Dataset Viewer
Auto-converted to Parquet Duplicate
example_id
int64
0
10k
metadata
stringlengths
679
723
classification_prompt
stringlengths
7.66k
18.5k
classification_completion
stringclasses
14 values
classification_text
stringlengths
7.68k
18.6k
improved_signature
stringlengths
7.3k
18.8k
improved_model_weights
stringlengths
1.77k
5.04k
training_metrics
stringlengths
1.46k
2.92k
0
{"target_pattern": "sorted_descending", "degraded_accuracy": 0.7, "improved_accuracy": 0.94, "improvement": 0.24, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 5, "activation_type": "gelu", "dropout_rate": 0.0, "random_seed": 9016, "learning_rate": 0.08961895813761998, "batch_size": 128, "num_epochs": 15, "patience": 3}, "corruption_stats": {"target_pattern": "sorted_descending", "corruption_rate": 0.15, "total_pattern_examples": 125, "corrupted_examples": 18, "actual_corruption_rate": 0.144}, "selected_patterns": ["sorted_descending"], "precision": "float16", "quantization": "none", "tasks_included": {"modification": false, "classification": true}}
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 5 Neurons per Layer: 5 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.723235, 0.148694, -0.035862, -0.03259, 0.093569 ], [ 0.391537, -0.745309, 0.404238, -0.15881, -0.46019 ], [ 0.541115, -0.73984, 0.102558, -0.645988, 0.76426 ], [ 0.456313, -0.277676, -0.774307, -0.292525, -0.852123 ], [ -0.730123, 0.308654, 0.326991, 0.497972, 0.545093 ] ], "network.0.bias": [ 0.521104, -0.187577, -0.630886, -0.01686, 0.585256 ], "network.2.weight": [ [ -0.153712, -0.12565, -0.177129, -0.76078, -0.92976 ], [ 0.769158, -0.79268, -0.943785, -0.402095, -0.204646 ], [ -0.454578, 0.044937, 1.066668, -0.360359, 0.957029 ], [ -0.505064, -0.089674, 0.361554, 0.77419, -0.410479 ], [ 0.079615, -0.26556, -0.241345, -0.343229, -0.123966 ] ], "network.2.bias": [ -0.507592, 0.198097, 0.512732, -0.214669, 0.129683 ], "network.4.weight": [ [ 0.174864, -0.332569, 1.126539, -0.553297, 0.289136 ], [ -0.326837, -0.189873, 0.363447, 0.11813, 0.12124 ], [ -0.664838, -0.766461, 0.266763, -0.413591, -0.631465 ], [ 0.039711, -0.24691, -0.230778, -0.546928, -0.653657 ], [ -0.880117, 0.738277, -0.290296, -0.22503, 0.42476 ] ], "network.4.bias": [ 0.107649, -0.59472, 0.72518, -0.556823, 0.404809 ], "network.6.weight": [ [ -0.281714, -0.191556, -1.202557, -0.223292, 0.388938 ], [ 0.711024, 0.355352, 0.680397, -1.047818, -0.778648 ], [ -0.344596, -0.036778, -1.247133, -1.082146, 0.525291 ], [ 0.048334, 0.606145, -0.384974, 0.467213, 0.332925 ], [ -0.154895, 0.042389, -0.285053, 0.295761, 0.20564 ] ], "network.6.bias": [ 0.623291, 0.285332, 0.644558, -0.431783, 0.126593 ], "network.8.weight": [ [ 0.222015, 0.439799, 0.052769, 0.37917, 0.850414 ], [ 0.655353, -0.345513, 0.401273, 0.082408, -0.000325 ], [ -0.817743, 0.911252, -0.906102, -0.096952, -0.722548 ], [ -0.185509, -0.468356, 0.423197, -0.184445, -0.185097 ], [ 0.440138, -0.290368, 0.800623, -0.068773, 0.327491 ] ], "network.8.bias": [ -0.073364, 0.139005, 0.279215, 0.001123, 0.069187 ], "network.10.weight": [ [ -0.337305, 0.378797, -1.028849, 0.073284, 0.522391 ] ], "network.10.bias": [ -0.302506 ] } ## Activation Signature ### 0 mean: [1.662684, -1.122168, -1.534118, -3.250686, 2.662296] std: [1.594747, 1.742667, 2.721687, 2.534637, 2.149811] pca: [[-0.139435, 0.199104, 0.894519, 0.167691, 0.335606, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.381463, 0.101867, -0.325644, 0.825959, 0.236341, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.466697, 0.743984, -0.201792, -0.418865, 0.111864, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.520149, -0.607280, -0.068797, -0.333919, 0.494390, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.588798, 0.166372, -0.219862, -0.052168, 0.758008, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[26.339269, 27.472834, 27.624891, 32.220471, 149.641608], [24.663523, 27.222861, 30.007381, 30.010839, 100.995164], [44.144936, 45.221512, 48.196108, 49.119491, 138.070624], [41.565948, 41.596974, 45.008291, 46.603990, 292.561715], [31.293498, 31.329796, 37.614910, 40.849836, 239.606651]] ### 2 mean: [-3.334171, 0.439072, 2.724952, -2.003832, -0.193677] std: [1.818774, 1.664621, 2.405426, 0.991550, 0.441182] pca: [[-0.504654, -0.502944, 0.412209, -0.561467, -0.084913, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.394976, 0.651072, 0.463641, 0.175344, -0.417602, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.752713, -0.052000, 0.613409, -0.152977, -0.176202, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.092687, -0.560466, 0.176456, 0.756151, -0.272737, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.118957, 0.079538, 0.455757, 0.242575, 0.844373, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[27.551924, 28.108063, 31.534462, 34.053245, 300.075364], [26.675958, 26.960124, 27.105927, 28.386110, 39.516451], [36.426335, 38.875616, 39.187378, 43.386884, 245.245660], [15.011747, 15.435259, 16.296048, 21.013043, 180.344909], [6.661990, 7.659223, 8.177277, 8.793093, 17.430914]] ### 4 mean: [3.097999, 0.306475, 1.012287, -1.336377, 0.141332] std: [2.726020, 0.940197, 1.475756, 0.408673, 1.506817] pca: [[0.770671, -0.491181, 0.046644, 0.392246, -0.093675, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.267961, -0.090254, 0.183747, -0.465995, 0.818008, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.398603, 0.578521, 0.601409, -0.206539, -0.319495, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.045641, 0.449217, 0.105443, 0.751671, 0.469035, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.416288, -0.462723, 0.768928, 0.146028, -0.004222, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[41.456501, 42.248121, 46.578331, 53.374678, 278.819894], [14.274672, 15.058327, 15.690642, 18.283270, 27.582758], [21.126754, 22.504964, 25.420726, 27.110302, 91.105806], [7.063935, 7.546963, 7.608147, 7.710132, 120.273888], [21.502728, 21.837568, 22.418122, 27.371490, 27.853383]] ### 6 mean: [-1.599451, 3.249961, -1.589742, -0.354641, -0.622525] std: [2.294462, 3.316749, 2.541162, 0.440615, 0.813227] pca: [[-0.473933, -0.110599, 0.585623, -0.637911, 0.115195, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.685415, 0.032125, 0.700280, 0.150928, 0.126504, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.525271, 0.031666, 0.402006, 0.711207, -0.235929, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.038805, 0.985993, 0.037113, -0.125382, -0.095993, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.167863, 0.116411, -0.060563, 0.220801, 0.951761, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[33.275436, 36.785851, 38.523804, 46.868765, 143.950578], [49.300000, 54.616105, 55.460648, 66.544689, 292.496438], [36.876759, 41.488276, 43.039400, 51.977604, 143.076754], [7.199664, 7.506771, 8.048345, 10.731586, 31.917647], [11.868840, 13.745128, 13.776729, 16.496594, 56.027209]] ### 8 mean: [1.553748, -0.692390, 2.825214, -1.513168, -0.451943] std: [1.076018, 1.625832, 3.787247, 1.474916, 1.718633] pca: [[0.174939, 0.805022, -0.379072, -0.132966, 0.399950, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.340864, 0.178362, 0.352821, 0.764319, 0.378593, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.797394, -0.077284, 0.520249, -0.012913, 0.295575, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.302229, -0.400128, -0.040952, -0.401566, 0.765260, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.355006, 0.392493, 0.677854, -0.486533, -0.154014, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[14.960574, 15.603174, 18.116419, 20.362542, 139.837324], [22.560559, 28.466918, 29.148525, 32.881780, 62.315126], [53.332116, 65.913898, 66.393774, 77.974230, 254.269275], [21.041428, 22.081310, 25.918652, 31.039288, 136.185134], [24.264969, 30.157252, 31.971064, 33.806497, 40.674892]] ### 10 mean: [-3.958747] std: [3.864759] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[54.434847, 61.343204, 68.435954, 83.064413, 356.287279]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas.
sorted_descending
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 5 Neurons per Layer: 5 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.723235, 0.148694, -0.035862, -0.03259, 0.093569 ], [ 0.391537, -0.745309, 0.404238, -0.15881, -0.46019 ], [ 0.541115, -0.73984, 0.102558, -0.645988, 0.76426 ], [ 0.456313, -0.277676, -0.774307, -0.292525, -0.852123 ], [ -0.730123, 0.308654, 0.326991, 0.497972, 0.545093 ] ], "network.0.bias": [ 0.521104, -0.187577, -0.630886, -0.01686, 0.585256 ], "network.2.weight": [ [ -0.153712, -0.12565, -0.177129, -0.76078, -0.92976 ], [ 0.769158, -0.79268, -0.943785, -0.402095, -0.204646 ], [ -0.454578, 0.044937, 1.066668, -0.360359, 0.957029 ], [ -0.505064, -0.089674, 0.361554, 0.77419, -0.410479 ], [ 0.079615, -0.26556, -0.241345, -0.343229, -0.123966 ] ], "network.2.bias": [ -0.507592, 0.198097, 0.512732, -0.214669, 0.129683 ], "network.4.weight": [ [ 0.174864, -0.332569, 1.126539, -0.553297, 0.289136 ], [ -0.326837, -0.189873, 0.363447, 0.11813, 0.12124 ], [ -0.664838, -0.766461, 0.266763, -0.413591, -0.631465 ], [ 0.039711, -0.24691, -0.230778, -0.546928, -0.653657 ], [ -0.880117, 0.738277, -0.290296, -0.22503, 0.42476 ] ], "network.4.bias": [ 0.107649, -0.59472, 0.72518, -0.556823, 0.404809 ], "network.6.weight": [ [ -0.281714, -0.191556, -1.202557, -0.223292, 0.388938 ], [ 0.711024, 0.355352, 0.680397, -1.047818, -0.778648 ], [ -0.344596, -0.036778, -1.247133, -1.082146, 0.525291 ], [ 0.048334, 0.606145, -0.384974, 0.467213, 0.332925 ], [ -0.154895, 0.042389, -0.285053, 0.295761, 0.20564 ] ], "network.6.bias": [ 0.623291, 0.285332, 0.644558, -0.431783, 0.126593 ], "network.8.weight": [ [ 0.222015, 0.439799, 0.052769, 0.37917, 0.850414 ], [ 0.655353, -0.345513, 0.401273, 0.082408, -0.000325 ], [ -0.817743, 0.911252, -0.906102, -0.096952, -0.722548 ], [ -0.185509, -0.468356, 0.423197, -0.184445, -0.185097 ], [ 0.440138, -0.290368, 0.800623, -0.068773, 0.327491 ] ], "network.8.bias": [ -0.073364, 0.139005, 0.279215, 0.001123, 0.069187 ], "network.10.weight": [ [ -0.337305, 0.378797, -1.028849, 0.073284, 0.522391 ] ], "network.10.bias": [ -0.302506 ] } ## Activation Signature ### 0 mean: [1.662684, -1.122168, -1.534118, -3.250686, 2.662296] std: [1.594747, 1.742667, 2.721687, 2.534637, 2.149811] pca: [[-0.139435, 0.199104, 0.894519, 0.167691, 0.335606, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.381463, 0.101867, -0.325644, 0.825959, 0.236341, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.466697, 0.743984, -0.201792, -0.418865, 0.111864, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.520149, -0.607280, -0.068797, -0.333919, 0.494390, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.588798, 0.166372, -0.219862, -0.052168, 0.758008, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[26.339269, 27.472834, 27.624891, 32.220471, 149.641608], [24.663523, 27.222861, 30.007381, 30.010839, 100.995164], [44.144936, 45.221512, 48.196108, 49.119491, 138.070624], [41.565948, 41.596974, 45.008291, 46.603990, 292.561715], [31.293498, 31.329796, 37.614910, 40.849836, 239.606651]] ### 2 mean: [-3.334171, 0.439072, 2.724952, -2.003832, -0.193677] std: [1.818774, 1.664621, 2.405426, 0.991550, 0.441182] pca: [[-0.504654, -0.502944, 0.412209, -0.561467, -0.084913, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.394976, 0.651072, 0.463641, 0.175344, -0.417602, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.752713, -0.052000, 0.613409, -0.152977, -0.176202, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.092687, -0.560466, 0.176456, 0.756151, -0.272737, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.118957, 0.079538, 0.455757, 0.242575, 0.844373, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[27.551924, 28.108063, 31.534462, 34.053245, 300.075364], [26.675958, 26.960124, 27.105927, 28.386110, 39.516451], [36.426335, 38.875616, 39.187378, 43.386884, 245.245660], [15.011747, 15.435259, 16.296048, 21.013043, 180.344909], [6.661990, 7.659223, 8.177277, 8.793093, 17.430914]] ### 4 mean: [3.097999, 0.306475, 1.012287, -1.336377, 0.141332] std: [2.726020, 0.940197, 1.475756, 0.408673, 1.506817] pca: [[0.770671, -0.491181, 0.046644, 0.392246, -0.093675, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.267961, -0.090254, 0.183747, -0.465995, 0.818008, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.398603, 0.578521, 0.601409, -0.206539, -0.319495, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.045641, 0.449217, 0.105443, 0.751671, 0.469035, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.416288, -0.462723, 0.768928, 0.146028, -0.004222, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[41.456501, 42.248121, 46.578331, 53.374678, 278.819894], [14.274672, 15.058327, 15.690642, 18.283270, 27.582758], [21.126754, 22.504964, 25.420726, 27.110302, 91.105806], [7.063935, 7.546963, 7.608147, 7.710132, 120.273888], [21.502728, 21.837568, 22.418122, 27.371490, 27.853383]] ### 6 mean: [-1.599451, 3.249961, -1.589742, -0.354641, -0.622525] std: [2.294462, 3.316749, 2.541162, 0.440615, 0.813227] pca: [[-0.473933, -0.110599, 0.585623, -0.637911, 0.115195, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.685415, 0.032125, 0.700280, 0.150928, 0.126504, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.525271, 0.031666, 0.402006, 0.711207, -0.235929, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.038805, 0.985993, 0.037113, -0.125382, -0.095993, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.167863, 0.116411, -0.060563, 0.220801, 0.951761, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[33.275436, 36.785851, 38.523804, 46.868765, 143.950578], [49.300000, 54.616105, 55.460648, 66.544689, 292.496438], [36.876759, 41.488276, 43.039400, 51.977604, 143.076754], [7.199664, 7.506771, 8.048345, 10.731586, 31.917647], [11.868840, 13.745128, 13.776729, 16.496594, 56.027209]] ### 8 mean: [1.553748, -0.692390, 2.825214, -1.513168, -0.451943] std: [1.076018, 1.625832, 3.787247, 1.474916, 1.718633] pca: [[0.174939, 0.805022, -0.379072, -0.132966, 0.399950, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.340864, 0.178362, 0.352821, 0.764319, 0.378593, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.797394, -0.077284, 0.520249, -0.012913, 0.295575, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.302229, -0.400128, -0.040952, -0.401566, 0.765260, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [-0.355006, 0.392493, 0.677854, -0.486533, -0.154014, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[14.960574, 15.603174, 18.116419, 20.362542, 139.837324], [22.560559, 28.466918, 29.148525, 32.881780, 62.315126], [53.332116, 65.913898, 66.393774, 77.974230, 254.269275], [21.041428, 22.081310, 25.918652, 31.039288, 136.185134], [24.264969, 30.157252, 31.971064, 33.806497, 40.674892]] ### 10 mean: [-3.958747] std: [3.864759] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[54.434847, 61.343204, 68.435954, 83.064413, 356.287279]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas. sorted_descending
{"neuron_activations": {"0": {"neuron_profiles": {"0": {"mean": 1.6626843214035034, "std": 1.5947465896606445, "pca": [-0.1394353061914444, 0.19910432398319244, 0.8945185542106628, 0.1676909327507019, 0.33560627698898315, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [26.33926874630575, 27.472833786802177, 27.62489067195745, 32.22047127262379, 149.64160832762718]}, "1": {"mean": -1.1221684217453003, "std": 1.7426668405532837, "pca": [-0.38146254420280457, 0.10186699032783508, -0.32564428448677063, 0.8259589672088623, 0.2363409698009491, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [24.66352255683913, 27.222860927864318, 30.007381147449667, 30.010838793036026, 100.99516397714615]}, "2": {"mean": -1.5341181755065918, "std": 2.721686840057373, "pca": [-0.4666968882083893, 0.7439841032028198, -0.20179225504398346, -0.4188651144504547, 0.11186417937278748, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [44.144936009944296, 45.22151197930293, 48.196107798114475, 49.11949080758555, 138.07062405347824]}, "3": {"mean": -3.250685691833496, "std": 2.534637212753296, "pca": [-0.5201493501663208, -0.6072796583175659, -0.06879699975252151, -0.3339192569255829, 0.4943895637989044, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [41.565948388079846, 41.59697371318208, 45.00829084057616, 46.603989844218496, 292.5617150068283]}, "4": {"mean": 2.6622960567474365, "std": 2.149811029434204, "pca": [0.5887977480888367, 0.16637220978736877, -0.21986183524131775, -0.05216812342405319, 0.7580084204673767, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [31.29349770899265, 31.329796317754706, 37.61490978061915, 40.84983581942266, 239.60665076971054]}}, "layer_info": {"num_neurons": 5, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "2": {"neuron_profiles": {"0": {"mean": -3.3341708183288574, "std": 1.8187744617462158, "pca": [-0.504653811454773, -0.5029443502426147, 0.41220930218696594, -0.561466634273529, -0.0849129930138588, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [27.551924038467625, 28.10806299535118, 31.5344617389167, 34.05324476299979, 300.0753635764122]}, "1": {"mean": 0.4390716552734375, "std": 1.6646205186843872, "pca": [-0.3949759900569916, 0.6510718464851379, 0.46364057064056396, 0.17534442245960236, -0.41760170459747314, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [26.675957834886773, 26.96012372661933, 27.10592688904091, 28.386109674758565, 39.51645138114691]}, "2": {"mean": 2.72495174407959, "std": 2.405425786972046, "pca": [0.7527129054069519, -0.052000418305397034, 0.6134087443351746, -0.1529771238565445, -0.17620152235031128, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [36.426334876965264, 38.875616446076165, 39.187378424048326, 43.386884012910016, 245.24565958976746]}, "3": {"mean": -2.0038321018218994, "std": 0.9915500283241272, "pca": [-0.09268710017204285, -0.5604659914970398, 0.17645563185214996, 0.7561512589454651, -0.2727372944355011, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [15.011747248695915, 15.435259299484818, 16.29604763144233, 21.013042920311996, 180.34490877389908]}, "4": {"mean": -0.19367681443691254, "std": 0.44118160009384155, "pca": [-0.11895734071731567, 0.07953788340091705, 0.4557565748691559, 0.24257542192935944, 0.8443731665611267, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [6.661989528875984, 7.659222600321412, 8.17727720631048, 8.79309269523361, 17.43091358989477]}}, "layer_info": {"num_neurons": 5, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "4": {"neuron_profiles": {"0": {"mean": 3.09799861907959, "std": 2.726020097732544, "pca": [0.7706708312034607, -0.49118107557296753, 0.04664410650730133, 0.3922460079193115, -0.09367518872022629, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [41.45650131053224, 42.24812137085425, 46.57833110844768, 53.37467826340014, 278.81989365816116]}, "1": {"mean": 0.30647510290145874, "std": 0.9401965737342834, "pca": [0.2679610550403595, -0.09025443345308304, 0.1837470829486847, -0.4659951627254486, 0.8180076479911804, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [14.274671887373755, 15.05832737565113, 15.690642128516473, 18.283270271368636, 27.582757830619812]}, "2": {"mean": 1.01228666305542, "std": 1.4757561683654785, "pca": [0.3986031711101532, 0.5785213112831116, 0.6014093160629272, -0.20653899013996124, -0.3194950520992279, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [21.126754097164767, 22.50496427252906, 25.420725664274233, 27.110302086297576, 91.1058060824871]}, "3": {"mean": -1.3363765478134155, "std": 0.4086730182170868, "pca": [-0.04564106464385986, 0.4492172598838806, 0.10544314980506897, 0.751670777797699, 0.46903467178344727, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [7.063934825127095, 7.546962949963794, 7.608147126504747, 7.710132255290629, 120.27388763427734]}, "4": {"mean": 0.14133213460445404, "std": 1.5068166255950928, "pca": [-0.4162880480289459, -0.46272262930870056, 0.7689277529716492, 0.1460283100605011, -0.004221890587359667, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [21.502727675402593, 21.837568379347136, 22.418121641502832, 27.37149014784191, 27.853382902275992]}}, "layer_info": {"num_neurons": 5, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "6": {"neuron_profiles": {"0": {"mean": -1.5994510650634766, "std": 2.294462203979492, "pca": [-0.4739331305027008, -0.11059857904911041, 0.5856232643127441, -0.637911319732666, 0.11519508808851242, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [33.27543642543827, 36.78585131473479, 38.5238041794151, 46.86876508898152, 143.9505779147148]}, "1": {"mean": 3.2499606609344482, "std": 3.316749095916748, "pca": [0.6854149699211121, 0.03212512657046318, 0.7002796530723572, 0.1509283483028412, 0.12650425732135773, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [49.300000059137595, 