Upload folder using huggingface_hub
Browse files- README.md +185 -39
- adapter_config.json +5 -5
- adapter_model.safetensors +1 -1
- optimizer.pt +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +503 -0
- training_args.bin +1 -1
README.md
CHANGED
|
@@ -9,55 +9,201 @@ tags:
|
|
| 9 |
- transformers
|
| 10 |
- trl
|
| 11 |
---
|
| 12 |
-
### Framework versions
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
from transformers import pipeline
|
| 25 |
|
| 26 |
-
|
| 27 |
-
generator = pipeline("text-generation", model="None", device="cuda")
|
| 28 |
-
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 29 |
-
print(output["generated_text"])
|
| 30 |
-
```
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
|
|
|
|
| 39 |
### Framework versions
|
| 40 |
|
| 41 |
-
- PEFT 0.17.0
|
| 42 |
-
- TRL: 0.19.0
|
| 43 |
-
- Transformers: 4.52.3
|
| 44 |
-
- Pytorch: 2.7.0
|
| 45 |
-
- Datasets: 4.4.1
|
| 46 |
-
- Tokenizers: 0.21.4
|
| 47 |
-
|
| 48 |
-
## Citations
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
Cite TRL as:
|
| 53 |
-
|
| 54 |
-
```bibtex
|
| 55 |
-
@misc{vonwerra2022trl,
|
| 56 |
-
title = {{TRL: Transformer Reinforcement Learning}},
|
| 57 |
-
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
| 58 |
-
year = 2020,
|
| 59 |
-
journal = {GitHub repository},
|
| 60 |
-
publisher = {GitHub},
|
| 61 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 62 |
-
}
|
| 63 |
-
```
|
|
|
|
| 9 |
- transformers
|
| 10 |
- trl
|
| 11 |
---
|
|
|
|
| 12 |
|
| 13 |
+
# Model Card for Model ID
|
| 14 |
+
|
| 15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
### Model Description
|
| 22 |
+
|
| 23 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
- **Developed by:** [More Information Needed]
|
| 28 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 29 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 30 |
+
- **Model type:** [More Information Needed]
|
| 31 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 32 |
+
- **License:** [More Information Needed]
|
| 33 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 34 |
+
|
| 35 |
+
### Model Sources [optional]
|
| 36 |
+
|
| 37 |
+
<!-- Provide the basic links for the model. -->
|
| 38 |
+
|
| 39 |
+
- **Repository:** [More Information Needed]
|
| 40 |
+
- **Paper [optional]:** [More Information Needed]
|
| 41 |
+
- **Demo [optional]:** [More Information Needed]
|
| 42 |
+
|
| 43 |
+
## Uses
|
| 44 |
+
|
| 45 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 46 |
+
|
| 47 |
+
### Direct Use
|
| 48 |
+
|
| 49 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 50 |
+
|
| 51 |
+
[More Information Needed]
|
| 52 |
+
|
| 53 |
+
### Downstream Use [optional]
|
| 54 |
+
|
| 55 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 56 |
+
|
| 57 |
+
[More Information Needed]
|
| 58 |
+
|
| 59 |
+
### Out-of-Scope Use
|
| 60 |
+
|
| 61 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 62 |
+
|
| 63 |
+
[More Information Needed]
|
| 64 |
+
|
| 65 |
+
## Bias, Risks, and Limitations
|
| 66 |
+
|
| 67 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 68 |
+
|
| 69 |
+
[More Information Needed]
|
| 70 |
+
|
| 71 |
+
### Recommendations
|
| 72 |
+
|
| 73 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 74 |
+
|
| 75 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 76 |
+
|
| 77 |
+
## How to Get Started with the Model
|
| 78 |
+
|
| 79 |
+
Use the code below to get started with the model.
