--- license: cc-by-4.0 task_categories: - feature-extraction - tabular-classification language: - en tags: - music - african-music - popular - hits - top-tracks size_categories: - n<1K pretty_name: Spotify-Africa Popular Tracks --- # Spotify-Africa Popular Tracks ## Dataset Description Top 100 hit tracks representing the most popular and influential African music on Spotify with high popularity scores. ### Dataset Details - **Language:** English - **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International) - **Source:** Spotify Web API - **Collection Period:** 2025 - **Geographic Coverage:** Africa (5 regions: West, East, Southern, Central, North) ## Dataset Structure ### Data Fields This dataset includes comprehensive metadata about African music tracks and artists: **Core Metadata:** - Track identifiers (track_id, track_name, ISRC) - Artist information (artist_id, artist_name, genres, popularity) - Album details (album_id, album_name, album_type, release_date) - Technical specs (duration_ms, explicit, preview_url) **Enrichment Features:** - **Regional metadata:** country, region inference - **Temporal classifications:** release_era, release_decade, track_age_years - **Popularity metrics:** popularity_tier, market_scope, region_popularity_percentile - **Collaboration detection:** has_collab, collab_count - **Genre consolidation:** primary_genre, genre_tags (15+ standardized African genres) - **Streaming analytics:** streaming_potential (0-100 score), market_penetration - **Duration categorization:** duration_category (Short/Standard/Long/Extended) - **Track features:** track_name_length, has_parentheses, track_position ### Data Splits This dataset contains a single split: - **train:** All available data ### File Formats - **CSV:** Human-readable format for general use - **Parquet:** Compressed, type-safe format for efficient loading ## Usage ### Loading the Dataset ```python from datasets import load_dataset # Load dataset dataset = load_dataset("electricsheepafrica/popular_tracks") df = dataset['train'].to_pandas() print(f"Loaded {len(df):,} rows") print(df.head()) ``` ### Direct File Access ```python import pandas as pd # Load from CSV df = pd.read_csv("hf://datasets/electricsheepafrica/popular_tracks/*.csv") # Load from Parquet (faster) df = pd.read_parquet("hf://datasets/electricsheepafrica/popular_tracks/*.parquet") ``` ## Dataset Statistics - **Data Quality:** 92% metadata completeness - **Deduplication:** All tracks deduplicated across sources - **Validation:** All Spotify IDs validated - **Coverage:** Spans 67 years of African music (1958-2025) ## Research Applications This dataset is ideal for: - **Music Information Retrieval:** Genre classification, similarity detection - **Machine Learning:** Popularity prediction, streaming success modeling - **Network Analysis:** Artist collaboration patterns - **Cultural Studies:** African music evolution and globalization - **Market Research:** Regional preferences, distribution strategies ## Standardized Genres The dataset includes 15+ consolidated African music genres: - **Afrobeats** - Contemporary West African pop fusion - **Amapiano** - South African house/jazz hybrid - **Afropop** - Pan-African popular music - **Afro House** - African electronic dance music - **Highlife** - West African guitar-based music - **Bongo Flava** - Tanzanian hip-hop/R&B fusion - **Gqom** - South African electronic/house - **Kwaito** - South African township music - **Gengetone** - Kenyan hip-hop fusion - **Afro-Fusion** - Contemporary genre-blending - **Azonto** - Ghanaian dance music - **Soukous** - Central African dance music - **Mbalax** - Senegalese pop music - **Afro Drill** - African drill rap - **Alte** - Alternative Afrobeats ## Citation If you use this dataset in your research, please cite: ```bibtex @dataset{spotify_africa_popular_tracks_2025, title={Spotify-Africa Popular Tracks: African Music Metadata from Spotify}, author={Electric Sheep Africa}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/datasets/electricsheepafrica/popular_tracks}} } ``` ## License This dataset is released under **CC BY 4.0** (Creative Commons Attribution 4.0 International). **You are free to:** - Share — copy and redistribute the material - Adapt — remix, transform, and build upon the material - Use commercially — for any purpose **Under the following terms:** - Attribution — You must give appropriate credit and indicate if changes were made ## Collection This dataset is part of the **Spotify-Africa Music Research Collection**: https://huggingface.co/collections/electricsheepafrica/spotify-africa-music-research-69038be619ca34d864018cda ### Related Datasets Explore other datasets in the collection: - **master_tracks** - Primary unified dataset (recommended) - **tracks** - Main enriched tracks - **artist_summary** - Artist-level aggregations - **region_summary** - Regional statistics - **analysis_ready_tracks** - Clean subset for tutorials - **scaled_tracks** - Large-scale collection - **popular_tracks** - Top hits ## Ethical Considerations - **Data Source:** All data collected from public Spotify Web API - **Privacy:** No user data or listening history included - **Representation:** Strives for geographic and genre diversity - **Bias:** May reflect Spotify's platform availability and market penetration in Africa - **Cultural Sensitivity:** African music genres standardized with respect to local naming ## Contact - **Organization:** Electric Sheep Africa - **Repository:** https://huggingface.co/datasets/electricsheepafrica/popular_tracks - **Collection:** https://huggingface.co/collections/electricsheepafrica/spotify-africa-music-research-69038be619ca34d864018cda For questions or collaborations, please use the repository discussions or issues. --- **Explore African Music. Celebrate Diversity. Amplify Voices.** 🌍🎵