finalform commited on
Commit
0057556
·
verified ·
1 Parent(s): 85302f5

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -9,55 +9,201 @@ tags:
9
  - transformers
10
  - trl
11
  ---
12
- ### Framework versions
13
 
14
- - PEFT 0.17.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # Model Card for foamqwen
17
 
18
- This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
19
- It has been trained using [TRL](https://github.com/huggingface/trl).
20
 
21
- ## Quick start
22
 
23
- ```python
24
- from transformers import pipeline
25
 
26
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
27
- generator = pipeline("text-generation", model="None", device="cuda")
28
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
29
- print(output["generated_text"])
30
- ```
31
 
32
- ## Training procedure
33
 
34
-
35
 
 
36
 
37
- This model was trained with SFT.
38
 
 
39
  ### Framework versions
40
 
41
- - PEFT 0.17.0
42
- - TRL: 0.19.0
43
- - Transformers: 4.52.3
44
- - Pytorch: 2.7.0
45
- - Datasets: 4.4.1
46
- - Tokenizers: 0.21.4
47
-
48
- ## Citations
49
-
50
-
51
-
52
- Cite TRL as:
53
-
54
- ```bibtex
55
- @misc{vonwerra2022trl,
56
- title = {{TRL: Transformer Reinforcement Learning}},
57
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
58
- year = 2020,
59
- journal = {GitHub repository},
60
- publisher = {GitHub},
61
- howpublished = {\url{https://github.com/huggingface/trl}}
62
- }
63
- ```
 
9
  - transformers
10
  - trl
11
  ---
 
12
 
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
 
188
+ [More Information Needed]
189
 
190
+ ## Glossary [optional]
 
191
 
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
 
194
+ [More Information Needed]
 
195
 
196
+ ## More Information [optional]
 
 
 
 
197
 
198
+ [More Information Needed]
199
 
200
+ ## Model Card Authors [optional]
201
 
202
+ [More Information Needed]
203
 
204
+ ## Model Card Contact
205
 
206
+ [More Information Needed]
207
  ### Framework versions
208
 
209
+ - PEFT 0.17.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter_config.json CHANGED
@@ -25,13 +25,13 @@
25
  "rank_pattern": {},
26
  "revision": null,
27
  "target_modules": [
28
- "v_proj",
29
- "q_proj",
30
  "down_proj",
31
- "up_proj",
32
- "gate_proj",
33
  "k_proj",
34
- "o_proj"
 
 
 