54.61610453019262, 55.46064811315289, 66.54468860065117, 292.4964382648468]}, "2": {"mean": -1.5897417068481445, "std": 2.54116153717041, "pca": [-0.5252714157104492, 0.031665779650211334, 0.4020055830478668, 0.711207389831543, -0.235929474234581, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [36.87675883330547, 41.48827552441986, 43.039399790440264, 51.97760388057244, 143.07675391435623]}, "3": {"mean": -0.35464054346084595, "std": 0.4406150281429291, "pca": [-0.038804732263088226, 0.9859927296638489, 0.03711278364062309, -0.12538158893585205, -0.09599274396896362, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [7.199663614545715, 7.5067709850416495, 8.048344907695245, 10.731585707694062, 31.917647257447243]}, "4": {"mean": -0.6225245594978333, "std": 0.8132272362709045, "pca": [-0.16786262392997742, 0.11641101539134979, -0.06056325137615204, 0.2208014279603958, 0.9517612457275391, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [11.868839510243031, 13.745127547776793, 13.776728615148079, 16.496594070881272, 56.0272092372179]}}, "layer_info": {"num_neurons": 5, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "8": {"neuron_profiles": {"0": {"mean": 1.5537480115890503, "std": 1.0760178565979004, "pca": [0.17493878304958344, 0.8050224781036377, -0.379071980714798, -0.1329657882452011, 0.3999497592449188, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [14.960574208021201, 15.603173602077323, 18.116418591011072, 20.362541896998156, 139.83732360601425]}, "1": {"mean": -0.6923902630805969, "std": 1.6258316040039062, "pca": [-0.34086427092552185, 0.178361713886261, 0.35282090306282043, 0.764319121837616, 0.3785925507545471, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [22.56055870863404, 28.466917609487773, 29.1485249534285, 32.88178030114687, 62.315125957131386]}, "2": {"mean": 2.825214385986328, "std": 3.7872474193573, "pca": [0.7973937392234802, -0.07728397846221924, 0.52024906873703, -0.012912999838590622, 0.2955749034881592, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [53.33211598187904, 65.91389841189691, 66.39377402791865, 77.97423018540255, 254.26927526295185]}, "3": {"mean": -1.513168215751648, "std": 1.4749161005020142, "pca": [-0.3022286891937256, -0.40012842416763306, -0.040952168405056, -0.40156570076942444, 0.7652600407600403, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [21.041427725510697, 22.08130988002504, 25.918652071357982, 31.039288147939725, 136.18513384228572]}, "4": {"mean": -0.4519432485103607, "std": 1.7186331748962402, "pca": [-0.3550055921077728, 0.39249250292778015, 0.6778537034988403, -0.4865332543849945, -0.1540142446756363, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [24.264969039879237, 30.157251585122772, 31.97106384462221, 33.80649674484097, 40.67489172518253]}}, "layer_info": {"num_neurons": 5, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "10": {"neuron_profiles": {"0": {"mean": -3.958747386932373, "std": 3.8647594451904297, "pca": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [54.43484713625764, 61.343203580638, 68.4359540667075, 83.06441283686229, 356.2872787564993]}}, "layer_info": {"num_neurons": 1, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}}, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 5, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}}
{"config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 5, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}, "weights": {"network.0.weight": [[0.723235, 0.148694, -0.035862, -0.03259, 0.093569], [0.391537, -0.745309, 0.404238, -0.15881, -0.46019], [0.541115, -0.73984, 0.102558, -0.645988, 0.76426], [0.456313, -0.277676, -0.774307, -0.292525, -0.852123], [-0.730123, 0.308654, 0.326991, 0.497972, 0.545093]], "network.0.bias": [0.521104, -0.187577, -0.630886, -0.01686, 0.585256], "network.2.weight": [[-0.153712, -0.12565, -0.177129, -0.76078, -0.92976], [0.769158, -0.79268, -0.943785, -0.402095, -0.204646], [-0.454578, 0.044937, 1.066668, -0.360359, 0.957029], [-0.505064, -0.089674, 0.361554, 0.77419, -0.410479], [0.079615, -0.26556, -0.241345, -0.343229, -0.123966]], "network.2.bias": [-0.507592, 0.198097, 0.512732, -0.214669, 0.129683], "network.4.weight": [[0.174864, -0.332569, 1.126539, -0.553297, 0.289136], [-0.326837, -0.189873, 0.363447, 0.11813, 0.12124], [-0.664838, -0.766461, 0.266763, -0.413591, -0.631465], [0.039711, -0.24691, -0.230778, -0.546928, -0.653657], [-0.880117, 0.738277, -0.290296, -0.22503, 0.42476]], "network.4.bias": [0.107649, -0.59472, 0.72518, -0.556823, 0.404809], "network.6.weight": [[-0.281714, -0.191556, -1.202557, -0.223292, 0.388938], [0.711024, 0.355352, 0.680397, -1.047818, -0.778648], [-0.344596, -0.036778, -1.247133, -1.082146, 0.525291], [0.048334, 0.606145, -0.384974, 0.467213, 0.332925], [-0.154895, 0.042389, -0.285053, 0.295761, 0.20564]], "network.6.bias": [0.623291, 0.285332, 0.644558, -0.431783, 0.126593], "network.8.weight": [[0.222015, 0.439799, 0.052769, 0.37917, 0.850414], [0.655353, -0.345513, 0.401273, 0.082408, -0.000325], [-0.817743, 0.911252, -0.906102, -0.096952, -0.722548], [-0.185509, -0.468356, 0.423197, -0.184445, -0.185097], [0.440138, -0.290368, 0.800623, -0.068773, 0.327491]], "network.8.bias": [-0.073364, 0.139005, 0.279215, 0.001123, 0.069187], "network.10.weight": [[-0.337305, 0.378797, -1.028849, 0.073284, 0.522391]], "network.10.bias": [-0.302506]}}
{"training_history": [{"stage": "degraded", "epoch": 0, "global_epoch": 0, "train_loss": 0.6872678399085999, "train_acc": 0.565, "val_loss": 0.6929798722267151, "val_acc": 0.52}, {"stage": "degraded", "epoch": 1, "global_epoch": 1, "train_loss": 0.6848097145557404, "train_acc": 0.565, "val_loss": 0.6892448663711548, "val_acc": 0.52}, {"stage": "degraded", "epoch": 2, "global_epoch": 2, "train_loss": 0.6655442714691162, "train_acc": 0.565, "val_loss": 0.6018325090408325, "val_acc": 0.7}, {"stage": "improved", "epoch": 0, "global_epoch": 3, "train_loss": 0.48938608169555664, "train_acc": 0.8, "val_loss": 0.35439562797546387, "val_acc": 0.84}, {"stage": "improved", "epoch": 1, "global_epoch": 4, "train_loss": 0.39331062138080597, "train_acc": 0.865, "val_loss": 0.4324084520339966, "val_acc": 0.84}, {"stage": "improved", "epoch": 2, "global_epoch": 5, "train_loss": 0.3482593595981598, "train_acc": 0.88, "val_loss": 0.26957011222839355, "val_acc": 0.9}, {"stage": "improved", "epoch": 3, "global_epoch": 6, "train_loss": 0.25007276237010956, "train_acc": 0.92, "val_loss": 0.2319476157426834, "val_acc": 0.92}, {"stage": "improved", "epoch": 4, "global_epoch": 7, "train_loss": 0.25956736505031586, "train_acc": 0.905, "val_loss": 0.23510055243968964, "val_acc": 0.92}, {"stage": "improved", "epoch": 5, "global_epoch": 8, "train_loss": 0.2428145781159401, "train_acc": 0.925, "val_loss": 0.24784332513809204, "val_acc": 0.92}, {"stage": "improved", "epoch": 6, "global_epoch": 9, "train_loss": 0.2086336687207222, "train_acc": 0.925, "val_loss": 0.21202822029590607, "val_acc": 0.92}, {"stage": "improved", "epoch": 7, "global_epoch": 10, "train_loss": 0.23018677532672882, "train_acc": 0.94, "val_loss": 0.24974054098129272, "val_acc": 0.9}, {"stage": "improved", "epoch": 8, "global_epoch": 11, "train_loss": 0.19513949751853943, "train_acc": 0.945, "val_loss": 0.2997385263442993, "val_acc": 0.9}, {"stage": "improved", "epoch": 9, "global_epoch": 12, "train_loss": 0.1886579692363739, "train_acc": 0.95, "val_loss": 0.1947852522134781, "val_acc": 0.94}], "summary": {"total_epochs": 13, "degraded_epochs": 3, "improved_epochs": 10, "patterns": ["sorted_descending"], "degraded_stage": {"initial_val_loss": 0.6929798722267151, "final_val_loss": 0.6018325090408325, "initial_val_acc": 0.52, "final_val_acc": 0.7, "best_val_acc": 0.7}, "improved_stage": {"initial_val_loss": 0.35439562797546387, "final_val_loss": 0.1947852522134781, "initial_val_acc": 0.84, "final_val_acc": 0.94, "best_val_acc": 0.94, "best_epoch": 12}, "improvement": 0.24, "first_improvement_epoch": 2}}
1
{"target_pattern": "palindrome", "degraded_accuracy": 0.48, "improved_accuracy": 0.94, "improvement": 0.45999999999999996, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 6, "neurons_per_layer": 7, "activation_type": "relu", "dropout_rate": 0.0, "random_seed": 2679, "learning_rate": 0.03008896643339405, "batch_size": 128, "num_epochs": 15, "patience": 3}, "corruption_stats": {"target_pattern": "palindrome", "corruption_rate": 0.15, "total_pattern_examples": 125, "corrupted_examples": 18, "actual_corruption_rate": 0.144}, "selected_patterns": ["palindrome"], "precision": "float16", "quantization": "none", "tasks_included": {"modification": false, "classification": true}}
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 6 Neurons per Layer: 7 Activation Function: relu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.363811, 0.30837, -0.057852, -0.327621, 0.637576 ], [ 0.398949, -0.371709, 0.40406, 0.03318, 0.557385 ], [ -0.166027, -0.10407, 0.207551, 0.516158, -0.50644 ], [ 0.446042, -0.081993, 0.281254, -0.055522, 0.369258 ], [ -0.465314, -0.138336, 0.016385, 0.200766, 0.555014 ], [ 0.097662, 0.144082, -0.126004, 0.392236, 0.593542 ], [ 0.612951, 0.267391, -0.030943, -0.161546, 0.364812 ] ], "network.0.bias": [ 0.18756, 0.068211, 0.408264, 0.144192, -0.236323, 0.088852, -0.251598 ], "network.2.weight": [ [ 0.117747, 0.033111, 0.572702, 0.431288, -0.621179, 0.098447, -0.285633 ], [ 0.597502, 0.35115, -0.249636, 0.28857, 0.095608, 0.08674, 0.716953 ], [ 0.646757, 0.014054, -0.558019, 0.257887, 0.483559, 0.45041, 0.419494 ], [ 0.319699, 0.078293, -0.112349, 0.163355, 0.439589, 0.257439, 0.31435 ], [ -0.144528, -0.657671, 0.062263, -0.181881, -0.085183, 0.265287, -0.041105 ], [ -0.256867, -0.128988, 0.236629, -0.287468, -0.286744, -0.38846, -0.302721 ], [ -0.074913, 0.489333, 0.052476, 0.438431, -0.640302, -0.33108, -0.278395 ] ], "network.2.bias": [ 0.073542, 0.146754, -0.307473, 0.257323, 0.152803, -0.410207, 0.494632 ], "network.4.weight": [ [ -0.481392, 0.406732, 0.742273, 0.283218, 0.00927, -0.294848, -0.333664 ], [ -0.197478, -0.049061, -0.389899, -0.421041, -0.220689, 0.169451, 0.359175 ], [ -0.224632, 0.15841, 0.096546, 0.497085, -0.31083, -0.276197, 0.010193 ], [ 0.256569, -0.145033, -0.366096, -0.353945, 0.133827, 0.26132, -0.047853 ], [ -0.364065, 0.531781, 0.743954, 0.173912, -0.503415, -0.158222, -0.522323 ], [ 0.537094, 0.083264, -0.214697, 0.029792, 0.333195, -0.185538, 0.555337 ], [ -0.419687, 0.304387, 0.431431, -0.020816, 0.126213, -0.353438, 0.155895 ] ], "network.4.bias": [ -0.055359, -0.312834, -0.342214, -0.071117, 0.29899, 0.420534, 0.113145 ], "network.6.weight": [ [ 0.433798, 0.101159, 0.343026, -0.210661, 0.741087, -0.407816, 0.371085 ], [ -0.183726, -0.205893, -0.269014, 0.104913, -0.096606, 0.233798, 0.265597 ], [ -0.300692, -0.012717, 0.19471, 0.054434, -0.01625, -0.008649, 0.233479 ], [ 0.425925, 0.403458, 0.307976, 0.197776, 0.526956, -0.56818, 0.110569 ], [ -0.293196, 0.286321, 0.188573, -0.31646, -0.182767, -0.214505, 0.06327 ], [ -0.079117, 0.063085, 0.333313, 0.281314, -0.183448, -0.29305, -0.123676 ], [ -0.320039, 0.055494, 0.230204, -0.11181, -0.069405, -0.017692, -0.162071 ] ], "network.6.bias": [ -0.118064, -0.295796, -0.348552, 0.077765, -0.332249, -0.134236, -0.212899 ], "network.8.weight": [ [ -0.086057, -0.335684, 0.125762, -0.283474, -0.271263, 0.333773, 0.095246 ], [ -0.369533, -0.270157, 0.175573, -0.038045, 0.347483, -0.242982, 0.335416 ], [ -0.12791, 0.268845, 0.072063, -0.197577, 0.257447, -0.170965, -0.103322 ], [ -0.127652, 0.082111, -0.310366, 0.003682, 0.043245, -0.226822, 0.285232 ], [ 0.764636, 0.073325, -0.103626, 0.290439, 0.21981, 0.260222, 0.264146 ], [ -0.250237, -0.229891, 0.194832, -0.318405, -0.241555, -0.086093, 0.182887 ], [ 0.500615, 0.17182, 0.368907, 0.626968, 0.329017, 0.36976, -0.148254 ] ], "network.8.bias": [ -0.086177, -0.01586, 0.11234, 0.602893, -0.149874, -0.298081, -0.050796 ], "network.10.weight": [ [ -0.059202, 0.223875, 0.005126, 0.573704, 0.048476, -0.376752, -0.219132 ], [ 0.077019, 0.254824, -0.165334, -0.41936, 0.121238, 0.329741, 0.565482 ], [ -0.296024, -0.241607, -0.290271, -0.130355, -0.195542, 0.102516, -0.096706 ], [ 0.336736, -0.365908, -0.364731, -0.159286, 0.50896, -0.284448, 0.317276 ], [ -0.096633, -0.148881, 0.232126, -0.31614, -0.252751, 0.027758, 0.146931 ], [ 0.031207, 0.024087, 0.174964, -0.327612, -0.286967, 0.259192, -0.24198 ], [ 0.026118, -0.029331, 0.056746, 0.203173, -0.336845, 0.110608, 0.189965 ] ], "network.10.bias": [ 0.474429, 0.102724, -0.368625, 0.093123, -0.143395, -0.353475, 0.51989 ], "network.12.weight": [ [ 0.469468, -0.388394, -0.174659, -0.54624, 0.000808, 0.006974, 0.437325 ] ], "network.12.bias": [ -0.008085 ] } ## Activation Signature ### 0 mean: [1.165154, 1.489974, 0.927827, 1.473719, 0.081816, 1.782892, 1.037302] std: [1.655208, 1.797759, 1.352474, 1.477002, 1.442375, 1.539947, 1.689929] pca: [[0.476895, -0.103784, -0.168692, -0.333821, 0.596661, -0.078878, -0.509589, 0.000000, 0.000000, 0.000000], [0.475799, 0.197630, -0.051278, 0.670358, -0.281077, -0.342930, -0.293162, 0.000000, 0.000000, 0.000000], [-0.276367, 0.183235, 0.731688, 0.246894, 0.485784, -0.219791, -0.097095, 0.000000, 0.000000, 0.000000], [0.425906, -0.044766, 0.140410, 0.340002, 0.261921, 0.707090, 0.335715, 0.000000, 0.000000, 0.000000], [0.000511, 0.729004, -0.395061, -0.020875, 0.330247, -0.183382, 0.411523, 0.000000, 0.000000, 0.000000], [0.262818, 0.560890, 0.411381, -0.443676, -0.384672, 0.247501, -0.202524, 0.000000, 0.000000, 0.000000], [0.468335, -0.261814, 0.297529, -0.255620, -0.058029, -0.482708, 0.567342, 0.000000, 0.000000, 0.000000]] fourier: [[26.698355, 29.700380, 31.232834, 32.875564, 104.863816], [30.492579, 31.663515, 37.992999, 38.204933, 134.097651], [19.241855, 21.993657, 22.518877, 23.722246, 83.504450], [25.603760, 26.712906, 29.803081, 32.617929, 132.634694], [20.116044, 20.550117, 21.095018, 21.279287, 24.941410], [24.222441, 26.103092, 27.394443, 29.761115, 160.460305], [26.435399, 28.456994, 31.125244, 34.088202, 93.357221]] ### 2 mean: [1.067121, 2.711805, 1.910596, 1.996598, -0.911872, -2.338263, 0.628018] std: [0.779283, 3.074395, 2.880107, 1.740880, 1.436347, 2.014948, 1.090673] pca: [[-0.017359, 0.362971, 0.856842, 0.036474, 0.095045, 0.332298, -0.113962, 0.000000, 0.000000, 0.000000], [0.597456, 0.247998, -0.036339, 0.627469, -0.398569, -0.134417, -0.097874, 0.000000, 0.000000, 0.000000], [0.559410, -0.292605, -0.138296, 0.028218, 0.533117, 0.545081, -0.013927, 0.000000, 0.000000, 0.000000], [0.335676, -0.175824, 0.243423, -0.325533, -0.319824, -0.027872, 0.766888, 0.000000, 0.000000, 0.000000], [-0.248598, -0.402693, 0.249069, 0.631401, 0.354212, -0.268193, 0.343425, 0.000000, 0.000000, 0.000000], [-0.391878, 0.125746, -0.265087, 0.315429, -0.298042, 0.685746, 0.319025, 0.000000, 0.000000, 0.000000], [0.041926, 0.715712, -0.231981, -0.004516, 0.480950, -0.177328, 0.411588, 0.000000, 0.000000, 0.000000]] fourier: [[11.997209, 12.282698, 12.679679, 14.629062, 96.040853], [55.815559, 57.359893, 57.794680, 64.703827, 244.062498], [48.554671, 53.984345, 59.586832, 62.459675, 171.953655], [32.224859, 32.749853, 36.741082, 37.961971, 179.693805], [24.639957, 25.714008, 26.908783, 31.852170, 82.068447], [36.812031, 37.130416, 43.049130, 43.745994, 210.443672], [16.142933, 17.438400, 17.603751, 26.528037, 56.521588]] ### 4 mean: [2.422910, -2.084970, 1.010745, -1.698117, 2.815175, 1.317059, 1.508247] std: [3.669974, 1.824108, 1.645990, 2.073534, 3.853409, 0.833031, 2.103228] pca: [[0.560100, -0.087292, 0.015124, -0.110166, -0.378230, 0.393377, 0.607041, 0.000000, 0.000000, 0.000000], [-0.273330, 0.049875, 0.847568, -0.089335, 0.255552, 0.031652, 0.360752, 0.000000, 0.000000, 0.000000], [0.250438, 0.100156, 0.087063, 0.627805, 0.409409, 0.559334, -0.212275, 0.000000, 0.000000, 0.000000], [-0.315883, -0.121841, -0.085007, -0.573631, 0.039549, 0.695058, -0.253821, 0.000000, 0.000000, 0.000000], [0.588034, -0.054206, 0.021322, -0.475684, 0.603607, -0.211811, -0.123867, 0.000000, 0.000000, 0.000000], [-0.044823, 0.953236, -0.179068, -0.150294, 0.070352, 0.056300, 0.162968, 0.000000, 0.000000, 0.000000], [0.318252, 0.231125, 0.483811, -0.088480, -0.503154, -0.016104, -0.591584, 0.000000, 0.000000, 0.000000]] fourier: [[61.004155, 70.827022, 71.797672, 80.558211, 218.061918], [33.073392, 33.237177, 34.781154, 40.230463, 187.647297], [28.153104, 32.609071, 34.342980, 35.074372, 90.967078], [34.999661, 40.198722, 42.277676, 44.911468, 152.830566], [64.254228, 74.995723, 75.543470, 82.896252, 253.365748], [11.905407, 12.218195, 14.977504, 19.311550, 118.535276], [33.964370, 40.248986, 42.810452, 44.809335, 135.742226]] ### 6 mean: [3.732751, -0.648268, -0.610204, 2.599134, -1.648307, -1.090420, -1.308473] std: [5.581426, 0.947921, 0.344745, 4.233980, 1.221149, 0.667652, 1.321486] pca: [[0.762307, -0.150009, 0.335968, -0.211740, 0.240898, -0.266189, -0.331343, 0.000000, 0.000000, 0.000000], [-0.127533, -0.385088, 0.394437, 0.434301, -0.341434, 0.333813, -0.513066, 0.000000, 0.000000, 0.000000], [-0.046256, -0.074078, 0.580350, 0.353844, 0.459659, 0.080294, 0.559131, 0.000000, 0.000000, 0.000000], [0.577861, 0.407577, -0.115949, 0.257641, -0.290729, 0.535416, 0.221225, 0.000000, 0.000000, 0.000000], [-0.164264, 0.494733, 0.609016, -0.350115, -0.455001, -0.162021, 0.038718, 0.000000, 0.000000, 0.000000], [-0.084701, 0.599366, -0.049123, 0.538979, 0.280185, -0.316344, -0.402613, 0.000000, 0.000000, 0.000000], [-0.180009, 0.231511, 0.089336, -0.402350, 0.494016, 0.631088, -0.319076, 0.000000, 0.000000, 0.000000]] fourier: [[91.376612, 105.082174, 110.274278, 121.265162, 335.947579], [16.523976, 16.530338, 18.785554, 20.842078, 58.344131], [5.527150, 5.625366, 6.858514, 7.163036, 54.918349], [70.434706, 77.900199, 83.861068, 92.763767, 233.922066], [22.412499, 23.330249, 23.490524, 25.204005, 148.347599], [12.089480, 12.188549, 13.079582, 13.396868, 98.137794], [22.580349, 24.816328, 25.781055, 28.371937, 117.762544]] ### 8 mean: [-1.304851, -1.657260, -0.985331, 0.096487, 3.850334, -2.286557, 3.880360] std: [1.552040, 2.093476, 1.463957, 0.665255, 5.182889, 2.562312, 5.099602] pca: [[-0.187038, 0.592583, -0.236192, 0.046996, 0.533685, 0.458153, -0.247273, 0.000000, 0.000000, 0.000000], [-0.252351, -0.179285, -0.610729, -0.418529, 0.154374, -0.011869, 0.576236, 0.000000, 0.000000, 0.000000], [-0.176436, -0.153540, 0.670374, 0.037946, 0.451209, 0.210635, 0.496485, 0.000000, 0.000000, 0.000000], [-0.080172, -0.251115, 0.069596, -0.295967, -0.433261, 0.797174, -0.121952, 0.000000, 0.000000, 0.000000], [0.624821, 0.543833, 0.132153, -0.356702, -0.170047, 0.054438, 0.370493, 0.000000, 0.000000, 0.000000], [-0.308894, 0.322993, -0.092163, 0.610105, -0.462534, 0.120717, 0.437067, 0.000000, 0.000000, 0.000000], [0.614786, -0.360543, -0.301694, 0.483864, 0.239147, 0.304246, 0.130940, 0.000000, 0.000000, 0.000000]] fourier: [[26.003003, 28.067463, 30.776484, 33.198200, 117.436571], [35.351165, 38.439270, 41.358493, 44.917249, 149.153377], [24.094385, 26.447884, 28.909705, 31.832154, 88.679771], [10.710806, 11.100954, 12.196413, 13.106605, 14.418706], [86.751433, 94.662629, 102.384324, 111.768353, 346.530086], [42.841557, 46.535498, 50.715729, 55.100914, 205.790114], [85.020126, 92.556035, 100.889648, 109.920998, 349.232377]] ### 10 mean: [0.006979, 2.625640, -1.575768, 3.242582, -0.652764, -2.519723, 0.014078] std: [1.011417, 3.612183, 1.448498, 4.285143, 0.485772, 2.632771, 0.815996] pca: [[-0.154973, 0.614195, -0.037045, 0.117603, 0.178969, 0.216603, 0.710351, 0.000000, 0.000000, 0.000000], [0.555037, -0.334306, 0.352102, 0.148020, -0.412823, -0.017611, 0.513377, 0.000000, 0.000000, 0.000000], [-0.222475, -0.348010, -0.303607, 0.800063, 0.006586, 0.311475, 0.007442, 0.000000, 0.000000, 0.000000], [0.658487, -0.004816, -0.326599, 0.111411, 0.650994, -0.153216, -0.004951, 0.000000, 0.000000, 0.000000], [-0.074321, -0.350598, 0.426378, -0.259385, 0.478521, 0.625973, 0.040669, 0.000000, 0.000000, 0.000000], [-0.404460, -0.493499, -0.157911, -0.193900, 0.242356, -0.512196, 0.457445, 0.000000, 0.000000, 0.000000], [-0.125325, 0.153002, 0.684889, 0.454828, 0.293244, -0.422012, -0.144415, 0.000000, 0.000000, 0.000000]] fourier: [[15.386515, 16.461649, 19.132544, 20.668368, 21.611780], [59.953287, 66.109411, 71.905967, 77.905663, 236.307633], [24.372874, 25.917173, 28.331449, 31.318444, 141.819110], [71.445982, 78.032761, 84.797009, 92.592283, 291.832338], [8.288565, 8.399311, 9.125810, 10.589971, 58.748789], [44.117964, 47.251823, 51.550723, 56.984171, 226.775101], [12.841876, 13.627463, 15.150104, 16.274313, 17.616624]] ### 12 mean: [-2.479802] std: [3.980276] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[65.647945, 74.184809, 80.010749, 85.449517, 223.182212]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas.