|
| 80 |
+
|
| 81 |
+
[More Information Needed]
|
| 82 |
+
|
| 83 |
+
## Training Details
|
| 84 |
+
|
| 85 |
+
### Training Data
|
| 86 |
+
|
| 87 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 88 |
+
|
| 89 |
+
[More Information Needed]
|
| 90 |
+
|
| 91 |
+
### Training Procedure
|
| 92 |
+
|
| 93 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 94 |
+
|
| 95 |
+
#### Preprocessing [optional]
|
| 96 |
+
|
| 97 |
+
[More Information Needed]
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
#### Training Hyperparameters
|
| 101 |
+
|
| 102 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 103 |
+
|
| 104 |
+
#### Speeds, Sizes, Times [optional]
|
| 105 |
+
|
| 106 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 107 |
+
|
| 108 |
+
[More Information Needed]
|
| 109 |
+
|
| 110 |
+
## Evaluation
|
| 111 |
+
|
| 112 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 113 |
+
|
| 114 |
+
### Testing Data, Factors & Metrics
|
| 115 |
+
|
| 116 |
+
#### Testing Data
|
| 117 |
+
|
| 118 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 119 |
+
|
| 120 |
+
[More Information Needed]
|
| 121 |
+
|
| 122 |
+
#### Factors
|
| 123 |
+
|
| 124 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 125 |
+
|
| 126 |
+
[More Information Needed]
|
| 127 |
+
|
| 128 |
+
#### Metrics
|
| 129 |
+
|
| 130 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 131 |
+
|
| 132 |
+
[More Information Needed]
|
| 133 |
+
|
| 134 |
+
### Results
|
| 135 |
+
|
| 136 |
+
[More Information Needed]
|
| 137 |
+
|
| 138 |
+
#### Summary
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
## Model Examination [optional]
|
| 143 |
+
|
| 144 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 145 |
+
|
| 146 |
+
[More Information Needed]
|
| 147 |
+
|
| 148 |
+
## Environmental Impact
|
| 149 |
+
|
| 150 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 151 |
+
|
| 152 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 153 |
+
|
| 154 |
+
- **Hardware Type:** [More Information Needed]
|
| 155 |
+
- **Hours used:** [More Information Needed]
|
| 156 |
+
- **Cloud Provider:** [More Information Needed]
|
| 157 |
+
- **Compute Region:** [More Information Needed]
|
| 158 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 159 |
+
|
| 160 |
+
## Technical Specifications [optional]
|
| 161 |
+
|
| 162 |
+
### Model Architecture and Objective
|
| 163 |
+
|
| 164 |
+
[More Information Needed]
|
| 165 |
+
|
| 166 |
+
### Compute Infrastructure
|
| 167 |
+
|
| 168 |
+
[More Information Needed]
|
| 169 |
+
|
| 170 |
+
#### Hardware
|
| 171 |
+
|
| 172 |
+
[More Information Needed]
|
| 173 |
+
|
| 174 |
+
#### Software
|
| 175 |
+
|
| 176 |
+
[More Information Needed]
|
| 177 |
+
|
| 178 |
+
## Citation [optional]
|
| 179 |
+
|
| 180 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 181 |
+
|
| 182 |
+
**BibTeX:**
|
| 183 |
+
|
| 184 |
+
[More Information Needed]
|
| 185 |
+
|
| 186 |
+
**APA:**
|
| 187 |
|
| 188 |
+
[More Information Needed]
|
| 189 |
|
| 190 |
+
## Glossary [optional]
|
|
|
|
| 191 |
|
| 192 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 193 |
|
| 194 |
+
[More Information Needed]
|
|
|
|
| 195 |
|
| 196 |
+
