Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,190 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# Visual Dexterity
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
This is the codebase for [Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes](https://arxiv.org/abs/2211.11744), accepted by Science Robotics. While we provide the code that uses the D'Claw robot hand, it can be easily adapted to other robot hands.
|
| 10 |
+
|
| 11 |
+
### [[Project Page]](https://taochenshh.github.io/projects/visual-dexterity), [[Science Robotics]](https://www.science.org/doi/10.1126/scirobotics.adc9244), [[arXiv]](https://arxiv.org/abs/2211.11744), [[Github]](https://github.com/Improbable-AI/dexenv)
|
| 12 |
+
|
| 13 |
+
[](https://doi.org/10.5281/zenodo.10039109)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## :books: Citation
|
| 17 |
+
|
| 18 |
+
```
|
| 19 |
+
@article{chen2023visual,
|
| 20 |
+
author = {Tao Chen and Megha Tippur and Siyang Wu and Vikash Kumar and Edward Adelson and Pulkit Agrawal },
|
| 21 |
+
title = {Visual dexterity: In-hand reorientation of novel and complex object shapes},
|
| 22 |
+
journal = {Science Robotics},
|
| 23 |
+
volume = {8},
|
| 24 |
+
number = {84},
|
| 25 |
+
pages = {eadc9244},
|
| 26 |
+
year = {2023},
|
| 27 |
+
doi = {10.1126/scirobotics.adc9244},
|
| 28 |
+
URL = {https://www.science.org/doi/abs/10.1126/scirobotics.adc9244},
|
| 29 |
+
eprint = {https://www.science.org/doi/pdf/10.1126/scirobotics.adc9244},
|
| 30 |
+
}
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
```
|
| 34 |
+
@article{chen2021system,
|
| 35 |
+
title={A System for General In-Hand Object Re-Orientation},
|
| 36 |
+
author={Chen, Tao and Xu, Jie and Agrawal, Pulkit},
|
| 37 |
+
journal={Conference on Robot Learning},
|
| 38 |
+
year={2021}
|
| 39 |
+
}
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
## :gear: Installation
|
| 43 |
+
|
| 44 |
+
#### Dependencies
|
| 45 |
+
* [PyTorch](https://pytorch.org/)
|
| 46 |
+
* [PyTorch3D](https://pytorch3d.org/)
|
| 47 |
+
* [Isaac Gym](https://developer.nvidia.com/isaac-gym) (results in the paper are trained with Preview 3.)
|
| 48 |
+
* [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs)
|
| 49 |
+
* [Minkowski Engine](https://github.com/NVIDIA/MinkowskiEngine)
|
| 50 |
+
* [Wandb](https://wandb.ai/site)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#### Download packages
|
| 54 |
+
You can either use a virtual python environment or a docker for training. Below we show the process to set up the docker image. If you prefer using a virtual python environment, you can just install the dependencies in the virtual environment.
|
| 55 |
+
|
| 56 |
+
Here is how the directory looks like:
|
| 57 |
+
```
|
| 58 |
+
-- Root
|
| 59 |
+
---- dexenv
|
| 60 |
+
---- IsaacGymEnvs
|
| 61 |
+
---- isaacgym
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
# download packages
|
| 66 |
+
git clone [email protected]:Improbable-AI/dexenv.git
|
| 67 |
+
git clone https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.git
|
| 68 |
+
|
| 69 |
+
# download IsaacGym from:
|
| 70 |
+
# (https://developer.nvidia.com/isaac-gym)
|
| 71 |
+
# unzip it in the current directory
|
| 72 |
+
|
| 73 |
+
# remove the package dependencies in the setup.py in isaacgym/python and IsaacGymEnvs/
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
#### Download the assets
|
| 77 |
+
|
| 78 |
+
Download the robot and object assets from [here](https://huggingface.co/datasets/taochenshh/dexenv/blob/main/assets.zip), and unzip it to `dexenv/dexenv/`.
|
| 79 |
+
|
| 80 |
+
#### Download the pretrained models
|
| 81 |
+
|
| 82 |
+
Download the pretrained checkpoints from [here](https://huggingface.co/datasets/taochenshh/dexenv/blob/main/pretrained.zip), and unzip it to `dexenv/dexenv/`.