35
  ],
36
  "target_parameters": null,
37
  "task_type": "CAUSAL_LM",
 
25
  "rank_pattern": {},
26
  "revision": null,
27
  "target_modules": [
 
 
28
  "down_proj",
29
+ "o_proj",
 
30
  "k_proj",
31
+ "v_proj",
32
+ "gate_proj",
33
+ "up_proj",
34
+ "q_proj"
35
  ],
36
  "target_parameters": null,
37
  "task_type": "CAUSAL_LM",
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95c4b7c94260f78eb6b4165cbcfe2ddb885354992826a11e83ca4b9e7c8bd821
3
  size 645975704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66061757a3f9c7e694bd0869920435ba5cd7a0117a26a35caaceea1882296a8
3
  size 645975704
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f46dc0b6cd60733e44769de8e8e0858d07c1b25a992eae50a74b529c3e4db236
3
+ size 1292087499
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7192a40ca4014f502efc59dacc942dad83ac6b1e5dbffc44a7e2368a17abffd4
3
+ size 15429
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f988a134540f1261cc919cb029bec83fd4a129faeedd432eda41941d88caca
3
+ size 15429
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a00527b6663b32e26bbe8bf4772fd7934576df924e6fc0a26b27e451253945f
3
+ size 15429
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d158f929065935ff5e42e00f4c943d51cb4a72cc008d4cc7441b13796917f2b6
3
+ size 15429
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:452277350ad8f5efad158760275ed80bf2a10a74384da69a532b63915629f8f6
3
+ size 1465
trainer_state.json ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 10.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1040,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.24096385542168675,
14
+ "grad_norm": 0.17040389776229858,
15
+ "learning_rate": 0.000511,
16
+ "loss": 0.4303,
17
+ "mean_token_accuracy": 0.8983636182546616,
18
+ "num_tokens": 569446.0,
19
+ "step": 25
20
+ },
21
+ {
22
+ "epoch": 0.4819277108433735,
23
+ "grad_norm": 0.19750550389289856,
24
+ "learning_rate": 0.000511,
25
+ "loss": 0.2953,
26
+ "mean_token_accuracy": 0.9258013522624969,
27
+ "num_tokens": 1138403.0,
28
+ "step": 50
29
+ },
30
+ {
31
+ "epoch": 0.7228915662650602,
32
+ "grad_norm": 0.2441304326057434,
33
+ "learning_rate": 0.000511,
34
+ "loss": 0.2179,
35
+ "mean_token_accuracy": 0.9427212655544281,
36
+ "num_tokens": 1705606.0,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.963855421686747,
41
+ "grad_norm": 0.19773538410663605,
42
+ "learning_rate": 0.000511,
43
+ "loss": 0.194,
44
+ "mean_token_accuracy": 0.9479873812198639,
45
+ "num_tokens": 2271060.0,
46
+ "step": 100
47
+ },
48
+ {
49
+ "epoch": 1.0,
50
+ "eval_loss": 0.1995953470468521,
51
+ "eval_mean_token_accuracy": 0.9460804703387808,
52
+ "eval_num_tokens": 2345411.0,
53
+ "eval_runtime": 4.3258,
54
+ "eval_samples_per_second": 85.303,
55
+ "eval_steps_per_second": 10.865,
56
+ "step": 104
57
+ },
58
+ {
59
+ "epoch": 1.202409638554217,
60
+ "grad_norm": 0.0789426863193512,
61
+ "learning_rate": 0.000511,
62
+ "loss": 0.16,
63
+ "mean_token_accuracy": 0.9584937607399141,
64
+ "num_tokens": 2836512.0,
65
+ "step": 125
66
+ },
67
+ {
68
