File size: 7,197 Bytes
5ad19a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dc43c
 
 
 
 
 
 
 
 
 
 
 
5ad19a8
1a5b8fe
66dc43c
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5b8fe
66dc43c
 
 
 
 
 
 
 
 
 
 
1a5b8fe
66dc43c
 
 
 
 
1a5b8fe
 
 
66dc43c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5b8fe
 
 
 
 
 
 
 
 
66dc43c
967e7ca
66dc43c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
dataset_info:
  features:
  - name: unique_id
    dtype: int64
  - name: image_path
    dtype: string
  - name: ocr
    sequence:
    - name: text
      dtype: string
    - name: bbox
      sequence: int64
    - name: block_id
      dtype: int64
    - name: text_id
      dtype: int64
    - name: par_id
      dtype: int64
    - name: line_id
      dtype: int64
    - name: word_id
      dtype: int64
  - name: question
    dtype: string
  - name: answer
    sequence: string
  splits:
  - name: train
    num_bytes: 11642104684
    num_examples: 260814
  - name: validation
    num_bytes: 1324439173
    num_examples: 28473
  download_size: 13295093966
  dataset_size: 12966543857
license: other
task_categories:
- visual-question-answering
language:
- en
tags:
- documents
- vqa
- generative
- document understanding
size_categories:
- 100K<n<1M
---
# GenDocVQA

This dataset provides a broad set of documents with questions related to their contents.
These questions are non-extractive, meaning that the model, which solves our task should be 
generative and compute the answers by itself.

## Dataset Details

## Uses

### Direct Use

In order to load dataset using following code:

```python
ds = datasets.load_dataset('lenagibee/GenDocVQA')
```

ds is a dict consisting from two splits `train` and `validation`.

To open the image use following example:
```python
from PIL import Image
im = Image.open(ds['train'][0]['image_path'])
```

Dataset generator:
https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/GenDocVQA.py?download=true

## Dataset Structure

All the necessary data is stored in the following archives:

* Images: https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_imgs.tar.gz?download=true
* OCR: https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_ocr.tar.gz?download=true
* Annotations: https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_annotations.tar.gz?download=true

Data parsing is already implemented in the attached dataset generator.
Images should be processed by the user himself.

The train split contains 260814 questions and dev (validation) contains 28473.

### Features of dataset

The features of the dataset are the following:
```python
features = datasets.Features(
            {
                "unique_id": datasets.Value("int64"),
                "image_path": datasets.Value("string"),
                "ocr": datasets.Sequence(
                    feature={
                        'text': datasets.Value("string"), 
                        'bbox': datasets.Sequence(datasets.Value("int64")),
                        'block_id': datasets.Value("int64"),
                        'text_id': datasets.Value("int64"),
                        'par_id': datasets.Value("int64"),
                        'line_id': datasets.Value("int64"),
                        'word_id': datasets.Value("int64")
                    }
                ),
                "question": datasets.Value("string"),
                "answer": datasets.Sequence(datasets.Value("string")),
                
            }
```

#### Features description

* `unique_id` - integer, an id of a question
* `image_path` - string, path to the image for a question (includes downloaded path)
* `ocr` - dictionary, containing lists, where each element is an information related to a single word
  * `text` - string, a word itself
  * `bbox` - list of 4 integers, a bounding box of the word
  * `block_id` - integer, an index of the block, where the word is located
  * `text_id` - integer, an index of the set of paragraphs, where the word is located
  * `par_id` - integer, an index of the paragraph, where the word is located
  * `line_id` - integer, an index of the line, where the word is located
  * `word_id` - integer, an index of the word
* `question` - string, containing the question
* `answer` - list of strings, containing the answers to the question, can be empty (non-answerable)

### Images

Are divided inside the archive into dev and train folders.
Just regular images in PNG, JPG formats. 
You can use any image library to process them.

### OCR

Same as the Images are divided into dev and train folders.
Represented as JSON files. 

#### OCR JSON Description

It is a list of elements, where each represents an information about the single word extracted 
by the ABBYY FineReader OCR, and contains fields in following order:

1. `block_id` - integer, an index of the block, where the word is located
2. `text_id` - integer, an index of the set of paragraphs, where the word is located
3. `par_id` - integer, an index of the paragraph, where the word is located
4. `line_id` - integer, an index of the line, where the word is located
5. `word_id` - integer, an index of the word
6. `bbox` - list of 4 integers, a bounding box of the word
7. `text` - string, a word itself

### Annotations

dev (validation) and train splits are located in the archive.
Question lists are represtened by csv files with following columns:

1. `unique_id` - an id of the question
2. `split`
3. `question`
4. `answer`
5. `image_filename` - a filename of the related image
6. `ocr_filename` - a filename of the json file, containing the related OCR data

## Dataset Creation

### Source Data

The data for this dataset was collected from the following datasets:
1. SlideVQA - Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito. "A Dataset for Document Visual Question Answering on Multiple Images". In Proc. of AAAI. 2023.
2. PDFVQA - Yihao Ding and Siwen Luo and Hyunsuk Chung and Soyeon Caren Han, PDFVQA: A New Dataset for Real-World VQA on PDF Documents, 2023
3. InfographicsVQA - InfographicVQA, Minesh Mathew and Viraj Bagal and Rubèn Pérez Tito and Dimosthenis Karatzas and Ernest Valveny and C. V Jawahar, 2021
4. TAT-DQA - Towards complex document understanding by discrete reasoning, Zhu, Fengbin and Lei, Wenqiang and Feng, Fuli and Wang, Chao and Zhang, Haozhou and Chua, Tat-Seng, 2022
5. DUDE - Document Understanding Dataset and Evaluation (DUDE), Jordy Van Landeghem and Rubén Tito and Łukasz Borchmann and Michał Pietruszka and Paweł Józiak and Rafał Powalski and Dawid Jurkiewicz and Mickaël Coustaty and Bertrand Ackaert and Ernest Valveny and Matthew Blaschko and Sien Moens and Tomasz Stanisławek, 2023

### Data Processing

The questions from each dataset were filtered by the types of the questions, 
leaving only non-extractive questions, related to one page. After that the questions
were paraphrased.

### Source Data Licenses

The dataset adheres to the licenses of its constituents.
1. SlideVQA: https://github.com/nttmdlab-nlp/SlideVQA/blob/main/LICENSE
2. PDFVQA: https://github.com/adlnlp/pdfvqa (Unknown)
3. InfographicsVQA: https://www.docvqa.org/datasets/infographicvqa (Unknown)
4. TAT-DQA: https://nextplusplus.github.io/TAT-DQA/ (CC BY 4.0)
5. DUDE: https://github.com/duchallenge-team/dude/blob/main/LICENSE (GPL 3.0)

## Dataset Card Contact
Please feel free to contact in the community page of this dataset or via 
the Telegram chat of the challenge:
https://t.me/gendocvqa2024