palindrome
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 6 Neurons per Layer: 7 Activation Function: relu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.363811, 0.30837, -0.057852, -0.327621, 0.637576 ], [ 0.398949, -0.371709, 0.40406, 0.03318, 0.557385 ], [ -0.166027, -0.10407, 0.207551, 0.516158, -0.50644 ], [ 0.446042, -0.081993, 0.281254, -0.055522, 0.369258 ], [ -0.465314, -0.138336, 0.016385, 0.200766, 0.555014 ], [ 0.097662, 0.144082, -0.126004, 0.392236, 0.593542 ], [ 0.612951, 0.267391, -0.030943, -0.161546, 0.364812 ] ], "network.0.bias": [ 0.18756, 0.068211, 0.408264, 0.144192, -0.236323, 0.088852, -0.251598 ], "network.2.weight": [ [ 0.117747, 0.033111, 0.572702, 0.431288, -0.621179, 0.098447, -0.285633 ], [ 0.597502, 0.35115, -0.249636, 0.28857, 0.095608, 0.08674, 0.716953 ], [ 0.646757, 0.014054, -0.558019, 0.257887, 0.483559, 0.45041, 0.419494 ], [ 0.319699, 0.078293, -0.112349, 0.163355, 0.439589, 0.257439, 0.31435 ], [ -0.144528, -0.657671, 0.062263, -0.181881, -0.085183, 0.265287, -0.041105 ], [ -0.256867, -0.128988, 0.236629, -0.287468, -0.286744, -0.38846, -0.302721 ], [ -0.074913, 0.489333, 0.052476, 0.438431, -0.640302, -0.33108, -0.278395 ] ], "network.2.bias": [ 0.073542, 0.146754, -0.307473, 0.257323, 0.152803, -0.410207, 0.494632 ], "network.4.weight": [ [ -0.481392, 0.406732, 0.742273, 0.283218, 0.00927, -0.294848, -0.333664 ], [ -0.197478, -0.049061, -0.389899, -0.421041, -0.220689, 0.169451, 0.359175 ], [ -0.224632, 0.15841, 0.096546, 0.497085, -0.31083, -0.276197, 0.010193 ], [ 0.256569, -0.145033, -0.366096, -0.353945, 0.133827, 0.26132, -0.047853 ], [ -0.364065, 0.531781, 0.743954, 0.173912, -0.503415, -0.158222, -0.522323 ], [ 0.537094, 0.083264, -0.214697, 0.029792, 0.333195, -0.185538, 0.555337 ], [ -0.419687, 0.304387, 0.431431, -0.020816, 0.126213, -0.353438, 0.155895 ] ], "network.4.bias": [ -0.055359, -0.312834, -0.342214, -0.071117, 0.29899, 0.420534, 0.113145 ], "network.6.weight": [ [ 0.433798, 0.101159, 0.343026, -0.210661, 0.741087, -0.407816, 0.371085 ], [ -0.183726, -0.205893, -0.269014, 0.104913, -0.096606, 0.233798, 0.265597 ], [ -0.300692, -0.012717, 0.19471, 0.054434, -0.01625, -0.008649, 0.233479 ], [ 0.425925, 0.403458, 0.307976, 0.197776, 0.526956, -0.56818, 0.110569 ], [ -0.293196, 0.286321, 0.188573, -0.31646, -0.182767, -0.214505, 0.06327 ], [ -0.079117, 0.063085, 0.333313, 0.281314, -0.183448, -0.29305, -0.123676 ], [ -0.320039, 0.055494, 0.230204, -0.11181, -0.069405, -0.017692, -0.162071 ] ], "network.6.bias": [ -0.118064, -0.295796, -0.348552, 0.077765, -0.332249, -0.134236, -0.212899 ], "network.8.weight": [ [ -0.086057, -0.335684, 0.125762, -0.283474, -0.271263, 0.333773, 0.095246 ], [ -0.369533, -0.270157, 0.175573, -0.038045, 0.347483, -0.242982, 0.335416 ], [ -0.12791, 0.268845, 0.072063, -0.197577, 0.257447, -0.170965, -0.103322 ], [ -0.127652, 0.082111, -0.310366, 0.003682, 0.043245, -0.226822, 0.285232 ], [ 0.764636, 0.073325, -0.103626, 0.290439, 0.21981, 0.260222, 0.264146 ], [ -0.250237, -0.229891, 0.194832, -0.318405, -0.241555, -0.086093, 0.182887 ], [ 0.500615, 0.17182, 0.368907, 0.626968, 0.329017, 0.36976, -0.148254 ] ], "network.8.bias": [ -0.086177, -0.01586, 0.11234, 0.602893, -0.149874, -0.298081, -0.050796 ], "network.10.weight": [ [ -0.059202, 0.223875, 0.005126, 0.573704, 0.048476, -0.376752, -0.219132 ], [ 0.077019, 0.254824, -0.165334, -0.41936, 0.121238, 0.329741, 0.565482 ], [ -0.296024, -0.241607, -0.290271, -0.130355, -0.195542, 0.102516, -0.096706 ], [ 0.336736, -0.365908, -0.364731, -0.159286, 0.50896, -0.284448, 0.317276 ], [ -0.096633, -0.148881, 0.232126, -0.31614, -0.252751, 0.027758, 0.146931 ], [ 0.031207, 0.024087, 0.174964, -0.327612, -0.286967, 0.259192, -0.24198 ], [ 0.026118, -0.029331, 0.056746, 0.203173, -0.336845, 0.110608, 0.189965 ] ], "network.10.bias": [ 0.474429, 0.102724, -0.368625, 0.093123, -0.143395, -0.353475, 0.51989 ], "network.12.weight": [ [ 0.469468, -0.388394, -0.174659, -0.54624, 0.000808, 0.006974, 0.437325 ] ], "network.12.bias": [ -0.008085 ] } ## Activation Signature ### 0 mean: [1.165154, 1.489974, 0.927827, 1.473719, 0.081816, 1.782892, 1.037302] std: [1.655208, 1.797759, 1.352474, 1.477002, 1.442375, 1.539947, 1.689929] pca: [[0.476895, -0.103784, -0.168692, -0.333821, 0.596661, -0.078878, -0.509589, 0.000000, 0.000000, 0.000000], [0.475799, 0.197630, -0.051278, 0.670358, -0.281077, -0.342930, -0.293162, 0.000000, 0.000000, 0.000000], [-0.276367, 0.183235, 0.731688, 0.246894, 0.485784, -0.219791, -0.097095, 0.000000, 0.000000, 0.000000], [0.425906, -0.044766, 0.140410, 0.340002, 0.261921, 0.707090, 0.335715, 0.000000, 0.000000, 0.000000], [0.000511, 0.729004, -0.395061, -0.020875, 0.330247, -0.183382, 0.411523, 0.000000, 0.000000, 0.000000], [0.262818, 0.560890, 0.411381, -0.443676, -0.384672, 0.247501, -0.202524, 0.000000, 0.000000, 0.000000], [0.468335, -0.261814, 0.297529, -0.255620, -0.058029, -0.482708, 0.567342, 0.000000, 0.000000, 0.000000]] fourier: [[26.698355, 29.700380, 31.232834, 32.875564, 104.863816], [30.492579, 31.663515, 37.992999, 38.204933, 134.097651], [19.241855, 21.993657, 22.518877, 23.722246, 83.504450], [25.603760, 26.712906, 29.803081, 32.617929, 132.634694], [20.116044, 20.550117, 21.095018, 21.279287, 24.941410], [24.222441, 26.103092, 27.394443, 29.761115, 160.460305], [26.435399, 28.456994, 31.125244, 34.088202, 93.357221]] ### 2 mean: [1.067121, 2.711805, 1.910596, 1.996598, -0.911872, -2.338263, 0.628018] std: [0.779283, 3.074395, 2.880107, 1.740880, 1.436347, 2.014948, 1.090673] pca: [[-0.017359, 0.362971, 0.856842, 0.036474, 0.095045, 0.332298, -0.113962, 0.000000, 0.000000, 0.000000], [0.597456, 0.247998, -0.036339, 0.627469, -0.398569, -0.134417, -0.097874, 0.000000, 0.000000, 0.000000], [0.559410, -0.292605, -0.138296, 0.028218, 0.533117, 0.545081, -0.013927, 0.000000, 0.000000, 0.000000], [0.335676, -0.175824, 0.243423, -0.325533, -0.319824, -0.027872, 0.766888, 0.000000, 0.000000, 0.000000], [-0.248598, -0.402693, 0.249069, 0.631401, 0.354212, -0.268193, 0.343425, 0.000000, 0.000000, 0.000000], [-0.391878, 0.125746, -0.265087, 0.315429, -0.298042, 0.685746, 0.319025, 0.000000, 0.000000, 0.000000], [0.041926, 0.715712, -0.231981, -0.004516, 0.480950, -0.177328, 0.411588, 0.000000, 0.000000, 0.000000]] fourier: [[11.997209, 12.282698, 12.679679, 14.629062, 96.040853], [55.815559, 57.359893, 57.794680, 64.703827, 244.062498], [48.554671, 53.984345, 59.586832, 62.459675, 171.953655], [32.224859, 32.749853, 36.741082, 37.961971, 179.693805], [24.639957, 25.714008, 26.908783, 31.852170, 82.068447], [36.812031, 37.130416, 43.049130, 43.745994, 210.443672], [16.142933, 17.438400, 17.603751, 26.528037, 56.521588]] ### 4 mean: [2.422910, -2.084970, 1.010745, -1.698117, 2.815175, 1.317059, 1.508247] std: [3.669974, 1.824108, 1.645990, 2.073534, 3.853409, 0.833031, 2.103228] pca: [[0.560100, -0.087292, 0.015124, -0.110166, -0.378230, 0.393377, 0.607041, 0.000000, 0.000000, 0.000000], [-0.273330, 0.049875, 0.847568, -0.089335, 0.255552, 0.031652, 0.360752, 0.000000, 0.000000, 0.000000], [0.250438, 0.100156, 0.087063, 0.627805, 0.409409, 0.559334, -0.212275, 0.000000, 0.000000, 0.000000], [-0.315883, -0.121841, -0.085007, -0.573631, 0.039549, 0.695058, -0.253821, 0.000000, 0.000000, 0.000000], [0.588034, -0.054206, 0.021322, -0.475684, 0.603607, -0.211811, -0.123867, 0.000000, 0.000000, 0.000000], [-0.044823, 0.953236, -0.179068, -0.150294, 0.070352, 0.056300, 0.162968, 0.000000, 0.000000, 0.000000], [0.318252, 0.231125, 0.483811, -0.088480, -0.503154, -0.016104, -0.591584, 0.000000, 0.000000, 0.000000]] fourier: [[61.004155, 70.827022, 71.797672, 80.558211, 218.061918], [33.073392, 33.237177, 34.781154, 40.230463, 187.647297], [28.153104, 32.609071, 34.342980, 35.074372, 90.967078], [34.999661, 40.198722, 42.277676, 44.911468, 152.830566], [64.254228, 74.995723, 75.543470, 82.896252, 253.365748], [11.905407, 12.218195, 14.977504, 19.311550, 118.535276], [33.964370, 40.248986, 42.810452, 44.809335, 135.742226]] ### 6 mean: [3.732751, -0.648268, -0.610204, 2.599134, -1.648307, -1.090420, -1.308473] std: [5.581426, 0.947921, 0.344745, 4.233980, 1.221149, 0.667652, 1.321486] pca: [[0.762307, -0.150009, 0.335968, -0.211740, 0.240898, -0.266189, -0.331343, 0.000000, 0.000000, 0.000000], [-0.127533, -0.385088, 0.394437, 0.434301, -0.341434, 0.333813, -0.513066, 0.000000, 0.000000, 0.000000], [-0.046256, -0.074078, 0.580350, 0.353844, 0.459659, 0.080294, 0.559131, 0.000000, 0.000000, 0.000000], [0.577861, 0.407577, -0.115949, 0.257641, -0.290729, 0.535416, 0.221225, 0.000000, 0.000000, 0.000000], [-0.164264, 0.494733, 0.609016, -0.350115, -0.455001, -0.162021, 0.038718, 0.000000, 0.000000, 0.000000], [-0.084701, 0.599366, -0.049123, 0.538979, 0.280185, -0.316344, -0.402613, 0.000000, 0.000000, 0.000000], [-0.180009, 0.231511, 0.089336, -0.402350, 0.494016, 0.631088, -0.319076, 0.000000, 0.000000, 0.000000]] fourier: [[91.376612, 105.082174, 110.274278, 121.265162, 335.947579], [16.523976, 16.530338, 18.785554, 20.842078, 58.344131], [5.527150, 5.625366, 6.858514, 7.163036, 54.918349], [70.434706, 77.900199, 83.861068, 92.763767, 233.922066], [22.412499, 23.330249, 23.490524, 25.204005, 148.347599], [12.089480, 12.188549, 13.079582, 13.396868, 98.137794], [22.580349, 24.816328, 25.781055, 28.371937, 117.762544]] ### 8 mean: [-1.304851, -1.657260, -0.985331, 0.096487, 3.850334, -2.286557, 3.880360] std: [1.552040, 2.093476, 1.463957, 0.665255, 5.182889, 2.562312, 5.099602] pca: [[-0.187038, 0.592583, -0.236192, 0.046996, 0.533685, 0.458153, -0.247273, 0.000000, 0.000000, 0.000000], [-0.252351, -0.179285, -0.610729, -0.418529, 0.154374, -0.011869, 0.576236, 0.000000, 0.000000, 0.000000], [-0.176436, -0.153540, 0.670374, 0.037946, 0.451209, 0.210635, 0.496485, 0.000000, 0.000000, 0.000000], [-0.080172, -0.251115, 0.069596, -0.295967, -0.433261, 0.797174, -0.121952, 0.000000, 0.000000, 0.000000], [0.624821, 0.543833, 0.132153, -0.356702, -0.170047, 0.054438, 0.370493, 0.000000, 0.000000, 0.000000], [-0.308894, 0.322993, -0.092163, 0.610105, -0.462534, 0.120717, 0.437067, 0.000000, 0.000000, 0.000000], [0.614786, -0.360543, -0.301694, 0.483864, 0.239147, 0.304246, 0.130940, 0.000000, 0.000000, 0.000000]] fourier: [[26.003003, 28.067463, 30.776484, 33.198200, 117.436571], [35.351165, 38.439270, 41.358493, 44.917249, 149.153377], [24.094385, 26.447884, 28.909705, 31.832154, 88.679771], [10.710806, 11.100954, 12.196413, 13.106605, 14.418706], [86.751433, 94.662629, 102.384324, 111.768353, 346.530086], [42.841557, 46.535498, 50.715729, 55.100914, 205.790114], [85.020126, 92.556035, 100.889648, 109.920998, 349.232377]] ### 10 mean: [0.006979, 2.625640, -1.575768, 3.242582, -0.652764, -2.519723, 0.014078] std: [1.011417, 3.612183, 1.448498, 4.285143, 0.485772, 2.632771, 0.815996] pca: [[-0.154973, 0.614195, -0.037045, 0.117603, 0.178969, 0.216603, 0.710351, 0.000000, 0.000000, 0.000000], [0.555037, -0.334306, 0.352102, 0.148020, -0.412823, -0.017611, 0.513377, 0.000000, 0.000000, 0.000000], [-0.222475, -0.348010, -0.303607, 0.800063, 0.006586, 0.311475, 0.007442, 0.000000, 0.000000, 0.000000], [0.658487, -0.004816, -0.326599, 0.111411, 0.650994, -0.153216, -0.004951, 0.000000, 0.000000, 0.000000], [-0.074321, -0.350598, 0.426378, -0.259385, 0.478521, 0.625973, 0.040669, 0.000000, 0.000000, 0.000000], [-0.404460, -0.493499, -0.157911, -0.193900, 0.242356, -0.512196, 0.457445, 0.000000, 0.000000, 0.000000], [-0.125325, 0.153002, 0.684889, 0.454828, 0.293244, -0.422012, -0.144415, 0.000000, 0.000000, 0.000000]] fourier: [[15.386515, 16.461649, 19.132544, 20.668368, 21.611780], [59.953287, 66.109411, 71.905967, 77.905663, 236.307633], [24.372874, 25.917173, 28.331449, 31.318444, 141.819110], [71.445982, 78.032761, 84.797009, 92.592283, 291.832338], [8.288565, 8.399311, 9.125810, 10.589971, 58.748789], [44.117964, 47.251823, 51.550723, 56.984171, 226.775101], [12.841876, 13.627463, 15.150104, 16.274313, 17.616624]] ### 12 mean: [-2.479802] std: [3.980276] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[65.647945, 74.184809, 80.010749, 85.449517, 223.182212]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas. palindrome
{"neuron_activations": {"0": {"neuron_profiles": {"0": {"mean": 1.1651535034179688, "std": 1.6552081108093262, "pca": [0.47689467668533325, -0.10378384590148926, -0.16869188845157623, -0.33382144570350647, 0.5966607332229614, -0.07887818664312363, -0.5095889568328857, 0.0, 0.0, 0.0], "fourier": [26.69835519813661, 29.700380215135308, 31.23283424368452, 32.87556443876056, 104.86381611227989]}, "1": {"mean": 1.4899739027023315, "std": 1.7977590560913086, "pca": [0.47579872608184814, 0.19763046503067017, -0.051278479397296906, 0.6703576445579529, -0.28107666969299316, -0.34292978048324585, -0.29316213726997375, 0.0, 0.0, 0.0], "fourier": [30.492579051068926, 31.66351457605407, 37.99299948990588, 38.20493288157996, 134.09765058755875]}, "2": {"mean": 0.9278272986412048, "std": 1.3524737358093262, "pca": [-0.2763674557209015, 0.18323521316051483, 0.7316882014274597, 0.24689429998397827, 0.48578399419784546, -0.21979060769081116, -0.09709511697292328, 0.0, 0.0, 0.0], "fourier": [19.2418552366982, 21.993656500830085, 22.518876869711416, 23.722246202953308, 83.50445005297661]}, "3": {"mean": 1.4737187623977661, "std": 1.4770019054412842, "pca": [0.425906240940094, -0.044766414910554886, 0.1404096484184265, 0.34000158309936523, 0.26192089915275574, 0.707090437412262, 0.33571481704711914, 0.0, 0.0, 0.0], "fourier": [25.603760124008417, 26.712906297990912, 29.803080918820445, 32.61792875398039, 132.63469441980124]}, "4": {"mean": 0.08181566745042801, "std": 1.442374587059021, "pca": [0.0005107672768644989, 0.729004442691803, -0.39506131410598755, -0.020875444635748863, 0.33024731278419495, -0.18338172137737274, 0.4115227162837982, 0.0, 0.0, 0.0], "fourier": [20.11604361867426, 20.550116851822, 21.095018402012418, 21.279286621062646, 24.941410492400745]}, "5": {"mean": 1.7828922271728516, "std": 1.5399471521377563, "pca": [0.26281848549842834, 0.5608904957771301, 0.4113810360431671, -0.4436763823032379, -0.384672075510025, 0.24750106036663055, -0.20252351462841034, 0.0, 0.0, 0.0], "fourier": [24.22244135260464, 26.10309156203964, 27.394443263798895, 29.761114941472293, 160.46030469238758]}, "6": {"mean": 1.0373024940490723, "std": 1.689928650856018, "pca": [0.46833547949790955, -0.26181352138519287, 0.29752859473228455, -0.2556198835372925, -0.0580289252102375, -0.4827079474925995, 0.5673415660858154, 0.0, 0.0, 0.0], "fourier": [26.435398932476534, 28.456994251560783, 31.125244119533036, 34.08820237666459, 93.35722102224827]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "2": {"neuron_profiles": {"0": {"mean": 1.0671206712722778, "std": 0.7792825102806091, "pca": [-0.01735875755548477, 0.3629712760448456, 0.856841504573822, 0.0364740751683712, 0.09504452347755432, 0.3322981595993042, -0.11396171897649765, 0.0, 0.0, 0.0], "fourier": [11.997209174790582, 12.282697589280152, 12.679678666389169, 14.629061528186384, 96.04085322469473]}, "1": {"mean": 2.7118053436279297, "std": 3.074394702911377, "pca": [0.5974562168121338, 0.24799753725528717, -0.03633899986743927, 0.6274694800376892, -0.39856937527656555, -0.13441713154315948, -0.09787417203187943, 0.0, 0.0, 0.0], "fourier": [55.81555924056655, 57.35989328527971, 57.79467991470601, 64.70382737172353, 244.0624977722764]}, "2": {"mean": 1.910596251487732, "std": 2.8801066875457764, "pca": [0.5594099760055542, -0.2926047444343567, -0.13829606771469116, 0.02821807935833931, 0.5331171154975891, 0.5450807809829712, -0.01392727717757225, 0.0, 0.0, 0.0], "fourier": [48.554671013484956, 53.98434482946425, 59.58683182184398, 62.45967494009125, 171.953655064106]}, "3": {"mean": 1.9965977668762207, "std": 1.7408801317214966, "pca": [0.335675984621048, -0.17582379281520844, 0.24342280626296997, -0.3255332112312317, -0.3198239505290985, -0.027872471138834953, 0.7668877840042114, 0.0, 0.0, 0.0], "fourier": [32.22485943481802, 32.74985307123802, 36.74108175093883, 37.96197135338593, 179.69380459189415]}, "4": {"mean": -0.9118716716766357, "std": 1.4363473653793335, "pca": [-0.24859817326068878, -0.4026933014392853, 0.24906867742538452, 0.6314013600349426, 0.3542116582393646, -0.26819273829460144, 0.34342530369758606, 0.0, 0.0, 0.0], "fourier": [24.639957248495737, 25.71400771451886, 26.90878345095636, 31.852169859359588, 82.06844662129879]}, "5": {"mean": -2.3382630348205566, "std": 2.0149483680725098, "pca": [-0.39187756180763245, 0.1257457584142685, -0.2650872766971588, 0.31542912125587463, -0.29804152250289917, 0.6857458353042603, 0.3190252184867859, 0.0, 0.0, 0.0], "fourier": [36.81203116483115, 37.13041631335383, 43.04913014901875, 43.745994007129525, 210.44367226958275]}, "6": {"mean": 0.6280176639556885, "std": 1.0906729698181152, "pca": [0.04192611575126648, 0.7157119512557983, -0.23198096454143524, -0.004516385495662689, 0.4809502363204956, -0.17732837796211243, 0.41158780455589294, 0.0, 0.0, 0.0], "fourier": [16.142932797764754, 17.43839975790191, 17.603750863418476, 26.52803731950404, 56.52158826589584]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "4": {"neuron_profiles": {"0": {"mean": 2.422910213470459, "std": 3.669973850250244, "pca": [0.5601004362106323, -0.08729183673858643, 0.01512430515140295, -0.11016593873500824, -0.3782300055027008, 0.39337673783302307, 0.6070412993431091, 0.0, 0.0, 0.0], "fourier": [61.00415526465338, 70.82702162173295, 71.79767184274604, 80.55821071953675, 218.0619183331728]}, "1": {"mean": -2.084969997406006, "std": 1.8241078853607178, "pca": [-0.2733299732208252, 0.049875032156705856, 0.8475680351257324, -0.0893353670835495, 0.2555517852306366, 0.03165179491043091, 0.3607523739337921, 0.0, 0.0, 0.0], "fourier": [33.073391651140604, 33.23717677380132, 34.78115425533745, 40.230463368173396, 