+ "epoch": 1.4433734939759035,
69
+ "grad_norm": 0.10643763095140457,
70
+ "learning_rate": 0.000511,
71
+ "loss": 0.1408,
72
+ "mean_token_accuracy": 0.9620217531919479,
73
+ "num_tokens": 3403395.0,
74
+ "step": 150
75
+ },
76
+ {
77
+ "epoch": 1.6843373493975904,
78
+ "grad_norm": 0.08403506129980087,
79
+ "learning_rate": 0.000511,
80
+ "loss": 0.1314,
81
+ "mean_token_accuracy": 0.9630346685647965,
82
+ "num_tokens": 3970344.0,
83
+ "step": 175
84
+ },
85
+ {
86
+ "epoch": 1.9253012048192772,
87
+ "grad_norm": 0.10631190985441208,
88
+ "learning_rate": 0.000511,
89
+ "loss": 0.1272,
90
+ "mean_token_accuracy": 0.9646087974309921,
91
+ "num_tokens": 4538034.0,
92
+ "step": 200
93
+ },
94
+ {
95
+ "epoch": 2.0,
96
+ "eval_loss": 0.14445580542087555,
97
+ "eval_mean_token_accuracy": 0.9612192435467497,
98
+ "eval_num_tokens": 4690349.0,
99
+ "eval_runtime": 4.2683,
100
+ "eval_samples_per_second": 86.451,
101
+ "eval_steps_per_second": 11.011,
102
+ "step": 208
103
+ },
104
+ {
105
+ "epoch": 2.163855421686747,
106
+ "grad_norm": 0.08164115995168686,
107
+ "learning_rate": 0.000511,
108
+ "loss": 0.1067,
109
+ "mean_token_accuracy": 0.9689010110768405,
110
+ "num_tokens": 5091219.0,
111
+ "step": 225
112
+ },
113
+ {
114
+ "epoch": 2.404819277108434,
115
+ "grad_norm": 0.08637778460979462,
116
+ "learning_rate": 0.000511,
117
+ "loss": 0.0968,
118
+ "mean_token_accuracy": 0.9721185141801834,
119
+ "num_tokens": 5658328.0,
120
+ "step": 250
121
+ },
122
+ {
123
+ "epoch": 2.6457831325301204,
124
+ "grad_norm": 0.0902683362364769,
125
+ "learning_rate": 0.000511,
126
+ "loss": 0.091,
127
+ "mean_token_accuracy": 0.9744718617200852,
128
+ "num_tokens": 6225744.0,
129
+ "step": 275
130
+ },
131
+ {
132
+ "epoch": 2.886746987951807,
133
+ "grad_norm": 0.09357521682977676,
134
+ "learning_rate": 0.000511,
135
+ "loss": 0.0929,
136
+ "mean_token_accuracy": 0.9727102434635162,
137
+ "num_tokens": 6794402.0,
138
+ "step": 300
139
+ },
140
+ {
141
+ "epoch": 3.0,
142
+ "eval_loss": 0.14705069363117218,
143
+ "eval_mean_token_accuracy": 0.9624257531571896,
144
+ "eval_num_tokens": 7035273.0,
145
+ "eval_runtime": 4.2634,
146
+ "eval_samples_per_second": 86.55,
147
+ "eval_steps_per_second": 11.024,
148
+ "step": 312
149
+ },
150
+ {
151
+ "epoch": 3.125301204819277,
152
+ "grad_norm": 0.14760874211788177,
153
+ "learning_rate": 0.000511,
154
+ "loss": 0.0842,
155
+ "mean_token_accuracy": 0.9764150320881545,
156
+ "num_tokens": 7334495.0,
157
+ "step": 325
158
+ },
159
+ {
160
+ "epoch": 3.3662650602409636,
161
+ "grad_norm": 0.09895172715187073,
162
+ "learning_rate": 0.000511,
163
+ "loss": 0.0777,
164
+ "mean_token_accuracy": 0.9774631917476654,
165
+ "num_tokens": 7903478.0,
166
+ "step": 350
167
+ },
168
+ {
169
+ "epoch": 3.6072289156626507,
170
+ "grad_norm": 0.10538128763437271,
171
+ "learning_rate": 0.000511,
172
+ "loss": 0.0742,
173
+ "mean_token_accuracy": 0.9783486902713776,
174
+ "num_tokens": 8469479.0,
175
+ "step": 375
176
+ },
177
+ {
178
+ "epoch": 3.8481927710843373,
179
+ "grad_norm": 0.09741026163101196,
