sjshailab commited on
Commit
eabce52
·
1 Parent(s): aef3350

github link

Browse files
Files changed (2) hide show
  1. README.md +1 -3
  2. README_ZH.md +1 -3
README.md CHANGED
@@ -14,9 +14,7 @@ configs:
14
 
15
  [English](README.md) | [中文](README_ZH.md)
16
 
17
- 🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 💻 [GitHub Repository](https://github.com/DataEval/ScienceMetaBench)
18
-
19
- **Acknowledgements**: 🔍 [Dingo](https://github.com/MigoXLab/dingo)
20
 
21
  ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Vision Language Models (VLMs) or other information extraction systems.
22
 
 
14
 
15
  [English](README.md) | [中文](README_ZH.md)
16
 
17
+ 🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 🔍 [Dingo](https://github.com/MigoXLab/dingo)
 
 
18
 
19
  ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Vision Language Models (VLMs) or other information extraction systems.
20
 
README_ZH.md CHANGED
@@ -2,9 +2,7 @@
2
 
3
  [English](README.md) | [中文](README_ZH.md)
4
 
5
- 🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 💻 [GitHub Repository](https://github.com/DataEval/ScienceMetaBench)
6
-
7
- **致谢**: 🔍 [Dingo](https://github.com/MigoXLab/dingo)
8
 
9
  ScienceMetaBench 是一个用于评估从 PDF 文件中提取科学文献元数据准确性的基准测试数据集。该数据集涵盖学术论文、教材和电子书三大类别,可用于评估视觉模型(VLM)或其他信息提取系统的性能。
10
 
 
2
 
3
  [English](README.md) | [中文](README_ZH.md)
4
 
5
+ 🤗 [HuggingFace Dataset](https://huggingface.co/datasets/opendatalab/ScienceMetaBench) | 🔍 [Dingo](https://github.com/MigoXLab/dingo)
 
 
6
 
7
  ScienceMetaBench 是一个用于评估从 PDF 文件中提取科学文献元数据准确性的基准测试数据集。该数据集涵盖学术论文、教材和电子书三大类别,可用于评估视觉模型(VLM)或其他信息提取系统的性能。
8