse NLP tasks; (2) developing model architectures for improving cross-task generalization abilities; (3) analyzing and predicting the generalization landscape of current state-of-the-art large language models. Additionally, I will outline future research directions, along with preliminary thoughts on addressing them.",,2024,ACL,Yes,Language,Methodological Modeling and Detecting Company Risks from News,"Identifying risks associated with a company is important to investors and the wellbeing of the overall financial markets. In this study, we build a computational framework to automatically extract company risk factors from news articles. Our newly proposed schema comprises seven distinct aspects, such as supply chain, regulations, and competition. We annotate 666 news articles and benchmark various machine learning models. While large language mod- els have achieved remarkable progress in various types of NLP tasks, our experiment shows that zero-shot and few-shot prompting state-of- the-art LLMs (e.g., Llama-2) can only achieve moderate to low performances in identifying risk factors. In contrast, fine-tuning pre-trained language models yields better results on most risk factors. Using this model, we analyze over 277K Bloomberg News articles and demonstrate that identifying risk factors from news could provide extensive insights into the operations of companies and industries.",,2024,ACL,No,, Optimizing LLM Based Retrieval Augmented Generation Pipelines in the Financial Domain,"Retrieval Augmented Generation (RAG) is a prominent approach in real-word applications for grounding large language model (LLM) generations in up to date and domain-specific knowledge. However, there is a lack of systematic investigations of the impact of each component (retrieval quality, prompts, generation models) on the generation quality of a RAG pipeline in real world scenarios. In this study, we benchmark 6 LLMs in 15 retrieval scenarios exploring 9 prompts over 2 real world financial domain datasets. We thoroughly discuss the impact of each component in RAG pipeline on answer generation quality and formulate specific recommendations for the design of RAG systems.",,2024,ACL,No,, Less is More for Improving Automatic Evaluation of Factual Consistency,"Assessing the factual consistency of automatically generated texts in relation to source context is crucial for developing reliable natural language generation applications. Recent literature proposes AlignScore which uses a unified alignment model to evaluate factual consistency and substantially outperforms previous methods across many benchmark tasks. In this paper, we take a closer look of datasets used in AlignScore and uncover an unexpected finding: utilizing a smaller number of data points can actually improve performance. We process the original AlignScore training dataset to remove noise, augment with robustness-enhanced samples, and utilize a subset comprising 10% of the data to train an improved factual consistency evaluation model, we call LIM-RA (Less Is More for Robust AlignScore). LIM-RA demonstrates superior performance, consistently outperforming AlignScore and other strong baselines like ChatGPT across four benchmarks (two utilizing traditional natural language generation datasets and two focused on large language model outputs). Our experiments show that LIM-RA achieves the highest score on 24 of the 33 test datasets, while staying competitive on the rest, establishing the new state-of-the-art benchmarks.",,2024,ACL,Yes,Language,Benchmark