180
+ "learning_rate": 0.000511,
181
+ "loss": 0.0679,
182
+ "mean_token_accuracy": 0.9803410685062408,
183
+ "num_tokens": 9036138.0,
184
+ "step": 400
185
+ },
186
+ {
187
+ "epoch": 4.0,
188
+ "eval_loss": 0.14550796151161194,
189
+ "eval_mean_token_accuracy": 0.9638357936067784,
190
+ "eval_num_tokens": 9380804.0,
191
+ "eval_runtime": 4.2387,
192
+ "eval_samples_per_second": 87.055,
193
+ "eval_steps_per_second": 11.088,
194
+ "step": 416
195
+ },
196
+ {
197
+ "epoch": 4.086746987951807,
198
+ "grad_norm": 0.10616449266672134,
199
+ "learning_rate": 0.000511,
200
+ "loss": 0.0625,
201
+ "mean_token_accuracy": 0.9811063475079007,
202
+ "num_tokens": 9598059.0,
203
+ "step": 425
204
+ },
205
+ {
206
+ "epoch": 4.327710843373494,
207
+ "grad_norm": 0.09445353597402573,
208
+ "learning_rate": 0.000511,
209
+ "loss": 0.0545,
210
+ "mean_token_accuracy": 0.9833864039182663,
211
+ "num_tokens": 10165089.0,
212
+ "step": 450
213
+ },
214
+ {
215
+ "epoch": 4.5686746987951805,
216
+ "grad_norm": 0.07407805323600769,
217
+ "learning_rate": 0.000511,
218
+ "loss": 0.0545,
219
+ "mean_token_accuracy": 0.984256454706192,
220
+ "num_tokens": 10732931.0,
221
+ "step": 475
222
+ },
223
+ {
224
+ "epoch": 4.809638554216868,
225
+ "grad_norm": 0.07322381436824799,
226
+ "learning_rate": 0.000511,
227
+ "loss": 0.0462,
228
+ "mean_token_accuracy": 0.9861221539974213,
229
+ "num_tokens": 11301466.0,
230
+ "step": 500
231
+ },
232
+ {
233
+ "epoch": 5.0,
234
+ "eval_loss": 0.14242176711559296,
235
+ "eval_mean_token_accuracy": 0.9691625554510888,
236
+ "eval_num_tokens": 11726407.0,
237
+ "eval_runtime": 4.2397,
238
+ "eval_samples_per_second": 87.035,
239
+ "eval_steps_per_second": 11.086,
240
+ "step": 520
241
+ },
242
+ {
243
+ "epoch": 5.048192771084337,
244
+ "grad_norm": 0.06890378147363663,
245
+ "learning_rate": 0.000511,
246
+ "loss": 0.0538,
247
+ "mean_token_accuracy": 0.9846178467827614,
248
+ "num_tokens": 11856936.0,
249
+ "step": 525
250
+ },
251
+ {
252
+ "epoch": 5.289156626506024,
253
+ "grad_norm": 0.05453705042600632,
254
+ "learning_rate": 0.000511,
255
+ "loss": 0.0485,
256
+ "mean_token_accuracy": 0.9858993107080459,
257
+ "num_tokens": 12423275.0,
258
+ "step": 550
259
+ },
260
+ {
261
+ "epoch": 5.530120481927711,
262
+ "grad_norm": 0.0743594691157341,
263
+ "learning_rate": 0.000511,
264
+ "loss": 0.0455,
265
+ "mean_token_accuracy": 0.9857969325780869,
266
+ "num_tokens": 12992045.0,
267
+ "step": 575
268
+ },
269
+ {
270
+ "epoch": 5.771084337349397,
271
+ "grad_norm": 0.06587184965610504,
272
+ "learning_rate": 0.000511,
273
+ "loss": 0.0446,
274
+ "mean_token_accuracy": 0.9862634456157684,
275
+ "num_tokens": 13560037.0,
276
+ "step": 600
277
+ },
278
+ {
279
+ "epoch": 6.0,
280
+ "eval_loss": 0.1241711750626564,
281
+ "eval_mean_token_accuracy": 0.9710005204728309,
282
+ "eval_num_tokens": 14071932.0,
283
+ "eval_runtime": 4.2228,
284
+ "eval_samples_per_second": 87.383,
285
+ "eval_steps_per_second": 11.13,
286
+ "step": 624
287
+ },
288
+ {
289
+ "epoch": 6.009638554216868,
290