|
| 83 |
+
|
| 84 |
+
#### Prepare the docker image
|
| 85 |
+
1. You can download a pre-built docker image:
|
| 86 |
+
```
|
| 87 |
+
docker pull improbableailab/dexenv:latest
|
| 88 |
+
```
|
| 89 |
+
2. Or you can build the docker image locally:
|
| 90 |
+
```
|
| 91 |
+
cd dexenv/docker
|
| 92 |
+
python docker_build.py -f Dockerfile
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
#### Launch the docker image
|
| 96 |
+
|
| 97 |
+
To run the docker image, you would need to have the nvidia-docker installed. Follow the instructions [here](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
| 98 |
+
```bash
|
| 99 |
+
# launch docker
|
| 100 |
+
./run_image.sh # you would need to have wandb installed in the python environment
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
In another terminal
|
| 104 |
+
```bash
|
| 105 |
+
./visualize_access.sh
|
| 106 |
+
# after this, you can close it, just need to run this once after every machine reboot
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
## :scroll: Usage
|
| 111 |
+
|
| 112 |
+
#### :bulb: Training Teacher
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
# if you are running in the docker, you might need to run the following line
|
| 116 |
+
git config --global --add safe.directory /workspace/dexenv
|
| 117 |
+
|
| 118 |
+
# debug teacher (run debug first to make sure everything runs)
|
| 119 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
| 120 |
+
python mlp.py -cn=debug_dclaw # show the GUI
|
| 121 |
+
python mlp.py task.headless=True -cn=debug_dclaw # in headless mode
|
| 122 |
+
|
| 123 |
+
# if you wanna just train the hand to reorient a cube, add `task.env.name=DClawBase`
|
| 124 |
+
python mlp.py task.env.name=DClawBase -cn=debug_dclaw
|
| 125 |
+
|
| 126 |
+
# training teacher
|
| 127 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
| 128 |
+
python mlp.py -cn=dclaw
|
| 129 |
+
python mlp.py task.task.randomize=False -cn=dclaw # turn off domain randomization
|
| 130 |
+
python mlp.py task.env.name=DClawBase task.task.randomize=False -cn=dclaw # reorient a cube without domain randomization
|
| 131 |
+
|
| 132 |
+
# if you wanna change the number of objects or the number of environments
|
| 133 |
+
python mlp.py alg.num_envs=4000 task.obj.num_objs=10 -cn=dclaw
|
| 134 |
+
|
| 135 |
+
# testing teacher
|
| 136 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
| 137 |
+
python mlp.py alg.num_envs=20 resume_id=<wandb exp ID> -cn=test_dclaw
|
| 138 |
+
# e.g. python mlp.py alg.num_envs=20 resume_id=dexenv/1d1tvd0b -cn=test_dclaw
|
| 139 |
+
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
#### :high_brightness: Training Student with Synthetic Point Cloud (student stage 1)
|
| 143 |
+
|
| 144 |
+
```
|
| 145 |
+
# debug student
|
| 146 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 147 |
+
python rnn.py -cn=debug_dclaw_fptd
|
| 148 |
+
# by default, the command above used the pretrained teacher model you downloaded above,
|
| 149 |
+
#if you wanna use another teacher model, add `alg.expert_path=<path>`
|
| 150 |
+
python rnn.py alg.expert_path=<path to teacher model> -cn=debug_dclaw_fptd
|
| 151 |
+
|
| 152 |
+
# training student
|
| 153 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 154 |
+
python rnn.py -cn=dclaw_fptd
|
| 155 |
+
|
| 156 |
+
# testing student
|
| 157 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 158 |
+
python rnn.py resume_id=<wandb exp ID> -cn=test_dclaw_fptd
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
#### :tada: Training Student with rendered Point Cloud (student stage 2)
|
| 162 |
+
|
| 163 |
+
```
|
| 164 |
+
# debug student
|
| 165 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 166 |
+
python rnn.py -cn=debug_dclaw_rptd
|
| 167 |
+
|
| 168 |
+
# training student
|
| 169 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 170 |
+
python rnn.py -cn=dclaw_rptd
|
| 171 |
+
|
| 172 |
+
# testing student
|
| 173 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 174 |
+
python rnn.py resume_id=<wandb exp ID> -cn=test_dclaw_rptd
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
## :rocket: Pre-trained models
|
| 178 |
+
|
| 179 |
+
We provide the pre-trained models for both the teacher and the student (stage 2) in `dexenv/expert/artifacts`. The models were trained using Isaac Gym preview 3.
|
| 180 |
+
|
| 181 |
+
```
|
| 182 |
+
# to see the teacher pretrained model
|
| 183 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
| 184 |
+
python demo.py
|
| 185 |
+
|
| 186 |
+
# to see the student pretrained model
|
| 187 |
+
cd /workspace/dexenv/dexenv/train/student
|
| 188 |
+
python rnn.py alg.num_envs=20 task.obj.num_objs=10 alg.pretrain_model=/workspace/dexenv/dexenv/pretrained/artifacts/student/train-model.pt test_pretrain=True test_num=3 -cn=debug_dclaw_rptd
|
| 189 |
+
```
|
| 190 |
+
|