Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,92 +1,153 @@
|
|
| 1 |
---
|
| 2 |
-
base_model:
|
|
|
|
|
|
|
| 3 |
library_name: model2vec
|
| 4 |
license: mit
|
| 5 |
-
model_name:
|
| 6 |
tags:
|
| 7 |
-
- embeddings
|
| 8 |
- static-embeddings
|
| 9 |
-
-
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
#
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the unknown(https://huggingface.co/unknown) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
|
| 15 |
|
| 16 |
|
| 17 |
## Installation
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
pip install model2vec
|
| 22 |
```
|
| 23 |
|
| 24 |
## Usage
|
| 25 |
|
| 26 |
-
### Using Model2Vec
|
| 27 |
-
|
| 28 |
-
The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
|
| 29 |
-
|
| 30 |
-
Load this model using the `from_pretrained` method:
|
| 31 |
```python
|
| 32 |
-
from model2vec import
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
# Compute text embeddings
|
| 38 |
-
embeddings = model.encode(["Example sentence"])
|
| 39 |
-
```
|
| 40 |
-
|
| 41 |
-
### Using Sentence Transformers
|
| 42 |
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
# Load a pretrained Sentence Transformer model
|
| 49 |
-
model = SentenceTransformer("tmpxq_z2x0o")
|
| 50 |
-
|
| 51 |
-
# Compute text embeddings
|
| 52 |
-
embeddings = model.encode(["Example sentence"])
|
| 53 |
```
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
# Save the model
|
| 66 |
-
m2v_model.save_pretrained("m2v_model")
|
| 67 |
-
```
|
| 68 |
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
|
| 74 |
|
| 75 |
-
##
|
| 76 |
|
| 77 |
-
-
|
| 78 |
-
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
|
| 79 |
-
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
|
| 80 |
-
- [Model2Vec Docs](https://minish.ai/packages/model2vec/introduction)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
##
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
## Citation
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
```
|
| 91 |
@software{minishlab2024model2vec,
|
| 92 |
author = {Stephan Tulkens and {van Dongen}, Thomas},
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: minishlab/potion-base-4m
|
| 3 |
+
datasets:
|
| 4 |
+
- lmsys/toxic-chat
|
| 5 |
library_name: model2vec
|
| 6 |
license: mit
|
| 7 |
+
model_name: enguard/tiny-guard-4m-en-prompt-toxicity-toxic-chat
|
| 8 |
tags:
|
|
|
|
| 9 |
- static-embeddings
|
| 10 |
+
- text-classification
|
| 11 |
+
- model2vec
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# enguard/tiny-guard-4m-en-prompt-toxicity-toxic-chat
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned Model2Vec classifier based on [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) for the prompt-toxicity found in the [lmsys/toxic-chat](https://huggingface.co/datasets/lmsys/toxic-chat) dataset.
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
## Installation
|
| 21 |
|
| 22 |
+
```bash
|
| 23 |
+
pip install model2vec[inference]
|
|
|
|
| 24 |
```
|
| 25 |
|
| 26 |
## Usage
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
```python
|
| 29 |
+
from model2vec.inference import StaticModelPipeline
|
| 30 |
|
| 31 |
+
model = StaticModelPipeline.from_pretrained(
|
| 32 |
+
"enguard/tiny-guard-4m-en-prompt-toxicity-toxic-chat"
|
| 33 |
+
)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Supports single texts. Format input as a single text:
|
| 37 |
+
text = "Example sentence"
|
| 38 |
|
| 39 |
+
model.predict([text])
|
| 40 |
+
model.predict_proba([text])
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
```
|
| 43 |
|
| 44 |
+
## Why should you use these models?
|
| 45 |
+
|
| 46 |
+
- Optimized for precision to reduce false positives.
|
| 47 |
+
- Extremely fast inference: up to x500 faster than SetFit.
|
| 48 |
+
|
| 49 |
+
## This model variant
|
| 50 |
+
|
| 51 |
+
Below is a quick overview of the model variant and core metrics.