+ "grad_norm": 0.06124307960271835,
291
+ "learning_rate": 0.000511,
292
+ "loss": 0.0368,
293
+ "mean_token_accuracy": 0.9886124525407348,
294
+ "num_tokens": 14102915.0,
295
+ "step": 625
296
+ },
297
+ {
298
+ "epoch": 6.250602409638554,
299
+ "grad_norm": 0.10462699830532074,
300
+ "learning_rate": 0.000511,
301
+ "loss": 0.0378,
302
+ "mean_token_accuracy": 0.9887062352895737,
303
+ "num_tokens": 14669309.0,
304
+ "step": 650
305
+ },
306
+ {
307
+ "epoch": 6.491566265060241,
308
+ "grad_norm": 0.09343062341213226,
309
+ "learning_rate": 0.000511,
310
+ "loss": 0.0353,
311
+ "mean_token_accuracy": 0.9892213380336762,
312
+ "num_tokens": 15237353.0,
313
+ "step": 675
314
+ },
315
+ {
316
+ "epoch": 6.732530120481927,
317
+ "grad_norm": 0.08443740010261536,
318
+ "learning_rate": 0.000511,
319
+ "loss": 0.0364,
320
+ "mean_token_accuracy": 0.9892494148015976,
321
+ "num_tokens": 15804441.0,
322
+ "step": 700
323
+ },
324
+ {
325
+ "epoch": 6.973493975903614,
326
+ "grad_norm": 0.07635796070098877,
327
+ "learning_rate": 0.000511,
328
+ "loss": 0.0397,
329
+ "mean_token_accuracy": 0.9886371964216232,
330
+ "num_tokens": 16368577.0,
331
+ "step": 725
332
+ },
333
+ {
334
+ "epoch": 7.0,
335
+ "eval_loss": 0.17054519057273865,
336
+ "eval_mean_token_accuracy": 0.9649876089806252,
337
+ "eval_num_tokens": 16416958.0,
338
+ "eval_runtime": 4.2384,
339
+ "eval_samples_per_second": 87.061,
340
+ "eval_steps_per_second": 11.089,
341
+ "step": 728
342
+ },
343
+ {
344
+ "epoch": 7.212048192771085,
345
+ "grad_norm": 0.0668734461069107,
346
+ "learning_rate": 0.000511,
347
+ "loss": 0.0333,
348
+ "mean_token_accuracy": 0.9895464802029157,
349
+ "num_tokens": 16927490.0,
350
+ "step": 750
351
+ },
352
+ {
353
+ "epoch": 7.453012048192771,
354
+ "grad_norm": 0.06639474630355835,
355
+ "learning_rate": 0.000511,
356
+ "loss": 0.0325,
357
+ "mean_token_accuracy": 0.9908391135931015,
358
+ "num_tokens": 17494143.0,
359
+ "step": 775
360
+ },
361
+ {
362
+ "epoch": 7.693975903614458,
363
+ "grad_norm": 0.10801058262586594,
364
+ "learning_rate": 0.000511,
365
+ "loss": 0.029,
366
+ "mean_token_accuracy": 0.9909009468555451,
367
+ "num_tokens": 18063423.0,
368
+ "step": 800
369
+ },
370
+ {
371
+ "epoch": 7.934939759036144,
372
+ "grad_norm": 0.048982683569192886,
373
+ "learning_rate": 0.000511,
374
+ "loss": 0.0313,
375
+ "mean_token_accuracy": 0.9908118671178818,
376
+ "num_tokens": 18630905.0,
377
+ "step": 825
378
+ },
379
+ {
380
+ "epoch": 8.0,
381
+ "eval_loss": 0.1113305315375328,
382
+ "eval_mean_token_accuracy": 0.9737493814306056,
383
+ "eval_num_tokens": 18762023.0,
384
+ "eval_runtime": 4.2275,
385
+ "eval_samples_per_second": 87.285,
386
+ "eval_steps_per_second": 11.118,
387
+ "step": 832
388
+ },
389
+ {
390
+ "epoch": 8.173493975903614,
391
+ "grad_norm": 0.05220003426074982,
392
+ "learning_rate": 0.000511,
393
+ "loss": 0.0277,
394
+ "mean_token_accuracy": 0.9916808304160533,
395
+ "num_tokens": 19184427.0,
396
+ "step": 850
397
+ },
398
+ {
399
+ "epoch": 8.4144578313253,
400
+ "grad_norm": 0.08605129271745682,
