--- language: - en tags: - unsloth - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:106628 - loss:MultipleNegativesRankingLoss base_model: Alibaba-NLP/gte-modernbert-base widget: - source_sentence: ace-v sentences: - The floor plan was drafted at 1/4 inch scale where each quarter inch equals one foot. - Fingerprint examiners follow the ACE-V methodology for identification. - Most modern streaming services offer content in 1080p full HD quality. - source_sentence: adult learner sentences: - The adult learner brings valuable life experience to the classroom. - Accounts payable represents money owed to suppliers and vendors. - The inspection confirmed all above grade work met code requirements. - source_sentence: 1/4 inch scale sentences: - Precise adjustments require accurate action gauge readings. - The quality inspector identified adhesion failure in the sample. - The architect created drawings at 1/4 inch scale for the client presentation. - source_sentence: acrylic paint sentences: - Artists prefer acrylic paint for its fast drying time. - The company reported strong adjusted EBITDA growth this quarter. - The clinic specializes in adolescent health services. - source_sentence: adult learning sentences: - Solar developers calculate AEP, or annual energy production. - The course was designed using adult learning best practices. - The wizard cast Abi-Dalzim's horrid wilting, draining moisture from enemies. datasets: - electroglyph/technical pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This model was finetuned with [Unsloth](https://github.com/unslothai/unsloth). [](https://github.com/unslothai/unsloth) based on Alibaba-NLP/gte-modernbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [technical](https://huggingface.co/datasets/electroglyph/technical) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [technical](https://huggingface.co/datasets/electroglyph/technical) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'PeftModelForFeatureExtraction'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'adult learning', 'The course was designed using adult learning best practices.', 'Solar developers calculate AEP, or annual energy production.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.7228, 0.1468], # [0.7228, 1.0000, 0.1683], # [0.1468, 0.1683, 1.0000]]) ``` ## Training Details ### Training Dataset #### technical * Dataset: [technical](https://huggingface.co/datasets/electroglyph/technical) at [05eeb90](https://huggingface.co/datasets/electroglyph/technical/tree/05eeb90e13d6bca725a5888f1ba206b2878f9c97) * Size: 106,628 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:----------------------------------------------------------------------------------------------------| | .308 | The .308 Winchester is a popular rifle cartridge used for hunting and target shooting. | | .308 | Many precision rifles are chambered in .308 for its excellent long-range accuracy. | | .308 | The sniper selected a .308 caliber round for the mission. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 333 - `learning_rate`: 3e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: constant_with_warmup - `warmup_steps`: 100 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 333 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: constant_with_warmup - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.1558 | 50 | 3.4086 | | 0.3115 | 100 | 3.3329 | | 0.4673 | 150 | 3.2148 | | 0.6231 | 200 | 2.9797 | | 0.7788 | 250 | 2.7541 | | 0.9346 | 300 | 2.5277 | | 1.0903 | 350 | 2.3069 | | 1.2461 | 400 | 2.1593 | | 1.4019 | 450 | 2.0781 | | 1.5576 | 500 | 1.9385 | | 1.7134 | 550 | 1.9052 | | 1.8692 | 600 | 1.8768 | | 2.0249 | 650 | 1.8272 | | 2.1807 | 700 | 1.7906 | | 2.3364 | 750 | 1.7607 | | 2.4922 | 800 | 1.7375 | | 2.6480 | 850 | 1.6952 | | 2.8037 | 900 | 1.6664 | | 2.9595 | 950 | 1.6216 | | 3.1153 | 1000 | 1.5601 | | 3.2710 | 1050 | 1.571 | | 3.4268 | 1100 | 1.5735 | | 3.5826 | 1150 | 1.5455 | | 3.7383 | 1200 | 1.5577 | | 3.8941 | 1250 | 1.5426 | | 4.0498 | 1300 | 1.5276 | | 4.2056 | 1350 | 1.5178 | | 4.3614 | 1400 | 1.4611 | | 4.5171 | 1450 | 1.4822 | | 4.6729 | 1500 | 1.4987 | | 4.8287 | 1550 | 1.4507 | | 4.9844 | 1600 | 1.4501 | ### Framework Versions - Python: 3.12.12 - Sentence Transformers: 5.2.0 - Transformers: 4.57.3 - PyTorch: 2.9.0+cu126 - Accelerate: 1.12.0 - Datasets: 4.3.0 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```