## More Information [optional]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
[More Information Needed]
|
| 199 |
|
| 200 |
+
## Model Card Authors [optional]
|
| 201 |
|
| 202 |
+
[More Information Needed]
|
| 203 |
|
| 204 |
+
## Model Card Contact
|
| 205 |
|
| 206 |
+
[More Information Needed]
|
| 207 |
### Framework versions
|
| 208 |
|
| 209 |
+
- PEFT 0.17.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter_config.json
CHANGED
|
@@ -25,13 +25,13 @@
|
|
| 25 |
"rank_pattern": {},
|
| 26 |
"revision": null,
|
| 27 |
"target_modules": [
|
| 28 |
-
"v_proj",
|
| 29 |
-
"q_proj",
|
| 30 |
"down_proj",
|
| 31 |
-
"
|
| 32 |
-
"gate_proj",
|
| 33 |
"k_proj",
|
| 34 |
-
"
|
|
|
|
|
|
|
|
|
|
| 35 |
],
|
| 36 |
"target_parameters": null,
|
| 37 |
"task_type": "CAUSAL_LM",
|
|
|
|
| 25 |
"rank_pattern": {},
|
| 26 |
"revision": null,
|
| 27 |
"target_modules": [
|
|
|
|
|
|
|
| 28 |
"down_proj",
|
| 29 |
+
"o_proj",
|
|
|
|
| 30 |
"k_proj",
|
| 31 |
+
"v_proj",
|
| 32 |
+
"gate_proj",
|
| 33 |
+
"up_proj",
|
| 34 |
+
"q_proj"
|
| 35 |
],
|
| 36 |
"target_parameters": null,
|
| 37 |
"task_type": "CAUSAL_LM",
|
adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 645975704
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66061757a3f9c7e694bd0869920435ba5cd7a0117a26a35caaceea1882296a8
|
| 3 |
size 645975704
|
optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f46dc0b6cd60733e44769de8e8e0858d07c1b25a992eae50a74b529c3e4db236
|
| 3 |
+
size 1292087499
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7192a40ca4014f502efc59dacc942dad83ac6b1e5dbffc44a7e2368a17abffd4
|
| 3 |
+
size 15429
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22f988a134540f1261cc919cb029bec83fd4a129faeedd432eda41941d88caca
|
| 3 |
+
size 15429
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a00527b6663b32e26bbe8bf4772fd7934576df924e6fc0a26b27e451253945f
|
| 3 |
+
size 15429
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d158f929065935ff5e42e00f4c943d51cb4a72cc008d4cc7441b13796917f2b6
|
| 3 |
+
size 15429
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:452277350ad8f5efad158760275ed80bf2a10a74384da69a532b63915629f8f6
|
| 3 |
+
size 1465
|
trainer_state.json
ADDED
|
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 10.0,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 1040,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.24096385542168675,
|
| 14 |
+
"grad_norm": 0.17040389776229858,
|
| 15 |
+
"learning_rate": 0.000511,
|
| 16 |
+
"loss": 0.4303,
|
| 17 |
+
"mean_token_accuracy": 0.8983636182546616,
|
| 18 |
+
"num_tokens": 569446.0,
|
| 19 |
+
"step": 25
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"epoch": 0.4819277108433735,
|
| 23 |
+
"grad_norm": 0.19750550389289856,
|
| 24 |
+
"learning_rate": 0.000511,
|
| 25 |
+
"loss": 0.2953,
|
| 26 |
+
"mean_token_accuracy": 0.9258013522624969,
|
| 27 |
+
"num_tokens": 1138403.0,
|
| 28 |
+
"step": 50
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"epoch": 0.7228915662650602,
|
| 32 |
+
"grad_norm": 0.2441304326057434,
|
| 33 |
+
"learning_rate": 0.000511,
|
| 34 |
+
"loss": 0.2179,
|
| 35 |
+
"mean_token_accuracy": 0.9427212655544281,
|
| 36 |
+
"num_tokens": 1705606.0,
|
| 37 |
+
"step": 75
