nielsr HF Staff commited on
Commit
0983258
·
verified ·
1 Parent(s): 615f609

Improve dataset card: Add task categories, paper link, project page, tags, and sample usage

Browse files

This PR enhances the dataset card by:
- Adding `task_categories: ['time-series-forecasting']` and comprehensive `tags` to the metadata for better discoverability, including `time-series`, `self-supervised-learning`, `representation-learning`, `time-series-classification`, and `time-series-regression`.
- Updating the initial reference to include a direct link to the paper on Hugging Face Papers: [https://huggingface.co/papers/2510.22655](https://huggingface.co/papers/2510.22655).
- Adding a link to the official NeurIPS 2025 project page.
- Including a "Datasets Included" section to clearly list the nine datasets and their associated tasks.
- Adding a "Sample Usage" section with code snippets from the GitHub repository's "Quickstart" guide, demonstrating how to use the dataset for pre-training and testing.

These updates provide users with richer context and clearer guidance on how to use this valuable resource.

Files changed (1) hide show
  1. README.md +51 -2
README.md CHANGED
@@ -1,8 +1,57 @@
1
  ---
2
  language:
3
  - en
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- This dataset repository contains the **preprocessed data** used in our NeurIPS 2025 paper *Learning Without Augmenting*. It includes all nine datasets across five time-series tasks in different ready-to-use format. For training code, loaders, and preprocessing scripts, please see our GitHub repository:
7
- 👉 [https://github.com/eth-siplab/Learning-with-FrameProjections](https://github.com/eth-siplab/Learning-with-FrameProjections)
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - en
4
+ task_categories:
5
+ - time-series-forecasting
6
+ tags:
7
+ - time-series
8
+ - self-supervised-learning
9
+ - representation-learning
10
+ - time-series-classification
11
+ - time-series-regression
12
  ---
13
 
14
+ This dataset repository contains the **preprocessed data** used in our NeurIPS 2025 paper [Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections](https://huggingface.co/papers/2510.22655).
 
15
 
16
+ **Paper:** [Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections](https://huggingface.co/papers/2510.22655)
17
+ **Project Page:** [https://neurips.cc/virtual/2025/poster/118514](https://neurips.cc/virtual/2025/poster/118514)
18
+ **GitHub Repository:** [https://github.com/eth-siplab/Learning-with-FrameProjections](https://github.com/eth-siplab/Learning-with-FrameProjections)
19
+
20
+ ### Datasets Included
21
+ This repository includes all nine datasets across five time-series tasks in different ready-to-use formats, as used in the paper:
22
+ * **Heart rate estimation:** IEEE SPC12, IEEE SPC22, DaLiA
23
+ * **Activity recognition:** HHAR, USC
24
+ * **Cardiovascular disease classification:** CPSC2018, Chapman
25
+ * **Step counting:** Clemson
26
+ * **Sleep staging:** Sleep-EDF
27
+
28
+ ### Sample Usage
29
+
30
+ This dataset contains the preprocessed data that can be used with the associated code from the [Learning-with-FrameProjections GitHub repository](https://github.com/eth-siplab/Learning-with-FrameProjections). Here are the quickstart commands for pre-training and testing:
31
+
32
+ **Pre-training + testing (our method)**
33
+
34
+ ```bash
35
+ python main.py \
36
+ --framework isoalign \
37
+ --backbone resnet \
38
+ --dataset ieee_small \
39
+ --n_epoch 256 \
40
+ --batch_size 1024 \
41
+ --lr 1e-3 \
42
+ --lr_cls 0.03 \
43
+ --cuda 0 \
44
+ --cases subject_large
45
+ ```
46
+
47
+ **Supervised baseline**
48
+
49
+ ```bash
50
+ python main_supervised_baseline.py \
51
+ --dataset ieee_small \
52
+ --backbone resnet \
53
+ --block 8 \
54
+ --lr 5e-4 \
55
+ --n_epoch 999 \
56
+ --cuda 0
57
+ ```