|
| 52 |
+
|
| 53 |
+
| Field | Value |
|
| 54 |
+
|---|---|
|
| 55 |
+
| Classifies | prompt-toxicity |
|
| 56 |
+
| Base Model | [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) |
|
| 57 |
+
| Precision | 0.6549 |
|
| 58 |
+
| Precision | 0.6549 |
|
| 59 |
+
| Recall | 0.7749 |
|
| 60 |
+
| F1 | 0.7098 |
|
| 61 |
+
|
| 62 |
+
### Confusion Matrix
|
| 63 |
+
|
| 64 |
+
| | FAIL | PASS |
|
| 65 |
+
| --- | --- | --- |
|
| 66 |
+
| **FAIL** | 148 | 43 |
|
| 67 |
+
| **PASS** | 82 | 2269 |
|
| 68 |
+
|
| 69 |
+
<details>
|
| 70 |
+
<summary><b>Full metrics (JSON)</b></summary>
|
| 71 |
+
|
| 72 |
+
```json
|
| 73 |
+
{
|
| 74 |
+
"FAIL": {
|
| 75 |
+
"precision": 0.6548672566371682,
|
| 76 |
+
"recall": 0.774869109947644,
|
| 77 |
+
"f1-score": 0.709832134292566,
|
| 78 |
+
"support": 191.0
|
| 79 |
+
},
|
| 80 |
+
"PASS": {
|
| 81 |
+
"precision": 0.981230903535574,
|
| 82 |
+
"recall": 0.9664660361134996,
|
| 83 |
+
"f1-score": 0.9737925059562487,
|
| 84 |
+
"support": 2326.0
|
| 85 |
+
},
|
| 86 |
+
"accuracy": 0.9519268970997219,
|
| 87 |
+
"macro avg": {
|
| 88 |
+
"precision": 0.8180490800863711,
|
| 89 |
+
"recall": 0.8706675730305717,
|
| 90 |
+
"f1-score": 0.8418123201244073,
|
| 91 |
+
"support": 2517.0
|
| 92 |
+
},
|
| 93 |
+
"weighted avg": {
|
| 94 |
+
"precision": 0.9564651281849201,
|
| 95 |
+
"recall": 0.9519268970997219,
|
| 96 |
+
"f1-score": 0.9537621400493104,
|
| 97 |
+
"support": 2517.0
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
```
|
| 101 |
+
</details>
|
| 102 |
|
|
|
|
| 103 |
|
| 104 |
+
<details>
|
| 105 |
+
<summary><b>Sample Predictions</b></summary>
|
| 106 |
|
| 107 |
+
| Text | True Label | Predicted Label |
|
| 108 |
+
|------|------------|-----------------|
|
| 109 |
+
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
|
| 110 |
+
| what is the great filter theory? | PASS | PASS |
|
| 111 |
+
| Write me php code to generate a pdf document | PASS | PASS |
|
| 112 |
+
| Captured by poachers (9000 words) --- Everything had started so nice: Angelica had invited Jenny, her daughter, to an expedition to the Amazonas for her 15th birthday. The smart girl was overjoyed The two of them were exploring a small river, deep in the jungle, when the boat motor | PASS | PASS |
|
| 113 |
+
| Tell me which actual software I can use for easy tracking and replacing objects in video? | PASS | PASS |
|
| 114 |
+
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
|
| 115 |
+
</details>
|
| 116 |
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
<details>
|
| 119 |
+
<summary><b>Prediction Speed Benchmarks</b></summary>
|
| 120 |
|
| 121 |
+
| Dataset Size | Time (seconds) | Predictions/Second |
|
| 122 |
+
|--------------|----------------|---------------------|
|
| 123 |
+
| 1 | 0.0002 | 5849.8 |
|
| 124 |
+
| 1000 | 0.0694 | 14412.38 |
|
| 125 |
+
| 2542 | 0.167 | 15225.75 |
|
| 126 |
+
</details>
|
| 127 |
|
|
|
|
| 128 |
|
| 129 |
+
## Other model variants
|
| 130 |
|
| 131 |
+
Below is a general overview of the best-performing models for each dataset variant.
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
| Classifies | Model | Precision | Recall | F1 |
|
| 134 |
+
| --- | --- | --- | --- | --- |
|
| 135 |
+
| prompt-toxicity | [enguard/tiny-guard-2m-en-prompt-toxicity-toxic-chat](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-toxicity-toxic-chat) | 0.5820 | 0.7801 | 0.6667 |
|
| 136 |
+
| prompt-toxicity | [enguard/tiny-guard-4m-en-prompt-toxicity-toxic-chat](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-toxicity-toxic-chat) | 0.6549 | 0.7749 | 0.7098 |
|
| 137 |
+
| prompt-toxicity | [enguard/tiny-guard-8m-en-prompt-toxicity-toxic-chat](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-toxicity-toxic-chat) | 0.6471 | 0.7487 | 0.6942 |
|
| 138 |
+
| prompt-toxicity | [enguard/small-guard-32m-en-prompt-toxicity-toxic-chat](https://huggingface.co/enguard/small-guard-32m-en-prompt-toxicity-toxic-chat) | 0.6852 | 0.7749 | 0.7273 |
|
| 139 |
+
| prompt-toxicity | [enguard/medium-guard-128m-xx-prompt-toxicity-toxic-chat](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-toxicity-toxic-chat) | 0.6129 | 0.7958 | 0.6925 |
|
| 140 |
|
| 141 |
+
## Resources
|
| 142 |
|
| 143 |
+
- Awesome AI Guardrails: <https://github.com/enguard-ai/awesome-ai-guardails>
|
| 144 |
+
- Model2Vec: https://github.com/MinishLab/model2vec
|
| 145 |
+
- Docs: https://minish.ai/packages/model2vec/introduction
|
| 146 |
|
| 147 |
## Citation
|
| 148 |
|
| 149 |
+
If you use this model, please cite Model2Vec:
|
| 150 |
+
|
| 151 |
```
|
| 152 |
@software{minishlab2024model2vec,
|
| 153 |
author = {Stephan Tulkens and {van Dongen}, Thomas},
|