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.963855421686747,
|
| 41 |
+
"grad_norm": 0.19773538410663605,
|
| 42 |
+
"learning_rate": 0.000511,
|
| 43 |
+
"loss": 0.194,
|
| 44 |
+
"mean_token_accuracy": 0.9479873812198639,
|
| 45 |
+
"num_tokens": 2271060.0,
|
| 46 |
+
"step": 100
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"epoch": 1.0,
|
| 50 |
+
"eval_loss": 0.1995953470468521,
|
| 51 |
+
"eval_mean_token_accuracy": 0.9460804703387808,
|
| 52 |
+
"eval_num_tokens": 2345411.0,
|
| 53 |
+
"eval_runtime": 4.3258,
|
| 54 |
+
"eval_samples_per_second": 85.303,
|
| 55 |
+
"eval_steps_per_second": 10.865,
|
| 56 |
+
"step": 104
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 1.202409638554217,
|
| 60 |
+
"grad_norm": 0.0789426863193512,
|
| 61 |
+
"learning_rate": 0.000511,
|
| 62 |
+
"loss": 0.16,
|
| 63 |
+
"mean_token_accuracy": 0.9584937607399141,
|
| 64 |
+
"num_tokens": 2836512.0,
|
| 65 |
+
"step": 125
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 1.4433734939759035,
|
| 69 |
+
"grad_norm": 0.10643763095140457,
|
| 70 |
+
"learning_rate": 0.000511,
|
| 71 |
+
"loss": 0.1408,
|
| 72 |
+
"mean_token_accuracy": 0.9620217531919479,
|
| 73 |
+
"num_tokens": 3403395.0,
|
| 74 |
+
"step": 150
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 1.6843373493975904,
|
| 78 |
+
"grad_norm": 0.08403506129980087,
|
| 79 |
+
"learning_rate": 0.000511,
|
| 80 |
+
"loss": 0.1314,
|
| 81 |
+
"mean_token_accuracy": 0.9630346685647965,
|
| 82 |
+
"num_tokens": 3970344.0,
|
| 83 |
+
"step": 175
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"epoch": 1.9253012048192772,
|
| 87 |
+
"grad_norm": 0.10631190985441208,
|
| 88 |
+
"learning_rate": 0.000511,
|
| 89 |
+
"loss": 0.1272,
|
| 90 |
+
"mean_token_accuracy": 0.9646087974309921,
|
| 91 |
+
"num_tokens": 4538034.0,
|
| 92 |
+
"step": 200
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 2.0,
|
| 96 |
+
"eval_loss": 0.14445580542087555,
|
| 97 |
+
"eval_mean_token_accuracy": 0.9612192435467497,
|
| 98 |
+
"eval_num_tokens": 4690349.0,
|
| 99 |
+
"eval_runtime": 4.2683,
|
| 100 |
+
"eval_samples_per_second": 86.451,
|
| 101 |
+
"eval_steps_per_second": 11.011,
|
| 102 |
+
"step": 208
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"epoch": 2.163855421686747,
|
| 106 |
+
"grad_norm": 0.08164115995168686,
|
| 107 |
+
"learning_rate": 0.000511,
|
| 108 |
+
"loss": 0.1067,
|
| 109 |
+
"mean_token_accuracy": 0.9689010110768405,
|
| 110 |
+
"num_tokens": 5091219.0,
|
| 111 |
+
"step": 225
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 2.404819277108434,
|
| 115 |
+
"grad_norm": 0.08637778460979462,
|
| 116 |
+
"learning_rate": 0.000511,
|
| 117 |
+
"loss": 0.0968,
|
| 118 |
+
"mean_token_accuracy": 0.9721185141801834,
|
| 119 |
+
"num_tokens": 5658328.0,
|
| 120 |
+
"step": 250
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"epoch": 2.6457831325301204,
|
| 124 |
+
"grad_norm": 0.0902683362364769,
|
| 125 |
+
"learning_rate": 0.000511,
|
| 126 |
+
"loss": 0.091,
|
| 127 |
+
"mean_token_accuracy": 0.9744718617200852,
|
| 128 |
+
"num_tokens": 6225744.0,
|
| 129 |
+
"step": 275
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 2.886746987951807,
|
| 133 |
+
"grad_norm": 0.09357521682977676,
