Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DINOv3 → YOLO11 Distilled OCR Detector
|
| 2 |
+
|
| 3 |
+
This repository contains a **YOLO11-based OCR object detector** distilled from a **DINOv3 ViT-B/16 teacher** using **LightlyTrain**.
|
| 4 |
+
The goal: produce a *lightweight but high-recall text box detector* suitable for OCR, ID scanning, document parsing, and multi-language text extraction.
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
## Model Summary
|
| 9 |
+
|
| 10 |
+
- **Teacher:** `dinov3/vitb16`
|
| 11 |
+
- **Student:** `YOLO11s` (custom convolutional backbone)
|
| 12 |
+
- **Method:** LightlyTrain `distillation` (features-only MSE loss)
|
| 13 |
+
- **Data:** 1,200 unlabeled resume-like document crops + synthetic webpage/document images
|
| 14 |
+
- **Use-case:** OCR region detection (not recognition)
|
| 15 |
+
- **Export Format:** Ultralytics `.pt`
|
| 16 |
+
- **File:** `exported_models/exported_last.pt`
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## Intended Use
|
| 21 |
+
|
| 22 |
+
This model is trained to **detect text regions** inside real-world documents:
|
| 23 |
+
|
| 24 |
+
- CVs / resumes
|
| 25 |
+
- ID cards
|
| 26 |
+
- Business documents
|
| 27 |
+
- Screenshots
|
| 28 |
+
- Webpage fragments
|
| 29 |
+
- PDF pages (converted to images)
|
| 30 |
+
|
| 31 |
+
It **does not perform OCR itself** — recognition should be done with a second-stage model (Tesseract, TrOCR, Nougat, PaddleOCR, VietOCR, etc.)
|
| 32 |
+
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
## Example Usage
|
| 36 |
+
|
| 37 |
+
### Python (Ultralytics)
|
| 38 |
+
```python
|
| 39 |
+
from ultralytics import YOLO
|
| 40 |
+
|
| 41 |
+
model = YOLO("exported_last.pt")
|
| 42 |
+
results = model("/content/example.jpg")
|
| 43 |
+
|
| 44 |
+
results[0].show() # visualize text boxes
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Extract BB
|
| 48 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 49 |
+
confs = results[0].boxes.conf.cpu().numpy()
|
| 50 |
+
|
| 51 |
+
for xyxy, conf in zip(boxes, confs):
|
| 52 |
+
print(xyxy, conf)
|
| 53 |
+
|
| 54 |
+
### Distillation
|
| 55 |
+
|
| 56 |
+
lightly_train.train(
|
| 57 |
+
out="dinov3_yolo11_distilled",
|
| 58 |
+
data="/content/unlabeled_idl_images",
|
| 59 |
+
model="yolo11s",
|
| 60 |
+
method="distillation",
|
| 61 |
+
method_args={
|
| 62 |
+
"teacher": "dinov3/vitb16",
|
| 63 |
+
"teacher_weights": "/content/dinov3_vitb16_pretrain.pth"
|
| 64 |
+
},
|
| 65 |
+
epochs=2,
|
| 66 |
+
batch_size=4,
|
| 67 |
+
precision="16-mixed"
|
| 68 |
+
)
|