Deepak Singh Rawat
commited on
Commit
·
47962d5
1
Parent(s):
a8567af
Add model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- image-captioning
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Poster2Plot
|
| 10 |
+
|
| 11 |
+
An image captioning model to generate movie/t.v show plot from poster. It generates decent plots but is no way perfect. We are still working on improving the model.
|
| 12 |
+
|
| 13 |
+
# Model Details
|
| 14 |
+
|
| 15 |
+
The base model uses a Vision Transformer (ViT) model as an image encoder and GPT-2 as a decoder.
|
| 16 |
+
|
| 17 |
+
We used the following models:
|
| 18 |
+
|
| 19 |
+
* Encoder: [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
|
| 20 |
+
* Decoder: [gpt2](https://huggingface.co/gpt2)
|
| 21 |
+
|
| 22 |
+
# Datasets
|
| 23 |
+
|
| 24 |
+
Publicly available IMDb datasets were used to train the model.
|
| 25 |
+
|
| 26 |
+
# How to use
|
| 27 |
+
|
| 28 |
+
## In PyTorch
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
import re
|
| 33 |
+
import requests
|
| 34 |
+
from PIL import Image
|
| 35 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel
|
| 36 |
+
|
| 37 |
+
# Pattern to ignore all the text after 2 or more full stops
|
| 38 |
+
regex_pattern = "[.]{2,}"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def post_process(text):
|
| 42 |
+
try:
|
| 43 |
+
text = text.strip()
|
| 44 |
+
text = re.split(regex_pattern, text)[0]
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(e)
|
| 47 |
+
pass
|
| 48 |
+
return text
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def predict(image, max_length=64, num_beams=4):
|
| 52 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
| 53 |
+
pixel_values = pixel_values.to(device)
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
output_ids = model.generate(
|
| 57 |
+
pixel_values,
|
| 58 |
+
max_length=max_length,
|
| 59 |
+
num_beams=num_beams,
|
| 60 |
+
return_dict_in_generate=True,
|
| 61 |
+
).sequences
|
| 62 |
+
|
| 63 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 64 |
+
pred = post_process(preds[0])
|
| 65 |
+
|
| 66 |
+
return pred
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
model_name_or_path = "deepklarity/poster2plot"
|
| 70 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 71 |
+
|
| 72 |
+
# Load model.
|
| 73 |
+
|
| 74 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name_or_path)
|
| 75 |
+
model.to(device)
|
| 76 |
+
print("Loaded model")
|
| 77 |
+
|
| 78 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model.encoder.name_or_path)
|
| 79 |
+
print("Loaded feature_extractor")
|
| 80 |
+
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(model.decoder.name_or_path, use_fast=True)
|
| 82 |
+
if model.decoder.name_or_path == "gpt2":
|
| 83 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 84 |
+
|
| 85 |
+
print("Loaded tokenizer")
|
| 86 |
+
|
| 87 |
+
url = "https://upload.wikimedia.org/wikipedia/en/2/26/Moana_Teaser_Poster.jpg"
|
| 88 |
+
with Image.open(requests.get(url, stream=True).raw) as image:
|
| 89 |
+
pred = predict(image)
|
| 90 |
+
|
| 91 |
+
print(pred)
|
| 92 |
+
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|