|
| 134 |
+
"learning_rate": 0.000511,
|
| 135 |
+
"loss": 0.0929,
|
| 136 |
+
"mean_token_accuracy": 0.9727102434635162,
|
| 137 |
+
"num_tokens": 6794402.0,
|
| 138 |
+
"step": 300
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"epoch": 3.0,
|
| 142 |
+
"eval_loss": 0.14705069363117218,
|
| 143 |
+
"eval_mean_token_accuracy": 0.9624257531571896,
|
| 144 |
+
"eval_num_tokens": 7035273.0,
|
| 145 |
+
"eval_runtime": 4.2634,
|
| 146 |
+
"eval_samples_per_second": 86.55,
|
| 147 |
+
"eval_steps_per_second": 11.024,
|
| 148 |
+
"step": 312
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"epoch": 3.125301204819277,
|
| 152 |
+
"grad_norm": 0.14760874211788177,
|
| 153 |
+
"learning_rate": 0.000511,
|
| 154 |
+
"loss": 0.0842,
|
| 155 |
+
"mean_token_accuracy": 0.9764150320881545,
|
| 156 |
+
"num_tokens": 7334495.0,
|
| 157 |
+
"step": 325
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 3.3662650602409636,
|
| 161 |
+
"grad_norm": 0.09895172715187073,
|
| 162 |
+
"learning_rate": 0.000511,
|
| 163 |
+
"loss": 0.0777,
|
| 164 |
+
"mean_token_accuracy": 0.9774631917476654,
|
| 165 |
+
"num_tokens": 7903478.0,
|
| 166 |
+
"step": 350
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"epoch": 3.6072289156626507,
|
| 170 |
+
"grad_norm": 0.10538128763437271,
|
| 171 |
+
"learning_rate": 0.000511,
|
| 172 |
+
"loss": 0.0742,
|
| 173 |
+
"mean_token_accuracy": 0.9783486902713776,
|
| 174 |
+
"num_tokens": 8469479.0,
|
| 175 |
+
"step": 375
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"epoch": 3.8481927710843373,
|
| 179 |
+
"grad_norm": 0.09741026163101196,
|
| 180 |
+
"learning_rate": 0.000511,
|
| 181 |
+
"loss": 0.0679,
|
| 182 |
+
"mean_token_accuracy": 0.9803410685062408,
|
| 183 |
+
"num_tokens": 9036138.0,
|
| 184 |
+
"step": 400
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 4.0,
|
| 188 |
+
"eval_loss": 0.14550796151161194,
|
| 189 |
+
"eval_mean_token_accuracy": 0.9638357936067784,
|
| 190 |
+
"eval_num_tokens": 9380804.0,
|
| 191 |
+
"eval_runtime": 4.2387,
|
| 192 |
+
"eval_samples_per_second": 87.055,
|
| 193 |
+
"eval_steps_per_second": 11.088,
|
| 194 |
+
"step": 416
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 4.086746987951807,
|
| 198 |
+
"grad_norm": 0.10616449266672134,
|
| 199 |
+
"learning_rate": 0.000511,
|
| 200 |
+
"loss": 0.0625,
|
| 201 |
+
"mean_token_accuracy": 0.9811063475079007,
|
| 202 |
+
"num_tokens": 9598059.0,
|
| 203 |
+
"step": 425
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"epoch": 4.327710843373494,
|
| 207 |
+
"grad_norm": 0.09445353597402573,
|
| 208 |
+
"learning_rate": 0.000511,
|
| 209 |
+
"loss": 0.0545,
|
| 210 |
+
"mean_token_accuracy": 0.9833864039182663,
|
| 211 |
+
"num_tokens": 10165089.0,
|
| 212 |
+
"step": 450
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 4.5686746987951805,
|
| 216 |
+
"grad_norm": 0.07407805323600769,
|
| 217 |
+
"learning_rate": 0.000511,
|
| 218 |
+
"loss": 0.0545,
|
| 219 |
+
"mean_token_accuracy": 0.984256454706192,
|
| 220 |
+
"num_tokens": 10732931.0,
|
| 221 |
+
"step": 475
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 4.809638554216868,
|
| 225 |
+
"grad_norm": 0.07322381436824799,
|
| 226 |
+
"learning_rate": 0.000511,
