--- license: apache-2.0 dataset_info: features: - name: image dtype: image - name: image_name dtype: string splits: - name: small num_bytes: 694935 num_examples: 50 - name: large num_bytes: 4651568.0 num_examples: 300 download_size: 10233742 dataset_size: 5346503.0 configs: - config_name: default data_files: - split: large path: data/large-* - split: small path: data/small-* task_categories: - image-text-to-text --- # RotBench Data for _RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation_. [**arXiv**](https://arxiv.org/abs/2508.13968) | [**GitHub**](https://github.com/tianyiniu/RotBench) ### Dataset Summary **RotBench** is a benchmark for evaluating whether multimodal large language models (MLLMs) can identify image orientation. It contains 350 manually filtered images. The dataset includes two subsets: - **Large**: 300 images - **Small**: 50 images All images were drawn from the [Spatial-MM](https://github.com/FatemehShiri/Spatial-MM) dataset and passed a two-stage human verification process to ensure rotations are distinguishable. ### Dataset Download ```python from datasets import load_dataset dataset = load_dataset("tianyin/RotBench") data = dataset['large'] # or dataset['small'] for i, sample in enumerate(data): image = sample['image'] # PIL Image object image_name = sample['image_name'] ``` # Citation If you find our data useful in your research, please cite the following paper: ```bibtex @misc{niu2025rotbenchevaluatingmultimodallarge, title={RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation}, author={Tianyi Niu and Jaemin Cho and Elias Stengel-Eskin and Mohit Bansal}, year={2025}, eprint={2508.13968}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.13968}, } ```