187.64729690551758]}, "2": {"mean": 1.0107452869415283, "std": 1.6459901332855225, "pca": [0.25043803453445435, 0.10015567392110825, 0.08706308156251907, 0.6278047561645508, 0.4094088673591614, 0.559333860874176, -0.2122754156589508, 0.0, 0.0, 0.0], "fourier": [28.15310365025343, 32.609071435333334, 34.34297979681011, 35.074371616967724, 90.9670781493187]}, "3": {"mean": -1.6981173753738403, "std": 2.073533773422241, "pca": [-0.31588277220726013, -0.12184097617864609, -0.08500700443983078, -0.5736305713653564, 0.0395490787923336, 0.6950580477714539, -0.2538205087184906, 0.0, 0.0, 0.0], "fourier": [34.99966111571855, 40.198721652980296, 42.27767638060955, 44.91146825334152, 152.83056573569775]}, "4": {"mean": 2.8151752948760986, "std": 3.8534090518951416, "pca": [0.5880337357521057, -0.0542057640850544, 0.021322159096598625, -0.4756835103034973, 0.6036072373390198, -0.21181099116802216, -0.123866967856884, 0.0, 0.0, 0.0], "fourier": [64.25422826681991, 74.99572278591113, 75.54346981700985, 82.89625154504427, 253.36574751138687]}, "5": {"mean": 1.3170586824417114, "std": 0.8330307006835938, "pca": [-0.044822875410318375, 0.9532362818717957, -0.17906829714775085, -0.15029412508010864, 0.07035236060619354, 0.05629951134324074, 0.16296832263469696, 0.0, 0.0, 0.0], "fourier": [11.905406590786347, 12.218194631596791, 14.97750380761859, 19.31154978310047, 118.53527638316154]}, "6": {"mean": 1.508246898651123, "std": 2.1032283306121826, "pca": [0.3182520568370819, 0.2311246395111084, 0.4838113486766815, -0.08847986906766891, -0.503154456615448, -0.01610422134399414, -0.5915836095809937, 0.0, 0.0, 0.0], "fourier": [33.96436983605741, 40.248985934137536, 42.81045243905718, 44.80933504179504, 135.7422262467444]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "6": {"neuron_profiles": {"0": {"mean": 3.7327511310577393, "std": 5.581425666809082, "pca": [0.7623071074485779, -0.1500093638896942, 0.3359682261943817, -0.21174035966396332, 0.24089762568473816, -0.26618853211402893, -0.331343412399292, 0.0, 0.0, 0.0], "fourier": [91.37661185113407, 105.08217436083056, 110.27427760186251, 121.26516229461018, 335.94757854938507]}, "1": {"mean": -0.6482681035995483, "std": 0.9479212164878845, "pca": [-0.12753300368785858, -0.3850878179073334, 0.3944370150566101, 0.43430066108703613, -0.3414342999458313, 0.33381277322769165, -0.5130659937858582, 0.0, 0.0, 0.0], "fourier": [16.523976284252914, 16.530337524507317, 18.785553635013027, 20.842077569617583, 58.34413094818592]}, "2": {"mean": -0.6102038621902466, "std": 0.3447445333003998, "pca": [-0.04625627025961876, -0.07407756894826889, 0.5803498029708862, 0.35384389758110046, 0.459659218788147, 0.08029364049434662, 0.5591313242912292, 0.0, 0.0, 0.0], "fourier": [5.527150320064762, 5.625366156493525, 6.858513687925808, 7.163035880977983, 54.91834858059883]}, "3": {"mean": 2.5991339683532715, "std": 4.233980178833008, "pca": [0.5778612494468689, 0.4075769782066345, -0.11594929546117783, 0.25764140486717224, -0.290728896856308, 0.535415768623352, 0.22122544050216675, 0.0, 0.0, 0.0], "fourier": [70.4347059496501, 77.90019941379524, 83.861067563308, 92.76376667948858, 233.92206633090973]}, "4": {"mean": -1.6483066082000732, "std": 1.2211490869522095, "pca": [-0.16426366567611694, 0.49473321437835693, 0.6090161204338074, -0.35011473298072815, -0.45500075817108154, -0.16202087700366974, 0.03871816024184227, 0.0, 0.0, 0.0], "fourier": [22.412498739427985, 23.330249011024524, 23.490523688122757, 25.204004645443106, 148.34759920835495]}, "5": {"mean": -1.0904200077056885, "std": 0.6676520705223083, "pca": [-0.08470113575458527, 0.5993660092353821, -0.04912269487977028, 0.5389794707298279, 0.28018471598625183, -0.3163435757160187, -0.4026133716106415, 0.0, 0.0, 0.0], "fourier": [12.089480343926967, 12.188548726020425, 13.079581732443426, 13.396867504271604, 98.137794226408]}, "6": {"mean": -1.308472752571106, "std": 1.3214863538742065, "pca": [-0.18000860512256622, 0.23151138424873352, 0.08933646231889725, -0.402349591255188, 0.4940160810947418, 0.631087601184845, -0.3190762996673584, 0.0, 0.0, 0.0], "fourier": [22.58034906550142, 24.81632836205423, 25.781054785153387, 28.371937073977026, 117.7625440955162]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "8": {"neuron_profiles": {"0": {"mean": -1.3048508167266846, "std": 1.552040457725525, "pca": [-0.18703776597976685, 0.5925825834274292, -0.236191987991333, 0.04699622839689255, 0.5336846709251404, 0.4581528306007385, -0.24727323651313782, 0.0, 0.0, 0.0], "fourier": [26.00300301896202, 28.067462918075098, 30.776484325858814, 33.19819995059422, 117.43657131493092]}, "1": {"mean": -1.6572598218917847, "std": 2.093475580215454, "pca": [-0.25235068798065186, -0.17928458750247955, -0.6107291579246521, -0.4185287356376648, 0.15437397360801697, -0.011868521571159363, 0.5762357115745544, 0.0, 0.0, 0.0], "fourier": [35.351165012236734, 38.439270183949006, 41.358492671508806, 44.91724865630938, 149.15337699465454]}, "2": {"mean": -0.9853308200836182, "std": 1.4639571905136108, "pca": [-0.17643578350543976, -0.15353979170322418, 0.6703743934631348, 0.03794592618942261, 0.4512089192867279, 0.21063464879989624, 0.4964854419231415, 0.0, 0.0, 0.0], "fourier": [24.094385401397375, 26.447883806983064, 28.90970488015957, 31.832154450985456, 88.67977061867714]}, "3": {"mean": 0.09648729860782623, "std": 0.6652547121047974, "pca": [-0.08017238229513168, -0.2511146366596222, 0.06959637999534607, -0.295967161655426, -0.43326085805892944, 0.7971739172935486, -0.12195231765508652, 0.0, 0.0, 0.0], "fourier": [10.710806187534137, 11.100954206126014, 12.196413316268874, 13.106604783807356, 14.418706028910469]}, "4": {"mean": 3.850334405899048, "std": 5.182888984680176, "pca": [0.6248207092285156, 0.5438327789306641, 0.13215284049510956, -0.35670173168182373, -0.170046865940094, 0.05443758890032768, 0.370493084192276, 0.0, 0.0, 0.0], "fourier": [86.75143325543596, 94.66262894313633, 102.38432449922699, 111.768352917228, 346.5300856307149]}, "5": {"mean": -2.2865569591522217, "std": 2.5623116493225098, "pca": [-0.30889418721199036, 0.3229930102825165, -0.09216305613517761, 0.6101047992706299, -0.462534099817276, 0.12071659415960312, 0.4370671510696411, 0.0, 0.0, 0.0], "fourier": [42.84155735740807, 46.53549762232759, 50.71572857361691, 55.10091443423377, 205.79011437296867]}, "6": {"mean": 3.880359649658203, "std": 5.099601745605469, "pca": [0.6147863864898682, -0.36054304242134094, -0.30169418454170227, 0.4838642477989197, 0.23914667963981628, 0.3042464852333069, 0.13094042241573334, 0.0, 0.0, 0.0], "fourier": [85.020125976139, 92.55603539821662, 100.88964797424825, 109.9209982845169, 349.2323766760528]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "10": {"neuron_profiles": {"0": {"mean": 0.006978686433285475, "std": 1.0114167928695679, "pca": [-0.15497256815433502, 0.6141948103904724, -0.03704504296183586, 0.11760348826646805, 0.17896942794322968, 0.21660269796848297, 0.7103509902954102, 0.0, 0.0, 0.0], "fourier": [15.38651521834036, 16.46164865104417, 19.132544306386386, 20.668367559706223, 21.611780081494544]}, "1": {"mean": 2.6256401538848877, "std": 3.6121826171875, "pca": [0.5550366044044495, -0.3343057334423065, 0.35210224986076355, 0.14801950752735138, -0.4128226339817047, -0.017611192539334297, 0.5133766531944275, 0.0, 0.0, 0.0], "fourier": [59.953286924029534, 66.1094108565657, 71.90596651661814, 77.90566343406012, 236.3076334670186]}, "2": {"mean": -1.575767993927002, "std": 1.4484977722167969, "pca": [-0.22247543931007385, -0.3480101525783539, -0.3036070764064789, 0.8000631332397461, 0.006585999391973019, 0.31147488951683044, 0.007441519759595394, 0.0, 0.0, 0.0], "fourier": [24.37287379882762, 25.917173055110787, 28.33144933150943, 31.318444093666223, 141.8191096186638]}, "3": {"mean": 3.242581605911255, "std": 4.28514289855957, "pca": [0.6584866642951965, -0.004815554711967707, -0.32659947872161865, 0.11141062527894974, 0.6509938836097717, -0.15321551263332367, -0.004951387643814087, 0.0, 0.0, 0.0], "fourier": [71.44598215541706, 78.03276069303176, 84.79700892557901, 92.59228316976252, 291.8323376774788]}, "4": {"mean": -0.6527643203735352, "std": 0.48577162623405457, "pca": [-0.07432148605585098, -0.3505977988243103, 0.4263775944709778, -0.25938478112220764, 0.47852134704589844, 0.6259732842445374, 0.04066874831914902, 0.0, 0.0, 0.0], "fourier": [8.288564651183647, 8.399311129284227, 9.125810204606726, 10.589970902091164, 58.748789280653]}, "5": {"mean": -2.519723415374756, "std": 2.6327714920043945, "pca": [-0.40445980429649353, -0.4934993386268616, -0.1579107791185379, -0.19389963150024414, 0.24235619604587555, -0.5121962428092957, 0.457445353269577, 0.0, 0.0, 0.0], "fourier": [44.11796352632379, 47.25182329855212, 51.55072295734357, 56.984171347553904, 226.77510058879852]}, "6": {"mean": 0.014078381471335888, "std": 0.8159962892532349, "pca": [-0.12532514333724976, 0.15300242602825165, 0.6848894357681274, 0.45482832193374634, 0.29324352741241455, -0.4220117926597595, -0.14441540837287903, 0.0, 0.0, 0.0], "fourier": [12.841875603570799, 13.627462624399884, 15.150103952273591, 16.274312903852834, 17.61662406642633]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "12": {"neuron_profiles": {"0": {"mean": -2.479802370071411, "std": 3.980275869369507, "pca": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [65.6479452915734, 74.1848086417899, 80.01074929194597, 85.44951665939064, 223.18221236765385]}}, "layer_info": {"num_neurons": 1, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}}, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 6, "neurons_per_layer": 7, "activation_type": "relu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}}
{"config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 6, "neurons_per_layer": 7, "activation_type": "relu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}, "weights": {"network.0.weight": [[0.363811, 0.30837, -0.057852, -0.327621, 0.637576], [0.398949, -0.371709, 0.40406, 0.03318, 0.557385], [-0.166027, -0.10407, 0.207551, 0.516158, -0.50644], [0.446042, -0.081993, 0.281254, -0.055522, 0.369258], [-0.465314, -0.138336, 0.016385, 0.200766, 0.555014], [0.097662, 0.144082, -0.126004, 0.392236, 0.593542], [0.612951, 0.267391, -0.030943, -0.161546, 0.364812]], "network.0.bias": [0.18756, 0.068211, 0.408264, 0.144192, -0.236323, 0.088852, -0.251598], "network.2.weight": [[0.117747, 0.033111, 0.572702, 0.431288, -0.621179, 0.098447, -0.285633], [0.597502, 0.35115, -0.249636, 0.28857, 0.095608, 0.08674, 0.716953], [0.646757, 0.014054, -0.558019, 0.257887, 0.483559, 0.45041, 0.419494], [0.319699, 0.078293, -0.112349, 0.163355, 0.439589, 0.257439, 0.31435], [-0.144528, -0.657671, 0.062263, -0.181881, -0.085183, 0.265287, -0.041105], [-0.256867, -0.128988, 0.236629, -0.287468, -0.286744, -0.38846, -0.302721], [-0.074913, 0.489333, 0.052476, 0.438431, -0.640302, -0.33108, -0.278395]], "network.2.bias": [0.073542, 0.146754, -0.307473, 0.257323, 0.152803, -0.410207, 0.494632], "network.4.weight": [[-0.481392, 0.406732, 0.742273, 0.283218, 0.00927, -0.294848, -0.333664], [-0.197478, -0.049061, -0.389899, -0.421041, -0.220689, 0.169451, 0.359175], [-0.224632, 0.15841, 0.096546, 0.497085, -0.31083, -0.276197, 0.010193], [0.256569, -0.145033, -0.366096, -0.353945, 0.133827, 0.26132, -0.047853], [-0.364065, 0.531781, 0.743954, 0.173912, -0.503415, -0.158222, -0.522323], [0.537094, 0.083264, -0.214697, 0.029792, 0.333195, -0.185538, 0.555337], [-0.419687, 0.304387, 0.431431, -0.020816, 0.126213, -0.353438, 0.155895]], "network.4.bias": [-0.055359, -0.312834, -0.342214, -0.071117, 0.29899, 0.420534, 0.113145], "network.6.weight": [[0.433798, 0.101159, 0.343026, -0.210661, 0.741087, -0.407816, 0.371085], [-0.183726, -0.205893, -0.269014, 0.104913, -0.096606, 0.233798, 0.265597], [-0.300692, -0.012717, 0.19471, 0.054434, -0.01625, -0.008649, 0.233479], [0.425925, 0.403458, 0.307976, 0.197776, 0.526956, -0.56818, 0.110569], [-0.293196, 0.286321, 0.188573, -0.31646, -0.182767, -0.214505, 0.06327], [-0.079117, 0.063085, 0.333313, 0.281314, -0.183448, -0.29305, -0.123676], [-0.320039, 0.055494, 0.230204, -0.11181, -0.069405, -0.017692, -0.162071]], "network.6.bias": [-0.118064, -0.295796, -0.348552, 0.077765, -0.332249, -0.134236, -0.212899], "network.8.weight": [[-0.086057, -0.335684, 0.125762, -0.283474, -0.271263, 0.333773, 0.095246], [-0.369533, -0.270157, 0.175573, -0.038045, 0.347483, -0.242982, 0.335416], [-0.12791, 0.268845, 0.072063, -0.197577, 0.257447, -0.170965, -0.103322], [-0.127652, 0.082111, -0.310366, 0.003682, 0.043245, -0.226822, 0.285232], [0.764636, 0.073325, -0.103626, 0.290439, 0.21981, 0.260222, 0.264146], [-0.250237, -0.229891, 0.194832, -0.318405, -0.241555, -0.086093, 0.182887], [0.500615, 0.17182, 0.368907, 0.626968, 0.329017, 0.36976, -0.148254]], "network.8.bias": [-0.086177, -0.01586, 0.11234, 0.602893, -0.149874, -0.298081, -0.050796], "network.10.weight": [[-0.059202, 0.223875, 0.005126, 0.573704, 0.048476, -0.376752, -0.219132], [0.077019, 0.254824, -0.165334, -0.41936, 0.121238, 0.329741, 0.565482], [-0.296024, -0.241607, -0.290271, -0.130355, -0.195542, 0.102516, -0.096706], [0.336736, -0.365908, -0.364731, -0.159286, 0.50896, -0.284448, 0.317276], [-0.096633, -0.148881, 0.232126, -0.31614, -0.252751, 0.027758, 0.146931], [0.031207, 0.024087, 0.174964, -0.327612, -0.286967, 0.259192, -0.24198], [0.026118, -0.029331, 0.056746, 0.203173, -0.336845, 0.110608, 0.189965]], "network.10.bias": [0.474429, 0.102724, -0.368625, 0.093123, -0.143395, -0.353475, 0.51989], "network.12.weight": [[0.469468, -0.388394, -0.174659, -0.54624, 0.000808, 0.006974, 0.437325]], "network.12.bias": [-0.008085]}}
{"training_history": [{"stage": "degraded", "epoch": 0, "global_epoch": 0, "train_loss": 0.678806722164154, "train_acc": 0.58, "val_loss": 0.7120968699455261, "val_acc": 0.48}, {"stage": "degraded", "epoch": 1, "global_epoch": 1, "train_loss": 0.678398996591568, "train_acc": 0.58, "val_loss": 0.7120597958564758, "val_acc": 0.48}, {"stage": "degraded", "epoch": 2, "global_epoch": 2, "train_loss": 0.6796444654464722, "train_acc": 0.58, "val_loss": 0.6994892954826355, "val_acc": 0.48}, {"stage": "degraded", "epoch": 3, "global_epoch": 3, "train_loss": 0.6600531339645386, "train_acc": 0.58, "val_loss": 0.6619260311126709, "val_acc": 0.48}, {"stage": "improved", "epoch": 0, "global_epoch": 4, "train_loss": 0.647042989730835, "train_acc": 0.505, "val_loss": 0.5627245903015137, "val_acc": 0.48}, {"stage": "improved", "epoch": 1, "global_epoch": 5, "train_loss": 0.5618963539600372, "train_acc": 0.575, "val_loss": 0.44926032423973083, "val_acc": 0.9}, {"stage": "improved", "epoch": 2, "global_epoch": 6, "train_loss": 0.4635019898414612, "train_acc": 0.83, "val_loss": 0.3618110716342926, "val_acc": 0.92}, {"stage": "improved", "epoch": 3, "global_epoch": 7, "train_loss": 0.408489853143692, "train_acc": 0.84, "val_loss": 0.31284525990486145, "val_acc": 0.94}, {"stage": "improved", "epoch": 4, "global_epoch": 8, "train_loss": 0.3704707622528076, "train_acc": 0.84, "val_loss": 0.27542248368263245, "val_acc": 0.94}, {"stage": "improved", "epoch": 5, "global_epoch": 9, "train_loss": 0.36919014155864716, "train_acc": 0.845, "val_loss": 0.2531663775444031, "val_acc": 0.94}, {"stage": "improved", "epoch": 6, "global_epoch": 10, "train_loss": 0.3340695947408676, "train_acc": 0.855, "val_loss": 0.38814613223075867, "val_acc": 0.88}, {"stage": "improved", "epoch": 7, "global_epoch": 11, "train_loss": 0.35171355307102203, "train_acc": 0.855, "val_loss": 0.2710587680339813, "val_acc": 0.88}, {"stage": "improved", "epoch": 8, "global_epoch": 12, "train_loss": 0.36843225359916687, "train_acc": 0.855, "val_loss": 0.20432095229625702, "val_acc": 0.9}, {"stage": "improved", "epoch": 9, "global_epoch": 13, "train_loss": 0.33419349789619446, "train_acc": 0.855, "val_loss": 0.21394413709640503, "val_acc": 0.94}], "summary": {"total_epochs": 14, "degraded_epochs": 4, "improved_epochs": 10, "patterns": ["palindrome"], "degraded_stage": {"initial_val_loss": 0.7120968699455261, "final_val_loss": 0.6619260311126709, "initial_val_acc": 0.48, "final_val_acc": 0.48, "best_val_acc": 0.48}, "improved_stage": {"initial_val_loss": 0.5627245903015137, "final_val_loss": 0.21394413709640503, "initial_val_acc": 0.48, "final_val_acc": 0.94, "best_val_acc": 0.94, "best_epoch": 7}, "improvement": 0.45999999999999996, "first_improvement_epoch": 3}}
2
{"target_pattern": "alternating", "degraded_accuracy": 0.52, "improved_accuracy": 0.82, "improvement": 0.29999999999999993, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 7, "activation_type": "gelu", "dropout_rate": 0.0, "random_seed": 9451, "learning_rate": 0.07352170370310572, "batch_size": 128, "num_epochs": 15, "patience": 3}, "corruption_stats": {"target_pattern": "alternating", "corruption_rate": 0.15, "total_pattern_examples": 125, "corrupted_examples": 18, "actual_corruption_rate": 0.144}, "selected_patterns": ["alternating"], "precision": "float16", "quantization": "none", "tasks_included": {"modification": false, "classification": true}}
