File size: 2,440 Bytes
19313bd
e493974
 
 
 
56843d8
 
 
 
 
 
 
 
 
 
 
 
19313bd
 
 
 
 
 
 
 
 
 
 
 
 
 
56843d8
26c6e42
56843d8
 
19313bd
 
 
 
 
73241e4
 
8d59b89
c10860a
 
2fb6fd2
73241e4
56843d8
1aca5a3
2fb6fd2
 
56843d8
73241e4
56843d8
 
 
73241e4
2fb6fd2
73241e4
56843d8
73241e4
 
 
56843d8
 
 
 
2fb6fd2
2de9295
56843d8
 
 
 
 
 
fc64eb2
8d59b89
56843d8
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-4.0
size_categories:
- 100K<n<1M
pretty_name: VocSim
tags:
- audio
- audio-similarity
- zero-shot-learning
- representation-learning
- embedding-evaluation
- unsupervised-learning
- speech
- environmental-sounds
- animal-vocalizations
- benchmark
paperswithcode_id: audiosim
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: subset
    dtype: string
  - name: speaker
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 5452179735 # ~5.45 GB
    num_examples: 114641
  download_size: 5500616162 # ~5.5 GB
  dataset_size: 5452179735 # ~5.45 GB
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# VocSim: A Training-Free Benchmark for Content Identity in Single-Source Audio Embeddings
[![GitHub Repository](https://img.shields.io/badge/GitHub-vocsim-black?logo=github)](https://github.com/anonymoussubmission0000/vocsim)
[![Paper: arXiv](https://img.shields.io/badge/Paper-arXiv%20(TBD)-red.svg)](#)
[![License: CC BY 4.0](https://img.shields.io/badge/License-CC%20BY%204.0-blue.svg)](https://creativecommons.org/licenses/by/4.0/)

**VocSim** evaluates how well neural audio embeddings generalize for **zero-shot audio similarity**. It tests recognizing fine-grained acoustic similarity without specific similarity training.

---

## Key Features

*   **Diverse Sources:** Human speech (phones, words, utterances), birdsong, otter calls, environmental sounds.
*   **Varied Conditions:** Spans clean to noisy recordings, short (<100ms) to long durations, few to many classes per subset.
*   **Standardized:** All audio is 16kHz mono.

---

## Data Format

```python
{
  'audio': {'array': array([...], dtype=float32), 'sampling_rate': 16000},
  'subset': 'HW1',      # Origin identifier
  'speaker': 'spk_id',  # Speaker/Animal/Source ID or 'N/A'
  'label': 'hello'      # Ground truth class for similarity
}
```
Train split: 114,641 public examples from 15 subsets for evaluation.

Blind Test Sets: 4 additional subsets held out privately.

## Citation
```bib
@inproceedings{vocsim_authors_2025,
  title={VocSim: A Training-Free Benchmark for Content Identity in Single-Source Audio Embeddings},
  author={Anonymous Authors},
  booktitle={Conference/Journal},
  year={2025},
  url={[Link to paper upon DOI]}
}
```
## License

CC BY 4.0 - Creative Commons Attribution 4.0 International.