|
| 227 |
+
"loss": 0.0462,
|
| 228 |
+
"mean_token_accuracy": 0.9861221539974213,
|
| 229 |
+
"num_tokens": 11301466.0,
|
| 230 |
+
"step": 500
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 5.0,
|
| 234 |
+
"eval_loss": 0.14242176711559296,
|
| 235 |
+
"eval_mean_token_accuracy": 0.9691625554510888,
|
| 236 |
+
"eval_num_tokens": 11726407.0,
|
| 237 |
+
"eval_runtime": 4.2397,
|
| 238 |
+
"eval_samples_per_second": 87.035,
|
| 239 |
+
"eval_steps_per_second": 11.086,
|
| 240 |
+
"step": 520
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 5.048192771084337,
|
| 244 |
+
"grad_norm": 0.06890378147363663,
|
| 245 |
+
"learning_rate": 0.000511,
|
| 246 |
+
"loss": 0.0538,
|
| 247 |
+
"mean_token_accuracy": 0.9846178467827614,
|
| 248 |
+
"num_tokens": 11856936.0,
|
| 249 |
+
"step": 525
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 5.289156626506024,
|
| 253 |
+
"grad_norm": 0.05453705042600632,
|
| 254 |
+
"learning_rate": 0.000511,
|
| 255 |
+
"loss": 0.0485,
|
| 256 |
+
"mean_token_accuracy": 0.9858993107080459,
|
| 257 |
+
"num_tokens": 12423275.0,
|
| 258 |
+
"step": 550
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 5.530120481927711,
|
| 262 |
+
"grad_norm": 0.0743594691157341,
|
| 263 |
+
"learning_rate": 0.000511,
|
| 264 |
+
"loss": 0.0455,
|
| 265 |
+
"mean_token_accuracy": 0.9857969325780869,
|
| 266 |
+
"num_tokens": 12992045.0,
|
| 267 |
+
"step": 575
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 5.771084337349397,
|
| 271 |
+
"grad_norm": 0.06587184965610504,
|
| 272 |
+
"learning_rate": 0.000511,
|
| 273 |
+
"loss": 0.0446,
|
| 274 |
+
"mean_token_accuracy": 0.9862634456157684,
|
| 275 |
+
"num_tokens": 13560037.0,
|
| 276 |
+
"step": 600
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 6.0,
|
| 280 |
+
"eval_loss": 0.1241711750626564,
|
| 281 |
+
"eval_mean_token_accuracy": 0.9710005204728309,
|
| 282 |
+
"eval_num_tokens": 14071932.0,
|
| 283 |
+
"eval_runtime": 4.2228,
|
| 284 |
+
"eval_samples_per_second": 87.383,
|
| 285 |
+
"eval_steps_per_second": 11.13,
|
| 286 |
+
"step": 624
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"epoch": 6.009638554216868,
|
| 290 |
+
"grad_norm": 0.06124307960271835,
|
| 291 |
+
"learning_rate": 0.000511,
|
| 292 |
+
"loss": 0.0368,
|
| 293 |
+
"mean_token_accuracy": 0.9886124525407348,
|
| 294 |
+
"num_tokens": 14102915.0,
|
| 295 |
+
"step": 625
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"epoch": 6.250602409638554,
|
| 299 |
+
"grad_norm": 0.10462699830532074,
|
| 300 |
+
"learning_rate": 0.000511,
|
| 301 |
+
"loss": 0.0378,
|
| 302 |
+
"mean_token_accuracy": 0.9887062352895737,
|
| 303 |
+
"num_tokens": 14669309.0,
|
| 304 |
+
"step": 650
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 6.491566265060241,
|
| 308 |
+
"grad_norm": 0.09343062341213226,
|
| 309 |
+
"learning_rate": 0.000511,
|
| 310 |
+
"loss": 0.0353,
|
| 311 |
+
"mean_token_accuracy": 0.9892213380336762,
|
| 312 |
+
"num_tokens": 15237353.0,
|
| 313 |
+
"step": 675
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"epoch": 6.732530120481927,
|
| 317 |
+
"grad_norm": 0.08443740010261536,
|
| 318 |
+
"learning_rate": 0.000511,
|
| 319 |
+
"loss": 0.0364,
|
| 320 |
+