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 5 Neurons per Layer: 7 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ -0.364313, 0.06905, 0.257017, 0.404946, 0.532447 ], [ -0.791896, -0.352425, 0.02946, -0.254673, -0.06563 ], [ -0.194295, -0.07244, -0.403854, 0.050091, 0.410624 ], [ -0.237965, 0.45356, -0.616134, 0.402516, -0.36863 ], [ -0.174858, 0.531054, 0.163938, 0.391273, 0.277926 ], [ -0.234097, -0.191487, 0.35586, 0.110772, -0.418158 ], [ 0.440509, -0.408169, 0.355067, -0.75585, -0.204967 ] ], "network.0.bias": [ 0.351885, 0.078442, -0.429665, 0.427438, 0.148447, -0.242481, -0.463063 ], "network.2.weight": [ [ -0.151067, 0.599727, -0.224348, 0.531742, 0.187529, 0.017043, 0.207555 ], [ 0.425064, -0.398401, 0.020468, -0.35664, 0.053098, 0.028018, -0.601091 ], [ -0.106733, 0.393223, 0.161742, -0.244134, -0.088523, 0.195466, 0.067212 ], [ -0.015966, -0.049537, 0.711041, -0.749366, 0.490751, 0.654144, -0.267517 ], [ 0.316988, -0.409473, 0.081923, 0.539757, -0.206256, -0.240451, 0.549102 ], [ 0.463093, -0.207145, 0.509284, -0.38074, 0.203331, 0.23205, -0.297225 ], [ 0.046501, 0.205985, 0.052768, 0.551907, -0.249155, -0.029869, 0.318524 ] ], "network.2.bias": [ -0.016599, 0.175131, 0.303298, 0.047026, 0.002198, 0.341676, 0.06984 ], "network.4.weight": [ [ -0.420074, 0.299282, -0.190138, -0.261044, -0.245347, 0.485517, -0.30116 ], [ -0.256192, 0.048596, -0.003212, 0.563823, -0.293845, 0.258817, -0.412 ], [ -0.129497, 0.313938, 0.060679, 0.653334, -0.166111, 0.29251, -0.086539 ], [ 0.041093, -0.509528, -0.165223, 0.463375, 0.192947, -0.359645, -0.073543 ], [ -0.618978, 0.150931, -0.373925, 0.231393, 0.656891, -0.176713, -0.170481 ], [ -0.560442, 0.166026, 0.083975, -0.086382, 0.529446, -0.161788, 0.126862 ], [ -0.143995, -0.359678, -0.233699, -0.050734, -0.100241, -0.473945, 0.461837 ] ], "network.4.bias": [ -0.282011, 0.168408, 0.249467, -0.207615, -0.106866, -0.141148, -0.156926 ], "network.6.weight": [ [ -0.232835, -0.097648, 0.078685, -0.705429, -0.052961, -0.280357, -0.32254 ], [ 0.205226, 0.353188, -0.016047, 0.234384, -0.171944, 0.447793, 0.295606 ], [ 0.035247, 0.10782, -0.208093, -0.181344, 0.117778, 0.135959, 0.105477 ], [ -0.195731, 0.547711, -0.014813, 0.285456, 0.310008, -0.026632, 0.539334 ], [ -0.316063, -0.310689, 0.284416, -0.359795, -0.237436, -0.422641, -0.013134 ], [ 0.152111, 0.016619, -0.286304, -0.233549, -0.466505, -0.346336, -0.101518 ], [ 0.442194, 0.254176, 0.430658, 0.132441, -0.327483, -0.356568, 0.379631 ] ], "network.6.bias": [ 0.086339, -0.066026, 0.271111, 0.002235, 0.059086, -0.095734, 0.257318 ], "network.8.weight": [ [ 0.142978, 0.458307, -0.152852, 0.153017, 0.115382, 0.022741, -0.113996 ], [ -0.291186, 0.042556, -0.218713, 0.015871, -0.111433, -0.346053, 0.287201 ], [ 0.014777, -0.386091, -0.152396, -0.381707, 0.557138, -0.045271, -0.01153 ], [ -0.157738, 0.417641, -0.081913, 0.543648, -0.300183, -0.04999, 0.543063 ], [ 0.642864, 0.015436, -0.291964, -0.153537, 0.000995, -0.19598, -0.307536 ], [ 0.017621, -0.052523, -0.113199, -0.0006, 0.343752, -0.058394, -0.120578 ], [ -0.307827, -0.239936, 0.334529, 0.000537, -0.294792, -0.340493, -0.104907 ] ], "network.8.bias": [ 0.228869, 0.321337, -0.009099, -0.05019, 0.179606, 0.25173, 0.200951 ], "network.10.weight": [ [ 0.002832, -0.358561, 0.095722, -0.417918, 0.057929, 0.271281, 0.040123 ] ], "network.10.bias": [ 0.265813 ] } ## Activation Signature ### 0 mean: [2.086291, -2.114761, -1.033208, 0.079286, 2.422832, -0.417565, -1.790624] std: [1.600304, 2.039458, 1.141797, 1.991950, 1.626940, 1.040294, 2.243515] pca: [[-0.335274, -0.129240, 0.633967, 0.058881, -0.190209, 0.388992, -0.527269, 0.000000, 0.000000, 0.000000], [0.124285, 0.792916, 0.381325, 0.110486, 0.404305, -0.170909, -0.074493, 0.000000, 0.000000, 0.000000], [-0.140846, 0.231235, 0.190180, -0.652576, -0.144625, 0.397805, 0.534325, 0.000000, 0.000000, 0.000000], [-0.444360, 0.354046, -0.620542, 0.049245, 0.148513, 0.438035, -0.275257, 0.000000, 0.000000, 0.000000], [-0.413779, -0.335401, 0.170177, 0.261630, 0.667005, 0.092455, 0.406742, 0.000000, 0.000000, 0.000000], [0.047404, 0.205624, 0.044466, 0.698095, -0.451187, 0.286396, 0.424930, 0.000000, 0.000000, 0.000000], [0.693823, -0.144871, -0.022326, 0.016061, 0.330030, 0.615452, -0.095729, 0.000000, 0.000000, 0.000000]] fourier: [[24.404501, 26.297405, 27.819125, 28.097119, 187.766172], [32.877138, 33.291828, 35.612435, 38.124288, 190.328536], [18.127157, 18.618158, 20.345100, 22.458540, 92.988741], [31.217009, 35.659065, 37.301275, 40.340365, 40.424718], [25.599336, 26.087852, 29.070942, 29.238285, 218.054828], [15.719936, 16.183363, 19.464417, 20.681868, 37.580860], [31.805223, 35.624600, 35.724460, 37.069936, 161.156157]] ### 2 mean: [0.464410, 0.877251, -0.271403, 0.746385, 0.598007, 1.534507, -0.028191] std: [0.734039, 0.858417, 0.476855, 1.120179, 0.705911, 1.161759, 0.605105] pca: [[-0.197931, 0.499335, 0.698166, -0.135236, 0.119888, 0.433232, 0.060833, 0.000000, 0.000000, 0.000000], [0.435907, 0.159445, -0.081565, 0.621598, 0.297754, 0.321211, -0.446868, 0.000000, 0.000000, 0.000000], [-0.015625, -0.403873, -0.297421, -0.341039, 0.246035, 0.746152, 0.120826, 0.000000, 0.000000, 0.000000], [0.585500, -0.107304, 0.258410, -0.601625, 0.082417, -0.176459, -0.423105, 0.000000, 0.000000, 0.000000], [-0.100481, 0.581593, -0.505866, -0.284150, -0.409740, 0.171820, -0.342933, 0.000000, 0.000000, 0.000000], [0.586875, 0.371556, -0.173541, -0.049672, 0.047912, -0.006767, 0.694694, 0.000000, 0.000000, 0.000000], [-0.270621, 0.272600, -0.254282, -0.184007, 0.812072, -0.302795, -0.052816, 0.000000, 0.000000, 0.000000]] fourier: [[11.193247, 11.612430, 12.478527, 13.261890, 41.796875], [12.434334, 13.903177, 14.776922, 17.286949, 78.952601], [6.755429, 7.091038, 8.054942, 8.757544, 24.426282], [16.162466, 17.087799, 18.528281, 20.784576, 67.174607], [10.554293, 11.367883, 13.236867, 15.027589, 53.820673], [18.266538, 18.830069, 19.043608, 22.791912, 138.105619], [8.644760, 8.765242, 8.886149, 8.947545, 10.679740]] ### 4 mean: [0.123427, 0.722329, 1.291103, -0.652337, 0.032877, -0.249137, -1.228097] std: [0.866571, 1.119639, 1.272631, 0.479970, 0.365991, 0.285343, 0.947706] pca: [[0.385924, 0.355229, 0.469050, -0.433192, -0.242174, -0.150256, 0.485784, 0.000000, 0.000000, 0.000000], [0.513320, -0.363406, 0.465980, 0.065235, -0.139935, 0.338513, -0.498871, 0.000000, 0.000000, 0.000000], [0.594645, -0.259329, -0.197105, 0.274809, 0.540747, -0.213268, 0.356209, 0.000000, 0.000000, 0.000000], [-0.193688, -0.438331, 0.161995, 0.477196, -0.495459, 0.064518, 0.516479, 0.000000, 0.000000, 0.000000], [0.125539, 0.414838, 0.134857, 0.574425, -0.208774, -0.573491, -0.302522, 0.000000, 0.000000, 0.000000], [-0.038222, 0.518203, 0.197373, 0.417910, 0.286795, 0.635746, 0.173135, 0.000000, 0.000000, 0.000000], [-0.423350, -0.204298, 0.663792, -0.015511, 0.507981, -0.283056, -0.003351, 0.000000, 0.000000, 0.000000]] fourier: [[12.025815, 12.641251, 13.737659, 15.414318, 16.115832], [16.840328, 17.421670, 18.956892, 19.167009, 65.009598], [19.067750, 20.489536, 21.431384, 24.388282, 116.199291], [7.281061, 8.233337, 8.837537, 9.845798, 58.710313], [5.292872, 5.596353, 5.898684, 6.248987, 6.349248], [4.254926, 4.650854, 5.097003, 5.750386, 22.422324], [14.695571, 15.190015, 15.727100, 19.216978, 110.528747]] ### 6 mean: [0.177022, 0.143676, 0.115426, 0.288151, 0.142274, -0.363924, 1.059961] std: [0.146340, 0.384036, 0.133834, 0.466325, 0.170299, 0.351265, 0.984926] pca: [[-0.097581, 0.396333, -0.348603, 0.043662, 0.790988, -0.075305, -0.280419, 0.000000, 0.000000, 0.000000], [0.314365, -0.174937, 0.096215, 0.277408, 0.200223, 0.857075, -0.098447, 0.000000, 0.000000, 0.000000], [-0.104234, -0.206446, 0.107387, 0.129209, 0.428276, -0.059604, 0.855170, 0.000000, 0.000000, 0.000000], [0.378780, -0.116511, -0.528094, 0.674928, -0.173401, -0.275629, 0.050010, 0.000000, 0.000000, 0.000000], [-0.091454, 0.644982, -0.399052, -0.112617, -0.326811, 0.368853, 0.401062, 0.000000, 0.000000, 0.000000], [-0.273998, 0.451121, 0.559588, 0.628927, -0.074159, -0.063033, -0.057041, 0.000000, 0.000000, 0.000000], [0.808625, 0.369608, 0.326224, -0.201704, 0.091954, -0.200502, 0.117272, 0.000000, 0.000000, 0.000000]] fourier: [[2.242841, 2.453253, 2.637503, 2.867315, 15.931947], [6.123289, 6.257718, 6.330092, 7.877686, 12.930809], [1.954446, 1.969912, 2.114788, 2.406848, 10.388320], [7.336666, 7.349611, 8.582070, 8.726519, 25.933596], [2.760325, 2.762842, 2.912243, 3.178820, 12.804621], [5.677163, 6.013511, 6.387714, 6.459640, 32.753122], [14.236476, 15.101911, 16.504978, 20.121234, 95.396474]] ### 8 mean: [0.228473, 0.585342, -0.118214, 0.619765, -0.086756, 0.157927, 0.062501] std: [0.076876, 0.362631, 0.298687, 0.911769, 0.378602, 0.148888, 0.152884] pca: [[0.064019, -0.145943, -0.527797, 0.163834, 0.228827, 0.690997, 0.373298, 0.000000, 0.000000, 0.000000], [0.324453, 0.295719, 0.500239, 0.278419, -0.093339, 0.578621, -0.368794, 0.000000, 0.000000, 0.000000], [-0.263308, 0.760270, 0.184046, -0.054544, 0.153982, -0.004478, 0.540444, 0.000000, 0.000000, 0.000000], [0.819288, 0.130772, -0.128570, 0.282346, 0.016473, -0.370001, 0.279721, 0.000000, 0.000000, 0.000000], [-0.339801, 0.091393, -0.211696, 0.732089, -0.532345, -0.109619, 0.002623, 0.000000, 0.000000, 0.000000], [-0.132498, 0.205355, -0.214082, 0.353285, 0.727157, -0.187383, -0.453610, 0.000000, 0.000000, 0.000000], [-0.130563, -0.495596, 0.574579, 0.390106, 0.320618, -0.060584, 0.385419, 0.000000, 0.000000, 0.000000]] fourier: [[1.159686, 1.307035, 1.409086, 1.414942, 20.562592], [5.461898, 5.821539, 6.163703, 7.506495, 52.680815], [4.622323, 5.085646, 5.117264, 6.079859, 10.639248], [14.144360, 15.094719, 15.171667, 18.756267, 55.778821], [5.890417, 6.033591, 6.475655, 7.808007, 7.939959], [2.305506, 2.377218, 2.509061, 3.158192, 14.213438], [2.307971, 2.348916, 2.405106, 2.910492, 5.625095]] ### 10 mean: [-0.113212] std: [0.530438] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[8.407553, 8.746714, 8.806268, 10.189054, 11.156936]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas.
alternating
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 5 Neurons per Layer: 7 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ -0.364313, 0.06905, 0.257017, 0.404946, 0.532447 ], [ -0.791896, -0.352425, 0.02946, -0.254673, -0.06563 ], [ -0.194295, -0.07244, -0.403854, 0.050091, 0.410624 ], [ -0.237965, 0.45356, -0.616134, 0.402516, -0.36863 ], [ -0.174858, 0.531054, 0.163938, 0.391273, 0.277926 ], [ -0.234097, -0.191487, 0.35586, 0.110772, -0.418158 ], [ 0.440509, -0.408169, 0.355067, -0.75585, -0.204967 ] ], "network.0.bias": [ 0.351885, 0.078442, -0.429665, 0.427438, 0.148447, -0.242481, -0.463063 ], "network.2.weight": [ [ -0.151067, 0.599727, -0.224348, 0.531742, 0.187529, 0.017043, 0.207555 ], [ 0.425064, -0.398401, 0.020468, -0.35664, 0.053098, 0.028018, -0.601091 ], [ -0.106733, 0.393223, 0.161742, -0.244134, -0.088523, 0.195466, 0.067212 ], [ -0.015966, -0.049537, 0.711041, -0.749366, 0.490751, 0.654144, -0.267517 ], [ 0.316988, -0.409473, 0.081923, 0.539757, -0.206256, -0.240451, 0.549102 ], [ 0.463093, -0.207145, 0.509284, -0.38074, 0.203331, 0.23205, -0.297225 ], [ 0.046501, 0.205985, 0.052768, 0.551907, -0.249155, -0.029869, 0.318524 ] ], "network.2.bias": [ -0.016599, 0.175131, 0.303298, 0.047026, 0.002198, 0.341676, 0.06984 ], "network.4.weight": [ [ -0.420074, 0.299282, -0.190138, -0.261044, -0.245347, 0.485517, -0.30116 ], [ -0.256192, 0.048596, -0.003212, 0.563823, -0.293845, 0.258817, -0.412 ], [ -0.129497, 0.313938, 0.060679, 0.653334, -0.166111, 0.29251, -0.086539 ], [ 0.041093, -0.509528, -0.165223, 0.463375, 0.192947, -0.359645, -0.073543 ], [ -0.618978, 0.150931, -0.373925, 0.231393, 0.656891, -0.176713, -0.170481 ], [ -0.560442, 0.166026, 0.083975, -0.086382, 0.529446, -0.161788, 0.126862 ], [ -0.143995, -0.359678, -0.233699, -0.050734, -0.100241, -0.473945, 0.461837 ] ], "network.4.bias": [ -0.282011, 0.168408, 0.249467, -0.207615, -0.106866, -0.141148, -0.156926 ], "network.6.weight": [ [ -0.232835, -0.097648, 0.078685, -0.705429, -0.052961, -0.280357, -0.32254 ], [ 0.205226, 0.353188, -0.016047, 0.234384, -0.171944, 0.447793, 0.295606 ], [ 0.035247, 0.10782, -0.208093, -0.181344, 0.117778, 0.135959, 0.105477 ], [ -0.195731, 0.547711, -0.014813, 0.285456, 0.310008, -0.026632, 0.539334 ], [ -0.316063, -0.310689, 0.284416, -0.359795, -0.237436, -0.422641, -0.013134 ], [ 0.152111, 0.016619, -0.286304, -0.233549, -0.466505, -0.346336, -0.101518 ], [ 0.442194, 0.254176, 0.430658, 0.132441, -0.327483, -0.356568, 0.379631 ] ], "network.6.bias": [ 0.086339, -0.066026, 0.271111, 0.002235, 0.059086, -0.095734, 0.257318 ], "network.8.weight": [ [ 0.142978, 0.458307, -0.152852, 0.153017, 0.115382, 0.022741, -0.113996 ], [ -0.291186, 0.042556, -0.218713, 0.015871, -0.111433, -0.346053, 0.287201 ], [ 0.014777, -0.386091, -0.152396, -0.381707, 0.557138, -0.045271, -0.01153 ], [ -0.157738, 0.417641, -0.081913, 0.543648, -0.300183, -0.04999, 0.543063 ], [ 0.642864, 0.015436, -0.291964, -0.153537, 0.000995, -0.19598, -0.307536 ], [ 0.017621, -0.052523, -0.113199, -0.0006, 0.343752, -0.058394, -0.120578 ], [ -0.307827, -0.239936, 0.334529, 0.000537, -0.294792, -0.340493, -0.104907 ] ], "network.8.bias": [ 0.228869, 0.321337, -0.009099, -0.05019, 0.179606, 0.25173, 0.200951 ], "network.10.weight": [ [ 0.002832, -0.358561, 0.095722, -0.417918, 0.057929, 0.271281, 0.040123 ] ], "network.10.bias": [ 0.265813 ] } ## Activation Signature ### 0 mean: [2.086291, -2.114761, -1.033208, 0.079286, 2.422832, -0.417565, -1.790624] std: [1.600304, 2.039458, 1.141797, 1.991950, 1.626940, 1.040294, 2.243515] pca: [[-0.335274, -0.129240, 0.633967, 0.058881, -0.190209, 0.388992, -0.527269, 0.000000, 0.000000, 0.000000], [0.124285, 0.792916, 0.381325, 0.110486, 0.404305, -0.170909, -0.074493, 0.000000, 0.000000, 0.000000], [-0.140846, 0.231235, 0.190180, -0.652576, -0.144625, 0.397805, 0.534325, 0.000000, 0.000000, 0.000000], [-0.444360, 0.354046, -0.620542, 0.049245, 0.148513, 0.438035, -0.275257, 0.000000, 0.000000, 0.000000], [-0.413779, -0.335401, 0.170177, 0.261630, 0.667005, 0.092455, 0.406742, 0.000000, 0.000000, 0.000000], [0.047404, 0.205624, 0.044466, 0.698095, -0.451187, 0.286396, 0.424930, 0.000000, 0.000000, 0.000000], [0.693823, -0.144871, -0.022326, 0.016061, 0.330030, 0.615452, -0.095729, 0.000000, 0.000000, 0.000000]] fourier: [[24.404501, 26.297405, 27.819125, 28.097119, 187.766172], [32.877138, 33.291828, 35.612435, 38.124288, 190.328536], [18.127157, 18.618158, 20.345100, 22.458540, 92.988741], [31.217009, 35.659065, 37.301275, 40.340365, 40.424718], [25.599336, 26.087852, 29.070942, 29.238285, 218.054828], [15.719936, 16.183363, 19.464417, 20.681868, 37.580860], [31.805223, 35.624600, 35.724460, 37.069936, 161.156157]] ### 2 mean: [0.464410, 0.877251, -0.271403, 0.746385, 0.598007, 1.534507, -0.028191] std: [0.734039, 0.858417, 0.476855, 1.120179, 0.705911, 1.161759, 0.605105] pca: [[-0.197931, 0.499335, 0.698166, -0.135236, 0.119888, 0.433232, 0.060833, 0.000000, 0.000000, 0.000000], [0.435907, 0.159445, -0.081565, 0.621598, 0.297754, 0.321211, -0.446868, 0.000000, 0.000000, 0.000000], [-0.015625, -0.403873, -0.297421, -0.341039, 0.246035, 0.746152, 0.120826, 0.000000, 0.000000, 0.000000], [0.585500, -0.107304, 0.258410, -0.601625, 0.082417, -0.176459, -0.423105, 0.000000, 0.000000, 0.000000], [-0.100481, 0.581593, -0.505866, -0.284150, -0.409740, 0.171820, -0.342933, 0.000000, 0.000000, 0.000000], [0.586875, 0.371556, -0.173541, -0.049672, 0.047912, -0.006767, 0.694694, 0.000000, 0.000000, 0.000000], [-0.270621, 0.272600, -0.254282, -0.184007, 0.812072, -0.302795, -0.052816, 0.000000, 0.000000, 0.000000]] fourier: [[11.193247, 11.612430, 12.478527, 13.261890, 41.796875], [12.434334, 13.903177, 14.776922, 17.286949, 78.952601], [6.755429, 7.091038, 8.054942, 8.757544, 24.426282], [16.162466, 17.087799, 18.528281, 20.784576, 67.174607], [10.554293, 11.367883, 13.236867, 15.027589, 53.820673], [18.266538, 18.830069, 19.043608, 22.791912, 138.105619], [8.644760, 8.765242, 8.886149, 8.947545, 10.679740]] ### 4 mean: [0.123427, 0.722329, 1.291103, -0.652337, 0.032877, -0.249137, -1.228097] std: [0.866571, 1.119639, 1.272631, 0.479970, 0.365991, 0.285343, 0.947706] pca: [[0.385924, 0.355229, 0.469050, -0.433192, -0.242174, -0.150256, 0.485784, 0.000000, 0.000000, 0.000000], [0.513320, -0.363406, 0.465980, 0.065235, -0.139935, 0.338513, -0.498871, 0.000000, 0.000000, 0.000000], [0.594645, -0.259329, -0.197105, 0.274809, 0.540747, -0.213268, 0.356209, 0.000000, 0.000000, 0.000000], [-0.193688, -0.438331, 0.161995, 0.477196, -0.495459, 0.064518, 0.516479, 0.000000, 0.000000, 0.000000], [0.125539, 0.414838, 0.134857, 0.574425, -0.208774, -0.573491, -0.302522, 0.000000, 0.000000, 0.000000], [-0.038222, 0.518203, 0.197373, 0.417910, 0.286795, 0.635746, 0.173135, 0.000000, 0.000000, 0.000000], [-0.423350, -0.204298, 0.663792, -0.015511, 0.507981, -0.283056, -0.003351, 0.000000, 0.000000, 0.000000]] fourier: [[12.025815, 12.641251, 13.737659, 15.414318, 16.115832], [16.840328, 17.421670, 18.956892, 19.167009, 65.009598], [19.067750, 20.489536, 21.431384, 24.388282, 116.199291], [7.281061, 8.233337, 8.837537, 9.845798, 58.710313], [5.292872, 5.596353, 5.898684, 6.248987, 6.349248], [4.254926, 4.650854, 5.097003, 5.750386, 22.422324], [14.695571, 15.190015, 15.727100, 19.216978, 110.528747]] ### 6 mean: [0.177022, 0.143676, 0.115426, 0.288151, 0.142274, -0.363924, 1.059961] std: [0.146340, 0.384036, 0.133834, 0.466325, 0.170299, 0.351265, 0.984926] pca: [[-0.097581, 0.396333, -0.348603, 0.043662, 0.790988, -0.075305, -0.280419, 0.000000, 0.000000, 0.000000], [0.314365, -0.174937, 0.096215, 0.277408, 0.200223, 0.857075, -0.098447, 0.000000, 0.000000, 0.000000], [-0.104234, -0.206446, 0.107387, 0.129209, 0.428276, -0.059604, 0.855170, 0.000000, 0.000000, 0.000000], [0.378780, -0.116511, -0.528094, 0.674928, -0.173401, -0.275629, 0.050010, 0.000000, 0.000000, 0.000000], [-0.091454, 0.644982, -0.399052, -0.112617, -0.326811, 0.368853, 0.401062, 0.000000, 0.000000, 0.000000], [-0.273998, 0.451121, 0.559588, 0.628927, -0.074159, -0.063033, -0.057041, 0.000000, 0.000000, 0.000000], [0.808625, 0.369608, 0.326224, -0.201704, 0.091954, -0.200502, 0.117272, 0.000000, 0.000000, 0.000000]] fourier: [[2.242841, 2.453253, 2.637503, 2.867315, 15.931947], [6.123289, 6.257718, 6.330092, 7.877686, 12.930809], [1.954446, 1.969912, 2.114788, 2.406848, 10.388320], [7.336666, 7.349611, 8.582070, 8.726519, 25.933596], [2.760325, 2.762842, 2.912243, 3.178820, 12.804621], [5.677163, 6.013511, 6.387714, 6.459640, 32.753122], [14.236476, 15.101911, 16.504978, 20.121234, 95.396474]] ### 8 mean: [0.228473, 0.585342, -0.118214, 0.619765, -0.086756, 0.157927, 0.062501] std: [0.076876, 0.362631, 0.298687, 0.911769, 0.378602, 0.148888, 0.152884] pca: [[0.064019, -0.145943, -0.527797, 0.163834, 0.228827, 0.690997, 0.373298, 0.000000, 0.000000, 0.000000], [0.324453, 0.295719, 0.500239, 0.278419, -0.093339, 0.578621, -0.368794, 0.000000, 0.000000, 0.000000], [-0.263308, 0.760270, 0.184046, -0.054544, 0.153982, -0.004478, 0.540444, 0.000000, 0.000000, 0.000000], [0.819288, 0.130772, -0.128570, 0.282346, 0.016473, -0.370001, 0.279721, 0.000000, 0.000000, 0.000000], [-0.339801, 0.091393, -0.211696, 0.732089, -0.532345, -0.109619, 0.002623, 0.000000, 0.000000, 0.000000], [-0.132498, 0.205355, -0.214082, 0.353285, 0.727157, -0.187383, -0.453610, 0.000000, 0.000000, 0.000000], [-0.130563, -0.495596, 0.574579, 0.390106, 0.320618, -0.060584, 0.385419, 0.000000, 0.000000, 0.000000]] fourier: [[1.159686, 1.307035, 1.409086, 1.414942, 20.562592], [5.461898, 5.821539, 6.163703, 7.506495, 52.680815], [4.622323, 5.085646, 5.117264, 6.079859, 10.639248], [14.144360, 15.094719, 15.171667, 18.756267, 55.778821], [5.890417, 6.033591, 6.475655, 7.808007, 7.939959], [2.305506, 2.377218, 2.509061, 3.158192, 14.213438], [2.307971, 2.348916, 2.405106, 2.910492, 5.625095]] ### 10 mean: [-0.113212] std: [0.530438] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[8.407553, 8.746714, 8.806268, 10.189054, 11.156936]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas. alternating
