sjshailab
commited on
Commit
·
eabce52
1
Parent(s):
aef3350
github link
Browse files- README.md +1 -3
- README_ZH.md +1 -3
README.md
CHANGED
|
@@ -14,9 +14,7 @@ configs:
|
|
| 14 |
|
| 15 |
[English](README.md) | [中文](README_ZH.md)
|
| 16 |
|
| 17 |
-
🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) |
|
| 18 |
-
|
| 19 |
-
**Acknowledgements**: 🔍 [Dingo](https://github.com/MigoXLab/dingo)
|
| 20 |
|
| 21 |
ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Vision Language Models (VLMs) or other information extraction systems.
|
| 22 |
|
|
|
|
| 14 |
|
| 15 |
[English](README.md) | [中文](README_ZH.md)
|
| 16 |
|
| 17 |
+
🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 🔍 [Dingo](https://github.com/MigoXLab/dingo)
|
|
|
|
|
|
|
| 18 |
|
| 19 |
ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Vision Language Models (VLMs) or other information extraction systems.
|
| 20 |
|
README_ZH.md
CHANGED
|
@@ -2,9 +2,7 @@
|
|
| 2 |
|
| 3 |
[English](README.md) | [中文](README_ZH.md)
|
| 4 |
|
| 5 |
-
🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) |
|
| 6 |
-
|
| 7 |
-
**致谢**: 🔍 [Dingo](https://github.com/MigoXLab/dingo)
|
| 8 |
|
| 9 |
ScienceMetaBench 是一个用于评估从 PDF 文件中提取科学文献元数据准确性的基准测试数据集。该数据集涵盖学术论文、教材和电子书三大类别,可用于评估视觉模型(VLM)或其他信息提取系统的性能。
|
| 10 |
|
|
|
|
| 2 |
|
| 3 |
[English](README.md) | [中文](README_ZH.md)
|
| 4 |
|
| 5 |
+
🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 🔍 [Dingo](https://github.com/MigoXLab/dingo)
|
|
|
|
|
|
|
| 6 |
|
| 7 |
ScienceMetaBench 是一个用于评估从 PDF 文件中提取科学文献元数据准确性的基准测试数据集。该数据集涵盖学术论文、教材和电子书三大类别,可用于评估视觉模型(VLM)或其他信息提取系统的性能。
|
| 8 |
|