"mean_token_accuracy": 0.9892494148015976,
|
| 321 |
+
"num_tokens": 15804441.0,
|
| 322 |
+
"step": 700
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 6.973493975903614,
|
| 326 |
+
"grad_norm": 0.07635796070098877,
|
| 327 |
+
"learning_rate": 0.000511,
|
| 328 |
+
"loss": 0.0397,
|
| 329 |
+
"mean_token_accuracy": 0.9886371964216232,
|
| 330 |
+
"num_tokens": 16368577.0,
|
| 331 |
+
"step": 725
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 7.0,
|
| 335 |
+
"eval_loss": 0.17054519057273865,
|
| 336 |
+
"eval_mean_token_accuracy": 0.9649876089806252,
|
| 337 |
+
"eval_num_tokens": 16416958.0,
|
| 338 |
+
"eval_runtime": 4.2384,
|
| 339 |
+
"eval_samples_per_second": 87.061,
|
| 340 |
+
"eval_steps_per_second": 11.089,
|
| 341 |
+
"step": 728
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"epoch": 7.212048192771085,
|
| 345 |
+
"grad_norm": 0.0668734461069107,
|
| 346 |
+
"learning_rate": 0.000511,
|
| 347 |
+
"loss": 0.0333,
|
| 348 |
+
"mean_token_accuracy": 0.9895464802029157,
|
| 349 |
+
"num_tokens": 16927490.0,
|
| 350 |
+
"step": 750
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 7.453012048192771,
|
| 354 |
+
"grad_norm": 0.06639474630355835,
|
| 355 |
+
"learning_rate": 0.000511,
|
| 356 |
+
"loss": 0.0325,
|
| 357 |
+
"mean_token_accuracy": 0.9908391135931015,
|
| 358 |
+
"num_tokens": 17494143.0,
|
| 359 |
+
"step": 775
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 7.693975903614458,
|
| 363 |
+
"grad_norm": 0.10801058262586594,
|
| 364 |
+
"learning_rate": 0.000511,
|
| 365 |
+
"loss": 0.029,
|
| 366 |
+
"mean_token_accuracy": 0.9909009468555451,
|
| 367 |
+
"num_tokens": 18063423.0,
|
| 368 |
+
"step": 800
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 7.934939759036144,
|
| 372 |
+
"grad_norm": 0.048982683569192886,
|
| 373 |
+
"learning_rate": 0.000511,
|
| 374 |
+
"loss": 0.0313,
|
| 375 |
+
"mean_token_accuracy": 0.9908118671178818,
|
| 376 |
+
"num_tokens": 18630905.0,
|
| 377 |
+
"step": 825
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"epoch": 8.0,
|
| 381 |
+
"eval_loss": 0.1113305315375328,
|
| 382 |
+
"eval_mean_token_accuracy": 0.9737493814306056,
|
| 383 |
+
"eval_num_tokens": 18762023.0,
|
| 384 |
+
"eval_runtime": 4.2275,
|
| 385 |
+
"eval_samples_per_second": 87.285,
|
| 386 |
+
"eval_steps_per_second": 11.118,
|
| 387 |
+
"step": 832
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 8.173493975903614,
|
| 391 |
+
"grad_norm": 0.05220003426074982,
|
| 392 |
+
"learning_rate": 0.000511,
|
| 393 |
+
"loss": 0.0277,
|
| 394 |
+
"mean_token_accuracy": 0.9916808304160533,
|
| 395 |
+
"num_tokens": 19184427.0,
|
| 396 |
+
"step": 850
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"epoch": 8.4144578313253,
|
| 400 |
+
"grad_norm": 0.08605129271745682,
|
| 401 |
+
"learning_rate": 0.000511,
|
| 402 |
+
"loss": 0.0273,
|
| 403 |
+
"mean_token_accuracy": 0.9915985196828843,
|
| 404 |
+
"num_tokens": 19754417.0,
|
| 405 |
+
"step": 875
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 8.655421686746989,
|
| 409 |
+
"grad_norm": 0.0517394132912159,
|
| 410 |
+
"learning_rate": 0.000511,
|
| 411 |
+
"loss": 0.0258,
|
| 412 |
+
"mean_token_accuracy": 0.9922689855098724,
|
| 413 |
+