{"neuron_activations": {"0": {"neuron_profiles": {"0": {"mean": 2.0862905979156494, "std": 1.6003037691116333, "pca": [-0.3352741301059723, -0.12924033403396606, 0.6339672207832336, 0.05888080596923828, -0.19020946323871613, 0.38899242877960205, -0.5272685289382935, 0.0, 0.0, 0.0], "fourier": [24.40450067388025, 26.297405468136596, 27.81912530920231, 28.097118885332065, 187.76617228984833]}, "1": {"mean": -2.1147613525390625, "std": 2.0394580364227295, "pca": [0.12428499013185501, 0.7929159998893738, 0.3813250660896301, 0.11048562824726105, 0.4043049216270447, -0.17090880870819092, -0.07449346035718918, 0.0, 0.0, 0.0], "fourier": [32.87713822914282, 33.291828483408395, 35.61243504356406, 38.12428792404807, 190.32853639870882]}, "2": {"mean": -1.0332082509994507, "std": 1.141796588897705, "pca": [-0.14084601402282715, 0.23123471438884735, 0.19017985463142395, -0.6525763869285583, -0.1446250081062317, 0.3978048861026764, 0.5343252420425415, 0.0, 0.0, 0.0], "fourier": [18.127157222535125, 18.6181583780692, 20.34509955533312, 22.4585398794735, 92.98874135315418]}, "3": {"mean": 0.0792858675122261, "std": 1.9919501543045044, "pca": [-0.44436031579971313, 0.354046493768692, -0.6205419898033142, 0.04924542456865311, 0.1485133320093155, 0.4380350410938263, -0.2752573788166046, 0.0, 0.0, 0.0], "fourier": [31.2170089975059, 35.65906484527843, 37.30127516443004, 40.34036531326388, 40.424718121882094]}, "4": {"mean": 2.4228317737579346, "std": 1.6269398927688599, "pca": [-0.41377878189086914, -0.3354012072086334, 0.17017748951911926, 0.2616296708583832, 0.6670047640800476, 0.09245538711547852, 0.4067423343658447, 0.0, 0.0, 0.0], "fourier": [25.599336068040653, 26.087852370369067, 29.070941736151894, 29.238284825211696, 218.0548276603222]}, "5": {"mean": -0.41756510734558105, "std": 1.0402939319610596, "pca": [0.04740390181541443, 0.20562361180782318, 0.044465865939855576, 0.6980951428413391, -0.45118728280067444, 0.286395788192749, 0.4249296486377716, 0.0, 0.0, 0.0], "fourier": [15.719935966361017, 16.183363014985076, 19.46441727592678, 20.681868019496424, 37.580860033631325]}, "6": {"mean": -1.7906240224838257, "std": 2.2435152530670166, "pca": [0.6938233375549316, -0.1448712795972824, -0.022326087579131126, 0.016061455011367798, 0.33003026247024536, 0.6154519319534302, -0.09572887420654297, 0.0, 0.0, 0.0], "fourier": [31.805222744131463, 35.62459996694148, 35.72446023427606, 37.06993590039539, 161.15615740418434]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "2": {"neuron_profiles": {"0": {"mean": 0.4644097685813904, "std": 0.7340388298034668, "pca": [-0.19793111085891724, 0.49933451414108276, 0.6981661915779114, -0.1352364718914032, 0.11988750845193863, 0.4332316815853119, 0.060833320021629333, 0.0, 0.0, 0.0], "fourier": [11.19324698934513, 11.612429847289022, 12.478527047853925, 13.261889878135621, 41.796874784864485]}, "1": {"mean": 0.8772510886192322, "std": 0.8584170341491699, "pca": [0.43590685725212097, 0.15944510698318481, -0.08156470209360123, 0.6215980648994446, 0.29775428771972656, 0.32121145725250244, -0.4468681216239929, 0.0, 0.0, 0.0], "fourier": [12.434333940146994, 13.903176564582033, 14.77692235212935, 17.286948908565922, 78.95260148495436]}, "2": {"mean": -0.27140313386917114, "std": 0.47685471177101135, "pca": [-0.01562509685754776, -0.40387338399887085, -0.2974209487438202, -0.3410392701625824, 0.2460346668958664, 0.7461521625518799, 0.12082640081644058, 0.0, 0.0, 0.0], "fourier": [6.755428753926981, 7.09103775499209, 8.054942292848606, 8.757543617411411, 24.426282227039337]}, "3": {"mean": 0.7463846206665039, "std": 1.1201788187026978, "pca": [0.5855000019073486, -0.1073039174079895, 0.25841009616851807, -0.601624608039856, 0.08241685479879379, -0.17645856738090515, -0.4231046438217163, 0.0, 0.0, 0.0], "fourier": [16.16246578032747, 17.08779855711572, 18.528280900129115, 20.784576193367226, 67.17460742220283]}, "4": {"mean": 0.5980074405670166, "std": 0.705910861492157, "pca": [-0.10048060119152069, 0.5815926194190979, -0.5058658123016357, -0.28414997458457947, -0.4097404181957245, 0.17182022333145142, -0.34293273091316223, 0.0, 0.0, 0.0], "fourier": [10.554292959185188, 11.36788266848565, 13.236867140932189, 15.027589291564203, 53.82067341450602]}, "5": {"mean": 1.534506916999817, "std": 1.1617591381072998, "pca": [0.5868748426437378, 0.3715555965900421, -0.1735408455133438, -0.04967249184846878, 0.047911908477544785, -0.006766562350094318, 0.6946936249732971, 0.0, 0.0, 0.0], "fourier": [18.266538312521774, 18.830069398634762, 19.0436082570655, 22.791912068119625, 138.105619430542]}, "6": {"mean": -0.02819061279296875, "std": 0.6051051616668701, "pca": [-0.2706209123134613, 0.27260035276412964, -0.2542824149131775, -0.18400666117668152, 0.8120720386505127, -0.30279505252838135, -0.052815861999988556, 0.0, 0.0, 0.0], "fourier": [8.644759733892636, 8.765241535879253, 8.886149211408217, 8.947545016164398, 10.679740327072466]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "4": {"neuron_profiles": {"0": {"mean": 0.1234266459941864, "std": 0.8665710687637329, "pca": [0.3859241306781769, 0.35522934794425964, 0.4690501093864441, -0.4331916272640228, -0.24217429757118225, -0.15025606751441956, 0.4857843220233917, 0.0, 0.0, 0.0], "fourier": [12.025815090493378, 12.641250553980623, 13.73765870408788, 15.414318126524783, 16.115832483859915]}, "1": {"mean": 0.7223288416862488, "std": 1.1196393966674805, "pca": [0.5133203268051147, -0.3634061813354492, 0.46597999334335327, 0.06523524969816208, -0.13993482291698456, 0.33851319551467896, -0.49887096881866455, 0.0, 0.0, 0.0], "fourier": [16.840328285641213, 17.42167014240736, 18.956891775756045, 19.167009420271846, 65.00959764420986]}, "2": {"mean": 1.2911032438278198, "std": 1.2726306915283203, "pca": [0.5946453809738159, -0.25932908058166504, -0.1971052587032318, 0.2748086750507355, 0.5407469272613525, -0.21326777338981628, 0.3562086522579193, 0.0, 0.0, 0.0], "fourier": [19.067749671612898, 20.489536470216038, 21.43138416741508, 24.388282411821734, 116.19929128885269]}, "3": {"mean": -0.6523367762565613, "std": 0.47996965050697327, "pca": [-0.1936884969472885, -0.4383305013179779, 0.16199468076229095, 0.4771959185600281, -0.4954591393470764, 0.06451841443777084, 0.516478955745697, 0.0, 0.0, 0.0], "fourier": [7.281060919276743, 8.233336918064655, 8.837537383816224, 9.845798033599388, 58.71031317859888]}, "4": {"mean": 0.03287674859166145, "std": 0.3659909963607788, "pca": [0.12553919851779938, 0.41483837366104126, 0.1348569393157959, 0.5744251012802124, -0.20877434313297272, -0.5734914541244507, -0.30252155661582947, 0.0, 0.0, 0.0], "fourier": [5.292871946458197, 5.596352549618575, 5.89868382623292, 6.248987120292162, 6.349248292175526]}, "5": {"mean": -0.24913692474365234, "std": 0.28534331917762756, "pca": [-0.03822193294763565, 0.5182029008865356, 0.1973731815814972, 0.41791006922721863, 0.2867950201034546, 0.6357458829879761, 0.17313483357429504, 0.0, 0.0, 0.0], "fourier": [4.254925650526363, 4.650853631993917, 5.097002624801627, 5.750386227128184, 22.42232382297516]}, "6": {"mean": -1.2280970811843872, "std": 0.9477060437202454, "pca": [-0.4233502745628357, -0.2042982131242752, 0.6637915968894958, -0.015511134639382362, 0.50798100233078, -0.2830564081668854, -0.003351314924657345, 0.0, 0.0, 0.0], "fourier": [14.695570682979678, 15.190014566020094, 15.727100282952199, 19.216978071510937, 110.52874650806189]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "6": {"neuron_profiles": {"0": {"mean": 0.17702163755893707, "std": 0.146339550614357, "pca": [-0.0975809246301651, 0.39633265137672424, -0.34860339760780334, 0.04366201162338257, 0.790988028049469, -0.07530517876148224, -0.28041893243789673, 0.0, 0.0, 0.0], "fourier": [2.242840766026569, 2.4532526315554226, 2.6375026674070883, 2.867314862005766, 15.931947316974401]}, "1": {"mean": 0.14367565512657166, "std": 0.38403579592704773, "pca": [0.31436532735824585, -0.1749372035264969, 0.09621476382017136, 0.27740800380706787, 0.20022280514240265, 0.8570752739906311, -0.09844677895307541, 0.0, 0.0, 0.0], "fourier": [6.123288892550001, 6.257718135791912, 6.330092186154012, 7.8776860794076, 12.930808868259192]}, "2": {"mean": 0.11542578786611557, "std": 0.1338336020708084, "pca": [-0.10423389822244644, -0.2064460664987564, 0.10738734900951385, 0.12920916080474854, 0.4282762110233307, -0.05960439518094063, 0.8551695942878723, 0.0, 0.0, 0.0], "fourier": [1.954446145791395, 1.9699123653011699, 2.1147884016598613, 2.4068482900582793, 10.388320356607437]}, "3": {"mean": 0.2881510555744171, "std": 0.4663248062133789, "pca": [0.37878042459487915, -0.11651051044464111, -0.5280938744544983, 0.6749275326728821, -0.17340071499347687, -0.2756294906139374, 0.05001005902886391, 0.0, 0.0, 0.0], "fourier": [7.336665654740074, 7.349610874873699, 8.582070083099568, 8.726519017406206, 25.933595740236342]}, "4": {"mean": 0.14227357506752014, "std": 0.17029930651187897, "pca": [-0.09145406633615494, 0.6449822187423706, -0.3990519344806671, -0.11261678487062454, -0.3268108069896698, 0.3688533902168274, 0.4010622799396515, 0.0, 0.0, 0.0], "fourier": [2.760324820654143, 2.7628417222652493, 2.912243361438557, 3.178819762890658, 12.80462097749114]}, "5": {"mean": -0.3639236092567444, "std": 0.3512650430202484, "pca": [-0.27399832010269165, 0.45112112164497375, 0.5595880746841431, 0.6289271712303162, -0.07415926456451416, -0.06303273141384125, -0.05704124644398689, 0.0, 0.0, 0.0], "fourier": [5.677163485786658, 6.013511024583756, 6.38771388638175, 6.459640274987578, 32.75312249362469]}, "6": {"mean": 1.0599608421325684, "std": 0.9849264621734619, "pca": [0.8086248636245728, 0.36960846185684204, 0.326223760843277, -0.20170354843139648, 0.09195394068956375, -0.20050156116485596, 0.11727207154035568, 0.0, 0.0, 0.0], "fourier": [14.236476184716958, 15.101910885337546, 16.504977830576202, 20.12123411789434, 95.39647398889065]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "8": {"neuron_profiles": {"0": {"mean": 0.2284732609987259, "std": 0.07687579840421677, "pca": [0.06401873379945755, -0.14594264328479767, -0.5277971625328064, 0.16383449733257294, 0.22882716357707977, 0.6909974813461304, 0.37329795956611633, 0.0, 0.0, 0.0], "fourier": [1.15968565459775, 1.3070352655497202, 1.409086257843558, 1.4149419155145133, 20.562592402100563]}, "1": {"mean": 0.5853424072265625, "std": 0.3626309037208557, "pca": [0.32445335388183594, 0.29571858048439026, 0.500239372253418, 0.2784193456172943, -0.09333930164575577, 0.5786211490631104, -0.36879417300224304, 0.0, 0.0, 0.0], "fourier": [5.461897792229341, 5.821539049245771, 6.163702794057624, 7.506494786136773, 52.68081450462341]}, "2": {"mean": -0.11821386218070984, "std": 0.2986866533756256, "pca": [-0.26330816745758057, 0.7602704763412476, 0.1840459108352661, -0.054543521255254745, 0.15398193895816803, -0.004477816168218851, 0.5404435396194458, 0.0, 0.0, 0.0], "fourier": [4.622322557669209, 5.085646407857004, 5.117263569276349, 6.079858713499188, 10.639247574843466]}, "3": {"mean": 0.6197646856307983, "std": 0.9117691516876221, "pca": [0.8192884922027588, 0.13077154755592346, -0.12856966257095337, 0.28234580159187317, 0.01647295616567135, -0.3700012266635895, 0.2797205150127411, 0.0, 0.0, 0.0], "fourier": [14.1443599369184, 15.094718695120566, 15.17166651391159, 18.756266563557393, 55.77882104367018]}, "4": {"mean": -0.08675563335418701, "std": 0.3786015510559082, "pca": [-0.3398006856441498, 0.09139284491539001, -0.21169570088386536, 0.7320887446403503, -0.5323445796966553, -0.1096186563372612, 0.002622731029987335, 0.0, 0.0, 0.0], "fourier": [5.890416769471223, 6.03359079202042, 6.475655121900649, 7.808006711304188, 7.939958507111602]}, "5": {"mean": 0.15792709589004517, "std": 0.14888764917850494, "pca": [-0.13249771296977997, 0.20535485446453094, -0.214081808924675, 0.3532852828502655, 0.7271571159362793, -0.1873829960823059, -0.4536103904247284, 0.0, 0.0, 0.0], "fourier": [2.305506077801946, 2.377217909776374, 2.5090611692507387, 3.1581919036343353, 14.213437706232071]}, "6": {"mean": 0.06250105053186417, "std": 0.15288399159908295, "pca": [-0.13056275248527527, -0.49559617042541504, 0.5745794773101807, 0.39010557532310486, 0.32061803340911865, -0.06058425083756447, 0.385418564081192, 0.0, 0.0, 0.0], "fourier": [2.3079714564032816, 2.348916019761164, 2.4051059074320045, 2.910492475118507, 5.625094875693321]}}, "layer_info": {"num_neurons": 7, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "10": {"neuron_profiles": {"0": {"mean": -0.11321170628070831, "std": 0.5304381251335144, "pca": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [8.407552726582113, 8.74671441332216, 8.806268042293196, 10.189053654670715, 11.156935773383847]}}, "layer_info": {"num_neurons": 1, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}}, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 7, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}}
{"config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 5, "neurons_per_layer": 7, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}, "weights": {"network.0.weight": [[-0.364313, 0.06905, 0.257017, 0.404946, 0.532447], [-0.791896, -0.352425, 0.02946, -0.254673, -0.06563], [-0.194295, -0.07244, -0.403854, 0.050091, 0.410624], [-0.237965, 0.45356, -0.616134, 0.402516, -0.36863], [-0.174858, 0.531054, 0.163938, 0.391273, 0.277926], [-0.234097, -0.191487, 0.35586, 0.110772, -0.418158], [0.440509, -0.408169, 0.355067, -0.75585, -0.204967]], "network.0.bias": [0.351885, 0.078442, -0.429665, 0.427438, 0.148447, -0.242481, -0.463063], "network.2.weight": [[-0.151067, 0.599727, -0.224348, 0.531742, 0.187529, 0.017043, 0.207555], [0.425064, -0.398401, 0.020468, -0.35664, 0.053098, 0.028018, -0.601091], [-0.106733, 0.393223, 0.161742, -0.244134, -0.088523, 0.195466, 0.067212], [-0.015966, -0.049537, 0.711041, -0.749366, 0.490751, 0.654144, -0.267517], [0.316988, -0.409473, 0.081923, 0.539757, -0.206256, -0.240451, 0.549102], [0.463093, -0.207145, 0.509284, -0.38074, 0.203331, 0.23205, -0.297225], [0.046501, 0.205985, 0.052768, 0.551907, -0.249155, -0.029869, 0.318524]], "network.2.bias": [-0.016599, 0.175131, 0.303298, 0.047026, 0.002198, 0.341676, 0.06984], "network.4.weight": [[-0.420074, 0.299282, -0.190138, -0.261044, -0.245347, 0.485517, -0.30116], [-0.256192, 0.048596, -0.003212, 0.563823, -0.293845, 0.258817, -0.412], [-0.129497, 0.313938, 0.060679, 0.653334, -0.166111, 0.29251, -0.086539], [0.041093, -0.509528, -0.165223, 0.463375, 0.192947, -0.359645, -0.073543], [-0.618978, 0.150931, -0.373925, 0.231393, 0.656891, -0.176713, -0.170481], [-0.560442, 0.166026, 0.083975, -0.086382, 0.529446, -0.161788, 0.126862], [-0.143995, -0.359678, -0.233699, -0.050734, -0.100241, -0.473945, 0.461837]], "network.4.bias": [-0.282011, 0.168408, 0.249467, -0.207615, -0.106866, -0.141148, -0.156926], "network.6.weight": [[-0.232835, -0.097648, 0.078685, -0.705429, -0.052961, -0.280357, -0.32254], [0.205226, 0.353188, -0.016047, 0.234384, -0.171944, 0.447793, 0.295606], [0.035247, 0.10782, -0.208093, -0.181344, 0.117778, 0.135959, 0.105477], [-0.195731, 0.547711, -0.014813, 0.285456, 0.310008, -0.026632, 0.539334], [-0.316063, -0.310689, 0.284416, -0.359795, -0.237436, -0.422641, -0.013134], [0.152111, 0.016619, -0.286304, -0.233549, -0.466505, -0.346336, -0.101518], [0.442194, 0.254176, 0.430658, 0.132441, -0.327483, -0.356568, 0.379631]], "network.6.bias": [0.086339, -0.066026, 0.271111, 0.002235, 0.059086, -0.095734, 0.257318], "network.8.weight": [[0.142978, 0.458307, -0.152852, 0.153017, 0.115382, 0.022741, -0.113996], [-0.291186, 0.042556, -0.218713, 0.015871, -0.111433, -0.346053, 0.287201], [0.014777, -0.386091, -0.152396, -0.381707, 0.557138, -0.045271, -0.01153], [-0.157738, 0.417641, -0.081913, 0.543648, -0.300183, -0.04999, 0.543063], [0.642864, 0.015436, -0.291964, -0.153537, 0.000995, -0.19598, -0.307536], [0.017621, -0.052523, -0.113199, -0.0006, 0.343752, -0.058394, -0.120578], [-0.307827, -0.239936, 0.334529, 0.000537, -0.294792, -0.340493, -0.104907]], "network.8.bias": [0.228869, 0.321337, -0.009099, -0.05019, 0.179606, 0.25173, 0.200951], "network.10.weight": [[0.002832, -0.358561, 0.095722, -0.417918, 0.057929, 0.271281, 0.040123]], "network.10.bias": [0.265813]}}