401
+ "learning_rate": 0.000511,
402
+ "loss": 0.0273,
403
+ "mean_token_accuracy": 0.9915985196828843,
404
+ "num_tokens": 19754417.0,
405
+ "step": 875
406
+ },
407
+ {
408
+ "epoch": 8.655421686746989,
409
+ "grad_norm": 0.0517394132912159,
410
+ "learning_rate": 0.000511,
411
+ "loss": 0.0258,
412
+ "mean_token_accuracy": 0.9922689855098724,
413
+ "num_tokens": 20322925.0,
414
+ "step": 900
415
+ },
416
+ {
417
+ "epoch": 8.896385542168675,
418
+ "grad_norm": 0.059128183871507645,
419
+ "learning_rate": 0.000511,
420
+ "loss": 0.0256,
421
+ "mean_token_accuracy": 0.9923817366361618,
422
+ "num_tokens": 20889889.0,
423
+ "step": 925
424
+ },
425
+ {
426
+ "epoch": 9.0,
427
+ "eval_loss": 0.1412837952375412,
428
+ "eval_mean_token_accuracy": 0.97177672893443,
429
+ "eval_num_tokens": 21107006.0,
430
+ "eval_runtime": 4.2426,
431
+ "eval_samples_per_second": 86.974,
432
+ "eval_steps_per_second": 11.078,
433
+ "step": 936
434
+ },
435
+ {
436
+ "epoch": 9.134939759036145,
437
+ "grad_norm": 0.08735097944736481,
438
+ "learning_rate": 0.000511,
439
+ "loss": 0.0214,
440
+ "mean_token_accuracy": 0.9934688914905895,
441
+ "num_tokens": 21433768.0,
442
+ "step": 950
443
+ },
444
+ {
445
+ "epoch": 9.375903614457831,
446
+ "grad_norm": 0.07706229388713837,
447
+ "learning_rate": 0.000511,
448
+ "loss": 0.0219,
449
+ "mean_token_accuracy": 0.9933523815870285,
450
+ "num_tokens": 22001855.0,
451
+ "step": 975
452
+ },
453
+ {
454
+ "epoch": 9.616867469879518,
455
+ "grad_norm": 0.0835743248462677,
456
+ "learning_rate": 0.000511,
457
+ "loss": 0.0202,
458
+ "mean_token_accuracy": 0.9938382267951965,
459
+ "num_tokens": 22568226.0,
460
+ "step": 1000
461
+ },
462
+ {
463
+ "epoch": 9.857831325301206,
464
+ "grad_norm": 0.10814040899276733,
465
+ "learning_rate": 0.000511,
466
+ "loss": 0.0222,
467
+ "mean_token_accuracy": 0.99358702480793,
468
+ "num_tokens": 23136558.0,
469
+ "step": 1025
470
+ },
471
+ {
472
+ "epoch": 10.0,
473
+ "eval_loss": 0.1364360749721527,
474
+ "eval_mean_token_accuracy": 0.9739730041077796,
475
+ "eval_num_tokens": 23451914.0,
476
+ "eval_runtime": 4.2514,
477
+ "eval_samples_per_second": 86.796,
478
+ "eval_steps_per_second": 11.055,
479
+ "step": 1040
480
+ }
481
+ ],
482
+ "logging_steps": 25,
483
+ "max_steps": 1248,
484
+ "num_input_tokens_seen": 0,
485
+ "num_train_epochs": 12,
486
+ "save_steps": 500,
487
+ "stateful_callbacks": {
488
+ "TrainerControl": {
489
+ "args": {
490
+ "should_epoch_stop": false,
491
+ "should_evaluate": false,
492
+ "should_log": false,
493
+ "should_save": true,
494
+ "should_training_stop": false
495
+ },
496
+ "attributes": {}
497
+ }
498
+ },
499
+ "total_flos": 1.0255354758734807e+18,
500
+ "train_batch_size": 2,
501
+ "trial_name": null,
502
+ "trial_params": null
503
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb24a2e21c60358ea1e7c21423d18ace82a12d90960084fd56c8a7388a71c974
3
  size 6097
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9abd2e560826c250d1fd3df1ec10e14fef0b5ef3b175f43df982f2fc9f2f11d9
3
  size 6097