--- license: cc-by-4.0 annotations_creators: - NIST task_categories: - text-retrieval - text-ranking language: - en - zh - fa - ru multilinguality: - multilingual pretty_name: NeuCLIRBench size_categories: - n<1K task_ids: - document-retrieval configs: - config_name: queries default: true data_files: - split: eng path: data/news.eng.tsv - split: fas path: data/news.fas.tsv - split: rus path: data/news.rus.tsv - split: zho path: data/news.zho.tsv format: csv sep: "\t" header: null names: ["id", "query"] dataset_info: features: - name: id dtype: string - name: query dtype: string - config_name: qrels default: false data_files: - split: mlir path: data/qrels.mlir.gains.txt - split: fas path: data/qrels.fas.gains.txt - split: rus path: data/qrels.rus.gains.txt - split: zho path: data/qrels.zho.gains.txt format: csv sep: " " header: null names: ["id", "ignore", "docid", "relevance"] dataset_info: features: - name: id dtype: string - name: ignore dtype: string - name: docid dtype: string - name: relevance dtype: int --- # NeuCLIRBench Topics and Queries NeuCLIRBench is an evaluation benchmark for monolingual, cross-language, and multilingual adhoc retrieval. The document collection can be found at [neuclir/neuclir1](https://huggingface.co/datasets/neuclir/neuclir1). ## Supporting Tasks and Corresponding Data NeuCLIRBench supports three types of tasks: monolingual, cross-language, and multilingual adhoc retrieval. The following specifies the documents, queries, and qrels (labels) that should be used for each task. Please report nDCG@20 for all tasks. *We use `:` to indicate different subset under the dataset.* ### Monolingual Retrieval (`mono`) | Language | Documents | Queries | Qrels | | --- | --- | --- | --- | | English | All splits under `neuclir/neuclir1:mt_docs` | `eng` split of `neuclir/bench:queries` | `mlir` split of `neuclir/bench:qrels` | | Persian | `fas` split of `neuclir/neuclir1:default` | `fas` split of `neuclir/bench:queries` | `fas` split of `neuclir/bench:qrels` | | Russian | `rus` split of `neuclir/neuclir1:default` | `rus` split of `neuclir/bench:queries` | `rus` split of `neuclir/bench:qrels` | | Chinese | `zho` split of `neuclir/neuclir1:default` | `zho` split of `neuclir/bench:queries` | `zho` split of `neuclir/bench:qrels` | ### Cross-Language Retrieval (`clir`) | Language | Documents | Queries | Qrels | | --- | --- | --- | --- | | Persian | `fas` split of `neuclir/neuclir1:default` | `eng` split of `neuclir/bench:queries` | `fas` split of `neuclir/bench:qrels` | | Russian | `rus` split of `neuclir/neuclir1:default` | `eng` split of `neuclir/bench:queries` | `rus` split of `neuclir/bench:qrels` | | Chinese | `zho` split of `neuclir/neuclir1:default` | `eng` split of `neuclir/bench:queries` | `zho` split of `neuclir/bench:qrels` | ### Multilingual Retrieval (`mlir`) | Language | Documents | Queries | Qrels | | --- | --- | --- | --- | | English | All splits under `neuclir/neuclir1:default` | `eng` split of `neuclir/bench:queries` | `mlir` split of `neuclir/bench:qrels` | ## Baseline Retrieval Results and Run Files We also provide all reported baseline retrieval results in the NeuCLIRBench paper. Please refer to the paper for the detailed descriptions of each model. ![Monolingual Results](https://cdn-uploads.huggingface.co/production/uploads/63a0c07a3c8841cfe2cd1e70/EdfQAcTgwsC4P4lk5lQTh.png) ![Cross-Language and Multilngual Results](https://cdn-uploads.huggingface.co/production/uploads/63a0c07a3c8841cfe2cd1e70/CCs5PCzBgiPsjZsfG1iM6.png) ### Run Names Please refer to the `./runs` directory in this dataset to find all the runs. Files follow the naming scheme of `{run_handle}_{task:mono/clir/mlir}_{lang}.trec`. Please refer to the task section for the details. | Run Handle | Model Type | Model Name | |:------------------|:-------------------|:----------------------| | bm25 | Lexical | BM25 | | bm25dt | Lexical | BM25 w/ DT | | bm25qt | Lexical | BM25 w/ QT | | milco | Bi-Encoder | MILCO | | plaidx | Bi-Encoder | PLAID-X | | qwen8b | Bi-Encoder | Qwen3 8B Embed | | qwen4b | Bi-Encoder | Qwen3 4B Embed | | qwen600m | Bi-Encoder | Qwen3 0.6B Embed | | arctic | Bi-Encoder | Arctic-Embed Large v2 | | splade | Bi-Encoder | SPLADEv3 | | fusion3 | Bi-Encoder | Fusion | | repllama | Bi-Encoder | RepLlama | | me5large | Bi-Encoder | e5 Large | | jinav3 | Bi-Encoder | JinaV3 | | bgem3sparse | Bi-Encoder | BGE-M3 Sparse | | mt5 | Pointwise Reranker | Mono-mT5XXL | | qwen3-0.6b-rerank | Pointwise Reranker | Qwen3 0.6B Rerank | | qwen3-4b-rerank | Pointwise Reranker | Qwen3 4B Rerank | | qwen3-8b-rerank | Pointwise Reranker | Qwen3 8B Rerank | | jina-rerank | Pointwise Reranker | Jina Reranker | | searcher-rerank | Pointwise Reranker | SEARCHER Reranker | | rank1 | Pointwise Reranker | Rank1 | | qwq | Listwise Reranker | Rank-K (QwQ) | | rankzephyr | Listwise Reranker | RankZephyr 7B | | firstqwen | Listwise Reranker | FIRST Qwen3 8B | | rq32b | Listwise Reranker | RankQwen-32B | ## Citation ```bibtex @article{neuclirbench, title={NeuCLIRBench: A Modern Evaluation Collection for Monolingual, Cross-Language, and Multilingual Information Retrieval}, author={Dawn Lawrie and James Mayfield and Eugene Yang and Andrew Yates and Sean MacAvaney and Ronak Pradeep and Scott Miller and Paul McNamee and Luca Soldani}, year={2025}, eprint={2511.14758}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2511.14758}, } ```