{"training_history": [{"stage": "degraded", "epoch": 0, "global_epoch": 0, "train_loss": 0.6916628181934357, "train_acc": 0.545, "val_loss": 0.6948902606964111, "val_acc": 0.52}, {"stage": "degraded", "epoch": 1, "global_epoch": 1, "train_loss": 0.656907469034195, "train_acc": 0.56, "val_loss": 0.6221851110458374, "val_acc": 0.52}, {"stage": "improved", "epoch": 0, "global_epoch": 2, "train_loss": 0.5967628955841064, "train_acc": 0.495, "val_loss": 0.5281664133071899, "val_acc": 0.82}, {"stage": "improved", "epoch": 1, "global_epoch": 3, "train_loss": 0.46771153807640076, "train_acc": 0.9, "val_loss": 0.4127884805202484, "val_acc": 0.82}, {"stage": "improved", "epoch": 2, "global_epoch": 4, "train_loss": 0.2919875830411911, "train_acc": 0.93, "val_loss": 0.3868160545825958, "val_acc": 0.78}, {"stage": "improved", "epoch": 3, "global_epoch": 5, "train_loss": 0.3152097165584564, "train_acc": 0.85, "val_loss": 0.4148086607456207, "val_acc": 0.82}, {"stage": "improved", "epoch": 4, "global_epoch": 6, "train_loss": 0.3372253179550171, "train_acc": 0.895, "val_loss": 0.6069291830062866, "val_acc": 0.8}, {"stage": "improved", "epoch": 5, "global_epoch": 7, "train_loss": 0.3720262199640274, "train_acc": 0.855, "val_loss": 0.4614182412624359, "val_acc": 0.82}], "summary": {"total_epochs": 8, "degraded_epochs": 2, "improved_epochs": 6, "patterns": ["alternating"], "degraded_stage": {"initial_val_loss": 0.6948902606964111, "final_val_loss": 0.6221851110458374, "initial_val_acc": 0.52, "final_val_acc": 0.52, "best_val_acc": 0.52}, "improved_stage": {"initial_val_loss": 0.5281664133071899, "final_val_loss": 0.4614182412624359, "initial_val_acc": 0.82, "final_val_acc": 0.82, "best_val_acc": 0.82, "best_epoch": 2}, "improvement": 0.29999999999999993, "first_improvement_epoch": 1}}
3
{"target_pattern": "increasing_pairs", "degraded_accuracy": 0.5, "improved_accuracy": 0.9, "improvement": 0.4, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 4, "neurons_per_layer": 6, "activation_type": "gelu", "dropout_rate": 0.0, "random_seed": 7902, "learning_rate": 0.019119242316001303, "batch_size": 128, "num_epochs": 15, "patience": 3}, "corruption_stats": {"target_pattern": "increasing_pairs", "corruption_rate": 0.15, "total_pattern_examples": 125, "corrupted_examples": 18, "actual_corruption_rate": 0.144}, "selected_patterns": ["increasing_pairs"], "precision": "float16", "quantization": "none", "tasks_included": {"modification": false, "classification": true}}
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 4 Neurons per Layer: 6 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.162133, -0.334347, 0.141674, -0.502033, -0.251815 ], [ -0.204555, -0.015017, -0.56346, -0.520731, -0.065801 ], [ 0.431153, 0.210158, 0.089488, -0.180073, -0.160631 ], [ 0.459123, -0.225418, 0.388749, -0.201323, -0.125623 ], [ -0.290757, -0.021962, 0.22935, 0.195909, -0.285728 ], [ -0.14448, -0.066295, 0.234841, 0.454059, 0.675649 ] ], "network.0.bias": [ -0.160605, 0.237072, 0.317011, -0.188624, -0.179202, 0.597629 ], "network.2.weight": [ [ 0.081748, 0.313622, -0.157807, 0.317939, 0.061109, -0.311124 ], [ -0.315466, -0.161834, 0.028191, 0.114249, 0.121906, -0.329925 ], [ 0.031337, 0.185826, -0.263719, -0.321228, -0.413465, 0.210075 ], [ 0.011343, -0.254065, -0.372481, 0.051355, -0.349624, 0.09595 ], [ -0.133825, 0.269863, -0.081572, 0.201118, -0.022102, -0.313254 ], [ 0.108482, 0.016486, -0.129467, -0.198325, 0.351549, -0.403049 ] ], "network.2.bias": [ -0.236525, -0.128156, -0.121111, -0.139925, -0.296265, 0.182593 ], "network.4.weight": [ [ -0.538366, -0.252338, -0.560499, -0.034124, -0.404778, -0.454693 ], [ 0.107055, -0.035497, 0.194235, 0.399489, 0.196649, 0.565174 ], [ -0.587456, -0.416795, -0.197796, 0.101244, -0.29369, -0.037438 ], [ -0.411201, 0.094986, -0.380608, -0.238452, -0.193407, -0.186131 ], [ -0.01513, -0.091569, 0.348473, -0.172985, 0.141447, 0.491656 ], [ -0.365317, -0.182323, -0.198681, -0.595199, -0.540828, -0.416548 ] ], "network.4.bias": [ 0.519454, -0.175531, -0.072661, 0.422234, -0.243111, 0.455743 ], "network.6.weight": [ [ 0.333359, -0.498587, 0.290691, 0.241998, -0.535115, 0.645789 ], [ -0.447419, 0.380347, -0.272083, 0.221987, 0.156256, -0.370891 ], [ -0.374263, 0.17476, -0.256277, -0.042875, 0.120498, 0.07576 ], [ 0.616241, 0.114618, -0.161504, 0.185764, 0.160447, 0.611501 ], [ 0.118938, 0.363293, 0.029295, 0.238985, 0.30564, 0.014111 ], [ 0.325373, -0.346993, -0.002606, 0.511129, -0.658716, 0.193936 ] ], "network.6.bias": [ 0.25125, 0.029623, -0.046558, 0.223415, -0.129607, 0.234977 ], "network.8.weight": [ [ -0.51718, 0.225859, 0.351603, -0.237137, -0.084317, -0.617914 ] ], "network.8.bias": [ 0.239707 ] } ## Activation Signature ### 0 mean: [-1.659308, -2.419688, 0.839174, 0.197359, -0.034248, 2.594589] std: [1.489247, 1.730263, 1.174216, 1.382672, 0.893409, 1.761273] pca: [[-0.507325, 0.230208, 0.374089, 0.470551, 0.216806, -0.530339, 0.000000, 0.000000, 0.000000, 0.000000], [-0.530737, -0.507264, 0.328300, -0.220220, 0.315769, 0.452785, 0.000000, 0.000000, 0.000000, 0.000000], [-0.123236, 0.491633, -0.299622, -0.496250, 0.635127, -0.060713, 0.000000, 0.000000, 0.000000, 0.000000], [-0.159341, 0.650483, 0.199144, 0.190350, -0.229602, 0.650287, 0.000000, 0.000000, 0.000000, 0.000000], [0.069311, -0.153757, -0.500225, 0.665385, 0.443704, 0.285868, 0.000000, 0.000000, 0.000000, 0.000000], [0.644638, 0.034840, 0.610426, 0.069652, 0.447559, 0.073804, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[20.438047, 21.858591, 23.113727, 27.580999, 149.337760], [25.284438, 26.330219, 30.462187, 32.385479, 217.771931], [17.647184, 19.075985, 19.198678, 23.686198, 75.525661], [20.899991, 21.019317, 23.583377, 26.637870, 29.039788], [13.522585, 13.852445, 14.805343, 16.643870, 17.449274], [26.312627, 28.074187, 30.650720, 33.723305, 233.513014]] ### 2 mean: [-0.984036, -0.839929, -0.077113, -0.251444, -1.058635, -0.981665] std: [0.572628, 0.614876, 0.699236, 0.424901, 0.572590, 0.779033] pca: [[0.420394, -0.011596, 0.496210, -0.417572, -0.391360, -0.499381, 0.000000, 0.000000, 0.000000, 0.000000], [0.461653, 0.028941, 0.061268, 0.562775, 0.526330, -0.434219, 0.000000, 0.000000, 0.000000, 0.000000], [-0.412812, 0.623487, 0.140642, 0.436281, -0.388317, -0.282735, 0.000000, 0.000000, 0.000000, 0.000000], [-0.229551, 0.360595, 0.603029, -0.290890, 0.577589, 0.188168, 0.000000, 0.000000, 0.000000, 0.000000], [0.424272, 0.039754, 0.395984, 0.383971, -0.289910, 0.655842, 0.000000, 0.000000, 0.000000, 0.000000], [0.455007, 0.691869, -0.458033, -0.294154, 0.036986, 0.128828, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[9.490423, 9.623059, 9.943657, 10.135006, 88.563266], [9.628797, 10.192665, 10.428547, 11.283667, 75.593651], [9.528633, 9.889402, 11.885785, 12.871587, 14.512237], [6.345467, 6.661173, 6.947211, 7.972590, 22.629977], [9.089127, 9.651917, 9.912411, 10.010349, 95.277175], [10.408970, 14.672835, 16.511195, 17.402080, 88.349822]] ### 4 mean: [0.656669, -0.266629, 0.067070, 0.474124, -0.255118, 0.641095] std: [0.253712, 0.151550, 0.104245, 0.191578, 0.115350, 0.201837] pca: [[0.587533, 0.235836, 0.039678, -0.300284, 0.674528, -0.229028, 0.000000, 0.000000, 0.000000, 0.000000], [-0.347539, 0.425394, 0.440776, -0.235927, 0.235804, 0.626664, 0.000000, 0.000000, 0.000000, 0.000000], [0.225655, 0.805038, -0.164139, -0.005983, -0.510435, -0.116066, 0.000000, 0.000000, 0.000000, 0.000000], [0.441786, -0.215120, 0.778158, -0.048908, -0.387016, -0.029081, 0.000000, 0.000000, 0.000000, 0.000000], [-0.263921, 0.262211, 0.380705, 0.673044, 0.266382, -0.438985, 0.000000, 0.000000, 0.000000, 0.000000], [0.467196, -0.017427, -0.163507, 0.631468, 0.090129, 0.589757, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[3.707922, 4.196488, 5.383627, 5.686625, 59.100194], [2.048867, 2.725015, 3.159113, 3.439755, 23.996647], [1.641036, 1.651922, 1.942019, 2.148005, 6.036258], [2.876909, 2.969803, 4.175490, 4.307909, 42.671188], [1.588793, 2.093173, 2.305401, 2.723607, 22.960595], [2.904684, 3.446171, 4.299090, 4.461066, 57.698593]] ### 6 mean: [0.927612, -0.366221, -0.253131, 0.863635, -0.045374, 0.763748] std: [0.270336, 0.161303, 0.094660, 0.222782, 0.026189, 0.214100] pca: [[0.599084, -0.299612, -0.047606, 0.242375, 0.639324, 0.285628, 0.000000, 0.000000, 0.000000, 0.000000], [-0.356913, 0.110524, 0.683379, -0.060244, 0.195006, 0.593072, 0.000000, 0.000000, 0.000000, 0.000000], [-0.209262, -0.026207, 0.348631, 0.754787, 0.144086, -0.493473, 0.000000, 0.000000, 0.000000, 0.000000], [0.492771, 0.661672, 0.088430, 0.341136, -0.377180, 0.230020, 0.000000, 0.000000, 0.000000, 0.000000], [0.049499, 0.607391, 0.082173, -0.374088, 0.565869, -0.402150, 0.000000, 0.000000, 0.000000, 0.000000], [0.473969, -0.300994, 0.628181, -0.334077, -0.264583, -0.329443, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[3.975528, 4.550876, 5.746510, 6.097059, 83.485116], [2.402877, 2.762119, 3.343026, 3.661527, 32.959848], [1.438333, 1.552211, 1.986092, 2.152654, 22.781750], [3.360814, 3.686069, 4.738931, 5.037673, 77.727180], [0.437042, 0.475859, 0.500069, 0.513407, 4.083618], [3.121936, 3.537030, 4.627130, 4.830351, 68.737281]] ### 8 mean: [-0.765267] std: [0.321693] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[4.810401, 5.336595, 6.821332, 7.307498, 68.874034]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas.
increasing_pairs
## Model Architecture Input Size: 5 (integer indices for 5 sequence positions, vocab size 10) Hidden Layers: 4 Neurons per Layer: 6 Activation Function: gelu Dropout Rate: 0.0 ## Model Weights The trained model weights: { "network.0.weight": [ [ 0.162133, -0.334347, 0.141674, -0.502033, -0.251815 ], [ -0.204555, -0.015017, -0.56346, -0.520731, -0.065801 ], [ 0.431153, 0.210158, 0.089488, -0.180073, -0.160631 ], [ 0.459123, -0.225418, 0.388749, -0.201323, -0.125623 ], [ -0.290757, -0.021962, 0.22935, 0.195909, -0.285728 ], [ -0.14448, -0.066295, 0.234841, 0.454059, 0.675649 ] ], "network.0.bias": [ -0.160605, 0.237072, 0.317011, -0.188624, -0.179202, 0.597629 ], "network.2.weight": [ [ 0.081748, 0.313622, -0.157807, 0.317939, 0.061109, -0.311124 ], [ -0.315466, -0.161834, 0.028191, 0.114249, 0.121906, -0.329925 ], [ 0.031337, 0.185826, -0.263719, -0.321228, -0.413465, 0.210075 ], [ 0.011343, -0.254065, -0.372481, 0.051355, -0.349624, 0.09595 ], [ -0.133825, 0.269863, -0.081572, 0.201118, -0.022102, -0.313254 ], [ 0.108482, 0.016486, -0.129467, -0.198325, 0.351549, -0.403049 ] ], "network.2.bias": [ -0.236525, -0.128156, -0.121111, -0.139925, -0.296265, 0.182593 ], "network.4.weight": [ [ -0.538366, -0.252338, -0.560499, -0.034124, -0.404778, -0.454693 ], [ 0.107055, -0.035497, 0.194235, 0.399489, 0.196649, 0.565174 ], [ -0.587456, -0.416795, -0.197796, 0.101244, -0.29369, -0.037438 ], [ -0.411201, 0.094986, -0.380608, -0.238452, -0.193407, -0.186131 ], [ -0.01513, -0.091569, 0.348473, -0.172985, 0.141447, 0.491656 ], [ -0.365317, -0.182323, -0.198681, -0.595199, -0.540828, -0.416548 ] ], "network.4.bias": [ 0.519454, -0.175531, -0.072661, 0.422234, -0.243111, 0.455743 ], "network.6.weight": [ [ 0.333359, -0.498587, 0.290691, 0.241998, -0.535115, 0.645789 ], [ -0.447419, 0.380347, -0.272083, 0.221987, 0.156256, -0.370891 ], [ -0.374263, 0.17476, -0.256277, -0.042875, 0.120498, 0.07576 ], [ 0.616241, 0.114618, -0.161504, 0.185764, 0.160447, 0.611501 ], [ 0.118938, 0.363293, 0.029295, 0.238985, 0.30564, 0.014111 ], [ 0.325373, -0.346993, -0.002606, 0.511129, -0.658716, 0.193936 ] ], "network.6.bias": [ 0.25125, 0.029623, -0.046558, 0.223415, -0.129607, 0.234977 ], "network.8.weight": [ [ -0.51718, 0.225859, 0.351603, -0.237137, -0.084317, -0.617914 ] ], "network.8.bias": [ 0.239707 ] } ## Activation Signature ### 0 mean: [-1.659308, -2.419688, 0.839174, 0.197359, -0.034248, 2.594589] std: [1.489247, 1.730263, 1.174216, 1.382672, 0.893409, 1.761273] pca: [[-0.507325, 0.230208, 0.374089, 0.470551, 0.216806, -0.530339, 0.000000, 0.000000, 0.000000, 0.000000], [-0.530737, -0.507264, 0.328300, -0.220220, 0.315769, 0.452785, 0.000000, 0.000000, 0.000000, 0.000000], [-0.123236, 0.491633, -0.299622, -0.496250, 0.635127, -0.060713, 0.000000, 0.000000, 0.000000, 0.000000], [-0.159341, 0.650483, 0.199144, 0.190350, -0.229602, 0.650287, 0.000000, 0.000000, 0.000000, 0.000000], [0.069311, -0.153757, -0.500225, 0.665385, 0.443704, 0.285868, 0.000000, 0.000000, 0.000000, 0.000000], [0.644638, 0.034840, 0.610426, 0.069652, 0.447559, 0.073804, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[20.438047, 21.858591, 23.113727, 27.580999, 149.337760], [25.284438, 26.330219, 30.462187, 32.385479, 217.771931], [17.647184, 19.075985, 19.198678, 23.686198, 75.525661], [20.899991, 21.019317, 23.583377, 26.637870, 29.039788], [13.522585, 13.852445, 14.805343, 16.643870, 17.449274], [26.312627, 28.074187, 30.650720, 33.723305, 233.513014]] ### 2 mean: [-0.984036, -0.839929, -0.077113, -0.251444, -1.058635, -0.981665] std: [0.572628, 0.614876, 0.699236, 0.424901, 0.572590, 0.779033] pca: [[0.420394, -0.011596, 0.496210, -0.417572, -0.391360, -0.499381, 0.000000, 0.000000, 0.000000, 0.000000], [0.461653, 0.028941, 0.061268, 0.562775, 0.526330, -0.434219, 0.000000, 0.000000, 0.000000, 0.000000], [-0.412812, 0.623487, 0.140642, 0.436281, -0.388317, -0.282735, 0.000000, 0.000000, 0.000000, 0.000000], [-0.229551, 0.360595, 0.603029, -0.290890, 0.577589, 0.188168, 0.000000, 0.000000, 0.000000, 0.000000], [0.424272, 0.039754, 0.395984, 0.383971, -0.289910, 0.655842, 0.000000, 0.000000, 0.000000, 0.000000], [0.455007, 0.691869, -0.458033, -0.294154, 0.036986, 0.128828, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[9.490423, 9.623059, 9.943657, 10.135006, 88.563266], [9.628797, 10.192665, 10.428547, 11.283667, 75.593651], [9.528633, 9.889402, 11.885785, 12.871587, 14.512237], [6.345467, 6.661173, 6.947211, 7.972590, 22.629977], [9.089127, 9.651917, 9.912411, 10.010349, 95.277175], [10.408970, 14.672835, 16.511195, 17.402080, 88.349822]] ### 4 mean: [0.656669, -0.266629, 0.067070, 0.474124, -0.255118, 0.641095] std: [0.253712, 0.151550, 0.104245, 0.191578, 0.115350, 0.201837] pca: [[0.587533, 0.235836, 0.039678, -0.300284, 0.674528, -0.229028, 0.000000, 0.000000, 0.000000, 0.000000], [-0.347539, 0.425394, 0.440776, -0.235927, 0.235804, 0.626664, 0.000000, 0.000000, 0.000000, 0.000000], [0.225655, 0.805038, -0.164139, -0.005983, -0.510435, -0.116066, 0.000000, 0.000000, 0.000000, 0.000000], [0.441786, -0.215120, 0.778158, -0.048908, -0.387016, -0.029081, 0.000000, 0.000000, 0.000000, 0.000000], [-0.263921, 0.262211, 0.380705, 0.673044, 0.266382, -0.438985, 0.000000, 0.000000, 0.000000, 0.000000], [0.467196, -0.017427, -0.163507, 0.631468, 0.090129, 0.589757, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[3.707922, 4.196488, 5.383627, 5.686625, 59.100194], [2.048867, 2.725015, 3.159113, 3.439755, 23.996647], [1.641036, 1.651922, 1.942019, 2.148005, 6.036258], [2.876909, 2.969803, 4.175490, 4.307909, 42.671188], [1.588793, 2.093173, 2.305401, 2.723607, 22.960595], [2.904684, 3.446171, 4.299090, 4.461066, 57.698593]] ### 6 mean: [0.927612, -0.366221, -0.253131, 0.863635, -0.045374, 0.763748] std: [0.270336, 0.161303, 0.094660, 0.222782, 0.026189, 0.214100] pca: [[0.599084, -0.299612, -0.047606, 0.242375, 0.639324, 0.285628, 0.000000, 0.000000, 0.000000, 0.000000], [-0.356913, 0.110524, 0.683379, -0.060244, 0.195006, 0.593072, 0.000000, 0.000000, 0.000000, 0.000000], [-0.209262, -0.026207, 0.348631, 0.754787, 0.144086, -0.493473, 0.000000, 0.000000, 0.000000, 0.000000], [0.492771, 0.661672, 0.088430, 0.341136, -0.377180, 0.230020, 0.000000, 0.000000, 0.000000, 0.000000], [0.049499, 0.607391, 0.082173, -0.374088, 0.565869, -0.402150, 0.000000, 0.000000, 0.000000, 0.000000], [0.473969, -0.300994, 0.628181, -0.334077, -0.264583, -0.329443, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[3.975528, 4.550876, 5.746510, 6.097059, 83.485116], [2.402877, 2.762119, 3.343026, 3.661527, 32.959848], [1.438333, 1.552211, 1.986092, 2.152654, 22.781750], [3.360814, 3.686069, 4.738931, 5.037673, 77.727180], [0.437042, 0.475859, 0.500069, 0.513407, 4.083618], [3.121936, 3.537030, 4.627130, 4.830351, 68.737281]] ### 8 mean: [-0.765267] std: [0.321693] pca: [[1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]] fourier: [[4.810401, 5.336595, 6.821332, 7.307498, 68.874034]] ## Task Analyze this model and identify which patterns it classifies as positive. Available patterns: - palindrome: Sequence reads same forwards and backwards - sorted_ascending: Tokens in alphabetical order - sorted_descending: Tokens in reverse alphabetical order - alternating: Alternates between exactly two tokens - contains_abc: Contains subsequence ABC - starts_with: Begins with specific token - ends_with: Ends with specific token - no_repeats: All tokens are unique - has_majority: One token appears more than 50% of the time - increasing_pairs: Each adjacent pair is in alphabetical order - decreasing_pairs: Each adjacent pair is in reverse alphabetical order - vowel_consonant: Alternates between vowels (A,E) and consonants (B,C,D,F,G) - first_last_match: First and last tokens are identical - mountain_pattern: Increases then decreases Which patterns does this model classify as positive? List them separated by commas. increasing_pairs
{"neuron_activations": {"0": {"neuron_profiles": {"0": {"mean": -1.6593083143234253, "std": 1.4892473220825195, "pca": [-0.5073254704475403, 0.23020805418491364, 0.3740893602371216, 0.4705510437488556, 0.21680550277233124, -0.5303389430046082, 0.0, 0.0, 0.0, 0.0], "fourier": [20.438047015087, 21.858590541086098, 23.1137272063872, 27.580998668675594, 149.33776021003723]}, "1": {"mean": -2.4196879863739014, "std": 1.7302627563476562, "pca": [-0.5307366251945496, -0.5072643160820007, 0.3282996714115143, -0.22021958231925964, 0.31576940417289734, 0.45278459787368774, 0.0, 0.0, 0.0, 0.0], "fourier": [25.28443778574615, 26.330218569675477, 30.46218704825652, 32.38547928999661, 