"num_tokens": 20322925.0,
|
| 414 |
+
"step": 900
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"epoch": 8.896385542168675,
|
| 418 |
+
"grad_norm": 0.059128183871507645,
|
| 419 |
+
"learning_rate": 0.000511,
|
| 420 |
+
"loss": 0.0256,
|
| 421 |
+
"mean_token_accuracy": 0.9923817366361618,
|
| 422 |
+
"num_tokens": 20889889.0,
|
| 423 |
+
"step": 925
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 9.0,
|
| 427 |
+
"eval_loss": 0.1412837952375412,
|
| 428 |
+
"eval_mean_token_accuracy": 0.97177672893443,
|
| 429 |
+
"eval_num_tokens": 21107006.0,
|
| 430 |
+
"eval_runtime": 4.2426,
|
| 431 |
+
"eval_samples_per_second": 86.974,
|
| 432 |
+
"eval_steps_per_second": 11.078,
|
| 433 |
+
"step": 936
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"epoch": 9.134939759036145,
|
| 437 |
+
"grad_norm": 0.08735097944736481,
|
| 438 |
+
"learning_rate": 0.000511,
|
| 439 |
+
"loss": 0.0214,
|
| 440 |
+
"mean_token_accuracy": 0.9934688914905895,
|
| 441 |
+
"num_tokens": 21433768.0,
|
| 442 |
+
"step": 950
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 9.375903614457831,
|
| 446 |
+
"grad_norm": 0.07706229388713837,
|
| 447 |
+
"learning_rate": 0.000511,
|
| 448 |
+
"loss": 0.0219,
|
| 449 |
+
"mean_token_accuracy": 0.9933523815870285,
|
| 450 |
+
"num_tokens": 22001855.0,
|
| 451 |
+
"step": 975
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 9.616867469879518,
|
| 455 |
+
"grad_norm": 0.0835743248462677,
|
| 456 |
+
"learning_rate": 0.000511,
|
| 457 |
+
"loss": 0.0202,
|
| 458 |
+
"mean_token_accuracy": 0.9938382267951965,
|
| 459 |
+
"num_tokens": 22568226.0,
|
| 460 |
+
"step": 1000
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 9.857831325301206,
|
| 464 |
+
"grad_norm": 0.10814040899276733,
|
| 465 |
+
"learning_rate": 0.000511,
|
| 466 |
+
"loss": 0.0222,
|
| 467 |
+
"mean_token_accuracy": 0.99358702480793,
|
| 468 |
+
"num_tokens": 23136558.0,
|
| 469 |
+
"step": 1025
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"epoch": 10.0,
|
| 473 |
+
"eval_loss": 0.1364360749721527,
|
| 474 |
+
"eval_mean_token_accuracy": 0.9739730041077796,
|
| 475 |
+
"eval_num_tokens": 23451914.0,
|
| 476 |
+
"eval_runtime": 4.2514,
|
| 477 |
+
"eval_samples_per_second": 86.796,
|
| 478 |
+
"eval_steps_per_second": 11.055,
|
| 479 |
+
"step": 1040
|
| 480 |
+
}
|
| 481 |
+
],
|
| 482 |
+
"logging_steps": 25,
|
| 483 |
+
"max_steps": 1248,
|
| 484 |
+
"num_input_tokens_seen": 0,
|
| 485 |
+
"num_train_epochs": 12,
|
| 486 |
+
"save_steps": 500,
|
| 487 |
+
"stateful_callbacks": {
|
| 488 |
+
"TrainerControl": {
|
| 489 |
+
"args": {
|
| 490 |
+
"should_epoch_stop": false,
|
| 491 |
+
"should_evaluate": false,
|
| 492 |
+
"should_log": false,
|
| 493 |
+
"should_save": true,
|
| 494 |
+
"should_training_stop": false
|
| 495 |
+
},
|
| 496 |
+
"attributes": {}
|
| 497 |
+
}
|
| 498 |
+
},
|
| 499 |
+
"total_flos": 1.0255354758734807e+18,
|
| 500 |
+
"train_batch_size": 2,
|
| 501 |
+
"trial_name": null,
|
| 502 |
+
"trial_params": null
|
| 503 |
+
}
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 6097
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9abd2e560826c250d1fd3df1ec10e14fef0b5ef3b175f43df982f2fc9f2f11d9
|
| 3 |
size 6097
|