217.77193073928356]}, "2": {"mean": 0.8391739726066589, "std": 1.1742161512374878, "pca": [-0.12323623150587082, 0.49163347482681274, -0.29962170124053955, -0.49624982476234436, 0.6351269483566284, -0.060712650418281555, 0.0, 0.0, 0.0, 0.0], "fourier": [17.64718401041535, 19.075984796166146, 19.198678019620434, 23.686197578674754, 75.52566055953503]}, "3": {"mean": 0.19735895097255707, "std": 1.382671594619751, "pca": [-0.15934115648269653, 0.6504834294319153, 0.19914403557777405, 0.19035011529922485, -0.22960180044174194, 0.6502870321273804, 0.0, 0.0, 0.0, 0.0], "fourier": [20.899991330489883, 21.01931700393998, 23.583377196775974, 26.637869866717008, 29.03978817349779]}, "4": {"mean": -0.03424839302897453, "std": 0.8934085369110107, "pca": [0.069310761988163, -0.15375685691833496, -0.5002246499061584, 0.6653845906257629, 0.4437037706375122, 0.28586798906326294, 0.0, 0.0, 0.0, 0.0], "fourier": [13.522584779066786, 13.852445487690641, 14.805342701325168, 16.64387033794093, 17.449273541692705]}, "5": {"mean": 2.5945889949798584, "std": 1.7612731456756592, "pca": [0.6446384787559509, 0.03484044596552849, 0.6104263067245483, 0.06965184956789017, 0.4475586712360382, 0.07380369305610657, 0.0, 0.0, 0.0, 0.0], "fourier": [26.312626873385767, 28.074186502044206, 30.65072042521698, 33.72330461119352, 233.5130139887333]}}, "layer_info": {"num_neurons": 6, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "2": {"neuron_profiles": {"0": {"mean": -0.9840363264083862, "std": 0.5726280808448792, "pca": [0.4203944504261017, -0.011596490629017353, 0.4962095022201538, -0.4175717532634735, -0.39135968685150146, -0.4993812143802643, 0.0, 0.0, 0.0, 0.0], "fourier": [9.490422539770892, 9.62305871548388, 9.94365672055592, 10.13500641316645, 88.56326599419117]}, "1": {"mean": -0.839929461479187, "std": 0.6148756742477417, "pca": [0.46165257692337036, 0.028941398486495018, 0.06126832962036133, 0.562775194644928, 0.5263300538063049, -0.4342191219329834, 0.0, 0.0, 0.0, 0.0], "fourier": [9.628796559454404, 10.192664764512328, 10.428546640029614, 11.283667124655958, 75.59365113824606]}, "2": {"mean": -0.07711266726255417, "std": 0.699236273765564, "pca": [-0.41281163692474365, 0.6234869956970215, 0.14064233005046844, 0.43628060817718506, -0.3883170783519745, -0.28273534774780273, 0.0, 0.0, 0.0, 0.0], "fourier": [9.528632726091532, 9.889402251075039, 11.885784815398184, 12.871587364351557, 14.512236606528177]}, "3": {"mean": -0.2514441907405853, "std": 0.4249005615711212, "pca": [-0.22955118119716644, 0.3605949878692627, 0.6030293107032776, -0.2908901572227478, 0.577588677406311, 0.1881684511899948, 0.0, 0.0, 0.0, 0.0], "fourier": [6.345467231454791, 6.6611731706125035, 6.947211050339227, 7.972589679969131, 22.629976883530617]}, "4": {"mean": -1.0586353540420532, "std": 0.5725895762443542, "pca": [0.4242720901966095, 0.03975444659590721, 0.3959837853908539, 0.38397055864334106, -0.2899095118045807, 0.6558420062065125, 0.0, 0.0, 0.0, 0.0], "fourier": [9.089126633093457, 9.65191687524105, 9.912411431606088, 10.010348582120665, 95.27717463672161]}, "5": {"mean": -0.9816647171974182, "std": 0.7790327668190002, "pca": [0.45500701665878296, 0.6918689608573914, -0.45803332328796387, -0.29415419697761536, 0.03698553144931793, 0.1288284808397293, 0.0, 0.0, 0.0, 0.0], "fourier": [10.408969834604184, 14.672835343069854, 16.51119546553879, 17.402080285430987, 88.34982153773308]}}, "layer_info": {"num_neurons": 6, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "4": {"neuron_profiles": {"0": {"mean": 0.6566688418388367, "std": 0.2537120580673218, "pca": [0.5875325798988342, 0.23583601415157318, 0.03967827185988426, -0.30028390884399414, 0.6745283007621765, -0.22902756929397583, 0.0, 0.0, 0.0, 0.0], "fourier": [3.7079222212084604, 4.1964878044123815, 5.383627011461784, 5.686624611540201, 59.10019361972809]}, "1": {"mean": -0.2666294276714325, "std": 0.1515495926141739, "pca": [-0.34753891825675964, 0.42539361119270325, 0.4407764673233032, -0.23592738807201385, 0.23580364882946014, 0.6266641616821289, 0.0, 0.0, 0.0, 0.0], "fourier": [2.0488673376585846, 2.7250148186282512, 3.15911292839167, 3.4397554844999867, 23.996647000312805]}, "2": {"mean": 0.06706952303647995, "std": 0.1042451560497284, "pca": [0.22565530240535736, 0.8050383925437927, -0.1641387939453125, -0.005982589442282915, -0.5104352235794067, -0.11606636643409729, 0.0, 0.0, 0.0, 0.0], "fourier": [1.6410361084979554, 1.6519216567472539, 1.9420186644134174, 2.1480046313340138, 6.03625762462616]}, "3": {"mean": 0.4741242825984955, "std": 0.1915777176618576, "pca": [0.44178617000579834, -0.21512016654014587, 0.778157651424408, -0.04890779033303261, -0.3870159089565277, -0.029080752283334732, 0.0, 0.0, 0.0, 0.0], "fourier": [2.876908671035198, 2.9698031319252913, 4.175490359477093, 4.307909170736309, 42.671188086271286]}, "4": {"mean": -0.2551177144050598, "std": 0.11534970253705978, "pca": [-0.26392093300819397, 0.26221075654029846, 0.38070520758628845, 0.6730437278747559, 0.26638221740722656, -0.43898457288742065, 0.0, 0.0, 0.0, 0.0], "fourier": [1.588792696464842, 2.093172974306662, 2.3054010200408572, 2.7236074971502906, 22.960594832897186]}, "5": {"mean": 0.6410954594612122, "std": 0.20183712244033813, "pca": [0.4671964943408966, -0.017426645383238792, -0.1635066717863083, 0.6314682960510254, 0.09012937545776367, 0.5897574424743652, 0.0, 0.0, 0.0, 0.0], "fourier": [2.9046843282367893, 3.4461707182888848, 4.299089901189796, 4.461066003393053, 57.69859251379967]}}, "layer_info": {"num_neurons": 6, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "6": {"neuron_profiles": {"0": {"mean": 0.9276124835014343, "std": 0.27033576369285583, "pca": [0.5990842580795288, -0.2996117174625397, -0.04760554060339928, 0.2423754334449768, 0.6393243074417114, 0.285627543926239, 0.0, 0.0, 0.0, 0.0], "fourier": [3.975528480319142, 4.550875732927228, 5.746509712445566, 6.097058888803413, 83.48511637747288]}, "1": {"mean": -0.3662205636501312, "std": 0.1613025665283203, "pca": [-0.3569132089614868, 0.11052410304546356, 0.6833786368370056, -0.06024375557899475, 0.19500572979450226, 0.5930720567703247, 0.0, 0.0, 0.0, 0.0], "fourier": [2.4028774122050263, 2.7621188708835716, 3.3430263172386967, 3.66152662265609, 32.9598480835557]}, "2": {"mean": -0.25313058495521545, "std": 0.09466023743152618, "pca": [-0.20926164090633392, -0.02620689943432808, 0.34863078594207764, 0.7547865509986877, 0.14408648014068604, -0.4934730529785156, 0.0, 0.0, 0.0, 0.0], "fourier": [1.438332985078841, 1.5522106857936728, 1.9860917966248925, 2.152654213483015, 22.781750451773405]}, "3": {"mean": 0.8636353611946106, "std": 0.2227822095155716, "pca": [0.49277132749557495, 0.66167151927948, 0.08842960000038147, 0.34113553166389465, -0.3771798610687256, 0.23002022504806519, 0.0, 0.0, 0.0, 0.0], "fourier": [3.3608144340267874, 3.6860687821268265, 4.738930778594499, 5.037673340011518, 77.72717972099781]}, "4": {"mean": -0.04537352919578552, "std": 0.026189357042312622, "pca": [0.04949929192662239, 0.6073907613754272, 0.08217324316501617, -0.37408754229545593, 0.5658689737319946, -0.4021500051021576, 0.0, 0.0, 0.0, 0.0], "fourier": [0.43704177549630496, 0.4758585676600793, 0.5000691714595814, 0.5134067015411705, 4.0836175084114075]}, "5": {"mean": 0.76374751329422, "std": 0.2140999287366867, "pca": [0.47396916151046753, -0.3009944558143616, 0.6281812787055969, -0.33407652378082275, -0.2645825147628784, -0.32944321632385254, 0.0, 0.0, 0.0, 0.0], "fourier": [3.1219358683733787, 3.537029679317844, 4.627129638264396, 4.830351215239119, 68.73728132247925]}}, "layer_info": {"num_neurons": 6, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}, "8": {"neuron_profiles": {"0": {"mean": -0.765267014503479, "std": 0.3216932415962219, "pca": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "fourier": [4.810400791050707, 5.336595152833522, 6.821331644050569, 7.307498424008466, 68.8740336149931]}}, "layer_info": {"num_neurons": 1, "num_examples": 90, "profile_methods": ["mean", "std", "pca", "fourier"]}}}, "model_config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 4, "neurons_per_layer": 6, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}}
{"config": {"vocab_size": 10, "sequence_length": 5, "num_layers": 4, "neurons_per_layer": 6, "activation_type": "gelu", "dropout_rate": 0.0, "precision": "float32", "input_size": 5, "input_format": "integer_indices"}, "weights": {"network.0.weight": [[0.162133, -0.334347, 0.141674, -0.502033, -0.251815], [-0.204555, -0.015017, -0.56346, -0.520731, -0.065801], [0.431153, 0.210158, 0.089488, -0.180073, -0.160631], [0.459123, -0.225418, 0.388749, -0.201323, -0.125623], [-0.290757, -0.021962, 0.22935, 0.195909, -0.285728], [-0.14448, -0.066295, 0.234841, 0.454059, 0.675649]], "network.0.bias": [-0.160605, 0.237072, 0.317011, -0.188624, -0.179202, 0.597629], "network.2.weight": [[0.081748, 0.313622, -0.157807, 0.317939, 0.061109, -0.311124], [-0.315466, -0.161834, 0.028191, 0.114249, 0.121906, -0.329925], [0.031337, 0.185826, -0.263719, -0.321228, -0.413465, 0.210075], [0.011343, -0.254065, -0.372481, 0.051355, -0.349624, 0.09595], [-0.133825, 0.269863, -0.081572, 0.201118, -0.022102, -0.313254], [0.108482, 0.016486, -0.129467, -0.198325, 0.351549, -0.403049]], "network.2.bias": [-0.236525, -0.128156, -0.121111, -0.139925, -0.296265, 0.182593], "network.4.weight": [[-0.538366, -0.252338, -0.560499, -0.034124, -0.404778, -0.454693], [0.107055, -0.035497, 0.194235, 0.399489, 0.196649, 0.565174], [-0.587456, -0.416795, -0.197796, 0.101244, -0.29369, -0.037438], [-0.411201, 0.094986, -0.380608, -0.238452, -0.193407, -0.186131], [-0.01513, -0.091569, 0.348473, -0.172985, 0.141447, 0.491656], [-0.365317, -0.182323, -0.198681, -0.595199, -0.540828, -0.416548]], "network.4.bias": [0.519454, -0.175531, -0.072661, 0.422234, -0.243111, 0.455743], "network.6.weight": [[0.333359, -0.498587, 0.290691, 0.241998, -0.535115, 0.645789], [-0.447419, 0.380347, -0.272083, 0.221987, 0.156256, -0.370891], [-0.374263, 0.17476, -0.256277, -0.042875, 0.120498, 0.07576], [0.616241, 0.114618, -0.161504, 0.185764, 0.160447, 0.611501], [0.118938, 0.363293, 0.029295, 0.238985, 0.30564, 0.014111], [0.325373, -0.346993, -0.002606, 0.511129, -0.658716, 0.193936]], "network.6.bias": [0.25125, 0.029623, -0.046558, 0.223415, -0.129607, 0.234977], "network.8.weight": [[-0.51718, 0.225859, 0.351603, -0.237137, -0.084317, -0.617914]], "network.8.bias": [0.239707]}}
{"training_history": [{"stage": "degraded", "epoch": 0, "global_epoch": 0, "train_loss": 0.7226835191249847, "train_acc": 0.425, "val_loss": 0.6928030252456665, "val_acc": 0.5}, {"stage": "degraded", "epoch": 1, "global_epoch": 1, "train_loss": 0.7003122270107269, "train_acc": 0.425, "val_loss": 0.6850212812423706, "val_acc": 0.88}, {"stage": "degraded", "epoch": 2, "global_epoch": 2, "train_loss": 0.6796875298023224, "train_acc": 0.695, "val_loss": 0.6788185834884644, "val_acc": 0.5}, {"stage": "degraded", "epoch": 3, "global_epoch": 3, "train_loss": 0.6636232137680054, "train_acc": 0.575, "val_loss": 0.6699777245521545, "val_acc": 0.5}, {"stage": "degraded", "epoch": 4, "global_epoch": 4, "train_loss": 0.6492370665073395, "train_acc": 0.575, "val_loss": 0.6446016430854797, "val_acc": 0.5}, {"stage": "improved", "epoch": 0, "global_epoch": 5, "train_loss": 0.6401517987251282, "train_acc": 0.5, "val_loss": 0.573093056678772, "val_acc": 0.8}, {"stage": "improved", "epoch": 1, "global_epoch": 6, "train_loss": 0.5793837904930115, "train_acc": 0.73, "val_loss": 0.5042678117752075, "val_acc": 0.9}, {"stage": "improved", "epoch": 2, "global_epoch": 7, "train_loss": 0.5186662077903748, "train_acc": 0.83, "val_loss": 0.4421137571334839, "val_acc": 0.88}, {"stage": "improved", "epoch": 3, "global_epoch": 8, "train_loss": 0.4732495844364166, "train_acc": 0.83, "val_loss": 0.40456122159957886, "val_acc": 0.88}, {"stage": "improved", "epoch": 4, "global_epoch": 9, "train_loss": 0.38975079357624054, "train_acc": 0.84, "val_loss": 0.40759193897247314, "val_acc": 0.84}, {"stage": "improved", "epoch": 5, "global_epoch": 10, "train_loss": 0.3808707594871521, "train_acc": 0.85, "val_loss": 0.3426106572151184, "val_acc": 0.88}, {"stage": "improved", "epoch": 6, "global_epoch": 11, "train_loss": 0.3310418128967285, "train_acc": 0.85, "val_loss": 0.32478126883506775, "val_acc": 0.86}, {"stage": "improved", "epoch": 7, "global_epoch": 12, "train_loss": 0.3246797025203705, "train_acc": 0.85, "val_loss": 0.35312873125076294, "val_acc": 0.88}, {"stage": "improved", "epoch": 8, "global_epoch": 13, "train_loss": 0.3315581828355789, "train_acc": 0.865, "val_loss": 0.42328938841819763, "val_acc": 0.84}, {"stage": "improved", "epoch": 9, "global_epoch": 14, "train_loss": 0.31551649421453476, "train_acc": 0.855, "val_loss": 0.3420759439468384, "val_acc": 0.86}], "summary": {"total_epochs": 15, "degraded_epochs": 5, "improved_epochs": 10, "patterns": ["increasing_pairs"], "degraded_stage": {"initial_val_loss": 0.6928030252456665, "final_val_loss": 0.6446016430854797, "initial_val_acc": 0.5, "final_val_acc": 0.5, "best_val_acc": 0.5}, "improved_stage": {"initial_val_loss": 0.573093056678772, "final_val_loss": 0.3420759439468384, "initial_val_acc": 0.8, "final_val_acc": 0.86, "best_val_acc": 0.9, "best_epoch": 6}, "improvement": 0.4, "first_improvement_epoch": 4}}
4
"{\"target_pattern\": \"starts_with\", \"degraded_accuracy\": 0.62, \"improved_accuracy\": 0.78, \"i(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
starts_with
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": 1.2275820970535278, \"std(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 4, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
5
"{\"target_pattern\": \"contains_abc\", \"degraded_accuracy\": 0.76, \"improved_accuracy\": 0.92, \"(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
contains_abc
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": -2.566450834274292, \"std(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 5, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
6
"{\"target_pattern\": \"increasing_pairs\", \"degraded_accuracy\": 0.64, \"improved_accuracy\": 0.88(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
increasing_pairs
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": 1.2173339128494263, \"std(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 4, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
7
"{\"target_pattern\": \"sorted_descending\", \"degraded_accuracy\": 0.56, \"improved_accuracy\": 0.9(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
sorted_descending
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": -2.0215752124786377, \"st(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 4, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
8
"{\"target_pattern\": \"has_majority\", \"degraded_accuracy\": 0.38, \"improved_accuracy\": 0.72, \"(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
has_majority
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": -0.4140007495880127, \"st(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 4, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
9
"{\"target_pattern\": \"decreasing_pairs\", \"degraded_accuracy\": 0.5, \"improved_accuracy\": 0.96,(...TRUNCATED)
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
decreasing_pairs
"## Model Architecture\nInput Size: 5 (integer indices for 5 sequence positions, vocab size 10)\nHid(...TRUNCATED)
"{\"neuron_activations\": {\"0\": {\"neuron_profiles\": {\"0\": {\"mean\": 0.5709457993507385, \"std(...TRUNCATED)
"{\"config\": {\"vocab_size\": 10, \"sequence_length\": 5, \"num_layers\": 5, \"neurons_per_layer\":(...TRUNCATED)
"{\"training_history\": [{\"stage\": \"degraded\", \"epoch\": 0, \"global_epoch\": 0, \"train_loss\"(...TRUNCATED)
End of preview. Expand in Data Studio

Subject Models for Interpretability Training

These examples are intended for training an interpreter to:

  • Identify what patterns a model classifies as positive based on an activation signature, with examples of: trained model + signature → pattern identification.
Signature Extraction
Neuron Profile Methods mean, std, pca, fourier
Prompt Format separate
Signature Dataset dataset_generation/exp_1/signature_dataset.json
Model Architecture
Number of Layers 4 to 6
Neurons per Layer 5 to 8
Activation Types relu, gelu
Pattern Vocab Size 10
Pattern Sequence Len 5
Training Datasets
Enabled Patterns palindrome, sorted_ascending, sorted_descending, alternating, contains_abc, starts_with, ends_with, no_repeats, has_majority, increasing_pairs, decreasing_pairs, vowel_consonant, first_last_match, mountain_pattern
Patterns per Batch 1-1
Pos/Neg Ratio 1:1
Target Total Examples per Subject Model 250
Staged Training
Min Improvement Threshold 0.05 (5.0%)
Corruption Rate 0.15 (15.0%)

Dataset Fields

Field Description
example_id Unique identifier for each example
metadata JSON string containing:
- target_pattern: The pattern that was corrupted during training
- degraded_accuracy: Accuracy of the model trained on corrupted data
- improved_accuracy: Accuracy of the model after training on clean data
- improvement: Delta between degraded and improved accuracy
- model_config: Subject model architecture and hyperparameters
- corruption_stats: Details about label corruption
- selected_patterns: All patterns in the subject model's training dataset
- precision: Model weight precision
- quantization: Quantization type applied to weights
- config_signature: Hash of critical config fields for validation
classification_prompt Input prompt with improved model weights and signature
classification_completion Target completion identifying the pattern
classification_text Full concatenated text (prompt + completion)
Downloads last month
7

Models trained or fine-tuned on maximuspowers/muat-mean-std-pca-10-fourier-5

Collection including maximuspowers/muat-mean-std-pca-10-fourier-5